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Abstract

We show that any boolean function can be evaluated optimally by a quantum query algo-
rithm that alternates a certain fixed, input-independent reflection with a second reflection that
coherently queries the input string. Originally introduced for solving the unstructured search
problem, this two-reflections structure is therefore a universal feature of quantum algorithms.

Our proof goes via the general adversary bound, a semi-definite program (SDP) that lower-
bounds the quantum query complexity of a function. By a quantum algorithm for evaluating
span programs, this lower bound is known to be tight up to a sub-logarithmic factor. The extra
factor comes from converting a continuous-time query algorithm into a discrete-query algorithm.
We give a direct and simplified quantum algorithm based on the dual SDP, with a bounded-error
query complexity that matches the general adversary bound.

Therefore, the general adversary lower bound is tight; it is in fact an SDP for quantum query
complexity. This implies that the quantum query complexity of the composition f ◦ (g, . . . , g) of
two boolean functions f and g matches the product of the query complexities of f and g, without
a logarithmic factor for error reduction. It further shows that span programs are equivalent to
quantum query algorithms.

1 Introduction

The query complexity, or decision-tree complexity, of a function measures the number of input bits
that must be read in order to evaluate the function. Computation between queries is not counted.
Quantum algorithms can run in superposition, and the quantum query complexity therefore allows
coherent access to the input string. Quantum query complexity with bounded error lies below
classical randomized query complexity, sometimes with a large gap [BV97, Sim97, Sho97, Aar09],
but for total functions [BBC+01] or partial functions satisfying certain symmetries [AA09] the two
measures are polynomially related; see the survey [BW02].

Although the query complexity of a function can fall well below its time complexity, studying
query complexity has historically given insight into the power of quantum computers. For example,
the quantum part of Shor’s algorithms for integer factorization and discrete logarithm is a quantum
query algorithm for period finding [Sho97]. Unlike for time complexity, there are also strong
information-theoretic methods for placing lower bounds on quantum query complexity. These
lower-bound techniques can be broadly classified as using either the polynomial method [BBC+01]
or the adversary method [Amb02, ŠS06]. Høyer and Špalek [HŠ05] have surveyed the development
of these two techniques and their multitude of applications. For now, suffice it to say that the two
techniques are incomparable. In particular, for the n-input collision problem, the best adversary
lower bound is of O(1), whereas the correct complexity, determined by the polynomial method [AS04]
and a matching algorithm [BHT98] is Θ(n1/3).
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However, Høyer, Lee and Špalek [HLŠ07] discovered a strict generalization of the adversary
bound that remains a lower bound on quantum query complexity:

Definition 1.1 (Adversary bounds). For finite sets C and E, and D ⊆ Cn, let f : D → E.
An adversary matrix for f is a |D| × |D| real, symmetric matrix Γ that satisfies 〈x|Γ|y〉 = 0 for
all x, y ∈ D with f(x) = f(y). Define the adversary and general adversary bounds for f by

Adv(f) = max
Γ≥0

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

(1.1)

Adv±(f) = max
Γ

‖Γ‖
maxj∈[n] ‖Γ ◦∆j‖

. (1.2)

Both maximizations are over adversary matrices Γ, required to be entry-wise nonnegative in Adv(f).
Γ ◦∆j denotes the entry-wise matrix product between Γ and ∆j =

∑
x,y∈D:xj 6=yj |x〉〈y|.

Although the definitions of the two adversary bounds are very similar, the general adversary
bound is much more powerful. In fact, the general adversary lower bound is always nearly tight:

Theorem 1.2 ([Rei09a]). For any function f : D → E, with D ⊆ Cn, the quantum query complexity
Q(f) satisfies

Q(f) = O

(
Adv±(f)

log Adv±(f)

log log Adv±(f)
log |C| · log |E|

)
. (1.3)

This surprising upper bound follows from a connection between quantum query algorithms
and the span program computational model [KW93] first observed in [RŠ08] and significantly
strengthened in [Rei09a, Rei09b]. Note that the original statement [Rei09a, Theorem 10.2] of
Theorem 1.2 restricted to the case |C| = 2 and included an additional factor of log log |E|—this
factor can be removed by [BNRW05, Corollary 3]. Lee has shown that the general adversary bound
of a function with boolean output is stable under encoding the input into binary [Lee09], allowing
the restriction |C| = 2 to be removed at a logarithmic cost.

Theorem 1.2 and the connection between span programs and quantum query algorithms behind
its proof have corollaries including a query-optimal and nearly time-optimal quantum algorithm
for evaluating a large class of read-once formulas over any finite gate set [Rei09c]. However, is
Theorem 1.2 optimal? The factors of log |C| and log |E| are natural, but the log over log log term
is not. It comes from converting a certain continuous-time query algorithm into a discrete-query
algorithm following [CGM+09]. This conversion also somewhat obscures the algorithm’s structure.

It was conjectured that the unnatural log over log log factor could be removed [Rei09a, Conjec-
ture 11.1]. In this article, we confirm the conjecture:

Theorem 1.3. For any function f : D → {0, 1}, with D ⊆ {0, 1}n, the general adversary bound
characterizes quantum query complexity:

Q(f) = Θ
(
Adv±(f)

)
. (1.4)

Theorem 1.3 suffices to simplify Eq. (1.3) following the proof of [Rei09a, Theorem 10.2]:

Corollary 1.4. For finite sets C and E, D ⊆ Cn, and any function f : D → E,

Q(f) = Ω
(
Adv±(f)

)
and Q(f) = O

(
Adv±(f) log |C| · log |E|

)
. (1.5)

2



Theorem 1.3 also allows for obtaining optimal results for the query complexity of composed func-
tions. For f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, let f • g be the function {0, 1}nm → {0, 1}
defined by (f • g)(x) = f

(
g(x1, . . . , xm), . . . , g(x(n−1)m+1, . . . , xnm)

)
. A bounded-error algorithm

for evaluating f • g can be built from composing bounded-error algorithms for f and g; thus,
Q(f • g) = O

(
Q(f)Q(g) logQ(f)

)
. However, the logarithmic factor for error reduction can be

removed, and there is a matching lower bound:

Theorem 1.5. Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}. Then

Q(f • g) = Θ
(
Q(f)Q(g)

)
. (1.6)

Proof. The general adversary bound composes as Adv±(f • g) = Adv±(f)Adv±(g) for boolean
functions f and g [HLŠ07, Rei09a], so the claim follows from Eq. (1.4).

The algorithm behind Theorem 1.3 is substantially simpler than the algorithm for Theorem 1.2,
although its analysis requires slightly more work. On input x ∈ {0, 1}n, the algorithm consists
of alternating applications of the input oracle Ox—a unitary that maps |i, b〉 to |i, xi ⊕ b〉, for
i = 1, . . . , n and b ∈ {0, 1}—and a certain fixed reflection. The reflection is about the eigenvalue-zero
subspace of the adjacency matrix AG for a graph G derived from a dual SDP for Adv±. This structure
is based on Ambainis’s AND-OR formula-evaluation algorithm [Amb07]. A previous algorithm in
Szegedy’s quantum walk model [Sze04] ran in O(Adv±(f)‖ abs(AG)‖) queries, where ‖ abs(AG)‖ is
the operator norm of the entry-wise absolute value of AG [Rei09a, Prop. 9.4]. Ambainis’s approach
efficiently removes the dependence on higher-energy portions of the adjacency matrix AG. The
analysis of the algorithm needs to transfer an “effective” spectral gap for the adjacency matrix of a
related graph into an effective spectral gap for the product of Ox and the fixed reflection.

In fact, the input oracle is itself a reflection, O2
x = 1. Therefore the algorithm consists of

alternating two fixed reflections, much like Grover’s search algorithm [Gro96]. It follows that
every boolean function can be evaluated, with bounded error, optimally in this way. While known
algorithms can in principle be converted into this form [Rei09a, Theorems 3.1, 5.2], we do not know
an explicit closed form for the second reflection, e.g., for the collision problem.

The bipartite graph G can be thought of as a span program [KW93], and was constructed
in the span program framework of [Rei09a]. Thus our algorithm is naturally seen as a quantum
algorithm for evaluating span programs. Since the best span program for a function has witness
size exactly equal to the general adversary bound [Rei09a, Rei10], Theorem 1.3 also implies that
quantum computers, measured by query complexity, and span programs, measured by witness size,
are equivalent computational models for evaluating boolean functions. For simplicity, though, we
will not detail this connection further. We will require from [Rei09a] only Theorem 3.2 below, which
without reference to span programs gives an effective spectral gap for a bipartite graph.

Barnum, Saks and Szegedy [BSS03] have given a family of SDPs that characterize quantum
query complexity according to their feasibility or infeasibility, instead of according to the optimum
value of a single SDP. The BSS SDPs work for any specified error rate, including zero. The general
adversary bound is a polynomially smaller SDP, but of course the truth table of a function is
typically exponentially long. Whereas our algorithm uses a workspace of n + O(log n) qubits to
evaluate an n-bit boolean function (by [Rei09a, Lemma 6.6]), n+ 1 qubits suffice by [BSS03]. To the
author’s knowledge, neither the BSS SDPs nor Adv± have ever been solved directly for a nontrivial,
asymptotically large family of functions, with better than a constant-factor improvement over the
adversary bound (see [CL08]). However, the easy composition rule for Adv±, used in Theorem 1.5,
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allows for computing Adv± for a read-once formula by multiplying the bounds computed for
constant-size gates. It may be that the very simple form of our algorithm will allow for further
progress in the understanding and development of quantum query algorithms.

1.1 Open problems

An appealing open problem in quantum computing is to show a tighter relationship between classical
and quantum query complexities for total functions—the largest known gap is quadratic but the
best upper bound is D(f) = O(Q(f)6) [BBC+01]. Speculatively, the strong composition properties
of quantum algorithms for total boolean functions may be a tool for approaching this problem. It
also remains interesting to study non-boolean functions, their composition and the necessity of the
log |C| and log |E| factors in Eq. (1.5). Theorem 1.5, the two-reflections form of the algorithm, and
the elimination of the log Adv±(f) factor suggest that it may be possible to adapt the algorithm to
evaluate any boolean function f with a bounded-error input oracle with the same asymptotic number
Θ(Adv±(f)) of quantum queries, following [HMW03] for the OR function. Classically, in the noisy
decision-tree model, an extra logarithmic factor for error reduction is sometimes required [FRPU94],
but this factor is not known to be needed for any quantum query algorithm [BNRW05].

1.2 Definitions

For a natural number n ∈ N, let [n] = {1, 2, . . . , n}. For a bit b ∈ {0, 1}, let b̄ = 1 − b. For a
finite set X, let CX be the Hilbert space C|X| with orthonormal basis {|x〉 : x ∈ X}. For vector
spaces V and W over C, let L(V,W ) denote the set of all linear transformations from V into W ,
and let L(V ) = L(V, V ). ‖A‖ is the spectral norm of an operator A.

2 The algorithms

For a boolean function, taking the dual of the general adversary bound SDP in Definition 1.1 gives:

Lemma 2.1 ([Rei09a, Theorem 6.2]). Let f : D → {0, 1}, with D ⊆ {0, 1}n. For b ∈ {0, 1}, let
Fb = {x ∈ D : f(x) = b}. Then

Adv±(f) = min
m∈N,{|vxj〉∈Cm:x∈D,j∈[n]} :

∀(x,y)∈F0×F1,
∑

j∈[n]:xj 6=yj
〈vxj |vyj〉=1

max
x∈D

∑
j∈[n]

‖|vxj〉‖2 .
(2.1)

Based on a feasible solution to this SDP with objective value W (≥ 1), we will give three algorithms
for evaluating f , each with query complexity O(W ). (A feasible solution corresponds to a span
program in canonical form, and its value equals the span program witness size [KW93, Rei09a].)

Let I = [n]× {0, 1} × [m]. Let |t〉 ∈ CF0 and A ∈ L(CF0 ,CI) be given by

|t〉 =
1

3
√
W

∑
x∈F0

|x〉

A =
∑

x∈F0,j∈[n]

|x〉〈j, x̄j | ⊗ 〈vxj | .
(2.2)
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Let G be the weighted bipartite graph with biadjacency matrix BG ∈ L(C{0} ⊕CI ,CF0):

BG =
(
|t〉 A

)
. (2.3)

That is, G has a vertex for each row or column of BG; its vertex set is the disjoint union F0∪{0}∪ I.
Edges from F0 to {0}∪ I are weighted by the matrix entries. The weighted adjacency matrix of G is

AG =

(
0 BG
B†G 0

)
. (2.4)

Let ∆ ∈ L(CF0∪{0}∪I) be the orthogonal projection onto the span of all eigenvalue-zero eigen-
vectors of AG. For an input x ∈ D, let Πx ∈ L(CF0∪{0}∪I) be the projection

Πx = 1−
∑

j∈[n],k∈[m]

|j, x̄j , k〉〈j, x̄j , k| . (2.5)

That is, Πx is a diagonal matrix that projects onto all vertices except those associated to the input
bit complements x̄j . Finally, let

Ux = (2Πx − 1)(2∆− 1) . (2.6)

Ux consists of the alternating reflections 2∆− 1 and 2Πx − 1. The first reflection does not depend
on the input x. The second reflection can be implemented using a single call to the input oracle Ox.

We present three related algorithms, each slightly simpler than the one before:

Algorithm 1:

1. Prepare the initial state |0〉 ∈ CF0∪{0}∪I .

2. Run phase estimation on Ux, with precision δp = 1
100W and error rate δe = 1

10 .

3. Output 1 if the measured phase is zero. Otherwise output 0.

Algorithm 2:

1. Prepare the initial state 1√
2
(|0〉+ |1〉)⊗ |0〉 ∈ C2 ⊗CF0∪{0}∪I .

2. Pick T ∈ [d100W e] uniformly at random. Apply the controlled unitary |0〉〈0| ⊗
1 + |1〉〈1| ⊗ UTx .

3. Measure the first register in the basis 1√
2
(|0〉±|1〉). Output 1 if the measurement

result is 1√
2
(|0〉+ |1〉), and output 0 otherwise.

Algorithm 3:

1. Prepare the initial state |0〉 ∈ CF0∪{0}∪I .

2. Pick T ∈ [d105W e] uniformly at random. Apply UTx .

3. Measure the vertex. Output 1 if the measurement result is |0〉, and output 0
otherwise.
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Phase estimation on a unitary V with precision δp and error rate δe can be implemented using
O
(

1
δp

log 1
δe

)
controlled applications of V [NWZ09], so the first algorithm has O(W ) query complexity.

The second algorithm essentially applies a simplified version of phase estimation. Intuitively, it
works because it suffices to distinguish zero from nonzero phase. The third algorithm does away with
any phase estimation. Intuitively, this is possible because Ux is the product of two reflections, so its
spectrum is symmetrical. The second and third algorithms clearly have O(W ) query complexity.
The factor of 105 in the third algorithm’s query complexity can be reduced by three orders of
magnitude by adjusting downward the scaling factor for |t〉 in Eq. (2.2).

The time, or number of elementary operations, required to implement the reflection 2∆− 1 is
unclear. In practice it may still be preferable to use the potentially less query-efficient quantum
walk algorithm from [Rei09a], as done for evaluating formulas in [Rei09c, RŠ08, Rei09d, ACR+10].

In the following section, we will show that all three algorithms correctly evaluate f(x), with
constant gaps between the soundness error and completeness parameters.

3 Analysis of the algorithms

To analyze the above algorithms, we shall study the spectrum of the unitary Ux = (2Πx−1)(2∆−1).
For this purpose, it will be useful to introduce two new graphs, following [RŠ08, Rei09a].

Let Π(x) =
∑

j∈[n] |j〉〈j| ⊗ |x̄j〉〈x̄j | ⊗ 1C[m] ∈ L(CI), and let G(x) and G′(x) be the weighted
bipartite graphs with biadjacency matrices

BG(x) =

(
|t〉 A

0 Π(x)

)
and BG′(x) =

(
A

Π(x)

)
. (3.1)

Based on the constraints of the SDP in Lemma 2.1, we can immediately construct eigenvalue-zero
eigenvectors for G(x) or G′(x), depending on whether f(x) = 1 or f(x) = 0:

Lemma 3.1. If f(x) = 1, let |ψ〉 = −3
√
W |0〉+

∑
j∈[n] |j, xj〉 ⊗ |vxj〉 ∈ C{0}∪I . Then BG(x)|ψ〉 = 0

and |〈0|ψ〉|2/‖|ψ〉‖2 ≥ 9/10.

If f(x) = 0, let |ψ〉 = −|x〉 +
∑

j∈[n] |j, x̄j〉 ⊗ |vxj〉 ∈ CF0∪I . Then B†G′(x)|ψ〉 = 0 and

|〈t|ψ〉|2/‖|ψ〉‖2 ≥ 1/(9W (W + 1)).

Let us recall from [Rei09a]:

Theorem 3.2 ([Rei09a, Theorem 8.7]). Let G′ be a weighted bipartite graph with biadjacency matrix

BG′ ∈ L(CU ,CT ). Assume that δ > 0 and |t〉, |ψ〉 ∈ CT satisfy B†G′ |ψ〉 = 0 and |〈t|ψ〉|2 ≥ δ‖|ψ〉‖2.
Let G be the same as G′ except with a new vertex, 0, added to the U side, with outgoing edges

weighted by the entries of |t〉. That is, the biadjacency matrix of G is

BG =
(
|t〉 BG′

)0 U
T (3.2)

Let {|α〉} be a complete set of orthonormal eigenvectors of the weighted adjacency matrix AG, with
corresponding eigenvalues ρ(α). Then for all γ ≥ 0, the squared length of the projection of |0〉 onto
the span of the eigenvectors α with |ρ(α)| ≤ γ satisfies∑

α: |ρ(α)|≤γ

|〈α|0〉|2 ≤ 8γ2/δ . (3.3)
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Substituting Lemma 3.1 into Theorem 3.2, we thus obtain the key statement:

Lemma 3.3. If f(x) = 1, then AG(x) has an eigenvalue-zero eigenvector |ψ〉, supported on the
column vertices, with

|〈0|ψ〉|2

‖|ψ〉‖2
≥ 9

10
. (3.4)

If f(x) = 0, let {|α〉} be a complete set of orthonormal eigenvectors of AG(x) with corresponding
eigenvalues ρ(α). Then for any c ≥ 0,∑

α:|ρ(α)|≤c/W

|〈α|0〉|2 ≤ 72
(

1 +
1

W

)
c2 . (3.5)

By choosing c a small positive constant, Eq. (3.5) gives an O(1/W ) “effective spectral gap” for
eigenvectors of AG(x) supported on |0〉; it says that |0〉 has small squared overlap on the subspace
of O(1/W )-eigenvalue eigenvectors.

So far, we have merely repeated arguments from [Rei09a]. The main step in the analysis of our
new algorithms is to translate Lemma 3.3 into analogous statements for Ux:

Lemma 3.4. If f(x) = 1, then Ux has an eigenvalue-one eigenvector |ϕ〉 with

|〈0|ϕ〉|2

‖|ϕ〉‖2
≥ 9

10
. (3.6)

If f(x) = 0, let {|β〉} be a complete set of orthonormal eigenvectors of Ux with corresponding
eigenvalues eiθ(β), θ(β) ∈ (−π, π]. Then for any Θ ≥ 0,∑

β:|θ(β)|≤Θ

|〈β|0〉|2 ≤
(

2
√

6ΘW +
Θ

2

)2
. (3.7)

Assuming Lemma 3.4, the algorithms from Section 2 are both complete and sound. If f(x) = 1,
then the first, phase-estimation-based algorithm outputs 1 with probability at least 9/10− δe = 4/5.
If f(x) = 0, then setting Θ = δp = 1

100W , the algorithm outputs 1 with probability at most

δe + (2
√

6ΘW + Θ
2 )2 < 2/5. The probability the second algorithm outputs 1 is the expectation

versus T of 1
4‖(1 + UTx )|0〉‖2. If f(x) = 1, this is at least 9/10 for all T . If f(x) = 0, let τ = d100W e

and simplify

ET∈R[τ ]

[1

4
‖(1 + UTx )|0〉‖2

]
= ET∈R[τ ]

[1

4

∑
β

|1 + eiθ(β)T |2|〈0|β〉|2
]

=
1

4

∑
β

|〈0|β〉|2
[
2 +

1

τ

(eiθ(β)(τ+1) − e−iθ(β)τ

eiθ(β) − 1
− 1
)]

.

(3.8)

Setting Θ = 1
50W and ξ = (2

√
6ΘW + Θ

2 )2, we see that the algorithm outputs 1 with probability at
most ξ + (1− ξ)

(
1
2 + 1/(4τ sin Θ

2 )
)
< 88% for W ≥ 1. As its analysis requires more care, we defer

consideration of the third algorithm to the end of this section.

For the proof of Lemma 3.4 we will use the following characterization of the eigen-decomposition
of the product of reflections, essentially due to Jordan [Jor75]. Its use is common in quantum
computation, e.g., [NWZ09, Sze04, MW05].
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Lemma 3.5. Given two projections Π and ∆, the Hilbert space can be decomposed into orthogonal
one- and two-dimensional subspaces invariant under Π and ∆. On the one-dimensional invariant
subspaces, (2Π− 1)(2∆− 1) acts as either +1 or −1. Each two-dimensional subspace is spanned by
an eigenvalue-λ eigenvector |v〉 of ∆Π∆, with λ ∈ (0, 1), and |v⊥〉 = (1−∆)Π|v〉/‖(1−∆)Π|v〉‖.
Letting θ = 2 arccos

√
λ ∈ (0, π), so Π|v〉/‖Π|v〉‖ = cos θ2 |v〉 + sin θ

2 |v
⊥〉, the eigenvectors and

corresponding eigenvalues of (2Π− 1)(2∆− 1) on this subspace are, respectively,

|v〉 ∓ i|v⊥〉√
2

and e±iθ . (3.9)

Proof of Lemma 3.4. Notice from Eqs. (2.3) and (3.1) that G is naturally a subgraph of G(x).
Since AG∆ = 0 by definition of ∆, AG(x)∆ = T (1−Πx), where T is a permutation matrix.

First consider the case f(x) = 1. Let |ϕ〉 be the restriction of |ψ〉 from Eq. (3.4) to the
vertices of G. Since |ψ〉 has no support on the extra vertices of G(x), ‖|ϕ〉‖ = ‖|ψ〉‖ and |ϕ〉 is an
eigenvalue-zero eigenvector of AG; ∆|ϕ〉 = |ϕ〉. Also Πx|ϕ〉 = |ϕ〉, so indeed Ux|ϕ〉 = |ϕ〉.

Next consider the case f(x) = 0. Let

|ζ〉 =
∑

β:|θ(β)|≤Θ

|β〉〈β|0〉 (3.10)

be the projection of |0〉 onto the space of eigenvectors with phase at most Θ in magnitude. Our aim
is to upper bound ‖|ζ〉‖2 = 〈0|ζ〉 = |〈0|ζ̂〉|2, where |ζ̂〉 = |ζ〉/‖|ζ〉‖. Notice that |ζ̂〉 is supported only
on eigenvectors |β〉 with θ(β) 6= 0, i.e., on the two-dimensional invariant subspaces of Πx and ∆.
Indeed, if Ux|β〉 = |β〉, then either |β〉 = Πx|β〉 = ∆|β〉 or |β〉 = (1−Πx)|β〉 = (1−∆)|β〉. The first
possibility implies AG(x)|β〉 = 0, so by Eq. (3.5) with c = 0, 〈0|β〉 = 0. In the second possibility,
also 〈0|β〉 = 〈0|Πx|β〉 = 0 since |0〉 = Πx|0〉.

We can split 〈0|ζ̂〉 as

〈0|ζ̂〉 = 〈0|∆|ζ̂〉+ 〈0|Πx(1−∆)|ζ̂〉
≤ |〈0|∆|ζ̂〉|+ |〈0|Πx(1−∆)|ζ̂〉|
≤ |〈0|∆|ζ̂〉|+ ‖Πx(1−∆)|ζ̂〉‖ .

(3.11)

Start by bounding the second term, ‖Πx(1−∆)|ζ̂〉‖. Intuitively, this term is small because |ζ̂〉
is supported only on two-dimensional invariant subspaces where ∆ and Πx are close. Indeed, let
|−β〉 = (2∆− 1)|β〉, an eigenvector of AG with phase θ(−β) = −θ(β). Expanding |ζ̂〉 =

∑
β cβ|β〉,

‖Πx(1−∆)|ζ̂〉‖2 = ‖
∑
β

Πx(1−∆)cβ|β〉‖2

=
∑

β:θ(β)>0

‖Πx(1−∆)(cβ|β〉+ c−β|−β〉)‖2

=
∑

β:θ(β)>0

sin2 θ(β)

2
‖(1−∆)(cβ|β〉+ c−β|−β〉)‖2

≤
(Θ

2

)2
‖(1−∆)|ζ̂〉‖2 . (3.12)

It remains to bound |〈0|∆|ζ̂〉| = |〈0|w〉|‖∆|ζ̂〉‖, where |w〉 = ∆|ζ̂〉/‖∆|ζ̂〉‖ is an eigenvalue-zero
eigenvector of AG. Intuitively, if |〈0|w〉| = |〈0|Πx|w〉| is large, then since AG and AG(x) are the
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same on Πx, ‖AG(x)|w〉‖ = ‖T (1−Πx)|w〉‖ will be small. This in turn will imply that |w〉 has large
support on the small-eigenvalue subspace of AG(x), contradicting Eq. (3.5).

Beginning the formal argument, we have

‖AG(x)∆|ζ̂〉‖2 = ‖(1−Πx)∆|ζ̂〉‖2

=
∑

β:θ(β)>0

‖(1−Πx)∆(cβ|β〉+ c−β|−β〉)‖2

=
∑

β:θ(β)>0

sin2 θ(β)

2
‖∆(cβ|β〉+ c−β|−β〉)‖2

≤
(Θ

2

)2
‖∆|ζ̂〉‖2 .

(3.13)

Hence ‖AG(x)|w〉‖ ≤ Θ/2.
Now split |w〉 = |wsmall〉+ |wbig〉, where for a certain d > 0 to be determined,

|wsmall〉 =
∑

α:|ρ(α)|≤dΘ/2

|α〉〈α|w〉

|wbig〉 =
∑

α:|ρ(α)|>dΘ/2

|α〉〈α|w〉 .
(3.14)

Then
|〈0|∆|ζ̂〉| ≤ |〈0|w〉| ≤ |〈0|wsmall〉|+ |〈0|wbig〉| . (3.15)

From Eq. (3.5) with c = dΘW/2, |〈0|wsmall〉| ≤
√

72(1 + 1/W )c‖|wsmall〉‖ ≤ 6dΘW .
Since AG(x)|w〉 =

∑
α ρ(α)|α〉〈α|w〉, we have(Θ

2

)2
≥ ‖AG(x)|w〉‖2

= ‖AG(x)|wsmall〉‖2 + ‖AG(x)|wbig〉‖2

≥ d2
(Θ

2

)2
‖|wbig〉‖2 .

(3.16)

Hence ‖|wbig〉‖ ≤ 1/d.
Combining our calculations gives√ ∑

β:|θ(β)|≤Θ

|〈β|0〉|2 = 〈0|ζ̂〉 ≤ |〈0|∆|ζ̂〉|+ ‖Πx(1−∆)|ζ̂〉‖ ≤ 6dΘW +
1

d
+

Θ

2
. (3.17)

The right-hand side is 2
√

6ΘW + Θ/2, as claimed, for d = 1/
√

6ΘW .

Having proved Lemma 3.4, we return to the correctness proof for the third algorithm.

Proposition 3.6. If f(x) = 1, then the third algorithm outputs 1 with probability at least 64%.
If f(x) = 0, then the third algorithm outputs 1 with probability at most 61%.
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Proof. Letting τ = d105W e, the third algorithm outputs 1 with probability

p1 := ET∈R[τ ]

[
|〈0|UTx |0〉|2

]
= ET∈R[τ ]

∣∣∣∑
β

eiθ(β)T |〈β|0〉|2
∣∣∣2 . (3.18)

If f(x) = 1, then a crude bound puts p1 at least (9/10− 1/10)2 = 64%.
Assume f(x) = 0. Recall the notation that for an eigenvector |β〉 with |θ(β)| ∈ (0, π), |−β〉 =

(2∆− 1)|β〉 denotes the corresponding eigenvector with eigenvalue phase θ(−β) = −θ(β). The key
observation for this proof is that

〈0|β〉 = e−iθ(β)〈0|−β〉 . (3.19)

This equal splitting of |〈0|β〉| and |〈0|−β〉| will allow us to bound p1 close to 1/2 instead of the trivial
bound p1 ≤ 1. The intuition is that after applying Ux a suitable number of times, eigenvectors |β〉
and |−β〉 will accumulate roughly opposite phases, so their overlaps with |0〉 will roughly cancel out.
For this argument to work, though, the eigenvalue phase θ(β) should be bounded away from zero
and from ±π. Therefore define the projections

∆Θ =
∑

β:|θ(β)|≤Θ

|β〉〈β|

∆Λ =
∑

β:|θ(β)|>Λ

|β〉〈β|

Σ = 1−∆Θ −∆Λ ,

(3.20)

where Θ and Λ, 0 < Θ < Λ < π, will be determined below. Lemma 3.4 immediately gives the
bound ‖∆Θ|0〉‖ ≤ 2

√
6ΘW + Θ

2 . We can also place a bound on ‖∆Λ|0〉‖, using

2(∆− 1)|0〉 = (U †x − 1)|0〉 =
∑
β

(e−iθ(β) − 1)|β〉〈β|0〉 . (3.21)

Expanding the squared norm of both sides gives

‖(U †x − 1)|0〉‖2 = 4
∑
β

sin2 θ(β)

2
|〈β|0〉|2 ≥ ‖∆Λ|0〉‖2 · 4 sin2 Λ

2
(3.22)

and

‖(U †x − 1)|0〉‖2 = 4(1− ‖∆|0〉‖2) ≤ 2/5 . (3.23)

In the second step we have used that ‖∆|0〉‖2 ≥ 9/10; provided that f is not the constant zero
function, AG must have an eigenvalue-zero eigenvector with large overlap on |0〉. Combining
Eqs. (3.22) and (3.23) gives

‖∆Λ|0〉‖2 ≤
1

10 sin2 Λ
2

. (3.24)

Returning to Eq. (3.18), we have

p1 ≤ ET∈R[τ ]

(
‖∆Θ|0〉‖2 + ‖∆Λ|0〉‖2 +

∣∣∣ ∑
β:θ(β)∈(Θ,Λ]

|〈β|0〉|2
(
eiθ(β)T + e−iθ(β)T

)∣∣∣)2

≤ (‖∆Θ|0〉‖2 + ‖∆Λ|0〉‖2)(2− ‖∆Θ|0〉‖2 − ‖∆Λ|0〉‖2)

+ ET∈R[τ ]

( ∑
β:θ(β)∈(Θ,Λ]

|〈β|0〉|2
(
eiθ(β)T + e−iθ(β)T

))2
.

(3.25)
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The algorithm chooses T at random to allow bounding the last term. Expanding this term gives

ET∈R[τ ]

∑
β,β′:θ(β),θ(β′)∈(Θ,Λ]

|〈β|0〉|2|〈β′|0〉|2
(
eiθ(β)T + e−iθ(β)T

)(
eiθ(β

′)T + e−iθ(β
′)T
)

= E
∑

θ,θ′∈(Θ,Λ]

|〈β|0〉|2|〈β′|0〉|2
(
(ei(θ+θ

′)T + e−i(θ+θ
′)T ) + (ei(θ−θ

′)T + e−i(θ−θ
′)T )
)

≤ 1

2
‖Σ|0〉‖4 + E

∑
θ,θ′∈(Θ,Λ]

|〈β|0〉|2|〈β′|0〉|2
(
ei(θ+θ

′)T + e−i(θ+θ
′)T
)

=
1

2
‖Σ|0〉‖4 +

1

τ

∑
θ,θ′∈(Θ,Λ]

|〈β|0〉|2|〈β′|0〉|2
(ei(θ+θ′)(τ+1) − e−i(θ+θ′)τ

ei(θ+θ′) − 1
− 1
)

≤ 1

2

(
1 +

1/τ

minθ,θ′∈(Θ,Λ] |ei(θ+θ
′) − 1|

)
‖Σ|0〉‖4

≤ 1

2

(
1 +

1

2τ min{sin Θ, sin Λ}

)
‖Σ|0〉‖4 .

(3.26)

Here for brevity we have written θ and θ′ for θ(β) and θ(β′), respectively. In the second and fourth
steps, we have used

∑
θ∈(Θ,Λ] |〈β|0〉|

2 = 1
2‖Σ|0〉‖

2. In the last step, we have used |ei(θ+θ′) − 1| =

2 sin θ+θ′

2 ≥ 2 min{sin Θ, sin Λ}. Substituting the result back into Eq. (3.25) gives

p1 ≤ 1− 1

2

(
1− 1

2τ min{sin Θ, sin Λ}

)
‖Σ|0〉‖4

≤ 1− 1

2

(
1− 1

2τ min{sin Θ, sin Λ}

)
max

[
1− 1

10 sin2 Λ
2

−
(

2
√

6ΘW +
Θ

2

)2
, 0
]2

.
(3.27)

Setting Λ = π −Θ and Θ = 1/(2000W ), for W ≥ 1 a calculation yields p1 ≤ 61%.
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[HŠ05] Peter Høyer and Robert Špalek. Lower bounds on quantum query complexity. EATCS
Bulletin, 87:78–103, October 2005, arXiv:quant-ph/0509153.

12

http://www.arxiv.org/abs/0704.3628
http://www.arxiv.org/abs/quant-ph/9802049
http://www.arxiv.org/abs/quant-ph/9705002
http://www.arxiv.org/abs/quant-ph/0309220
http://www.arxiv.org/abs/0811.4428
http://www.arxiv.org/abs/0708.3396
http://www.arxiv.org/abs/0708.3396
http://www.arxiv.org/abs/quant-ph/9605043
http://www.arxiv.org/abs/quant-ph/0611054
http://www.arxiv.org/abs/quant-ph/0304052
http://www.arxiv.org/abs/quant-ph/0509153


[Jor75] Camille Jordan. Essai sur la géométrie à n dimensions. Bulletin de la S. M. F., 3:103–174,
1875.

[KW93] Mauricio Karchmer and Avi Wigderson. On span programs. In Proc. 8th IEEE Symp.
Structure in Complexity Theory, pages 102–111, 1993.

[Lee09] Troy Lee. Composition upper bound for half-Boolean functions. unpublished, 2009.

[MW05] Chris Marriott and John Watrous. Quantum Arthur-Merlin games. Computational
Complexity, 14(2):122152, 2005, arXiv:cs/0506068 [cs.CC].

[NWZ09] Daniel Nagaj, Pawel Wocjan, and Yong Zhang. Fast amplification of QMA. Quantum
Inf. Comput., 9:1053–1068, 2009, arXiv:0904.1549 [quant-ph].

[Rei09a] Ben W. Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function. 2009, arXiv:0904.2759.

[Rei09b] Ben W. Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function. In Proc. 50th IEEE FOCS,
pages 544–551, 2009.

[Rei09c] Ben W. Reichardt. Span-program-based quantum algorithm for evaluating unbalanced
formulas. 2009, arXiv:0907.1622 [quant-ph].

[Rei09d] Ben W. Reichardt. Faster quantum algorithm for evaluating game trees. 2009,
arXiv:0907.1623 [quant-ph].

[Rei10] Ben W. Reichardt. Least span program witness size equals the general adversary
lower bound on quantum query complexity. Technical Report TR10-075, Electronic
Colloquium on Computational Complexity, http://eccc.hpi-web.de, 2010.
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