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Abstract

We give an O(
√
n log n)-query quantum algorithm for evaluating size-n AND-OR formulas.

Its running time is poly-logarithmically greater after efficient preprocessing. Unlike previous
approaches, the algorithm is based on a quantum walk on a graph that is not a tree. Instead,
the algorithm is based on a hybrid of direct-sum span program composition, which generates
tree-like graphs, and a novel tensor-product span program composition method, which generates
graphs with vertices corresponding to minimal zero-certificates.

For comparison, by the general adversary bound, the quantum query complexity for evaluat-
ing a size-n read-once AND-OR formula is at least Ω(

√
n), and at most O(

√
n log n/ log log n).

However, this algorithm is not necessarily time efficient; the number of elementary quantum
gates applied between input queries could be much larger. Ambainis et al. have given a quan-
tum algorithm that uses

√
n 2O(

√
log n) queries, with a poly-logarithmically greater running time.

1 Introduction

An AND-OR formula is a rooted tree in which the internal nodes correspond to AND or OR gates.
The size of the formula is the number of leaves. To a formula ϕ of size n and a numbering of the
leaves from 1 to n corresponds a function ϕ : {0, 1}n → {0, 1}. This function is defined on input
x ∈ {0, 1}n by placing bit xj on the jth leaf, for j = 1, 2, . . . , n, and evaluating the gates toward
the root. Evaluating an AND-OR formula solves the decision version of a MIN-MAX tree, also
known as a two-player game tree.

Let Q(ϕ) be the quantum query complexity for evaluating the size-n AND-OR formula ϕ.
Quantum query complexity is the generalization of classical decision tree complexity to quantum
algorithms. Now the general adversary bound of ϕ is Adv±(ϕ) =

√
n [BS04, HLŠ07], and thus

Q(ϕ) = Ω(Adv±(ϕ)) = Ω(
√
n). Since the general adversary bound is nearly tight for any boolean

function, in particular Q(ϕ) = O(
√
n log n/ log log n) [Rei09a]. (Interpreted in a different way, this

says that the square of the quantum query complexity of evaluating a boolean function is almost
a lower bound on the read-once formula size for that function [LLS06].) However, the algorithm
from [Rei09a] is not necessarily even time efficient. That is, even though the number of queries
to the input is nearly optimal, the number of elementary quantum gates applied between input
queries could be much larger.

Ambainis et al. [ACR+07] have given a quantum algorithm that evaluates ϕ using
√
n 2O(

√
logn)

queries, with a running time only poly-logarithmically larger after efficient preprocessing. We reduce
the query overhead from 2O(

√
logn) to only O(log n), with the same preprocessing assumption.
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Theorem 1.1. Let ϕ be an AND-OR formula of size n. Then ϕ can be evaluated with error at most
1/3 by a quantum algorithm that uses O(

√
n log n) input queries. After polynomial-time classical

preprocessing independent of the input, and assuming unit-time coherent access to the preprocessed
string, the running time of the algorithm is

√
n (log n)O(1).

An improvement from 2O(
√

logn) to O(log n) overhead may not be significant for eventual practi-
cal applications. Additionally, the algorithm does not obviously bring us closer to knowing whether
the general adversary bound is tight for quantum query complexity, because its overhead is larger
than the O(log n/ log logn) overhead of the query algorithm from [Rei09a]. (It may be that the
analysis used to prove Theorem 1.1 is somewhat loose.)

However, the idea behind the algorithm is still of interest, as it provides a new solution to the
problem of evaluating AND-OR formulas with large depth. If ϕ is a formula on n variables, with
depth d, then the [ACR+07] algorithm, applied directly, evaluates ϕ using O(

√
nd) queries.1 Thus

for a highly unbalanced formula, with depth d = Ω(n), the quantum algorithm performs no better
asymptotically than the trivial n-query classical algorithm. Fortunately, Bshouty et al. have given
a “rebalancing” procedure that takes AND-OR formula ϕ as input and outputs an equivalent AND-
OR formula ϕ′ with depth d′ = 2O(

√
logn) and size n′ = n 2O(

√
logn) [BCE91, BB94]. Appealing to

this result, [ACR+07] evaluates ϕ′ using O(
√
n′d′) =

√
n 2O(

√
logn) queries.

The algorithm behind Theorem 1.1 gets around the large-depth problem without using formula
rebalancing. Instead, the algorithm is based on a novel method for constructing bipartite graphs
with certain useful spectral properties. Ambainis et al. run a quantum walk on a graph that matches
the formula tree, except with certain edge weights and boundary conditions at the leaves. This tree
comes from glueing together elementary graphs for each gate. We term this composition method
“direct-sum” composition, because the graph’s adjacency matrix acts on a space that is the direct
sum of spaces for each individual gate. Direct-sum composition incurs severe overhead on highly
unbalanced formulas, making the query complexity at least proportional to the formula depth.

The new algorithm begins with the same elementary graphs, with even the same edge weights.
However, it composes them using a kind of “tensor-product” graph composition method. Overall,
this results in graphs that have much lower depth, although they are not trees. By carefully
combining this method with direct-sum composition, we obtain a graph on which the algorithm
runs a quantum walk. The two approaches are summarized in more detail in Section 1.1 below.

The general formula-evaluation problem is an ideal example of a recursively defined problem.
The evaluation of a formula is the evaluation of a function, the inputs of which are themselves inde-
pendent formulas. As argued in a companion paper [Rei09b], quantum computers are particularly
well suited for evaluating formulas. Unlike the situation for classical algorithms, for a large class
of formulas the optimal quantum algorithm can work following the formula’s recursive structure.
Since Theorem 1.1 does not require AND-OR formula rebalancing, it extends this quantum recur-
sion paradigm. Besides its conceptual appeal, this may also be important because the effect of
rebalancing on the general quantum adversary bound appears to be less tractable for formulas over
gate sets beyond AND and OR. Therefore the rebalancing step that aids [ACR+07] might not be
useful to solve the large-depth problem on more general formulas. The hybrid graph composition
method is another tool that might generalize more easily.

1Actually, [ACR+07, Sec. 7] only shows a bound of O(
√
nd3/2) queries, but this can be improved to O(

√
nd) using

the bounds on σ±(ϕ) below [ACR+07, Def. 1]. The improved analysis of the same algorithm in [Rei09b] tightens this
to O(

√
nd), which is also the depth-dependence found by [Amb07].
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Randomized, zero-error Quantum bounded-error
Formula ϕ query complexity R(ϕ) query complexity Q(ϕ)

ORn n Θ(
√
n) [Gro96, BBBV97]

Balanced AND2-OR2 Θ(nα) [SW86] Θ(
√
n) [FGG07, ACR+07]

Well-balanced AND-OR tight recursion [SW86]
Approx.-balanced AND-OR Θ(

√
n) [ACR+07, Rei09b]

Arbitrary AND-OR Ω(n0.51) [HW91] Ω(
√
n)

O(
√
n log n)

[BS04]
(Thm. 1.1)

Balanced MAJ3 (n = 3d) Ω
(
(7/3)d

)
, O(2.654d) [JKS03] Θ(2d) [RŠ08]

Balanced over S Θ(Adv±(ϕ)) [Rei09a]
Almost-balanced over S Θ(Adv±(ϕ)) [Rei09b]

Table 1: Comparison of some classical and quantum query complexity results for formula evaluation.
Here the exponent α is given by α = log2(1+

√
33

4 ) ≈ 0.753, and S is any fixed, finite gate set. Under
certain assumptions, the algorithms’ running times are only poly-logarithmically slower.

Our algorithm is developed and analyzed using the framework relating span programs and
quantum algorithms from [Rei09a]. The connection to time-efficient quantum algorithms, especially
for evaluating unbalanced formulas over arbitrary fixed, finite gate sets, has been developed further
in [Rei09b]. Table 1 summarizes some results for the formula-evaluation problem in the classical
and quantum models; for a more detailed and inclusive review, see [Rei09b]. Section 1.2 below will
go over only the history of quantum algorithms for evaluating AND-OR formulas.

1.1 Idea of the algorithm

As an example to illustrate the main idea of our algorithm, consider the AND-OR formula ϕ(x) =(
[(x1 ∧ x2) ∨ x3] ∧ x4

)
∨
(
x5 ∧ [x6 ∨ x7]

)
, where ∧ and ∨ denote AND and OR, respectively. In

Figure 1(a), this formula is represented as a tree.
The [ACR+07] algorithm starts with the graph in Figure 1(b), essentially the same as the

formula tree, except with extra edges attached to the root and some leaves. The edges should be
weighted, but for this intuitive discussion take every edge’s weight to be one.

Consider an input x ∈ {0, 1}7. Modify the graph by attached a dangling edge to vertex j if
xj = 0, for j = 1, 2, . . . , 7. Then it is simple to see that the resulting graph has an eigenvalue-zero
eigenvector supported on vertex 0 (or rather its adjacency matrix does) if and only if ϕ(x) = 1. If
we added an edge off vertex 0, then the resulting graph would have an eigenvalue-zero eigenvector
supported on the new root if and only if ϕ(x) = 0.

The [ACR+07] algorithm takes advantage of this property by running (phase estimation on) a
quantum walk that starts at the root vertex. The algorithm detects the eigenvalue-zero eigenvector
in order to evaluate the formula.

This algorithm does not work well on formulas with large depth. For example, consider the
maximally unbalanced formula on n inputs, a skew tree. The corresponding graph is nearly the
length-n line graph. It will still have an eigenvalue-zero eigenvector supported on the root if and
only if the formula evaluates to zero. However, the algorithm will require Ω(n) time to detect this
eigenvector, because its squared support on the root is only O(1/n) after normalization, and because

3
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5

(b)

Figure 1: In (a), the AND-OR formula ϕ(x) =
(
[(x1∧x2)∨x3]∧x4

)
∨
(
x5∧[x6∨x7]

)
is represented as

a tree, with some gates marked for future reference. Figure (b) shows the graph used by [ACR+07].

the spectral gap around zero will also be O(1/n). (The spectral gap determines the precision of
the phase estimation procedure, and hence its running time. It corresponds to the squared support
of eigenvalue-zero eigenvectors by [Rei09a, Theorem 8.7].) Alternatively, one can argue that the
algorithm requires Ω(n) time because it takes that long even to reach the deepest leaf vertices.

Now consider the graph in Figure 2(a). Again modify the graph according to an input x ∈ {0, 1}7
by attaching dangling edges to those vertices with xj = 0. Considering a few examples should
convince the reader that the resulting graph has an eigenvalue-zero eigenvector supported on vertex
0 if and only if ϕ(x) = 0. Note, though, that the distance from “output” vertex 0 to any of the
“input” vertices 1 to 7 is at most two. The graph is also far from being a tree. Its main feature is
that the “constraint” vertices—the vertices aside from 0, 1, . . . , 7—are in one-to-one correspondence
with minimal zero-certificates to ϕ. For example, for x = 0101011, ϕ(x) = 0, but flipping any bit
of x from 0 to 1 changes the formula evaluation from 0 to 1. The corresponding constraint vertex
is connected to exactly those input vertices j for which xj = 0.

The graphs in Figures 1(b) and 2(a) represent two extremes of a family of graphs that evaluate
ϕ in the same manner. The graph in Figure 1(b) can be seen (essentially) as coming from plugging
together along ϕ the individual graphs in Figures 3(a) and 3(b) that evaluate single OR and AND
gates in the same manner. We term this “direct-sum” composition. The graph in Figure 2(a) comes
from a certain “tensor-product” composition of the graphs from Figures 3(a) and 3(b). (Figure 3
shows several other examples of tensor-product graph composition.)

With the correct choice of edge weights, tensor-product composition leads to graphs for which
the squared support of the unit-normalized eigenvalue-zero eigenvector on the root is Ω(1/

√
n)

for a formula of size n. This implies by [Rei09a, Theorem 9.1] a quantum algorithm that uses
O(
√
n log n/ log log n) queries to evaluate the formula. There is no issue with deep formulas. How-

ever, the algorithm will not be time efficient. Essentially, the problem is that the number of vertices
can be exponentially large in n, as can be their degrees, which makes it difficult to implement a
quantum walk efficiently.

Theorem 1.1 gets around this problem by using a combination of the two methods of composing
graphs. For example, the graph in Figure 2(b) also evaluates the formula ϕ in the same manner.
One can think of the vertex c as evaluating the subformula x5 ∧ (x6 ∨x7). The subgraph it cuts off
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δα1δ

′α′1 ε1β1ε
′
1β
′
1 0 ε1β1ε

′
2α
′
1 0 ε2α1δ

′α′1 0 0 0
δα1δ

′α′2 0 ε1β1ε
′
1β
′
2 ε1β1ε

′
2α
′
2 0 ε2α1δ

′α′2 0 0 0
δα2δ

′α′ 0 0 0 ε1β2δ
′α′ ε2α2δ

′α′ 0 0 0
0 0 0 0 0 α′′1δ

′′ β′′1δ
′′ 0 0

0 0 0 0 0 α′′2δ
′′ 0 β′′2 ε

′′
1 β′′2 ε

′′
2


0 1 2 3 4 c 5 6 7

01010c

10010c

11100c

011
100

(c)

Figure 2: For the formula from Figure 1(a), we display the reduced tensor-product composed
span program in (a), and the hybrid-composed span program in (b) for the case when the edge
to the subformula on inputs x5, x6, x7 is checkpointed (see Section 3.3). In each case, the output
vertex corresponding to the target vector is labeled 0 and the input bits are labeled from 1 to
7. The other vertices in (a) are labeled according to the corresponding maximal false inputs (see
Definition 3.5 and Lemma 3.6). In (b), the checkpoint vertex is labeled c—this vertex corresponds to
the free input vector added in direct-sum composition (see Definition 2.4)—and the other vertices
have been labeled according to maximal false inputs with the checkpointed subformula grouped
together. In (c), the edge weights for the graph in (b) are specified using the biadjacency matrix.
The parameters α, δ, . . . are marked with ′ or ′′ to indicate to which gate in the formula of Figure 1(a)
they correspond.
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has been composed in a direct-sum manner with a tensor-product-composed graph for the formula
([(x1 ∧ x2) ∨ x3] ∧ x4) ∨ xc. By combining the two composition methods, we can manage the
tradeoffs, controlling the maximum degree and norm of the graph, while also avoiding the formula
depth problem.

Although our algorithm can be presented and analyzed entirely in terms of graphs, we will
present it in terms of span programs. Span programs are part of a framework for designing and
analyzing quantum algorithms [Rei09a], for which Section 2 gives some necessary background.
Eigenvalue-zero eigenvectors correspond to span program witnesses and the squared support on
the root corresponds to a complexity measure known as the full witness size [Rei09b]. The two
graph composition techniques described above correspond to different ways of composing general
span programs.

1.2 Review of quantum algorithms for evaluating AND-OR formulas

Research on the formula-evaluation problem in the quantum model began with the simple n-bit
OR function, ORn. Grover gave a quantum algorithm for evaluating ORn with bounded one-sided
error using O(

√
n) oracle queries and O(

√
n log log n) time [Gro96, Gro02].

Grover’s algorithm, together with repetition for reducing errors, can be applied recursively
to speed up the evaluation of more general AND-OR formulas. For example, the size-n AND-
OR formula AND√n ◦(OR√n, . . . ,OR√n) can be evaluated in O(

√
n log n) queries. Here the extra

logarithmic factor comes from using repetition to reduce the error probability of the inner OR√n
evaluation procedure from a constant to be polynomially small. Call a formula layered if the gates
at the same depth are the same. Buhrman, Cleve and Wigderson show that the above argument
can be applied to evaluate a layered, depth-d AND-OR formula on n inputs using O(

√
n logd−1 n)

queries [BCW98, Theorem 1.15].
Høyer, Mosca and de Wolf [HMW03] consider the case of a unitary input oracle Õx that maps

Õx : |ϕ〉 ⊗ |j〉 ⊗ |b〉 ⊗ |0〉 7→ |ϕ〉 ⊗ |j〉 ⊗
(
|b⊕ xj〉 ⊗ |ψx,j,xj 〉+ |b⊕ xj〉 ⊗ |ψx,j,xj 〉

)
, (1.1)

where |ψx,j,xj 〉, |ψx,j,xj 〉 are pure states with ‖|ψx,j,xj 〉‖2 ≥ 2/3. Such an oracle can be implemented
when the function j 7→ xj is computed by a bounded-error, randomized subroutine [NC00]. Høyer
et al. allow access to Õx and Õ−1

x , both at unit cost, and show that ORn can still be evaluated using
O(
√
n) queries. This robustness result implies that the log n steps of repetition used by [BCW98]

are not necessary, and a depth-d layered AND-OR formula can be computed in O(
√
n cd−1) queries,

for some constant c > 1000. This gives an O(
√
n)-query quantum algorithm for the case that the

depth d is constant, but is not sufficient to cover, e.g., the complete, binary AND-OR formula, for
which d = log2 n.

A breakthrough for the formula-evaluation problem came in 2007, when Farhi, Goldstone
and Gutmann presented a quantum algorithm for evaluating complete, binary AND-OR formu-
las [FGG07]. Their algorithm is not based on iterating Grover’s algorithm in any way, but instead
runs a quantum walk—analogous to a classical random walk—on a graph derived from the AND-
OR formula graph as in Figure 1. The algorithm runs in time O(

√
n) in a certain continuous-time

query model.
Ambainis et al. discretized the [FGG07] algorithm by reinterpreting a correspondence between

discrete-time random and quantum walks due to Szegedy [Sze04] as a correspondence between
continuous-time and discrete-time quantum walks [ACR+07]. Applying this correspondence to
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quantum walks on certain weighted graphs, they gave an O(
√
n)-query quantum algorithm for

evaluating “approximately balanced” formulas, extended in [Rei09b]. Using the formula rebalancing
procedure of [BCE91, BB94], the [ACR+07] algorithm uses

√
n2O(

√
logn) queries in general. This

is nearly optimal, since the adversary bound gives an Ω(
√
n) lower bound [BS04].

This author has given an O(
√
n log n/ log log n)-query quantum algorithm for evaluating arbi-

trary size-n AND-OR formulas [Rei09a]. In fact, the result is more general, stating that the general
adversary bound is nearly tight for every boolean function. However, unlike the earlier AND-OR
formula-evaluation algorithms, the algorithm is not necessarily time efficient.

2 Span programs

In this section, we will briefly recall some of the definitions and results on span programs from [Rei09a,
Rei09b]. This section is essentially an abbreviated version of [Rei09b, Sec. 2].

For a natural number n, let [n] = {1, 2, . . . , n}. For a finite set X, let CX be the inner product
space C|X| with orthonormal basis {|x〉 : x ∈ X}. For vector spaces V and W over C, let L(V,W )
be the set of linear transformations from V into W , and let L(V ) = L(V, V ). For A ∈ L(V,W ),
‖A‖ is its operator norm. Let B = {0, 1}. For a string x ∈ Bn, let x̄ denote its bitwise complement.

2.1 Span program full witness size

The full witness size is a span program complexity measure that is important for developing quan-
tum algorithms that are time efficient as well as query efficient.

Definition 2.1 (Span program [KW93]). A span program P consists of a natural number n, a
finite-dimensional inner product space V over C, a “target” vector |t〉 ∈ V , disjoint sets Ifree and
Ij,b for j ∈ [n], b ∈ B, and “input vectors” |vi〉 ∈ V for i ∈ Ifree ∪

⋃
j∈[n],b∈B Ij,b.

To P corresponds a function fP : Bn → B, defined on x ∈ Bn by

fP (x) =

{
1 if |t〉 ∈ Span({|vi〉 : i ∈ Ifree ∪

⋃
j∈[n] Ij,xj})

0 otherwise
(2.1)

Some additional notation is convenient. Fix a span program P . Let I = Ifree ∪
⋃
j∈[n],b∈B Ij,b.

Let A ∈ L(CI , V ) be given by A =
∑

i∈I |vi〉〈i|. For x ∈ Bn, let I(x) = Ifree ∪
⋃
j∈[n] Ij,xj and

Π(x) =
∑

i∈I(x) |i〉〈i| ∈ L(CI). Then fP (x) = 1 if |t〉 ∈ Range(AΠ(x)). A vector |w〉 ∈ CI is said
to be a witness for fP (x) = 1 if Π(x)|w〉 = |w〉 and A|w〉 = |t〉. A vector |w′〉 ∈ V is said to be a
witness for fP (x) = 0 if 〈t|w′〉 = 1 and Π(x)A†|w′〉 = 0.

Definition 2.2 (Witness size). Consider a span program P , and a vector s ∈ [0,∞)n of nonnegative
“costs.” Let S =

∑
j∈[n],b∈B,i∈Ij,b

√
sj |i〉〈i| ∈ L(CI). For each input x ∈ Bn, define the witness size

of P on x with costs s, wsizes(P, x), as follows:

wsizes(P, x) =

min|w〉:AΠ(x)|w〉=|t〉 ‖S|w〉‖2 if fP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

‖SA†|w′〉‖2 if fP (x) = 0 (2.2)

The witness size of P with costs s is

wsizes(P ) = max
x∈Bn

wsizes(P, x) . (2.3)
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Define the full witness size fwsizes(P ) by letting Sf = S +
∑

i∈Ifree
|i〉〈i| and

fwsizes(P, x) =

min|w〉:AΠ(x)|w〉=|t〉(1 + ‖Sf |w〉‖2) if fP (x) = 1
min |w′〉: 〈t|w′〉=1

Π(x)A†|w′〉=0

(‖|w′〉‖2 + ‖SA†|w′〉‖2) if fP (x) = 0 (2.4)

fwsizes(P ) = max
x∈Bn

fwsizes(P, x) . (2.5)

When the subscript s is omitted, the costs are taken to be uniform, s = ~1 = (1, 1, . . . , 1), e.g.,
fwsize(P ) = fwsize~1(P ). The witness size is defined in [RŠ08]. The full witness size is defined
in [Rei09a, Sec. 8], but is not named there. A strict span program has Ifree = ∅, so Sf = S, and a
monotone span program has Ij,0 = ∅ for all j [Rei09a, Def. 4.9].

Theorem 2.3 ([Rei09a, Theorem 9.3], [Rei09b, Theorem 2.3]). Let P be a span program. Then
fP can be evaluated using

T = O
(
fwsize(P ) ‖ abs(AGP )‖

)
(2.6)

quantum queries, with error probability at most 1/3. Moreover, if the maximum degree of a vertex
in GP is d, then the time complexity of the algorithm for evaluating fP is at most a factor of
(log d)

(
log(T log d)

)O(1) worse, after classical preprocessing and assuming constant-time coherent
access to the preprocessed string.

2.2 Direct-sum span program composition

Let f : Bn → B be a boolean function. Let S ⊆ [n]. For j ∈ [n], let mj be a natural number, with
mj = 1 for j /∈ S. For j ∈ S, let fj : Bmj → B. Define y : Bm1 × · · · ×Bmn → Bn by

y(x)j =

{
fj(xj) if j ∈ S
xj if j /∈ S

(2.7)

Define g : Bm1 × · · · × Bmn → B by g(x) = f(y(x)). Given span programs for the individual
functions f and fj for j ∈ S, we will construct a span program for g.

Let P be a span program computing fP = f . Let P have inner product space V , target vector
|t〉 and input vectors |vi〉 indexed by Ifree and Ijc for j ∈ [n] and c ∈ B.

For j ∈ [n], let sj ∈ [0,∞)mj be a vector of costs, and let s ∈ [0,∞)
P
mj be the concatenation

of the vectors sj . For j ∈ S, let P j0 and P j1 be span programs computing fP j1 = fj : Bmj → B
and fP j0 = ¬fj , with rj = wsizesj (P

j0) = wsizesj (P
j1). For c ∈ B, let P jc have inner product

space V jc with target vector |tjc〉 and input vectors indexed by Ijcfree and Ijckb for k ∈ [mj ], b ∈ B.
For j /∈ S, let rj = sj .

Let IS =
⋃
j∈S,c∈B Ijc. Define ς : IS → [n] × B by ς(i) = (j, c) if i ∈ Ijc. The idea is that ς

maps i to the input span program that must evaluate to true in order for |vi〉 to be available for P .

Definition 2.4 ([Rei09a, Def. 4.5]). The direct-sum-composed span program Q⊕ is defined by:

• The inner product space is V ⊕ = V ⊕⊕j∈S,c∈B(CIjc⊗V jc). Any vector in V ⊕ can be uniquely
expressed as |u〉V +

∑
i∈IS |i〉 ⊗ |ui〉, where |u〉 ∈ V and |ui〉 ∈ V ς(i).

• The target vector is |t⊕〉 = |t〉V .

8



• The free input vectors are indexed by I⊕free = Ifree∪ IS ∪
⋃
j∈S,c∈B(Ijc× Ijcfree) with, for i ∈ I⊕free,

|v⊕i 〉 =


|vi〉V if i ∈ Ifree

|vi〉V + |i〉 ⊗ |tjc〉 if i ∈ Ijc and j ∈ S
|i′〉 ⊗ |vi′′〉 if i = (i′, i′′) ∈ Ijc × Ijcfree

(2.8)

• The other input vectors are indexed by I⊕(jk)b for j ∈ [n], k ∈ [mj ], b ∈ B. For j /∈ S,

I⊕(j1)b = Ijb, with |v⊕i 〉 = |vi〉V for i ∈ I⊕(j1)b. For j ∈ S, let I⊕(jk)b =
⋃
c∈B(Ijc × Ijckb). For

i ∈ Ijc and i′ ∈ Ijckb, let
|v⊕ii′〉 = |i〉 ⊗ |vi′〉 . (2.9)

By [Rei09a, Theorem 4.3], fQ⊕ = g and wsizes(Q⊕) ≤ wsizer(P ). Moreover, we can bound how
quickly the full witness size can grow relative to the witness size:

Lemma 2.5 ([Rei09b, Lemma 2.5]). Under the above conditions, for each input x ∈ Bm1 × · · · ×
Bmn, with y = y(x),

• If g(x) = 1, let |w〉 be a witness to fP (y) = 1 with
∑

j∈[n],i∈Ijyj
rj |wi|2 = wsizer(P, y). Then

fwsizes(Q⊕, x)
wsizer(P, y)

≤ σ
(
y, |w〉

)
+

1 +
∑

i∈Ifree
|wi|2

wsizer(P, y)

where σ(y, |w〉) = max
j∈S:

∃i ∈ Ijyj with 〈i|w〉 6= 0

fwsizesj (P
jyj )

wsizesj (P jyj )
.

(2.10)

• If g(x) = 0, let |w′〉 be a witness to fP (y) = 0 such that
∑

j∈[n],i∈Ijȳj
rj |〈w′|vi〉|2 = wsizer(P, y).

Then

fwsizes(Q⊕, x)
wsizer(P, y)

≤ σ(ȳ, |w′〉) +
‖|w′〉‖2

wsizer(P, y)

where σ(ȳ, |w′〉) = max
j∈S:

∃i ∈ Ijȳj with 〈vi|w′〉 6= 0

fwsizesj (P
jȳj )

wsizesj (P jȳj )
.

(2.11)

If S = ∅, then σ(y, |w〉) and σ(ȳ, |w′〉) should each be taken to be 1 in the above equations.

Lemma 2.6 ([Rei09b, Lemma 3.4]). If Pϕ is the direct-sum composition along a formula ϕ of span
programs Pv and P †v , then

‖ abs(AGP )‖ ≤ 2 max
v∈ϕ

max{‖ abs(AGPv )‖, ‖ abs(AG
P
†
v

)‖} . (2.12)

If the span programs Pv are monotone, then ‖ abs(AGP )‖ ≤ 2 maxv ‖ abs(AGPv )‖.
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3 Evaluation of arbitrary AND-OR formulas

Let ϕ be an AND-OR formula. In this section, we will prove Theorem 1.1 by applying Theorem 2.3
to a certain composed span program Pϕ. The construction of Pϕ has three steps that we will explain
in detail below.

1. Eliminate any AND or OR gates with fan-in one, and expand out AND and OR gates with
higher fan-ins into gates of fan-in exactly two.

2. Mark a certain subset of the edges of the formula. We call marked edges “checkpoints.”

3. Starting with the span programs for AND2 and OR2, compose them for the subformulas
cut off by checkpointed edges using a version of tensor-product composition. Compose the
resulting span programs across checkpoints using direct-sum composition to yield Pϕ.

Direct-sum span program composition keeps the norm of the corresponding graph’s adjacency
matrix under control, as well as the maximum degree of a vertex in the graph. However, it makes
the full witness size grow much larger than the witness size, especially for highly unbalanced
formulas. Reduced tensor-product composition generates strict span programs, for which the full
witness size stays close to the witness size. However, it allows the norm and the maximum degree
of the corresponding graph to grow exponentially quickly. By using both techniques in careful
combination, we are able to manage this tradeoff so that Theorem 2.3 can be applied.

Section 3.1 presents the span programs we use for fan-in-two AND and OR gates.
In Section 3.2, we study reduced tensor-product composition for the span programs for AND

and OR gates. Reduced tensor-product composition is a version of tensor-product composition that
parsimoniously uses fewer dimensions when possible. For AND-OR formulas, it has the advantage
that the output span program’s inner product space bears a close connection to false inputs of the
formula ϕ, similarly to canonical span programs. In order to motivate the checkpointing idea, we
explain the problems of a scheme based only on reduced tensor-product composition.

Section 3.3 then presents our full construction of Pϕ, based on a combination of direct-sum and
reduced tensor-product composition.

Section 3.4 contains the analysis of the graphs GPϕ(x) required to apply Theorem 2.3.

3.1 Span programs for AND2 and OR2

We will use the following strict, monotone span programs for fan-in-two AND and OR gates:

Definition 3.1 ([Rei09b, Def. 4.1]). For s1, s2 > 0, define span programs PAND(s1, s2) and POR(s1, s2)
computing AND2 and OR2, B2 → B, respectively, by

PAND(s1, s2) : |t〉 =
(
α1

α2

)
, |v1〉 =

(
β1

0

)
, |v2〉 =

(
0
β2

)
(3.1)

POR(s1, s2) : |t〉 = δ, |v1〉 = ε1, |v2〉 = ε2 (3.2)

Both span programs have I1,1 = {1}, I2,1 = {2} and Ifree = I1,0 = I2,0 = ∅. Here the parameters
αj , βj , δ, εj, for j ∈ [2], are given by

αj = (sj/sp)1/4 βj = 1 (3.3)

δ = 1 εj = (sj/sp)1/4 , (3.4)
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where sp = s1 + s2. Let α =
√
α2

1 + α2
2 and ε =

√
ε21 + ε22.

Note that α, ε ∈ (1, 21/4]. They are largest when s1 = s2.

Claim 3.2 ([Rei09b, Claim 4.2]). The span programs PAND(s1, s2) and POR(s1, s2) satisfy:

wsize(
√
s1,
√
s2)(PAND, x) =

{√
sp if x ∈ {11, 10, 01}
√
sp
2 if x = 00

wsize(
√
s1,
√
s2)(POR, x) =

{√
sp if x ∈ {00, 10, 01}
√
sp
2 if x = 11

(3.5)

3.2 Reduced tensor-product span program composition for AND-OR formulas

Reduced tensor-product composition of span programs is introduced in [Rei09a, Def. 4.6]. We
repeat the definition here, specializing to the case of monotone, strict span programs acting on
disjoint inputs. Also, for simplicity we consider the case of composing on one span program at
a time. After stating the definition, we specialize further to AND-OR formulas, and characterize
the reduced tensor-product span program composition of the AND and OR span programs from
Definition 3.1.

Consider monotone functions f : B × Bn → B and f ′ : Bm → B. Let g : Bm × Bn → B be
defined by

g(x, y) = f
(
f ′(x), y

)
(3.6)

for x ∈ Bm, y ∈ Bn. Let P be a span program computing fP = f and let P ′ be a span program
computing fP ′ = f ′. Assume that P and P ′ are both monotone, strict span programs.

Let span program P be in inner product space V = C[d], with target vector |t〉 and input vectors
{|vi〉} indexed by Ij1 for j ∈ [n]. Let P ′ be in the inner product space V ′ with target vector |t′〉 and
input vectors {|v′i′〉} indexed by I ′k1 for k ∈ [m]. Since P and P ′ are both monotone, Ij0 = I ′k0 = ∅.

Definition 3.3 ([Rei09a]). The tensor-product-composed span program, reduced with respect to the
basis {|l〉 : l ∈ [d]} for V , is Qr⊗, defined by:

• Let Z = {l ∈ [d] : ∀ i ∈ I11, 〈l|vi〉 = 0}. For l ∈ [d], define Vl and |πl〉 ∈ Vl by

Vl =

{
V ′ if l /∈ Z, i.e., 〈l|vi〉 6= 0 for some i ∈ I11

C if l ∈ Z

|πl〉 =

{
|t′〉 if l /∈ Z
‖|t′〉‖ if l ∈ Z

(3.7)

• The inner product space of Qr⊗ is V r⊗ =
⊕

l∈[d] Vl. Any vector |v〉 ∈ V r⊗ can be uniquely
expressed as

∑
l∈[d] |vl〉Vl, where |vl〉 ∈ Vl.

• The target vector is
|tr⊗〉 =

∑
l∈[d]

〈l|t〉|πl〉Vl . (3.8)

• Qr⊗ is strict and monotone, thus Ir⊗free = Ir⊗k0 = ∅ for all k ∈ [m+ n].
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• The input vectors {|vr⊗ι 〉} are indexed by

Ir⊗k1 =

{
I11 × I ′k1 if k ≤ m
Ij1 if k > m, where j = k −m+ 1

(3.9)

and given by

|vr⊗ι 〉 =

{∑
l∈[d] 〈l|vi〉|v′i′〉Vl if ι = (i, i′) ∈ ⋃k≤m I

r⊗
k1∑

l∈[d] 〈l|vι〉|πl〉Vl if ι ∈ ⋃k>m I
r⊗
k1

(3.10)

The intuition behind this construction is to compose the span programs in a tensor-product
manner somewhat similar to Definition 2.4. From [Rei09a, Def. 4.4], this would give a span program
with target vector |t〉 ⊗ |t′〉 ∈ V ⊗ V ′ and input vectors either |vi〉 ⊗ |v′i′〉 for i ∈ I11 or |vi〉 ⊗ |t′〉
otherwise. However, if all the I11 input vectors are zero in a coordinate l ∈ [d], then the first type
of input vectors are all zero on |l〉 ⊗ V ′. The second type of input vectors are all proportional to
the same state |l〉 ⊗ |t′〉 on that coordinate, so we might as well just keep |l〉‖|t′〉‖ as in the above
definition. The advantage over tensor-product composition is that the graph GQr⊗ associated to
the span program Qr⊗ potentially has fewer vertices, with lower degrees.

Here we have composed the span program P1 into the first input of P . Reduced tensor-product
composition into the other inputs is defined symmetrically.

By [Rei09a, Prop. 4.7], for arbitrary costs r ∈ [0,∞)m and s ∈ [0,∞)n,

wsize(r,s)(Q
r⊗) ≤ wsize(wsizer(P ′),s)(P ) . (3.11)

Now let us study reduced tensor-product composition for AND-OR formulas. To start with,
it will be helpful to give two examples of Definition 3.3, for the cases P ′ = POR and P ′ = PAND.
Recall from [Rei09a, Def. 8.1] that the biadjacency matrix for the bipartite graph GP (11+n) is
given by BGP (11+n) = (|t〉 A), where A is the matrix whose columns are the input vectors of P ,
as defined in Section 2.1. Assume that I11 = {1} is a singleton set, with |v1〉 the first column of
A. Rearrange the rows so that the nonzero entries of |v1〉 come first (the set Z from Definition 3.3
comes last), writing |v1〉 = (|γ〉, 0), where |γ〉 is nonzero in every entry. Writing |t〉 = (|t1〉, |t2〉),
BGP (11+n) decomposes as

BGP (11+n) =
(
|t1〉 |γ〉 C1

|t2〉 0 C2

)
. (3.12)

• First consider the case that P ′ = PAND(s1, s2) from Definition 3.1. Let Qr⊗ be the composed
span program from Definition 3.3. Then

BGQr⊗ (12+n) =

α1|t1〉 β1|γ〉 0 α1C1

α2|t1〉 0 β2|γ〉 α2C1

α|t2〉 0 0 αC2

 . (3.13)

For comparison, the tensor-product-composed span program Q⊗ from [Rei09a, Def. 4.4] would
have the biadjacency matrix

BGQr⊗ (12+n) =


α1|t1〉 β1|γ〉 0 α1C1

α2|t1〉 0 β2|γ〉 α2C1

α1|t2〉 0 0 α1C2

α2|t2〉 0 0 α2C2

 . (3.14)
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• Next consider the case that P ′ = POR(s1, s2) from Definition 3.1. Let Qr⊗ be the composed
span program from Definition 3.3. Then

BGQr⊗ (12+n) =
(
δ|t1〉 ε1|γ〉 ε2|γ〉 δC1

δ|t2〉 0 0 δC2

)
. (3.15)

From Eqs. (3.13) and (3.15), we can derive a bound on the growth of the norm of the entry-
wise absolute value of the biadjacency matrix for a span program, under reduced tensor-product
composition with either PAND or POR:

Lemma 3.4. Let P be a strict, monotone span program on 1 + n input bits, with |I1,1| = 1. For
s1, s2 > 0, let P ′ be either PAND(s1, s2) or POR(s1, s2), from Definition 3.1. Let Qr⊗ be the reduced
tensor-product composition of P ′ into the first input of P , as in Definition 3.3. Then

‖ abs(BGQr⊗ (12+n))‖2 ≤
√
s1 +

√
s2√

s1 + s2
‖ abs(BGP (11+n))‖2 . (3.16)

Proof. Indeed, first consider the case that P ′ = POR(s1, s2). By rearranging and regrouping the
columns of the biadjacency matrices, from Eq. (3.12), abs(BGP (11+n)) can be rewritten as(

A B
)

(3.17)

for some entry-wise nonnegative matrices A and B, such that from Eq. (3.15), abs(BGQr⊗ (12+n))
can be rewritten as (

δA ε1B ε2B
)
. (3.18)

Now if δ were
√
ε21 + ε22, then the norm of this latter matrix would be exactly

√
ε21 + ε22 times the

norm of the former matrix. Since in fact δ = 1 <
√
ε21 + ε22, we have the desired inequality (3.16).

Next consider the case that P ′ = POR(s1, s2). Rearrange the columns in Eqs. (3.12) and (3.13)
to rewrite abs(BGP (11+n)) and abs(BGQr⊗ (12+n)) as, respectively,

(
A B
C 0

)
and

α1A β1B 0
α2A 0 β2B
αC 0 0

 , (3.19)

for some entry-wise nonnegative matrices A,B,C. Now if β1 and β2 were equal to α, then the norm
of the right biadjacency matrix would be exactly α times the norm of the left matrix. Since in fact
β1 = β2 = 1 < α, Eq. (3.16) holds.

Let ϕ be an AND-OR formula of size n, in which each AND and each OR gate has fan-in two.
Let r be the root of ϕ. For each vertex v in ϕ, let Pv be the span program

Pv =

{
PAND

(
s1(v), s2(v)

)
if gv is an AND gate

POR

(
s1(v), s2(v)

)
if gv is an OR gate

(3.20)

Denote by α(v), αj(v), βj(v) and ε(v), δ(v), εj(v), for j ∈ [2], the parameters of Pv from Defini-
tion 3.1.

Let Pϕ be the span program formed by composing the span programs Pv according to the
structure of ϕ from the root r of ϕ toward the leaves, in an otherwise arbitrary order, using
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´
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Figure 3: Examples to illustrate reduced tensor-product composition for AND2-OR2 formulas. For
each formula ϕ, of size n, the graph GPϕ(1n) is displayed. Vertices corresponding to maximal false
inputs are so labeled. In (e), the primed variables refer to the span program coefficients for x1∧x2.
Notice in each example that a vertex labeled with input x ∈ {0, 1}n is connected exactly to those
input bits j with xj = 0; this is a consequence of Eq. (3.22). Also notice that the graph’s structure
changes locally as each additional gate is composed onto the end of the formula, e.g., from (d)
to (e). However, edge weights change nonlocally. See also Figure 2.

reduced tensor-product composition with respect to the bases of Definition 3.1. Note that Pϕ is
strict and monotone. If for each v, s1(v) and s2(v) are set to be the sizes of the respective input
subformulas, then wsize(Pϕ) =

√
n. Figure 3 has several examples.

We can characterize Pϕ in terms of the set of “maximal false” inputs, or minimal zero-certificates,
to the formula ϕ.

Definition 3.5. An input x ∈ Bn is a maximal false input to ϕ if ϕ(x) = 0 and flipping any bit of
x from 0 to 1 changes the formula evaluation to 1.

To any maximal false input x corresponds a subtree Tx of ϕ. Tx is rooted at r, and its leaves
are exactly the leaves of ϕ corresponding to input bits k with xk = 0. Note that for each vertex
v ∈ Tx, if gv is an OR gate, then both of v’s children are also in Tx; and if gv is an AND gate, then
exactly one of v’s children is in Tx.

Lemma 3.6. Let U be the set of maximal false inputs to ϕ. Then Pϕ is given as follows:

• Its inner product space is V = CU .

• Its target vector is

|t〉 =
∑
x∈U

∏
v∈Tx

{
αj(x,v)(v) if gv = AND2

δ(v) if gv = OR2

}
·
∏
v/∈Tx

{
α(v) if gv = AND2

δ(v) if gv = OR2

} |x〉 .
(3.21)
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Both products are over internal vertices only (the parameters α(v), . . . are not defined for
leaves). In the first term j(x, v) ∈ [2] indicates the child of v that is in Tx.

• Its input vectors are indexed by Ik1 = {k}, Ik0 = ∅ for k ∈ [n]. Letting γk be the simple path
from the k’th leaf to r, |vk〉 is given by

|vk〉 =
∑

x∈U :xk=0

∏
v∈γk

{
βj(k,v)(v)
εj(k,v)(v)

}
·
∏

v∈Txrγk

{
αj(x,v)(v)
δ(v)

}
·
∏
v/∈Tx

{
α(v)
δ(v)

} |x〉 . (3.22)

Here in each bracketed expression the top term is to be taken if gv is an AND gate, and the
bottom term if gv is an OR gate. The indices j(x, v) ∈ [2] are as in the expression for |t〉,
while j(k, v) ∈ [2] indicates the child of v that is along the path γk. Products are over internal
vertices only.

In particular, for x ∈ U , 〈x|vk〉 = 0 if and only if xk = 1. Thus |x〉/〈t|x〉 is a witness for fPϕ(x) = 0.

Proof. Although the expressions are intimidating, the proof is a simple induction. Assume that
we have completed reduced tensor-product composition of the span programs Pv for vertices v
belonging to a subtree ϕ′ that includes r. Then ϕ′ is also an AND-OR formula. Assume that the
characterization of Lemma 3.6 holds for ϕ′.

Consider adding a new vertex v onto ϕ′, yielding a formula ϕ′′. We will use primed variables,
U ′, T ′x, γ′k, to refer to ϕ′ and double-primed variables for ϕ′′.

The base case of the induction is if ϕ′ is empty and ϕ′′ = {r}. Then the claim is a consequence
of Definition 3.1. If gr is an AND gate, then U ′′ = {01, 10}, while U ′′ = {00} if gr is an OR gate.

Now assume that the size of ϕ′ is at least two. By symmetry, assume that the first input of
ϕ′ is replaced by v. Then by induction, note that Z = {maximal false inputs x to ϕ′ |x1 = 1} in
Definition 3.3. There are two cases, depending on whether the gate gv is an OR or an AND.

• If the new gate is an OR, then the maximal false inputs of ϕ′ are in one-to-one correspondence
to those of the new formula ϕ′′. By Definition 3.3 the inner product space does not change.
Moreover, the target vector is scaled simply by δ(v). All but the first input vector of Pϕ′ are
scaled by δ(v). The first input vector is split into two vectors, scaled by ε1(v) and ε2(v). By
examination of Eqs. (3.21) and (3.22), the induction assumption is maintained.

• If the new gate is an AND, then a maximal false input 1x of ϕ′ corresponds to the maximal
false input 11x of ϕ′′, while any maximal false input 0x of ϕ′ splits into the two maximal
false inputs 01x and 10x of ϕ′′. Consider first a maximal false input 1x. Since 1x ∈ Z, the
target and all input vectors are simply scaled by α(v) in this coordinate. This satisfies the
induction hypothesis since v /∈ T ′′11x.

Next consider a maximal false input 0x to ϕ′; v ∈ T ′′01x∩T ′′10x. By Eq. (3.8), the 0x coordinate
of the target vector splits in two, weighted by α1(v) and α2(v), so Eq. (3.21) continues to hold.
Similarly, for the unchanged inputs k, i.e., inputs with v /∈ γ′′k ,

(
〈01x|v′′k 〉
〈10x|v′′k 〉

)
=
(
α1(v)
α2(v)

)
〈0x|v′k〉

by Eq. (3.10). This is accounted for by the second term of Eq. (3.22). By Eq. (3.10),(
〈01x|v′′1 〉
〈10x|v′′1 〉

)
=
(
β1(v)

0

)
〈0x|v′1〉. This shows up in the first term of Eq. (3.22), since v ∈ γ′′1 . A

similar argument holds for the input vector |v′′2〉.
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One straightforward consequence of Lemma 3.6 is that the order in which gates are composed in
Pϕ does not matter. In fact, the composition order does not matter for direct-sum, tensor-product
or reduced tensor-product composition of arbitrary span programs. Rather than prove this claim,
though, in the sequel we will continue to order composition from the root toward the leaves.

Since its construction uses reduced tensor-product composition, Pϕ has similar properties as a
canonical span program [Rei09a, Def. 5.1]. A canonical span program has a dimension for every
false input, whereas Pϕ has a dimension only for each maximal false input. Unlike a canonical span
program, Pϕ’s target vector does not in general have uniform weights. However, if x ∈ Bn has
ϕ(x) = 0, let x′ be a maximal false input that lies above x, i.e., the bitwise AND of x and x′ is x.
Then |x′〉/〈t|x′〉 is a witness for fPϕ(x) = 0. This property is a main motivation for defining reduced
tensor-product span program composition; it does not hold for tensor-product composition.

Unfortunately, a construction based only on reduced tensor-product span program composition
will not work for applying Theorem 2.3. There are two problems:

1. First, the number of maximal false inputs can be exponentially large in the size n of the
formula. For example, if ϕ is a balanced formula of depth d with alternating levels of AND2

and OR2 gates, starting with AND, then there are 1
242b(d−1)/2c

= eΩ(
√
n) maximal false inputs.

Since there are only n input vectors, this implies that the maximum degree of a vertex in the
graph must be exponentially large.

2. Second, the norm ‖ abs(AGPϕ )‖ can also be exponentially large. Indeed, α(v) can be as
large as 21/4 when the two input subformulas to v have the same size. Then, for example, a
balanced formula of depth d with only AND2 gates leads to a target vector with coefficients
each 2

1
4

(2d−(2d+1)).

The advantage of reduced tensor-product composition, though, is that because it outputs a strict
span program Pϕ, the full witness size can be easily bounded in terms of the witness size.

The disadvantages of reduced tensor-product composition are worst for very balanced formulas,
while its advantage is most helpful for unbalanced formulas. This suggests that a combining the
two techniques might be useful for general general AND-OR formulas.

Before turning to such an approach, though, let us first restate Lemma 3.6 for the case of a max-
imally unbalanced formula. Lemma 3.7 is a key structural claim behind our proof of Theorem 1.1.
Once again, Figure 3 has several examples.

Lemma 3.7. Let ψ be a maximally unbalanced AND-OR formula, i.e., the depth of the formula
equals the number of gates J . Index the inputs in order from farthest to closest to the root (see
Figure 4). Let TAND = {j ∈ [J + 1] : j is an input to an AND gate}, and TOR = [J + 1] r TAND.

Then the maximal false inputs U to ψ are in one-to-one correspondence to the elements of
TF = TAND ∪ {1}. To j ∈ TF corresponds the maximal false input xj ∈ BJ+1 given by

xjk =

{
0 if k = j, or if k > j and k ∈ TOR

1 if k < j, or if k > j and k ∈ TAND

(3.23)

The reduced-tensor-product-composed span program Pψ is given as follows:

• Its inner product space is V = CU .
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• Its target vector is

|t〉 =
∑
j∈TF

∏
v∈γj

{
αι(j,v)(v)
δ(v)

}
·
∏
v/∈γj

{
α(v)
δ(v)

} |xj〉 . (3.24)

Here, in the first term ι(j, v) ∈ [2] indicates the child of v that is in γj, the simple path from
the jth vertex to the root. In each bracketed expression the top term is to be taken if gv is an
AND gate, and the bottom term if gv is an OR gate. The products are over internal vertices v.

• Its input vectors are indexed by Ik1 = {k}, Ik0 = ∅ for k ∈ [J+1]. For k ∈ TAND∪[minTAND],
|vk〉 is given by

|vk〉 =
∏
v∈γk

{
βι(k,v)(v)
ει(k,v)(v)

}
·
∏
v/∈γk

{
α(v)
δ(v)

}
|xκ〉 (3.25)

where κ = k if k ∈ TAND and κ = 1 otherwise. For k /∈ TAND ∪ [minTAND],

|vk〉 =
∑
j∈TF
j<k

∏
v∈γk

{
βι(k,v)(v)
ει(k,v)(v)

}
·
∏

v∈γjrγk

{
αι(j,v)(v)
δ(v)

}
·
∏
v/∈γj

{
α(v)
δ(v)

} |xj〉 . (3.26)

The same conventions are understood as in the expression for |t〉.

In particular, for x ∈ U , |x〉/〈t|x〉 is a witness for fPψ(x) = 0.

Proof. The lemma follows from Lemma 3.6. The main simplification to make is that the tree
Txj = γj ∪{k ∈ TOR : k > j}, so Txj and γj agree on internal vertices. Then Eq. (3.22) simplifies to

|vk〉 =
∑

j∈TF :xjk=0

∏
v∈γk

{
βι(k,v)(v)
ει(k,v)(v)

}
·
∏

v∈γjrγk

{
αι(j,v)(v)
δ(v)

}
·
∏
v/∈γj

{
α(v)
δ(v)

} |xj〉 . (3.27)

This further simplifies to Eq. (3.25) when k ∈ TAND∪ [minTAND] because then the sum over j ∈ TF
with xjk = 0 has only a single term, either k itself or 1 if k < minTAND. It simplifies to Eq. (3.26)
when k /∈ TAND ∪ [minTAND] because then xjk = 0 for j ∈ TF exactly when j < k.

3.3 AND-OR span program construction using hybrid composition

Let ϕ be an AND-OR formula in which every gate has fan-in two, possibly after expanding higher
fan-in gates. We now construct the span program Pϕ on which the algorithm in Theorem 1.1
is based. For each internal vertex v of ϕ, fix the parameters s1(v) and s2(v) to the sizes of the
respective input subformulas. Assume without loss of generality that s1(v) ≥ s2(v) always.

To begin the construction, we mark certain edges of the formula. Marked edges are termed
“checkpoints,” because they will serve to cut off reduced tensor-product span program compositions
and the associated exponential growths in norm and degree. There are two steps to placing the
checkpoints:
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1. For every internal vertex v, i.e., a vertex that is not a leaf, mark the edge to the smaller of
its two input subformulas. Break ties arbitrarily.

After this step, every gate has exactly one unmarked input edge, so the marked edges divide
ϕ into a set of paths. Let

S = {vertices v : for one of the paths, v is the endpoint closer to the root r} . (3.28)

Certainly the root r is itself in S.

2. In the second step, place more checkpoints to split up paths that are too long. For each path,
apply the following rule:

Starting at the far end of the path and moving toward the root, keep track of the product

∏
v

{
α(v) if gv = AND2

ε(v) if gv = OR2

}
=
∏
v

(√
s1(v) +

√
s2(v)√

s1(v) + s2(v)

)1/2

(3.29)

for internal vertices v along the path. Note that α(v), ε(v) ≤ 21/4 ≈ 1.19. After adding a
vertex that makes the product exceed

√
e ≈ 1.65, split the path by adding a checkpoint.

After finishing this step, there will be no paths with the above product more than 21/4√e, and
for all paths except possibly those ending at a vertex in S, the product will be at least

√
e.

We remark that our analysis in Section 3.4 is not overly sensitive to modifying these rules, for
example by using a different constant greater than one instead of

√
e in the second step.

Based on the checkpointed formula, we can now construct the composed span program Pϕ:

1. First, for each path ξ, compose the span programs Pv from Eq. (3.20) along the path, using
reduced tensor-product composition, to obtain a span program Pξ.

2. Next, apply direct-sum composition to compose the Pξ span programs constructed in the first
step across the checkpointed edges.

Let Pϕ be the resulting span program. Figure 2 shows an example. Notice that when re-
duced tensor-product and direct-sum span program composition are both used, their relative order
matters. In constructing Pϕ, all direct-sum composition comes last.

3.4 Analysis of Pϕ

Proof of Theorem 1.1. From Claim 3.2 and the span program composition results [Rei09a, Theo-
rem 4.3, Prop. 4.7], we obtain:

Lemma 3.8. Pϕ computes fPϕ = ϕ and wsize(Pϕ) =
√
n.

In order to apply Theorem 2.3, the basic idea is to treat the gates along each checkpointed path
ξ as a single grouped gate, and to analyze the direct-sum composition of these grouped gates as in
the proof of [Rei09b, Theorem 1.11]. There are two steps to this analysis.

1. First, we argue that ‖ abs(AGPϕ )‖ = O(1) and GPϕ has maximum degree O(
√
n).
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2. Second, to bound the full witness size we apply Lemma 2.5 to the direct-sum composition of
the grouped gates, similarly to [Rei09b, Lemmas 3.3, 4.4].

Let us establish a bound on ‖AGPϕ‖. Since Pϕ has nonnegative entries, abs(AGPϕ ) = AGPϕ .

Lemma 3.9. The norm of the adjacency matrix AGPϕ is at most 2(2
√

2e+ 1) = O(1).

Proof. By Lemma 2.6, it suffices to bound the norm of AGPξ for any checkpointed path ξ.
By definition, if a path ξ involves J internal vertices,

AGPξ =

 0 0 B
0 0 C
B† C† 0

 (3.30)

where B is the biadjacency matrix BGPξ (1J+1) and C is a column of zeros followed by an identity
matrix. Therefore we bound

‖AGPξ ‖ ≤
∥∥∥∥( 0 B
B† 0

)∥∥∥∥+
∥∥∥∥( 0 C
C† 0

)∥∥∥∥ = ‖B‖2 + 1 . (3.31)

Now from Lemma 3.4 and the checkpoint rule Eq. (3.29), ‖B‖2 ≤
√

2e‖(1 1)‖2 = 2
√

2e.

For a path ξ, let ψ(ξ) be the AND-OR formula that is the composition of the gates along the
path ξ. ψ(ξ) is maximally unbalanced, so Lemma 3.7 applies to Pξ = Pψ(ξ). In particular, this
allows us to bound the maximum degree of a vertex in GPξ , and to bound the lengths of witnesses
to fPψ(ξ)

(x) = 0:

Corollary 3.10. The maximum degree of a vertex in GPϕ is O(
√
n).

Proof. Since Pϕ is constructed by direct-sum composition of span programs Pξ, the maximum
degree of a vertex in GPϕ is at most twice the maximum degree of a vertex in a graph GPξ , which
is at most twice the number of vertices in GPξ .

Fix a path ξ with J gates. By Lemma 3.7, the number of vertices in GPξ(1
J+1) is 1 + |TF | +

(J + 1) ≤ 2J + 3. Now
∏
v∈ξ α(v) ≤ 21/4√e, but each α(v) satisfies

α(v)2 >
1 + 1√

n√
1 + 1

n

> 1 +
1

2
√
n
, (3.32)

where in the first inequality we used s2(v) ≥ 1 and s1(v) < n. Hence J = O(
√
n).

Corollary 3.11. For a checkpointed path ξ, let ψ = ψ(ξ), and recall from Lemma 3.7 the definitions
of TF = TAND ∪ {1} and of the maximal false inputs xj for j ∈ TF . Let m be the size of the
subformula of ϕ rooted at the root of ξ.

Then for any j ∈ TF , |w′j〉 = |xj〉/〈t|xj〉 is a witness for fPξ(x
j) = 0, with

‖|w′j〉‖2 ≤
{√

2e if j = 1√
2e
√
m otherwise

(3.33)
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Figure 4: A typical checkpointed path ξ in ϕ on J = 6 vertices. The root r is to the left. Input
subformulas are indexed from right to left; of 1 and 2, the larger subformula comes first.

Proof. The coefficient 〈t|xj〉 has been computed in Eq. (3.24). Since α(v) ≥ 1 and δ(v) = 1 always,
we need to place an upper bound on 1/|〈t|xj〉|2 ≤∏v∈γj αι(j,v)(v)−2.

Note that
1

α1(v)2
=

√
s1(v) + s2(v)

s1(v)
=
√

1 + r(v) , (3.34)

where r(v) = s2(v)/s1(v) ≤ 1. Since α(v)2 =
(
1+
√
r(v)

)
/
√

1 + r(v), therefore 1
α1(v)2 ≤ α(v)2. On

the other hand, the best bound we can place on 1
α2(v)2 is, since s2(v) ≥ 1,

1
α2(v)2

=

√
s1(v) + s2(v)

s2(v)
≤
√
s1(v) + s2(v) . (3.35)

When j = 1, ι(j, v) = 1 for every v, so we obtain the claimed bound

‖|w′j〉‖
2 ≤

∏
v∈ξ

α(v)2 ≤
√

2e . (3.36)

For j > 1, all but one of the indices ι(j, v) will be 1, and for the last internal vertex v on γj , ι(j, v)
will be 2. It follows that ‖|w′j〉‖2 ≤ (

∏
v∈ξ α(v)2)

√
m ≤

√
2e
√
m.

Let ϕ′ be a formula whose internal vertices are the checkpointed paths in ϕ and whose leaves
correspond to the inputs of ϕ. The formula ϕ′ is not an AND-OR formula; its gate at an internal
vertex v′ is the composition of the gates in the corresponding path ξ(v′) in ϕ, g′v′ = fPξ(v′) . However,
ϕ′ and ϕ compute the same boolean function. Let r′ be the root of ϕ′, corresponding to the path in
ϕ that includes r. For each vertex v′ of ϕ′, let ϕ′v′ be the subformula rooted at v′, and let Pϕ′

v′
be

the span program obtained by direct-sum composition of the span programs Pξ(w′) for all vertices
w′ in ϕ′v′ . Then Pϕ = Pϕ′

r′
. Let sv′ be the number of inputs to ϕ′v′ , so wsize(Pϕ′

v′
) =
√
sv′ .

Call an internal vertex v′ of ϕ′ small if the corresponding path ξ(v′) has an endpoint in the set
S from Eq. (3.28). Aside from the root r′, every small vertex v′ has subformula size sv′ no larger
than the size of its sibling subformula in ϕ; hence the name.

Lemma 3.12. Let v′ be an internal vertex of ϕ′, with children c′1, c
′
2, . . . , c

′
J+1, sorted in decreasing

order of their distances from r′, and with sc′1 ≥ sc′2 (see Figure 4). Then for j ≥ 2, sc′j ≤ sv′/2. If
v′ is not a small vertex, then sc′1 ≤ sv′ −

1√
2

√
sv′.

Proof. In placing checkpoints, at every vertex v the edge to the smaller input subformula is marked.
Thus the size of that subformula can be at most half the size of ϕv. However the larger subformula
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can have size up to sv − 1. Assuming that v′ is not small, we will argue that in the second step of
placing checkpoints, paths are allowed to grow long enough toward the root that the size increases
significantly.

Say that in the second step of placing checkpoints we begin with a single vertex whose input
subformulas have size s and r1s, where r1 ∈ [1/s, 1]. The next vertex toward the root will have
another input subformula whose size is, say, r2(s + r1s), where r2 ∈ [1/(s + r1s), 1]. Similarly the
jth vertex towards the root r will have a smaller input subformula of size rjs

∏
k<j(1 + rk), so its

two subformulas have total size s
∏
k≤j(1 + rk). Here, rj ≤ 1 and 1/rj ≤ s

∏
k<j(1 + rk).

Now it is possible that this path gets all the way to S without a new checkpoint being placed.
Then this path corresponds to a small vertex, and we can make no strong claim about how much
the size increases along the path. For example, if the path starts at the root r, then no further
checkpoints can be placed, so we can only bound sc′1 ≤ n− 1.

Assume that a checkpoint is placed to terminate this path. Then we have
∏
j

1+
√
rj√

1+rj
≥ e. We

want to lower bound
∏
j(1+rj). Letting xj = log 1+

√
rj√

1+rj
∈ (0, 1

2 log 2], log(1+rj) = log 2

1+exj
√

2−e2xj
.

Applying Jensen’s inequality gives
∏
j(1 + rj) ≥ e1/J > 1 + 1/J , where J is the number of vertices

along the path.
We have sv′ = sc′1

∏
j(1 + rj) ≥ 2. If J ≥ 1√

2

√
sv′ , then since at each step toward the root the

size must increase by at least one, sc′1 ≤ sv′ − J ≤ sv′ − 1√
2

√
sv′ , as claimed. If J < 1√

2

√
sv′ , then

using sc′1 < sv′/(1 + 1/J) again gives sc′1 < sv′ − 1√
2

√
sv′ .

In the maximally unbalanced formula, sc′1 = sv′−O(
√
sv′), so aside from improving the constant

1√
2
, the bound on sc′1 in Lemma 3.12 is tight.

Lemma 3.13. Let v′ be an internal vertex of ϕ′, and let m = sv′. Then

fwsize(Pϕ′
v′

)
√
m

≤
{
κ logm if v′ is not small
κ logm+ λ√

m
if v′ is small

(3.37)

where λ =
√

2e ≈ 3.84 and κ = (1 + 1√
2
)λ/ log 2 ≈ 9.47.

Proof. The proof is by induction in the maximum distance from v′ to a leaf in ϕ′. The base case
is if all of v′’s inputs are leaves. This case can be handled simultaneously to the induction step by
letting S = ∅, so σ = 1, in the applications of Lemma 2.5 below.

Take v′ an internal vertex, with children c′1, c
′
2, . . . , c

′
J+1, sorted in decreasing order of their

distances from r′, and with sc′1 ≥ sc′2 . Note that each vertex c′j with j ≥ 2 must be either small or
a leaf. However, c′1 is not a small vertex. Let ξ = ξ(v′) be the corresponding checkpointed path
in ϕ. Consider an input x ∈ Bm. We will use Lemma 2.5 in combination with Lemma 3.12 and
Corollary 3.11.

If ϕ′v′(x) = 1, then apply Lemma 2.5 with S = {j ∈ [J + 1] : c′j is not a leaf}. Since Pξ(v′) is a
strict span program, Eq. (2.10) gives

fwsize(Pϕ′
v′
, x)

√
m

≤ σ +
1√
m

, (3.38)
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where σ = maxj∈S fwsize(Pϕ′
c′
j

)/√sc′j . Now by Lemma 3.12, for j ∈ S with j ≥ 2, sc′j ≤ m/2 and

by induction
fwsize(Pϕ′

c′
j

)/√sc′j ≤ κ log sc′j + λ/
√
sc′j . (3.39)

Since κ > λ/(2
√

2), the right-hand side is an increasing function of sc′j , so may be bounded by

κ log(m/2) + λ/
√
m/2. For the case j = 1, by induction fwsize(Pϕ′

c′1
)/√sc′1 ≤ κ log sc′1 .

If v′ is not small, then Lemma 3.12 gives sc′1 ≤ m−
√
m/2, and therefore

σ ≤ max
{
κ log(m−

√
m/2), κ log(m/2) +

λ√
m/2

}
. (3.40)

The first term, bounded by κ(logm− 1/
√

2m), is at most κ logm− 1/
√
m, provided that κ ≥

√
2.

The second term satisfies the same bound provided κ ≥ (λ+ 1√
2
)/ log 2.

On the other hand, if v′ is small, then we can only be sure that sc′1 ≤ sv′ − 1 = m− 1. This is
all right, because Eq. (3.37) allows for more slack in this case. In particular, it is enough to show
that κ log(m/2) + λ/

√
m/2 ≤ κ logm, which indeed holds for κ ≥ λ/ log 2.

Assume now that ϕ′v′(x) = 0. Let x′ be the input to g′v′ , i.e., the evaluations of v′’s input
subformulas on x. Let y′ be any minimal false input (Definition 3.5) to g′v′ that lies above x′

(meaning that for every k, y′k ≥ x′k). In the notation of Lemma 3.7, y′ = xj for some j ∈ TF , and
|w′j〉 = |xj〉/〈t|xj〉 is a witness for fPξ(v′)(x

′) = 0. By Eq. (2.11), then,

fwsize(Pϕ′
v′
, x)

√
m

≤ σ(x̄′, |w′j〉) +
‖|w′j〉‖2√

m

where σ(x̄′, |w′j〉) = max
k∈S:

x′k = 0 and 〈vk|w′j〉 6= 0

fwsize(Pϕ′
c′
k

)
√sc′k

.

(3.41)

There are two cases to consider, j > 1 and j = 1.
First, if j > 1, then by Lemma 3.7, 〈vk|w′j〉 = 0 for all k < j. Therefore, σ = σ(x̄′, |w′j〉) will

only maximize over small vertices, c′k with k > 1. By induction, σ ≤ κ log(m/2) + λ/
√
m/2. On

the other hand, Corollary 3.11 gives only ‖|w′j〉‖2 ≤ λ
√
m. Putting these bounds together,

fwsize(Pϕ′
v′
, x)

√
m

≤ κ log(m/2) + λ/
√
m/2 + λ

≤ κ logm
(3.42)

provided that κ ≥ 2λ/ log 2. The above bound holds whether or not v′ is small.
Next consider the case j = 1. Then we will have a worse bound on σ, but Corollary 3.11 gives

‖|w′j〉‖2 ≤ λ. If j = 1 and v′ is not small, then Lemma 3.12 gives sc′1 ≤ m −
√
m/2. Using the

induction hypothesis, we obtain

fwsize(Pϕ′
v′
, x)

√
m

≤ max
{
κ log(m−

√
m/2), κ log(m/2) +

λ√
m/2

}
+

λ√
m

. (3.43)

This is indeed at most κ logm provided that κ ≥ (1 + 1√
2
)λ/ log 2.
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If j = 1 and v′ is small, then we can only be sure that sc′1 ≤ m−1. However, just as before, this
is enough, since then κ log sc′1 < κ logm, while κ log(m/2)+λ/

√
m/2 ≤ κ logm for κ ≥ λ/ log 2.

Substituting v′ = r′ into Lemma 3.13 gives fwsize(Pϕ′
r′

) = fwsize(Pϕ) = O(
√
n log n). Lemma 3.9

bounds the norm of AGPϕ and Corollary 3.10 bounds the maximum degree of a vertex. Therefore,
Theorem 2.3 applies, completing the proof of Theorem 1.1.

4 Open problems

It is possible that our analysis here is loose. Lemma 2.5 is conservative, as it uses the worst input
ratio fwsize(P j)/wsize(P j). Potentially a more careful analysis of the full witness size across span
programs Pξ could improve our upper bound. However, we do not believe that the full witness size
of Pϕ is O(

√
n). More ideas seem to be needed to find an O(

√
n)-query quantum algorithm for

evaluating arbitrary size-n AND-OR formulas, particularly if we wish the algorithm also to have
poly-logarithmic time overhead after preprocessing. One very simple idea would be to start with
different span programs for AND and OR. By [Rei09a, Lemma 4.12], there are many possibilities;
the same invertible linear transformation can be applied to the target and all input vectors without
changing the witness size. We have unsuccessfully investigated choices to see whether reduced
tensor-product composition alone would be sufficient to build an optimal span program for which
‖ abs(AGPϕ )‖ = O(1), but have not studied other choices under hybrid span program composition.

Some preprocessing will always be necessary if the formula ϕ is presented poorly to the algo-
rithm. However, we would like the preprocessing to correspond to as natural a presentation of ϕ
as possible, and there is clearly more work to be done.

Theorem 1.1 and [Rei09b, Theorem 1.11] can likely both be generalized to apply to formulas
over a larger class of gates. In particular, the idea of combining direct-sum and tensor-product span
program composition might be useful in other contexts. It leads to a dramatic speedup on AND-OR
formulas that have not been rebalanced. Since rebalancing and its effect on the adversary bounds is
poorly understood for formulas over larger gate sets, this seems like promising technology to apply.
We have specialized to AND-OR formulas because they form an important class of formulas, and
because the span programs for the AND and OR gates are especially simple. Further applications
will require studying other particular span programs more carefully.

Although our algorithm can be analyzed without the span program formalism, it would not
have been discovered without a certain familiarity with span programs. Will span programs be
useful for finding quantum algorithms for problems beyond formula evaluation? One approach is
to try to solve the semi-definite program (SDP) for the optimal span program witness size [Rei09a].
This SDP is exponentially large, so presumably is difficult to solve exactly, but for special cases
perhaps it can be solved to within a constant factor of the optimum. Even if so, the span program
this gives will typically correspond to a graph with large norm and high degree. To turn this into
an algorithm that is time efficient, and not just query efficient, it will be useful to find techniques
for breaking up large span programs, perhaps by using tailored semi-definite programs. It is known
how to convert a span program into a strict span program without affecting the witness size [Rei09a,
Prop. 4.10]. However we do not know of any techniques for converting a span program with low
witness size into a span program with low full witness size that additionally has smaller norm and
lower degree.
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