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Abstract

For revenue and welfare maximization in single-
dimensional Bayesian settings, Chawla et al. (STOC10)
recently showed that sequential posted-price mecha-
nisms (SPMs), though simple in form, can perform sur-
prisingly well compared to the optimal mechanisms. In
this paper, we give a theoretical explanation of this fact,
based on a connection to the notion of correlation gap.

Loosely speaking, for auction environments with
matroid constraints, we can relate the performance of a
mechanism to the expectation of a monotone submod-
ular function over a random set. This random set cor-
responds to the winner set for the optimal mechanism,
which is highly correlated, and corresponds to certain
demand set for SPMs, which is independent. The notion
of correlation gap of Agrawal et al. (SODA10) quantifies
how much we “lose” in the expectation of the function
by ignoring correlation in the random set, and hence
bounds our loss in using certain SPM instead of the op-
timal mechanism. Furthermore, the correlation gap of
a monotone and submodular function is known to be
small, and it follows that certain SPM can approximate
the optimal mechanism by a good constant factor.

Exploiting this connection, we give tight analysis
of a greedy-based SPM of Chawla et al. for several
environments. In particular, we show that it gives
an e/(e − 1)-approximation for matroid environments,
gives asymptotically a 1/(1 − 1/

√
2πk)-approximation

for the important sub-case of k-unit auctions, and
gives a (p+ 1)-approximation for environments with p-
independent set system constraints.

1 Introduction

In mechanism design, or even more broadly in algo-
rithm design as well, there is an inherent conflict be-
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tween optimality and simplicity. Mechanisms like My-
erson’s mechanism [Mye81] or the VCG mechanism
[Vic61, Cla71, Gro73] have optimal revenue or welfare
guarantees, but often suffer from having complicated
formats or severe computational overhead. For exam-
ple, even in single-item auctions, the need for the agents
to commit to the auction process itself can be a sig-
nificant burden [AM06, Hol08], and in combinatorial
auctions, determining the allocation and payments of
the VCG mechanism is a computationally hard prob-
lem [NR00]. Therefore, not surprisingly, simple mecha-
nisms are very often favored in practice [Hol08]. Con-
sider sequential posted-price mechanisms, in which the
seller makes take-it-or-leave-it price offers to agents one
by one. Such mechanisms are easy to run for the sell-
ers, leave little room for agents’ strategic behavior, and
keep the information elicitation from the agents at a
minimum level. Of course, simplicity comes at a cost,
as such simple mechanisms are in general not optimal.
Therefore, it is an interesting question to quantify how
much we are paying for keeping it simple.

Following a recent trend [HR09, DRY10, CHMS10],
we focus on quantifying the performance (revenue or
welfare) of simple mechanisms relative to that of the
optimal mechanism. In particular, we focus on rev-
enue and welfare maximization in single-dimensional
Bayesian mechanism design, and we are interested in
comparing the performance of Sequential Posted-price
Mechanisms (SPMs) to that of the optimal mechanism,
which is Myerson’s mechanism for revenue, and the
VCG mechanism for welfare. In a recent work of Chawla
et al. [CHMS10], it was shown for several contexts that
the performance of a SPM (which we call greedy-SPM)
approximates that of the optimal mechanism by a small
constant factor, where the factor is 2 for matroid en-
vironments (which generalize k-unit auctions, certain
matching markets etc.), and e/(e − 1) for k-unit auc-
tions. This is surprising, as SPMs can only offer prices
to agents in a very restricted way, while the optimal
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mechanism can choose a price for each agent based on
full information about all other agents. What is the un-
derlying reason for SPMs’ good performance? Our main
goal of this paper is to give a theoretical explanation for
this curious fact, based on a connection to the notion of
correlation gap.

Reducing Mechanism Design to Correlation
Gap The notion of correlation gap was first formalized
in Agrawal et al. [ADSY10]. Let f(S) be a function
that maps a subset S of a finite ground set N to a
nonnegative real number. For D a distribution over
2N with marginal probabilities qi = PrS∼D[i ∈ S],
let ID be the independent distribution where each
i ∈ N is included in the set with the same marginal
probability qi, but independently. The correlation gap

of f is defined as the supremum of ES∼D[f(S)]
ES∼I(D)[f(S)] over all

distribution D, which in some sense bounds our “loss” in
expected value of the function by ignoring correlation.

Loosely speaking, the approximation ratio of SPMs
w.r.t. the optimal mechanism is related to correlation
gap in the following way. The performance of a mecha-
nism can often be related to the expectation of certain
function f over a random set of agents. For the opti-
mal mechanism, this random set corresponds to the set
of winners, while for an SPM, this random set corre-
sponds to the demand set, which is the set of agents
whose values beat the prices set for them in the SPM.
Notice that the winner set is highly-dependent, while
the demand set is independent. By setting prices for
agents in an SPM carefully such that these two random
sets have the same marginal probabilities, we can apply
the correlation gap of f to get a bound on the approxi-
mation ratio of the SPM w.r.t. the optimal mechanism.

Reduction for k-Unit Auctions To illuminate
the idea, suppose we sell k items to a set of n agents N =
{1, . . . , n} with valuations drawn i.i.d. from a normal
distribution F , and our goal is to maximize expected
revenue. Define set function f as f(S) = min(|S|, k)
for S ⊆ N . Let q be the probability that Myerson’s
optimal mechanism sells to a particular agent (which is
the same for every agent by symmetry). It can be shown
that the optimal way to sell to an agent with success
probability q in an incentive compatible manner is to
offer the deterministic price p = F−1(1 − q). Therefore
if we pretend that an agent pays p whenever she wins in
the optimal mechanism, the total calculated revenue is
only higher. In other words, the revenue of Myerson’s
mechanism is upper-bounded by EW [f(W )] · p, where
W is the set of winners. On the other hand, let an
SPM make take-it-or-leave-it offers at price p to every
agent sequentially. Define demand set D as the set
of agents whose values are at least p. Since at most
k agents can be served, the revenue of the SPM is

equal to ED[f(D)] · p. Note that W and D have
the same marginal probability q for every i, and D
follows an independent distribution. Therefore if we
can show that the correlation gap of f is at most β,
then ED[f(D)] ≥ (1/β) ·EW [f(W )], and it follows that
the revenue of SPM is a β-approximation to that of
Myerson’s mechanism.

Submodularity The set function f that arises in
our context is the weighted rank function of the set sys-
tem that encodes the feasibility constraints of the envi-
ronment. For settings where constraints are modeled by
matroids, the weighted rank functions are well-known to
be monotone and submodular. This fact enables us to
invoke a deep result from the literature on submodular
functions [Von07, ADSY10], which says that the corre-
lation gap of a monotone and submodular function is
at most e/(e − 1). It follows that for matriod environ-
ments, SPMs can approximate the optimal mechanism
by a factor of e/(e− 1). This result would be otherwise
difficult to achieve without making use of our explicit
connection to correlation gap and submodularity.

Recognizing submodularity is also helpful in other
ways. In the analysis for k-unit auctions, we exploit
the cross-convexity of the multi-linear extension of
submodular functions to get a tight bound on the
correlation gap of the corresponding weighted rank
function.

Applying the Reduction The reduction to cor-
relation gap gives us a structured way of analyzing
greedy-SPM. It abstracts away all the mechanism de-
sign aspects of the problem, such that we can focus on
the purely mathematical question of quantifying corre-
lation gaps of weighted rank functions. Based on this
approach, we give tight analysis for greedy-SPM in sev-
eral contexts. In the following, approximation guaran-
tees are for an objective that can be revenue or welfare
or certain combination of both, and are for the version
of greedy-SPM that is tailored to the objective.

For matroid environments, as mentioned above, we
show that greedy-SPM is a e/(e− 1)-approximation to
the optimal mechanism, an improvement over the pre-
vious 2-approximation. For the important sub-case of
k-unit auctions, we show that greedy-SPM has approxi-

mation ratio 1/(1− kk

ekk!
). (≈ 1/(1− 1√

2πk
) by Stirling’s

formula) This implies that the performance of SPMs
can approach that of the optimal mechanism as the
supply increases. In particular here we do not assume
that agents’ valuation distributions are identical. To-
wards settings more general than matroid environments,
we study p-independent environments, where feasibility
constraints are modeled by p-independent set systems,
a generalization of intersection of p matroids. In such
settings, we show that correlation gap is at most p+ 1,



which also translates into a (p + 1)-approximation for
greedy-SPM. This generalizes the result on intersection
of p matroids in [CHMS10].

1.1 Related Work For the maximization of rev-
enue and welfare, Myerson’s mechanism [Mye81, BR89]
and the VCG mechanism [Vic61, Cla71, Gro73] are
optimal, respectively. Recent work in the CS litera-
ture has focused on designing simple mechanisms that
are approximately-optimal, while being more detail-free
or robust. Myerson’s mechanism in general involves
the calculation of (ironed) virtual valuations using full
distribution information. Hartline and Roughgarden
[HR09] showed that a simpler mechanism, namely the
VCG mechanism with monopoly reserves is approxi-
mately optimal by a constant factor for many natural
settings, and Dhangwatnotai et al. [DRY10] further re-
moved the need of knowing monopoly reserves in ad-
vance via a sampling-based approach. In another direc-
tion, Sundararajan and Yan [SY10] studied mechanisms
that are approximately optimal for utility-maximizing
risk-averse sellers, even without prior knowledge about
their concave utility functions.

Sequential posted-price mechanisms have also been
a recent focus of study due to their simplicity and
various appealing properties. Blumrosen and Holen-
stein [BH08] first compared SPMs to Myerson’s mech-
anism for single-item auctions by an asymptotic anal-
ysis. Chawla et al. [CHMS10] studied SPMs in vari-
ous auction contexts, proving that SPMs perform very
well compared to Myerson’s mechanism, which moti-
vated our work. They also used SPMs as a building
block to construct approximately-optimal mechanisms
in multi-dimensional settings. Independent of our work,
Chakraborty et al. [CEDG+10] proved almost the same
approximation guarantee for k-unit auctions. They also
studied SPMs that adaptively choose prices and the
ordering of agents. Babaioff et al. [BBDS11] studied
adaptive SPMs in settings where agents’ valuations are
drawn i.i.d. from an unknown distribution. In other
aspects, Sundararajan and Yan [SY10] studied the per-
formance of SPMs when the sellers are risk-averse, and
aim to maximize expected utility.

There is a vast literature on the study of submod-
ular functions (see references in [Von07]). The cor-
relation gap of monotone submodular functions was
first bounded in [CCPV07], and it is also tightly re-
lated to the submodular welfare maximization prob-
lem [Von08]. In the context of auctions, Dughmi et
al. [DRS09] showed that in matroids environments, the
revenue of Myerson’s mechanism is submodular in the
set of agents that we actually run the mechanism over.

2 Preliminaries

Auction Environments In our setting, the seller sells
services (or goods) to a set of n unit-demand agents
N = {1, . . . , n}. Each agent i has a private valuation vi
for winning the service, and 0 otherwise, where each vi is
drawn independently from a known distribution Fi. For
simplicity we assume that every distribution is over a
finite support [0, L] for some large L, and has a positive
smooth density function. It is only feasible for the seller
to service certain subsets of the agents simultaneously,
and we let ∅ ∈ I ⊆ 2N represent all the feasible subsets.
We assume that the environment is always downward-
closed, in the sense that the subset of a feasible set is
also feasible. Auction environments are classified by
the set systems (N, I). In particular we study k-unit
auctions, where a set S is in I if and only if |S| ≤ k,
matroid environments, where (N, I) forms a matroid,
and p-independent environments, where (N, I) form a
p-independent set system. We will define the latter two
environments later.

Mechanisms A (deterministic) mechanism uses an
allocation rule x : [0,∞)n → {0, 1}n to choose the
(characteristic vector of) winning set of agents based on
the reported valuations v ∈ [0,∞)n of the agents, and
uses a payment rule p : [0,∞)n → [0,∞)n to charge
payments from the agents. A randomized mechanism is
a distribution over deterministic mechanisms. For ease
of presentation, we study mechanisms that are incentive
compatible (a.k.a., truthful) and individual rational,
both in the ex post sense, although our results still
hold if we allow mechanisms to be Bayesian incentive
compatible. An equivalent way of defining ex post
incentive constraints is that for each agent i, if we fix the
valuations v−i of the other agents, agent i faces a take-
it-or-leave-it offer at a price pi(v−i) that is independent
of agent i’s own value vi.

Given an ordering of agents and a price pi for each
agent i, a Sequential Posted-price Mechanism (SPM)
first initializes the allocated set A to be ∅, and for all
agents i in the given order, do the following: if serving
i is feasible, i.e., A + i ∈ I, offer to serve agent i at
the pre-determined price pi, and add i to A if agent i
accepts. A randomized SPM is then a distribution over
deterministic SPMs.

Weighted Rank FunctionsFor a set system
(N, I) with nonnegative weights (wi)i∈N on the ele-
ments, we define the weighted rank function w∗(S)
as the maximum of

∑

i∈T wi over all T ⊆ S with
T ∈ I. The (unweighted) rank functions are defined
with weights set to 1.

Greedy Given a set system (N, I) with nonnega-
tive weights (wi)i∈N , and a subset S of N , the greedy
algorithm starts with an empty solution set A, and for



each agent i in S in decreasing order of wi, adds i into
the solution set A whenever A ∪ {i} is in I. Finally it
outputs A. We let greedy(S) denote the final output of
greedy algorithm.

Matroids A set system (N, I) is a matroid system
(see e.g. [Oxl92]) if (1) S ∈ I whenever S ⊆ T ∈ I, and
(2) if S, T ∈ I and |S| > |T |, then for some e ∈ S\T ,
T ∪ {e} ∈ I. We will make use of the following two
well-known properties about matroids: (1) If we run
greedy on a subset S of the matroid, then the weight of
its output set equals to the weighted rank of the set S,
i.e.,

∑

i∈greedy(S) wi = w∗(S). (2) The weighted rank
function of a matroid is monotone and submodular.

Correlation Gap and Submodularity Given
a set function f : 2N → [0,∞) over a finite set
N , let D be a distribution over 2N with marginal
probabilities q = (qi)i∈N . Let S ∼ I(D) denote
that each i ∈ N is included in S with probability qi
independently. Then the correlation gap [ADSY10] 1 of

f is supD
ES∼D[f(S)]

ES∼I(D)[f(S)] . (we let 0
0 = 1 here)

A set function f : 2N → [0,∞) is monotone if
f(S) ≤ f(T ) whenever S ⊆ T , and is submodular if
f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ) for all S, T .

Theorem 2.1. [CCPV07, ADSY10] The correlation
gap of a monotone submodular function is at most
e/(e− 1).

3 Posted-Price vs Optimal: A Reduction to
Correlation Gap

We will focus on comparing SPMs with the optimal
mechanism in the context of revenue maximization.
Almost identical claims can be made for welfare and
certain other objectives, which we discuss in Section 3.3.

3.1 A Single Bidder Optimization Problem Be-
fore we embark on studying mechanisms that involve
multiple bidders, it is crucial to first understand the
following optimization problem that involves only one
bidder.

Problem 3.1. Given an agent with valuation distribu-
tion F , and a target selling probability 0 < q < 1, what
price distribution D maximizes our expected revenue,
i.e., Ep∼D[p·(1−F (p))], subject to the constraint that the
selling probability is exactly q, i.e., Ep∼D[1−F (p)] = q.

To study this problem, first suppose that we can
only offer a deterministic price. Then for any selling
probability q, our only choice is to offer the deterministic

1We differ from [ADSY10] in that the correlation gap was
defined there to be at most 1.

Figure 1: Revenue Curve and “Ironed” Revenue Curve

price F−1(1 − q), and the revenue we get as a function
of q is RF (q) = q · F−1(1− q).

Now suppose instead we are allowed to offer a
random price, then we can do possibly better. To be
specific, we can randomize between two prices p and p̄
with selling probabilities q = 1−F (p) and q̄ = 1−F (p̄)
satisfying q ≤ q ≤ q, and in particular we draw p with

probability q−q
q−q

and draw p with probability
q−q

q−q
such

that the selling probability is exactly equal to q. Then

our revenue is equal to q−q
q−q

·RF (q)+
q−q

q−q
·RF (q), which is

possibly better than RF (q). Let RF (q) be the maximum
revenue one can get by randomizing between two prices
this way. One can show that RF equals to the concave
closure of RF , i.e., the minimum concave function that
upper-bounds RF . Moreover, the optimal distribution is
in fact just the two-price distribution that gives RF (q).

In the well-known special case that F is regular,
i.e., RF (q) is concave in q2, the two-price distribution
degenerates to a single deterministic price F−1(1 − q),
and RF (q) = RF (q) in this case.

For the purpose of the rest of the paper, the
following lemma summarizes this discussion.

Lemma 3.1. [Mye81, BR89] For all valuation distribu-
tion F and probability q, the price distribution D that
maximizes Ep∼D[p · (1−F (p))] subject to the constraint
that Ep∼D[1 − F (p)] = q is a two-price distribution,
where this distribution as well as the revenue RF (q) it
gives us can be determined from F . Moreover, RF (q) is
a concave function.

For notational convenience, we will use Ri to denote
the RF function for agent i.

3.2 Reduction Theorem: the Revenue Case

Definition 3.1. The greedy-SPM of Chawla et al.
[CHMS10] (with slight changes) does the following:

2This is equivalent to the definition that the virtual valuation
function is monotone.



1. For each agent i, calculate qi, the winning proba-
bility of agent i in Myerson’s mechanism. Remove
agent i if qi = 0.

2. For each agent i, draw a random price pi from
the optimal price distribution w.r.t. distribution Fi

and selling probability qi according to the Ironing
Lemma.

3. Let A = ∅. For all agent i in decreasing order
of effective prices p̂i defined as p̂i = Ri(qi)/qi, if
serving agent i is feasible, i.e., A+i ∈ I, offer price
pi to agent i, and add i into A if agent i accepts.

Theorem 3.1. (Reduction Theorem for Matroids)
For matroid environments, if the correlation gap of
the weighted rank function is at most β for no matter
what non-negative weights, then the expected revenue
greedy-SPM is a β-approximation to that of Myerson’s
optimal mechanism.

Proof. In the following two claims, we relate the ex-
pected revenue of both Myerson’s mechanism and
greedy-SPM to the weighted rank function with effective
prices p̂i as weights, which we denote as p̂∗.

Claim 3.1. Let W be the (random) set of winning
agents in Myerson’s mechanism. The expected rev-
enue of Myerson’s mechanism is upper-bounded by
EW [p̂∗(W )].

Proof. Let qi = PrW [i ∈ W ] be the probability that
agent i wins in Myerson’s mechanism. By Lemma 3.1,
the optimal way to sell to agent i with probability qi
gives expected revenue Ri(qi). By linearity of expecta-
tion, the expected revenue of Myerson’s mechanism is
upper-bounded by

∑

i∈N Ri(qi). To relate this to the
effective prices, suppose in Myerson’s mechanism, we
get effective payment p̂i whenever agent i wins. Then
the total effective revenue is EW [

∑

i∈W p̂i]. Also, each
agent i wins with probability qi in Myerson’s mecha-
nism, contributing qip̂i = Ri(qi) to total effective rev-
enue, and hence

∑

i∈N Ri(qi) equals effective revenue
EW [

∑

i∈W p̂i]. Further, since W is a feasible set, we
can rewrite EW [

∑

i∈W p̂i] as EW [p̂∗(W )], and our claim
follows.

Claim 3.2. Let demand set D be the (random) set
of agents whose values beat the prices set for them
respectively. The expected revenue of greedy-SPM equals
to ED[p̂∗(D)].

Proof. Because valuation distributions of the agents are
independent, each agent i is in the demand set D with
probability qi independently. Observe that ignoring

agents not in the demand set, who do not win anyway,
greedy-SPM effectively runs the greedy algorithm on
the demand set D w.r.t. weights p̂i subject to feasibility
constraints. The expected effective revenue of greedy-
SPM is hence equal to ED[

∑

i∈greedy(D) p̂i], which is

equal to ED[p̂∗(D)] by the optimality of greedy for
matroid. Note that whenever the random price pi is
offered to an agent, we get expected revenue Ri(qi),
while the expected effective revenue is qip̂i, also equal
to Ri(qi). Therefore the expected revenue of greedy-
SPM equals to the expected effective revenue, which is
ED[p̂∗(D)].

By our assumption that the correlation gap of
the weighted rank function is at most β, we have
ED[p̂∗(D)] ≥ 1

β
· EW [p̂∗(W )], and our theorem follows

by chaining this inequality with the above two claims.

For settings beyond matroids, we need the following
technical condition for the reduction to work, which is a
stronger condition than merely a bound on correlation
gap.

Definition 3.2. We say that the greedy algorithm ver-
ifies a correlation gap of β for the weighted rank
function of a set system, if for all nonnegative
weights (wi)i∈N , and distribution D over 2N , we have
ES∼I(D)[

∑

i∈greedy(S) wi] ≥ 1
β
ES∼D[w

∗(S)].

Theorem 3.2. (Reduction Theorem in General)
For any downward-closed environment, if the greedy
algorithm verifies a correlation gap of β for the
weighted rank function for arbitrary non-negative
weights, then the expected revenue of greedy-SPM
is a β-approximation to that of Myerson’s optimal
mechanism.

Proof. Similarly, we upper-bound the revenue of Myer-
son by EW [p̂∗(W )], and express the revenue of greedy-
SPM as ED[

∑

i∈greedy(D) p̂i]. The theorem follows by
applying the assumption that greedy verifies a correla-
tion gap of β.

Remark 3.1. One crucial property about the greedy al-
gorithm is that although we are running greedy on the
all agents, but for no matter what demand set it turns
out to be, greedy is also optimizing or approximately op-
timizing for this demand set. Most other approximation
algorithms do not have this property.

3.3 Extension to Welfare and Other Objectives
We specify an objective by defining functions of the form
gi(v, p) for agents. If agent i has true value v and is
offered a price p with v ≥ p, then agent i wins, and



we gain objective value gi(v, p). Our goal is then to
maximize the total objective value we collect from the
agents. For maximizing welfare, revenue, and surplus,
we set gi(v, p) = v, gi(v, p) = p, and gi(v, p) = v − p,
respectively. One can also define other objectives this
way.

To adapt the definition of greedy-SPM and our
reduction theorems, we need the following changes. We
define Gi(q) as the maximum expected objective value
the seller can get by offering a deterministic price such
that the agent wins with probability q. We can then
derive an Ironing Lemma similarly, and also define Gi(q)
as the concave closure of Gi(q). Then we use effective
gain defined as Gi(q)/q to replace effective prices as
weights, and the rest of the proof goes the same way.

3.4 Efficiently Computable SPMs In greedy-
SPM, we need to compute the winning probabilities of
the agents in Myerson’s mechanism, which is potentially
computationally hard. This was addressed in Chawla et
al. by a sampling-based approach, which estimates the
winning probabilities by repeatedly running Myerson’s
mechanism for sufficiently many times.

We note that the winning probabilities give a fea-
sible solution to the following convex program, whose
optimal value gives an upper bound on the revenue of
Myerson’s mechanism.

maximize
∑

i∈N Ri(qi)

subject to
∑

i∈S qi ≤ rank(S) for all S

qi ≥ 0 for all i

For many settings, we can solve this convex program
efficiently to get the optimal qi values, and use them in
greedy-SPM instead. It turns out that for settings we
study in this paper, this variant of greedy-SPM gives the
same approximation guarantees. We leave the details of
this observation to the full version of the paper.

4 Revenue and Welfare Guarantees of
Greedy-SPM

Based on the reduction theorem, we give tight analysis
of greedy-SPM of Chawla et al., and prove the guaran-
tees in Theorem 4.1. By the reduction theorem, it suf-
fices to study the the correlation gaps of the weighted
rank functions, and the greedy algorithm, which we do
separately in the following subsections.

Theorem 4.1. The expected revenue of greedy-SPM is
a β-approximation to that of Myerson’s optimal mech-
anism, and the expected welfare of (the welfare version
of) greedy-SPM is a β-approximation to that of the VCG
mechanism, where:

• β = e/(e− 1) for matroid environments
(an improvement over 2)

• β = 1/(1− kk

ekk! ) ≈ 1/(1− 1√
2πk

) for k-unit auctions

(an improvement over e/(e− 1))

• β = p+ 1 for p-independent environments
(a generalization from intersection of p matroids)

Remark 4.1. For matroid environments, as noticed in
[CHMS10], if we run the VCG mechanism, and set
reserves to be the same as the prices used in greedy-
SPM, the revenue we get is as good as that of greedy-
SPM, for any particular valuation profile. It follows that
the VCG mechanism with such reserve prices has the
same approximation guarantee for revenue.

4.1 Matroid Environments Matroid environments
are important because many auction constraints can
be modeled using matroids, and matroids have various
nice properties. To give a few examples of matroids,
k-uniform matroids encode the constraints of k-unit
auctions, where S is in I if and only if |S| ≤ k, graphical
matroids enforce the feasible sets to be the edge sets
of acyclic subgraphs of a given graph, and transversal
matroids can model certain matching markets, and etc.

By the reduction theorem, to establish an e/(e−1)-
approximation of greedy-SPM in matroid environments,
it suffices to prove the following lemma.

Lemma 4.1. The correlation gap of the weighted rank
function of a matroid is at most e/(e− 1).

Proof. This lemma follows from the fact that the
weighted rank function of a matroid is monotone and
submodular, and that the correlation gap of a mono-
tone submodular function is at most e/(e− 1).

4.2 k-Unit Auctions k-Unit auctions form an im-
portant sub-class of a matroid environments. The fea-
sibility constraints of a k-unit auction is modeled by a
k-uniform matroid. In the following, we precisely quan-
tify the correlation gap of the weighted rank function of
k-uniform matroids.

For a k-uniform matroid over n elements, the (un-
weighted) rank function is fk

n(S) = min(|S|, k) for
S ⊆ N = {1, . . . , n}. We drop superscript and subscript
when the context is clear. It is easy to verify that f is
monotone and submodular. Define the multi-linear ex-
tension Ef(q) for q ∈ [0, 1]n (in the sense of [CCPV07])
as the expectation of f(S) where each i ∈ N is included
in S with probability qi independently. As was shown
in [CCPV07], or can be easily verified using definitions,
if f is submodular, then Ef satisfies cross-convexity, in

the sense that ∂2Ef(q)
∂qi∂qj

≤ 0 for all q ∈ (0, 1)n and i 6= j.



For all n and 0 ≤ k ≤ n, define Φ(n, k) as the
minimum of Efk

n(q) over all marginal probability vector
q such that

∑

i∈N qi = k. In the following lemma, we
identify the probability vector q that minimizes Ef(q)
subject to this constraint, and show several useful
properties about Φ(n, k). This lemma is interesting in
itself, and in fact can be used to improve the analysis of
an SPM in [SY10].

Lemma 4.2. The following holds for Φ(n, k):

(a) Φ(n, k) = Efk
n(q) where qi = k/n for all i ∈

{1, . . . , n}. In other words, Φ(n, k) is the expected
value of min(X, k), where X is a binomial random
variable with parameters n and k/n.

(b) Φ(n, k) monotonely increases with k, and mono-
tonely decreases with n.

(c) limn→∞ Φ(n, k) = k − kk+1

ekk! ≈ k − k√
2πk

.

Proof. To prove (a), first for an arbitrary marginal
probability vector q ∈ [0, 1]n, consider vector q that is
the same as q except that the i-th and j-th components
are averaged for some i 6= j, i.e., qi = qj = (qi + qj)/2.
We show that Ef(q) ≤ Ef(q). Let q

′ be the same as
q except with the i-th and j-th components switched,
i.e., q′i = qj and q′j = qi. By symmetry of f , Ef(q) =
Ef(q′), and q is the middle-point of q and q

′. By the
cross-convexity of Ef , the value of Ef is convex in the
line segment connecting q and q

′. Therefore Ef(q)
is at most the average of Ef(q) and Ef(q′), or simply
Ef(q). Now starting with an arbitrary q, by repeatedly
averaging the maximum and minimum components of q
this way, the value of Ef(q) keeps decreasing, while all
qi’s converge to k/n. By the continuity of Ef(q) in
q, the value of Ef(q) converges to the value of Ef at
qi = k/n for all i. Therefore Ef(q) is minimized at
qi = k/n for all i.

To show (b), it is obvious that Φ(n, k) is mono-
tonely increasing in k, because fk

n(S) is increasing in
k. It suffices to show that Φ(n, k) is monotonely de-
creasing in n. Recall that Φ(n, k) was defined to be
the optimal value of a minimization problem. To re-
late Φ(n, k) to Φ(n + 1, k), we cast the optimal solu-
tion underlying Φ(n, k), which is an n-dimensional in-
dependent distribution, to (n + 1)-dimensional space,
such that it gives a candidate solution to the minimiza-
tion problem underlying Φ(n + 1, k). To be specific,
we observe that Φ(n, k) is equal to Efk

n+1(q), where
q is an (n + 1)-dimensional vector with qi = k/n for
i = 1, . . . , n, and qn+1 = 0. By definition of Φ(n+1, k),
Φ(n+ 1, k) ≥ Efk

n+1(q) = Φ(n, k).
We leave the derivation of (c) to the appendix.

Based on Lemma 4.2, we can first quantify the
correlation gap of the unweighted rank function, and
then extend it to the weighted case.

Lemma 4.3. For n, k ≥ 1, the correlation gap of the
function f(S) = min(|S|, k) for S ⊆ N = {1, . . . , n} is
exactly k

Φ(k,n) .

Proof. For any probability vector q, let Oq be the distri-
bution over 2N with marginal probabilities q that max-
imizes ES∼Oq

[f(S)]. We first show that ES∼Oq
[f(S)]

equals
∑

i qi if
∑

i qi ≤ k, and equals k otherwise. (1)
Suppose

∑

i qi ≤ k. First note that ES∼Oq
[f(S)] ≤

ES∼Oq
[|S|] =∑i qi. Moreover, q can be seen as a point

inside the integral polytope with (characteristic vectors
of) feasible sets (sets of size at most k) as vertices. Then
by standard polyhedral combinatorics, one can decom-
pose this point as a convex combination of the vertices,
which corresponds to a distribution over feasible sets
with marginal probabilities q. This distribution gives
expected f value

∑

i qi. (2) If
∑

i qi > k, then by the
monotonicity of ES∼Oq

[f(S)] in q, ES∼Oq
[f(S)] is at

least k. However it is also upper-bounded by k as f
is upper-bounded by k. Therefore ES∼Oq

[f(S)] = k in
this case.

Suppose that q maximizes the “gap ratio”
ES∼Oq

[f(S)]

ES∼q[f(S)] . We first show that r =
∑

i qi ≤ k. If

this is not the case, then by lowering the qi’s such
that

∑

i qi = k, ES∼q[f(S)] strictly decreases, while
ES∼Oq

[f(S)] is still k. This gives a strictly higher gap
ratio, contrary to that assumption that q maximizes the
gap ratio.

Next we show that r = k. For r ≤ k, we can
explicitly express the reciprocal of the gap ratio as:

1

r
·

n
∑

t=0

(

n

t

)

·
( r

n

)t

·
(

n− r

n

)n−t

·min(t, k)

=

n
∑

t=1

(

n− 1

t− 1

)

( r

n

)t−1
(

n− r

n

)n−t

· min(t, k)

t

This is equal to the expectation of min(X+1,k)
X+1 where

X is the binomial random variable with parameters n−1

and r/n. It is also equal to
´∞
0 Pr[min(X+1,k)

X+1 ≥ x]dx.

Note that for x > 1, Pr[min(X+1,k)
X+1 ≥ x] = 0, and

otherwise Pr[min(X+1,k)
X+1 ≥ x] = Pr[X + 1 ≤ k/x],

where Pr[X+1 ≤ k/x] strictly decreases as r increases.
Therefore the gap ratio is maximized at r = k.

Lemma 4.4. For n, k ≥ 1, the correlation gap of the
weighted rank function of a k-uniform matroid of size n
is at most k

Φ(k,n) .



Proof. Again let f(S) = min(|S|, k) for S ⊆ N =
{1, . . . , n}. Assume w.l.o.g. that w1 ≥ w2 ≥ . . . ≥ wn,
and let wn+1 = 0 for convenience. The weighted rank
function w∗(S) can be written as

∑

i∈N (wi − wi+1) ·
f(S ∩ {1, . . . , i}), a conic combination of unweighted
rank functions. The correlation gap of w∗ is therefore
witnessed by the correlation gap of f(S ∩ {1, . . . , i})
for some i, and hence it equals sup1≤i≤n k/Φ(i, k). By
Lemma 4.2(b), Φ(i, k) is decreasing in i, and hence the
correlation gap of w∗ is k/Φ(n, k).

Remark 4.2. We cannot generalize Lemma 4.3 or 4.4
to work for arbitrary matroids with rank k. For any
k, consider the partition matroids with k parts, each of
size n, where a feasible set can only have at most one
element from each part. The rank of such a matroid
is k, while the correlation gap is the same as that of a
1-uniform matroid over n elements, which approaches
e/(e− 1) as n increases.

4.3 p-Independent Environments There are in-
teresting auction constraints that cannot be modeled by
matroids, but can be modeled by p-independent set sys-
tems. In a set system (N, I), a base of a subset S ⊆ N
is a maximal feasible subset of S. A set system (N, I)
is a p-independent system if for any non-empty subset
S of N :

maximum size of a base of S

minimum size of a base of S
≤ p.

For example, a matroid is 1-independent, and vice
versa. The edge sets of (non-bipartite) matchings of
a graph form a 2-independent system (but in general
cannot be cast as the intersection of a constant number
of matroids). The intersection of p matroids is p-
independent. The feasible sets of agents in single-
minded combinatorial auctions with bounded bundle
size p form a p-independent system.

It is well-known that the greedy algorithm gives a
p-approximation for p-independent systems [Jen76]. For
our purpose, it suffices to prove the following lemma, by
combining arguments of [CCPV07, CHMS10].

Lemma 4.5. The greedy algorithm verifies a correlation
gap of p+ 1 for p-independent system constraints.

This ratio of p+1 is tight, up to lower order terms.

Proposition 4.1. For any sufficiently large positive
integer p, there is a p-independent set system with
correlation gap at least p/ log p.

5 Conclusion

We summarize the main observation of this paper
as follows. For revenue and welfare maximization,

the approximation ratio of certain SPM compared to
the optimal mechanism is inherently related to the
correlation gap of the weighted rank function of set
system that models the feasibility constraints. In
particular for matroid environments, the weighted rank
functions have small correlation gap, which explains
why SPMs give good approximation guarantees in these
settings.

Moreover, our point is made stronger by the fact
that we are proving guarantees for a very restricted
type of SPMs, where prices and offering order have to
be predetermined. Our observation can be used as a
guideline for the design and analysis of more relaxed
types of SPMs, which seems to be an interesting research
direction.
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6 Proof of Lemma 4.2

Proof. We derive the asymptotics for Φ(n, k) as follows,
where the last step is by Stirling’s approximation of
factorials.

lim
n→∞

Φ(n, k)

= lim
n→∞
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= k ·
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≈ k ·
(

1− 1√
2πk

)

.

6.1 Proof of Lemma 4.5

Proof. Fix marginal probabilities q. In the dependent
case, if S is drawn from a distribution D with marginal
probabilities q, let q̃i be the probability that i is in the
optimal feasible subset of S (with arbitrary fixed tie-
breaking). we can rewrite ES∼D[w

∗(S)] as
∑

i∈N q̃iwi.
Now consider the independent case, where each i

is in S with probability qi independently, which we de-
note by S ∼ q. Let A = g(S) be the agents allocated
by running the greedy algorithm on S. The expected
performance of greedy is ES∼D[

∑

i∈A wi]. An equiva-
lent way of looking at running the greedy algorithm on
the random set S is the following:

1. A = ∅

2. visit all agents i ∈ N in decreasing order of weights:

(a) if A + i ∈ I, we check if i is in S, and add i
into A if yes.

(b) if A+ i /∈ I, we ignore i.

3. output A

Let random set U be the set of agents that are ignored
by greedy. Consider the quantity Q = ES∼q[

∑

i∈A wi+
∑

i∈U q̃iwi]. For every agent i, if she is checked by
greedy, she contributes qiwi to the Q. (with probability
qi, i is in S, and we get weight wi) On the other hand,
if she is ignored, she contributes q̃iwi to Q. Therefore,

Q = ES∼q[
∑

i∈A

wi+
∑

i∈U

q̃iwi] ≥
∑

i∈N

q̃iwi = ES∼D[w
∗(S)].

Next we show that w(A) ≥ 1
p

∑

i∈U q̃iwi, and our
theorem would follow as:

ES∼q[
∑

i∈greedy(S)

wi] = ES∼q[
∑

i∈A

wi]

≥ 1

p+ 1
ES∼D[w

∗(S)].

Let A contain i1, i2, . . . , il in the order of inclusion
into A by greedy. Partition U into Bj ’s for j = 1, . . . , l,
where Bj is the set of agents ignored by greedy after
i1, . . . , ij have been added into A. Therefore wi ≤ wij

for i ∈ Bj . Consider the set {i1, . . . , ij}∪B1 ∪ . . .∪Bj .
At any time step, greedy’s solution set is always a
maximal feasible subset of the agents visited so far.



Therefore {i1, . . . , ij} is a base of {i1, . . . , ij}∪B1∪ . . .∪
Bj . By the definition of p-independence, the maximal
base of {i1, . . . , ij}∪B1 ∪ . . .∪Bj has size at most p · j,
and it follows that

∑

i∈B1∪...∪Bj
q̃i ≤ p · j .

Now our claim
∑

i∈A wi ≥ 1
p

∑

i∈U q̃iwi follows from

the following inequalities: (let wil+1
= 0)

∑

i∈U

q̃iwi =
∑

1≤j≤l

∑

i∈Bj

q̃iwi

≤
∑

1≤j≤l

∑

i∈Bj

q̃iwij

=
∑

1≤j≤l

∑

i∈B1∪...∪Bj

q̃i(wij − wij+1 )

≤
∑

1≤j≤l

p · j · (wij − wij+1 )

= p ·
∑

1≤j≤l

wij = p ·
∑

i∈A

wi.

6.2 Proof of Proposition 4.1

Proof. To define the set system (N, I), let Y be the
set of all strings a1a2 . . . an of length n over the al-
phabet {1, . . . , n}. For every i ∈ {1, 2, . . . , n} and
b ∈ {1, . . . , n}, we denote by [ai = b] the “miniset” that
contains all strings from Y with the i-th letter ai being
b. Then N is the set of all such minisets. To define
the feasible subsets I, a subset S of minsets from N
is feasible if and only if no two minisets in S intersect.
Note that two different minisets [ai = b] and [ai′ = b′]
intersect if and only if i 6= i′. It is easy to verify that
this set system is n-independent. Finally, we assign unit
weights to every miniset.

We choose a random subset S of N in two ways. In
the dependent case, an index i from {1, . . . , n} is chosen
at random, and S contains the miniset [ai = b] for all
b ∈ {1, . . . , n}. Clearly all such S’s are feasible, and the
rank function has expected value n.

In the independent case, for all i, b, we include every
miniset [ai = b] in S with probability 1/n independently.
For all i, let Xi be the number of minisets in S that
have the form [ai = b] for some b. Then the rank
function is equal to maxiXi. To give a rough estimate
of E[maxiXi], note that for all i,

Pr[Xi ≥
1

2
log n]

=

n
∑

k= 1
2 logn

(

n

k

)(

1

n

)k (

1− 1

n

)n−k

≤
n
∑

k= 1
2 logn

(n · e
k

)k 1

nk
≤ n ·

(

e
1
2 logn

)
1
2 log n

=
n

2Ω(logn·log logn)
.

Therefore for sufficiently large n, Pr[maxiXi ≥
1
2 logn] ≤ 1 −

(

1− n
2Ω(log n·log log n)

)n ≤ 1
n
, and hence

E[maxi Xi] ≤ Pr[maxi Xi ≥ 1
2 logn]·n+ 1

2 logn ≤ logn.
It follows that the correlation gap is at least n/ logn for
sufficiently large n.
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