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Abstract 1 Introduction

Gathering data from nodes in a network is at the heart @bllecting data of all nodes in a network is required by many
many distributed applications, most notably, while parfer distributed applications which perform global tasks. The
ing a global task. We considarformation spreadingmong goal of aninformation spreadinglgorithm is to distribute

n nodes of a network, where each nodénas a messagethe messages sent by each rofnodes in a network to
m(v) which must be received by all other nodes. Thal other nodes. We consider the synchronous push/pull
time required for information spreading has been previoushodel of communication along with thteansmitter gossip
upper-bounded with an inverse relationship to the condwonstraint [19], where each node contacts in each round
tance of the underlying communication graph. This impli@meneighbor to exchange information with (a node can be
high running times for graphs with small conductance. contacted by multiple neighbors).

The main contribution of this paper is an information Intuitively, the time required for achieving information
spreading algorithm which overcomes communication bapreading depends on the structure of the communication
tlenecks and thus achieves fast information spreading fograph, or more precisely, on how well-connected it is. The
wide class of graphs, despite their small conductance. Asation of conductance defined by Sinclair [25], gives a
key tool in our study we use the recently defined conceptrakasure for the connectivity of a graph. Roughly speaking,
weak conductanc@ generalization of classic graph conduthe conductance of a grapgh denoted byp (G), is a value in
tance which measures how well-connected the compondftd]: This value is large for graphs that are well-connected
of a graph are. Our hybrid algorithm, which alternates bg.g., cliques), and small for graphs that are not (i.e plgsa
tween random and deterministic communication phases, @kich have many communication bottlenecks). It has been
ploits the connectivity within components by first applyinghown that the time required for information spreading can
partial information spreadingafter which messages are seriie bounded from above based on the conductance of the
across bottlenecks, thus spreading further throughoutghe underlying communication graph [3, 8,9, 19]. In particular
work. This yields substantial improvements over the bedbsk-Aoyama and Shah [19] show that, for ahg (0,1),
known running times of algorithms for information spreadnformation spreading can be achieved@r@log"g%)

. (G)
ing on any graph that has a large weak conductance, fr@§ings with probability at least— 6. This holds when each
polynomial to polylogarithmic number of rounds. node randomly chooses a neighbor to contact in every round.

~ We demonstrate the power of fast information spreading  gome graphs have small conductance, implying that
in accomplishing global tasks on tieader electionprob- they are not well-connected, and therefore the above ap-
lem, which lies at the core of distributed computing. OWyoach may require many rounds of communication for in-
results yield an algorithm for leader election that has & scfyrmation spreading. This lead us to defineak conduc-
able running time on graphs with large weak conductanggsce d,(G), of a graph [7], which measures connectivity
improving significantly upon previous results. amongsubset®f nodes in the graph, whose sizes depend on
the parameteat > 1. It was shown that a relaxed requirement
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tion spreading on connected graphs, and runs fast with higk network.
probability on graphs with large weak conductance, indepen We propose a hybrid approach for choosing the neigh-
dent of their conductandeThis widely expands the knownbor to contact in a given round, which interleaves random
family of graphs for which fast information spreading can bEhoices and deterministic ones. As in the case of random
guaranteed, since the weak conductance of a graph is alwehaices, selecting neighbors only in a deterministic manne
lower bounded by its conductance and is significantly largaay require a number of rounds (at least) proportional to the
for many graphs. degree of the node, which may be lafg@ur approach com-
More generally, for graphs with large weak condudines random and deterministic techniques using a frame-
tance, our algorithm induces fast solutions for tasks whialork where each node carefully maintains a diminishing list
can be solved using full information spreading, such a§its neighbors to contact deterministically, and altéesa
leader election, achieving consensus and computation-of lagtween selections from this list and random choices from
gregation functions. the set of all neighbors. The lists maintained by the nodes as
It has been long known that the conductance itself ssre that the information spreads across bottlenecks. A mai
insufficient as a lower bound for information spreading. Fohallenge overcome by our algorithm is the tradeoffimposed
example, Feige et al. [13] show that information spreadibg managing the lists, namely, inducing a connected sub-
on the hypercube can be obtainedifiog n) rounds, despite graph while having scalable sizes that allow contactingneac
its small conductance. Our results refine this observatiofithe neighbors in them within a small number of rounds.
suggesting the notion of weak conductance as the correct This constitutes our second contribution: obtaining a
measure for full information spreading. connected scalable-degree subgraph in a distributed netwo
of unbounded degrees. We believe that finding such sub-
1.1 Our Contribution. The main contribution of this pa-graphs can be useful in other applications, e.g., in obtgini
per is an algorithm which achieves fast information spreagtalable-degrespannerd21, 22] — fundamental subgraphs
ing, with high probability, for graphs with large weak conthat preserve distances between nodes up to some stretch.
ductance. Formally, for any > 1 and some smald € We demonstrate the power of fast information spreading
(0,1/(3¢)), our algorithm achieves full information spreadin accomplishing global tasks on theader electionprob-
ingin O(c(% +¢)) rounds with probability at least/em, whi_ch lies at thg core of distributed_ computing. Our
1 — 3¢s. This yields substantial improvements in the be&sults yield an algorithm for leader election that has & sca
known running times of algorithms for information spreadP!€ running time on graphs with large weak conductance,
ing, in particular, on graphs that have small conductante BiProving significantly upon previous results.

large weak conductance, from polynomial to polylogarith- _ _ )
mic number of round3. 1.2 Related Work. Information spreading algorithms

Since the best known running times of algorithms éyave been extensively _studied, starting with the work of Dej
full information spreading inversely depend on the condu®€rs et al. [10] for replicated database maintenance. Addi-
tance, which may be small due to communication bottlional research use information spreading for computatfon
necks, a natural direction towards speeding up informatigoPal functions [17, 19]. o _
spreading is to identify such bottlenecks and choose these COMmunication models vary in different studies. For
links with higher probability, compared to other neighingri €X@mple, Karp et al. [16] consider thandom phone-call
links. However, detecting bottlenecks does not seem edBpdel, where in each round every node chooses a random
One approach for separating bottlenecks from other neigifde to communicate with, assuming the communication
bors is to show that a node receives messages from nddf@ph is complete. Our results hold for arbitrary commu-
across a bottleneck only with small probability. This seerfcation graphs. _
to reduce to finding lower bounds for information spreading, Additional recent work includes the work of Bradonjic
a direction which has not proved fruitful so far. Instead, wg &l- [6], who analyze information spreading in random
develop an algorithm that does not detect bottlenecks, #§°Metric graphs, and the work of Georgiou et al. [15],
does it formally define their underlying properties, which{udying information spreading in asynchronous networks.
also appears to be a challenging task. Nonetheless, ours@wate and Dimakis [24] and Boyd et al. [5] study the
gorithm successfullgopeswith bottlenecks and guaranteeBroblem in wireless sensor networks. _
fast information spreading despite their presence through "€ quasirandonmodel for information spreading has

been introduced by Doerr et al. [11], and studied subse-
quently in [12, 14], as an approach to reduce the amount of
~ TWe consider an algorithm to Hastif it runs in ascalablenumber of
rounds, i.e., ir0(log n) or O(polylog(n)) rounds.
2Consider, for example, the class of graphs with conductahge/n) " Sindeed, this is due to the fact that a neighbor adjacent tatebheck
but constant weak conductance. link may be contacted last.



randomness. In this model each node has a (cyclic) list of When only a relaxed spreading guarantee is required,

its neighbors, in which it chooses randomly a starting po#ite concept ofveak conductancean be used in order to

tion. It then accesses its list sequentially using thistisigr analyze partial information spreading. While conductance

position. The paper [11] shows that this model behaves psavides a measure for the connectivity of the whole graph,

sentially the same as the randomized model. weak conductance measures thest connectivity among
subsets that include each node. Formally, for an integer

1.3 Organization. The rest of the paper is organized as > 1, the weak conductance of a graph= (V, E) is

follows. We give an overview of the notions of conductancdefined as:

weak conductance, and partial information spreading in

Section 2. In Section 3, we present our algorithm for

obtaining full information spreading. The analysis of the ®.(G) = min max min (S, V;) 7
number of rounds required by our algorithm is given in i€V VS SSE A
Section 4. Finally, Section 5 presents the application of il 2 wh=

our results to the leader election problem, followed by a . . . . )
discussion in Section 6. where¢(S,V) is defined in (2.1). Indeed, in the special

case wherez = 1, the weak conductance @f is equal
2 Prdiminaries to its cprytjuct.ancg, namel®;(G) = ®(G). Moreover,

h . ¢ h d introduced this definition implies that the weak conductance of a graph
The noftlﬁn 0 grzla;p con uc(;ance wahs Introduced as a mgay monotonically increasing function of therefore, the
suré of how we -connected a graph is. For a ghen weak conductance of a grapgh is at least as large as its
(S,V'\ 5), define conductance.

D p . The following theorem bounds the number of rounds
2.1) o(S,V) = %ﬁs”v required for(d, c)-spreading.
) ) ) ) ) THEOREM2.1. ([7, THEOREM3]) For any § € (0,1),
nication of the nodes. log n+log 5*1)
The conductance of the graph is then defined to be t% 2.(G)

minimal such value, taken over all cuts: However, we emphasize that the proof of this theorem gives

actually a much stronger result. For any vertex V, let

V., be the component realizing the definition of the weak

conductance. Then it is shown in [7] that the above is a

Notice that the conductance satisfies< ®(G) < 1, since bound on the number of rounds required for every node

foreveryi € Swehave) v\ o Pij <3 ey Py = 1. to obtain the message(u) of everyu € V,,, and for every
We refer the reader to [7] for a proof that this definix to obtainm(v). We refer the reader to the above paper for

tion, which slightly differs from the traditional definitioof the proof, and state the stronger result, which we latermse i

conductance [25], is equivalent for a symmetric stochastiar analysis.

matrix P; also, it is shown in [7] that such a symmetric ma-

trix P can represent a model of random choices of neighbdtdEOREM 2.2. For anyd € (0, 1), with probability at least

that is different from our model (where nodehooses eachl — 4, the number of rounds required for every nadé¢o

neighbor with probabilityl /d;), but this model is dominatedobtain the message(u) of everyu € V,, and for every

by our model, namely, the analysis of the time required fare V,, to obtainm (v) is O (%).

fastinformation spreading in the symmetric model holds als

in our model, which can only do better. Therefore, for all nodes € V, the setd/, will be central to
For some applicationspartial information spreading our analysis. These sets depend on the valug which is

suffices, namely, the condition that each node receives tmitted to avoid excessive notation.

information of all other nodes (to which we refer fdl We proceed by giving examples of the conductance

information spreadingcan be relaxed to smaller amounts aind weak conductance of different graphs. cique has

information. Formally, for some values> 1 andé € (0,1), constant conductance. Its weak conductance is equal to

we require that with probability at least— § every messageits conductance, since for every nofi¢he best subsel;

reaches at least/c nodes, and every node receives at least V' itself. The conductance of path is % while its

n/c messages. An algorithm that satisfies this requiremendisak conductance improves only t. For these two

called(d, ¢)-spreading Indeed, the special case where: 1 examples, the weak conductance is in the same order as the

corresponds to full information spreading. conductance for some constant 1.

o(G) = SEV{%IHSH/QSD(S’ V).



each other we consider the node with the smaller ID as the
coo initiator). We number these events by event timet, such
thatrn < ¢t < (r + 1)n. However, these exchanges occur
in parallel, which means that a node sends information it had
by the end of the last round, without additional information

Figure 1: Thec-barbell graph is a path of equal-sized 't May have received in the current round.

cliques. It is an example of a graph with small conductance FOF €ach node, let N(v) be the set of all neighbors
and large weak conductance. of v. At every event time, nodev maintains a cyclic list

B (v) of suspected bottlenecks among its neighbors, where
By(v) is initialized to beN(v), in an arbitrary order. In
The c-barbell hi le of h with order to exchange information with its neighbors, each node
€c-barbeligrapn IS an examp’e ot a graph With Very - 0 ates between choosing a random neighbor from
small conductance (for which, to the best of our knowl: . - )
(v) and choosing the next neighbor froBy(v). During

edge, it was not known up to this work how to achieve f tis rocedurey removes neighbors froms; (v) accordin
information spreading), but large weak conductance. '?’?n-‘e P Y 9 ! g

c-barbell graph, which is a generalization of tharbell 0'the following policy.

graph, consists of a path efcliques, where each Contair_]ileighbor Removal Policy for Node v: Let u be a node in

n/c nodes (see Figure 1). Thebarbell graph is aSSOC'_N(U). At event timet in which v exchanges information

ated with the transition matri® for which F; ; = 1/ (7_:) with another nodey removes any node whose message is

fgr e(\j/ery two neighborsp; ; - 1/(%) for eve][y nodei oceived for the first time, unless it is received fraritself
that does not connect two cliques, afig; = 0 for every andu is the initiator of this information exchange.

nodei connecting two cliques. While the conductance o

this graph is(1/(2)) /2 = 2, the weak conductance is

We emphasize that a nodewhich removes a node
((%)(% — 2’—2)7%/6) 2 = 1. For any constant > 1, from B;(v) can still contact node if it happens to be its

this implies conductance @(1/n2) while the weak con- fandom choice in an even-numbered round _
ductance i9(1). Indeed, the barbell graph has been studied Each nodes also maintains a buffet/; (v) of received
before [1, 4] as a graph for which information spreading rBl€Ssages, initialized to consist only of its own message
quires a large number of rounds (in [1] the contextis randdf{v)- Whenv has alln messages it returns the buffer
walks, which is closely related, since the path of a messalfe(v) s its output. The pseudocode for a nadappears
can be viewed as a random walk on the graph). in Algorithm 1.

There are additional families of graphs that have a sim-
ilar property of small conductance and large weak condugc=—— i i :
tance. Examples include rings of cliques and other strastuf*!90r ithm 1 Full information spreading code for node
with ¢ equal-sized well-connected components that are cénitially My(v) = {m(v)}, Bo(v) = N(v),r =0,t =0

nected by only a few edges. 1. ifriseven

2: w = arandom neighbor fronV (v)
3 A Fast Information Spreading Algorithm 3:  else
Our algorithm for obtainingull information spreadingap- 4 w = the next neighbor front, (v)

Contactw and exchange information
Exchange information with every’ that contact®
/I last two lines by order of initiator ID

plies several phases of partial information spreadin@rintS:
leaved with our deterministic spreading on a scalable séb-
graph. We emphasize that the only initial information a node
has is the size of the networkand the set of its neighbors.7:
No value ofc is given to the nodes nor do they aim to o’
tain partial information spreading;is only used for analy- o
sis. Moreover, the information spread contains no addifio 0:
headers, only the information(v) of different nodes.

We consider a synchronous system witlnodesV =

v1,v2,...,Un}, represented by a graghh = (V, E). In

({aach round, (};ver;)node contacts oneﬂ?)f its(neig%bors, s Biy1(v) = By(v) \ {u}

fori=1ton
if v = v; orv is contacted by’ = v;
Add new messages ;. (v)
for every node: € N (v)
if v receivesn(u) for the first time fromw
andw # u
orv receivesn(u) for the first time fromw’

explained below, and exchanges information with it. Foft t=t+1
the analysis, we consider each roundis a sequence oft2: If [M:(v)] = n then returni, (v)
n events of information exchange, ordered by the ID o r=r+1

the node that initiated the exchange (if both nodes choase




At every event timet, for every nodev we define a el\.
partition of N (v) into three sets, as follows. Il gc-->0 u
7!

R
o White,(v) = Bo(v) \ Bi(v) : The set of nodes that //l \
have been removed frof,(v), as ¥ ... e w \. v
e Black:(v) = {u € N(v) | m(u) € My(v) andu ¢ <—‘/

W hite,(v)}: The set of nodes at event timeyuaran-

teed to never be removed fr , )
0y (v) Figure 2: Proof of Lemma 3.2. Dashed arrows represent

e Grey:(v) = N(v) \ (Black:(v) U White:(v)): The white edges, while solid arrows represent black edges. If
rest of the nodes, which may or may not be removedfiemoves. from B;(v) by receivingm(u) fromw, then there
later event times. is an undirected black path betweeandw.

We illustrate this partition on the directed gragh =
(V, E), which is the same as the communication graph, lednditions in line 11 or line 12 of the algorithm is satisfied.
with colors associated with each edge at event tiniew € We distinguish between two cases.
W hite;(v) then (v, u) is colored white, ifu € Black:(v) Case 1: Node receivesm(u) for the first time from
then (v, w) is colored black, and otherwige, ) is colored nodew # w, and removes node from B;(v). The fact
grey. thatw has the message(u) at this time implies thatn ()

We start the analysis with four simple claims regardirtgaveled a path. = ag, a1, ..., ap = w by timet — 1. For
the colors of the edges ¢f;. The formal statements appeaall 0 < i < ¢, there has been information exchange between
in the next lemma, whose proof is given in Appendix A.  a; anda;1, which implies that both nodes have each other’s

message. Lemma 3(1:) implies that both edge@;, a;+1)

LeEMMA 3.1. The following four claims hold: and(a;, a;41) are not grey.

Assume that for somg both edges are white (if no such
i exists then we are done). By Lemma 3i1), these two
(i) For any nodesy andw, if m(u) € M;(v), andu € edges could not have turned white at the same time step. Let

() In Gy all edges are colored grey.

N (v), then(v, u) is not grey inG. t’ be the time step in which the second edge turned white. By
) ) the induction hypothesis, at tintéthere was an undirected
(iiiy For any event time, if for some nodes andu both patha, = b, o, b;1,...,bis, = a;41 colored black. Going

edges(v, u) and (u, v) change their color at, thenv gver all such values of we have that there is an undirected
andu are the pair of nodes that exchange informatiopjack path between andw (see Figure 2).

in this event time. It remains to show that there is a black path between
handw. Sincev andw exchange information, by Lemma 3.1
(i), both edgegv, w) and(w, v) are colored. Assume that
they are both colored white (otherwise we are done). Then

We are now ready to prove a key lemma in our analysf$, @) does not turn white in event timebecause is the
from B,(v), that is, the edgév, ) is colored white, there t' < t. By the induction hypothesis_, there i_s an undirected
is an undirected path of edges betweemnd u that are Plack path between andw at that time, which completes

guaranteed to never be removed, i.e., a black path. the proof of this case. o
Case 2: Node receivesm(u) for the first time from

LEMMA 3.2. For any event time > 0, if (v, u) turns white, nodew’ which was the initiator of the information exchange,

(iv) If (v,u) and(u, v) are both grey, they cannot turn bot
white at the same time step.

then there is a pathh = ag, a1, ...,ar_1,a, = u such that and removes nodefrom B, (v). The proof follows the lines
forall 0 <i < ¢—1, either(a;, a;11) is black or(a;1,a;) of Case 1 to show that there is an undirected black path
is black. betweenu andw’. It then remains to show that there is a

black path between andw’. A similar argument to that of
Proof. The proof is by induction on the time stépwhere Case 1, replacing the initiaterwith «’, proves that there is
the base case far= 0 is the initial coloring of the graph. such a path. ]
By Lemma 3.1(7), at this time all the edges are colored grey,
therefore the lemma holds vacuously. For the induction step Lemma 3.2 guarantees that after removing elements
assume that the lemmais true for every edge that turns wiiten the setsB;(v) of different nodes, the nodes always
in a stept’ < ¢. We prove the lemma for any edge, ) remain connected by black and grey edges, even though
that turns white at time. If this happens, then one of thewvhite edges in the communication graph are ignored in line



4 of the algorithm. Again, recall that a nodecan still
contact a neighbor it removed fromB;(v), by choosing

it in line 2 of the algorithm. Finally, we note that for every
roundr and nodev, only one edge can be colored black by
v through alln event times of this round, since a node
joins Black;(v) only if w is the unique node with whomuv
initiated information exchange at event tihe

CLAIM 1. For every roundr and every node we have that
| Black,,r11)-1(v)| — |Blacky,(v)| < 1.

4 Analysis Figure 3: lllustration of a node, its component,, and the

We now claim that there are ndbo manyblack edges setd, ofintersecting components.

outgoing from any node. This will guarantee that every
neighbor remaining inB;(v) will be eventually contacted Proof. Consider the state of the buffeid,,..(v) afterr =
after asmall number of rounds. The precise measures af + 27" rounds. By Theorem 2.2, and sine&’ rounds

these amounts will be defined later. consist of7" even-numbered rounds, with probability— &
For the rest of this section, we fix a value > 1 everynode has all message¥,,,,(u) of everyu € V,,, and
and a valuey € (0,1/3c). However, we emphasize thaeveryu € V,, hasiM,,,,(v). |

these values are not used in the algorithm, and are thereforeWe consider the proaress of the algorithm after three
unknown to the nodes. They are only used for the andlysis brog g

. . phases. For every nodewe define the sef, = {u €
and eventually we will choose a valadhat minimizes the .
V| V,NnV, # 0} of nodes whose component intersects
number of rounds.

LetT — O (lognﬂog(;fl), the number of rounds ob_the component ob. Further, for every node let A, =

. @ ) Vo (Uuer, V)
tained in Theorem 2.2. We considarase®f the algorithm,

each phase consisting 2 rounds. The outline of our anal-LEMMA 4.2. Letry be a round number. After round =
ysis is as follows. Recall that, for any € V, V, is the 7o + 67, with probability at leastl — 34, for every nodes
component realizing the definition of the weak conductan¥ have ¢ 4 .} Mnr, (2) C© My (v).

Roughly speaking, Theorem 2.2 shows that with high prosir, ot consider the algorithm aftet7” rounds. Let be a
bility after one phase a nodehas the messages of all nodegyge andy a node not inv,. If V, NV, # () then there
uin its component’,, since the even-numbered rounds conk 5 nodew ¢ V, N V,. Lemma 4.1 implies that aftetT
prise ofregular information spreading. We then show thgiy ,ndsw has all messagel/,,,, () of nodesz in V, (one
nro u

after three phases, a nodenas the messages of all nOdeﬁhase fo to receiveM,,,, (z) of everyz € V, and another
that are either in its component or in an intersecting COMRfKase for this information to reach € V). Applying
nent. Finally, we show that afte(6T +_2c) rounds, a node | emma 4.1 again gives that spreads these messages to
v has the messages of all nodes. This strongly relies on thg, o7 aqditional rounds. That isy has the messages
connectivity argument in Lemma 3.2, and a careful book; () of all nodesz in V, U (U,.c; Vu). All three phases

. nro v uel, "u)*
keeping of the number of edges B (v) throughout these ot information spreading need to succeed for the above to
phases. In addition, we need to keep track of the probabilify,en. A simple union bound on the probability that either

of failure in every phfise. _fails gives that with probability at least- 34 all three phases
We begin by using Theorem 2.2 to show that starting,cceed. u

from anyroundr, after one phase of the algorithm we have .
spread the information oM, (v) inside the component ~ After each nodes has all the messages of nodes in
V, (instead of justm(v) if ro = 0). We emphasize that4v, it takes only2c rounds for all remaining grey edges to

the probability of success is fail nodesv to satisfy the turn white or black. The reason we handled nodesiin
requirements. separately in Lemma 4.2 is that nodes that are outdigle

have components that do not interségtadding atleast/c
LEMMA 4.1. Letry, be a round number. After round = new messages to the messages of nodgs.iithis allows us
ro 4+ 27", with probability at leastl — §, for every node we to claim that soon there are no more grey edges in the graph
havelJ,cy. Mur, (1) © My (v), @and My, (v) © My, (u) (Se€ Figure 3).

for everyu € V.. LEMMA 4.3. After r = 6T + 2¢ rounds, with probability

at leastl — 30, for every nodes we have tha{m(u) | u €
*This is formalized in theorem 4.1. N(v)} C My, (v).



Proof. Let S! be the set of nodes such that receives the rounds, where’ = 2i(6T + 2¢). We use in the proof the
messagen(u) afterr; = 67 + 2i rounds. We claim that following.

with probability at least — 34, for every nodey and every, ) - ‘
1 < i < ¢, after roundr; the bufferM,,,. (v) of messages CLAaiM 2. With probability at least — 34, for every node

receives either contains (u) of all nodes inN (v), or there @ndl < < ¢, afterroundr; the bufferl,,,., (v) of messages

arei different nodesu; w; such thatV, NV, = 0 received by either contains messages of all nodes, or there
goe ey U s U . .
forall 1 < j < k < i, and for everyl < jJS i we have arei different nodesuy, ..., u; such thatV,, NV, = 0
A CSi forall 1 < j < k <4, and for everyl < j < i we have
u; = Moy

We prove this claim by induction. For the base cagt S o

¢ = 1, by Lemma 4.2, we have that with probability at leag;,¢ \we prove the claim by induction. For the base case
1— 36, gfterGT < rq rounds each node hasm(u) of all — 1, by Lemma 4.2, with probability at least — 36,
nodesu in 4,, therefore we choose, = v. after ro + 67 < r; rounds, for every node we have

Wg ne>§t assume that .the claim ho!ds u_pz‘te ! anfj. U{weAv} My () C My, (v). Therefore A, C S} so we
prove it fori. By the induction hypothesis, with pmbab'“tychoosml — 0

atleastl — 3, for every node we have after round;, = Next, we assume that the claim holds upite 1 and

67+2(i—1)thatthere aré—1 nodesus, . .., ui—1 S”Chit[]f‘t prove it fori. By the induction hypothesis, with probability
Vi, WV, = 0foralll < j <k <i-1andAdy; C S atjeastt — 3(i — 1)d, for every nodes we have after round
foreveryl <j <i-—1.

] . . ri—1 = ro + 2(i — 1)(6T + 2¢) that there aré — 1 nodes
If S;~' contains all nodes iV (v) then we are done. ... ui_y suchthat, NV, =fforalll <j<k<

Otherwise, there is a node € N(v) such that the edge; _ | gnd4. c Si-1 for everyl < j <i—1.
(v,u) is grey at the beginning of round. In the next odd- If Si-1 contains all nodes then we are done. Otherwise,

numbered round contacts such a node Sinceu ¢ Sy by Lemma 3.2 and Corollary 4.1, by this time there is an
by the induction hypothesis we have ¢ A,, for every girected black path between any two nodes of the graph,
1 <j <i—1 Thisimplies that, N Vi, = 0 for every an4 gpecifically, there is a node¢ Si~! connected by a

1 = j = i—1 Moreover, by Lemma 4.24, C Si. piack edge to some node € Si~!. Since aftelsT + 2¢
This completes the proof of our claim. The claim implieg) ,nds all nodes have at mostT + 2¢ nodes inB, (v)
that after 61" + 2c rounds, eitherv hasm(u) for every aper gt mosT + 2¢ additional rounds each node contacts
u € N(v), or there arec different nodesus, ..., uc SUCh  gach of its black neighbors. Therefore, after roufd—
thatVy, N Ve, = O forall1 < j <k = ¢ andforevery . +2(6T + 2¢) the nodew has the messages of all nodes in
1 < j < cwe haved,; C S;. In particular,v has the S thatislJ, . a1 My (2) C My (w).

messages of all nodes of the pairwise disjoint $étsfor —“ By the i%%%ctionohypozhesis with replacingro, after

1 < j < c, all of which are of size:/c, which implies thav r/_, additional roundsv has them as well, with another

1—1
has all messages. u factor of 36 added to the probability of failure. Formally,

Having the messages of all components of the neighbbtscs: Mnro(2) S My (w) C My (v), wherer” =
of a node immediately implies no more grey edges. 1h+ i—1 = o+ 2(67 + 2¢) + 2(i — 1)(6T + 2c) = r;.
addition, by Claim 1, we can bound the number of out-going Ve now prove that taking, = u satisfies the require-
black edges for each node. ments of our claim. Since ¢ S:~!, by the induction hy-

pothesis we have ¢ A, foreveryl < j <i—1. This

COROLLARY 4.1. After6T + 2c rounds, i.e., fot = (67 + implies thatl, NV, = () foreveryl < j < i—1. Moreover,
20)71, with probability at leastl — 39, for every nodey, we A, C SZ) sinceA,, C Si This Comp|etes the proof_ n
haveB;(v) = Black(v), and|B.(v)| < 6T + 2c.

By Claim 2, after2¢(67 + 2¢) rounds eithep hasm(u)

We are now ready to prove our main lemma, whigyr everyu € N (v), or there are different nodesu, . . . , u.
bounds the complexity of the algorithm. Roughly speakingy,ch thatV,, N V,, = foralll < j < k < ¢, and for
the argument follows the line of proof of Lemma 4.3, biyery1 < j < cwe haved,, C S¢. In particularw has the
instead of considering grey edges, it relies on having cqfiessages of all nodes of the pairwise disjoint $éts for

nectivity among the black edges. 1 < j < ¢, all of which are of size:/c. This implies thaw
LEMMA 4.4. With probability at leastl — 3cé, after at has all messages. .
mostr = 2¢(61" + 2c) rounds, for every node we have Rephrasing Lemma 4.4 gives our main theorem for full
My (v) = {m(u) |u €V} information spreading:

Proof. Let ro be a round number, and I€f be the set of THEOREM4.1. For everyc > 1 and everys € (0,1/3c),
nodesu for which M,,,.,(v) C M,,,(v) afterr; = ro + r, Algorithm 1 obtains full information spreading after at nhos



O(c(% + ¢)) rounds, with probability at least6 Discussion

1 — 3cd. This paper studies information spreading, presenting a hy-

brid algorithm, which interleaves random neighbor choices
Looking at some specific values of the parameters in twh deterministic ones for exchange of information. Our

above theorem we get that Algorithm 1 is fast for graplagorithm is fast on graphs which have large weak con-

with scalable weak conductance (for a scalable valu@.of ductance. For graphs which also have small conductance,

For example, it = polylog(n) and®. = polylog(n), then it substantially improves upon the running times of previ-

our algorithm requires a polylogarithmic number of roundsusly known algorithms, from polynomial teolylogarith-

The probability of failure is3cd, which isO(polylog(n)/n) micnhumber of rounds.

if § = 1/n, andO(1/n) if ¢ is a constant; in both casesitis A by-product of our algorithm is the maintenance of

o(1). a connected scalable-degree subgraph, which we believe
will find additional applications. Specifically, it may be
5 Application: Fast Leader Election possible to obtain scalable-degree spanners with lowcktret

In this section we show how our algorithm for fast infor?Y @PPlying similar techniques. _

mation spreading enables to improve the previously known AN intriguing open question is whether there is a non-
results for thdeader electiorproblem, in which the nodes oft"Vial lower bound on the number of rounds required for
a network need to choose a leader, i.e., agree on the 1D dﬁ:fgrmatlon spreadmg as a function of the weak conductance
single node. This fundamental problem allows coordinatiGhthe underlying graph. Another avenue for future research
of processes and symmetry breaking in many distributed §p!° @dapt our algorithm to failure-prone environments, as
plications. reS|I|e_nce to faults is typically required in practical sa€os.

Being a central paradigm in distributed computing, Finally, we note that our model allows messages of
leader election has been widely studied, in different mpd&nPounded size. Bounding the size of messages is another
of communication and under different assumptions, datifljection for further research.
back to 1977 [18]. Much effort was invested in the special
case of a ring, where the underlying communication graph
is a cycle of then nodes, see, e.g., [2, Chapter 3]. Other re-
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Proof.

For completeness, this section provides full proofs of the
claims stated in Lemma 3.1.

InProceedings of the nineteenth annual acMv-emma3d.l [restated] The following four claims hold:

In G all edges are colored grey.

) For any nodes and v, if m(u) € M;(v), andu €

N (v), then(v, u) is not grey inG;.

For any event time, if for some nodes and v both
edges(v, u) and (u,v) change their color at, thenv
andw are the pair of nodes that exchange information
in this event time.

If (v,u) and(u,v) are both grey, they cannot turn both
white at the same time step.

(i) By definition, at event time 0 no edges are
colored white, since no nodehas been removed from
any setBy(v). Moreover, no buffed/,(v) contains any
message other than(v), therefore no edge is colored
black. This implies that all edges @, are grey.

If v has the message(u) by event timet andu ¢
W hite:(v), then by definitiony € Black:(v), that is,
(v,u) is black inG;.

By the code of Algorithm 1, an edg@, u) changes its
color at event time only if v received a message at that
time. If u is not one of the two nodes that exchange
information at event time then (u,v) cannot change
its color at timet.

By (ii7), two neighbors can change the color of the
edges connecting them at the same time step only if
they exchange information at this time step. Assume,
without loss of generality, that is the initiator of this
exchange. Thendoes not remove from B, (v) at this
step because neither of the conditions in lines 11 and 12
are satisfied. ]



