
The Rigidity Transition in Random Graphs

Shiva Prasad Kasiviswanathan∗ Cristopher Moore† Louis Theran‡

Abstract
As we add rigid bars between points in the plane, at what
point is there a giant (linear-sized) rigid component, which
can be rotated and translated, but which has no internal
flexibility? If the points are generic, this depends only on
the combinatorics of the graph formed by the bars. We
show that if this graph is an Erdős-Rényi random graph
G(n, c/n), then there exists a sharp threshold for a giant
rigid component to emerge. For c < c2, w.h.p. all rigid
components span one, two, or three vertices, and when
c > c2, w.h.p. there is a giant rigid component. The
constant c2 ≈ 3.588 is the threshold for 2-orientability,
discovered independently by Fernholz and Ramachandran
and Cain, Sanders, and Wormald in SODA’07. We also give
quantitative bounds on the size of the giant rigid component
when it emerges, proving that it spans a (1 − o(1))-fraction
of the vertices in the (3+2)-core. Informally, the (3+2)-core
is maximal induced subgraph obtained by starting from the
3-core and then inductively adding vertices with 2 neighbors
in the graph obtained so far.

1 Introduction

Imagine we start with a set of n points allowed to move
freely in the Euclidean plane and add fixed-length bars
between pairs of the points, one at a time. Each bar
fixes the distance between its endpoints, but otherwise
does not constrain the motion of the points.

Informally, a maximal subset of the points which
can rotate and translate, but otherwise has no internal
flexibility is called a rigid component. As bars are added,
the set of rigid components may change, and this change
can be very large: the addition of a single bar may cause
Ω(n) many rigid components spanning O(1) points to
merge into a single component spanning Ω(n) points.

We are interested in the following question: If we
add bars uniformly at random at what point does a
giant (linear-sized) rigid component emerge and what
is its size? Our answers are: (1) there is a phase
transition from all components having at most three
points to a unique giant rigid component when about
1.794n random bars are added; (2) when the linear-sized
rigid component emerges, it contains at least nearly all
of the 3-core of the graph induced by these bars.

∗IBM T. J. Watson Research Center, Yorktown Heights. Work

done while the author was as a postdoc at Los Alamos National
Laboratory, kasivisw@gmail.com
†Santa Fe Institute and University of New Mexico,

moore@santafe.edu
‡Temple University, theran@temple.edu. Supported by CDI-I

grant DMR 0835586 to I. Rivin and M. M. J. Treacy.

One of the major motivations for studying this
problem comes from physics, where these planar bar-
joint frameworks (formally described below) are used to
understand the physical properties of systems such as
bipolymers and glass networks (see, e.g., the book by
Thorpe et al. [29]).

A sequence of papers [14, 13, 28, 5, 29] studied the
emergence of large rigid components in glass networks
generated by various stochastic processes, with the
edge probabilities and underlying topologies used to
model the temperature and chemical composition of
the system. An important observation that comes
from these results is that very large rigid substructures
emerge very rapidly. Of particular relevance to this
paper are the results of [24, 22, 29]. Through numerical
simulations they show that that there is a sudden
emergence of a giant rigid component in the 3-core of a
G(n, p) random graph. The simulations of Rivoire and
Barré (see Figure 1 in [24]) also show that this phase
transition occurs when there are about 1.794n edges
in the 3-core. Our results confirm these observations
theoretically.

1.1 The Planar Bar-Joint Rigidity Problem.
The formal setting for the problem described above
is the well-studied planar bar-joint framework model
from rigidity theory (see, e.g., [9] for an overview
and complete definitions). A bar-joint framework is
a structure made of fixed-length bars connected by
universal joints with full rotational freedom at their
endpoints. The allowed continuous motions preserve
the lengths and connectivity of the bars. A framework
is rigid if the only allowed motions are rotations or
translations (i.e., Euclidean motions); it is minimally
rigid if it is rigid but ceases to be so if any bar is
removed. If the framework is not rigid, it decomposes
uniquely into rigid components, which are the inclusion-
wise maximal rigid sub-frameworks. Figure 1 shows
examples of rigid components.

The combinatorial model for a bar-joint framework
is a simple graph G = (V,E) with n vertices repre-
senting the joints, and m edges representing the bars.
A remarkable theorem of Maxwell-Laman [16, 18] says

ar
X

iv
:1

01
0.

36
05

v2
 [

m
at

h.
C

O
]

 2
6

N
ov

 2
01

0

(a)

(b)

Figure 1: Examples of rigid components: (a) all the
rigid components have size 2 or 3; (b) the indicated
induced K4 is rigid, but has one more edge than is
required for minimal rigidity.

that rigidity for a generic1 framework (and almost all
frameworks are generic) is determined by the underlying
graph alone. The graph-theoretic condition character-
izing minimal rigidity is a hereditary sparsity count ; for
minimal rigidity the graph G should have m = 2n − 3
edges, and every subgraph induced by n′ vertices in G
should have at most 2n′ − 3 edges. Therefore, by the
Maxwell-Laman Theorem generic rigidity in the plane
becomes a combinatorial concept, and from now on we
will consider it as such. Full definitions are given in
Section 2.

1.2 Contributions. With this background, we can
restate our main question as follows: What is the
behavior of rigid components in a generic framework
with its combinatorics given by an Erdős-Rényi random
graph G(n, p)? Our main result is the following:

Theorem 1.1 (Main Theorem). For any constant c > 0
the following holds,

1Genericity is a subtle concept that is different than the
standard assumption of general position that appears in the

computational geometry literature. See [26] for a more detailed
discussion.

• If c < c2, then, w.h.p., all rigid components in
G(n, c/n) span at most three vertices and

• If c > c2, then, w.h.p., there is a unique giant
rigid component in G(n, c/n) spanning a (1− o(1))
fraction of the (3 + 2)-core.

The (3 + 2)-core of G(n, c/n) is the maximal in-
duced subgraph obtained by starting from the 3-core
and then inductively adding vertices with 2 neighbors
in the graph obtained so far (see Section 3 for the full
definition). The constant c2 ≈ 3.588 is the threshold
for 2-orientability discovered independently by Fern-
holz and Ramachandran [8] and Cain, Sanders, and
Wormald [4]. A graph G is 2-orientable if all its edges
can be oriented so that each vertex has out-degree2

at most two. There is a natural connection between
the notions of 2-orientability and minimal rigidity: 2-
orientable graphs can be characterized using a counting
condition that closely resembles the counting condition
of minimal rigidity (see Section 2). This connection ex-
plains intuitively why the threshold for the emergence
of giant rigid component should be at least c2. For ex-
ample, if a giant rigid component emerges with c < c2,
then addition of another o(n) random edges would cre-
ate, with high probability, a “locally dense” induced
subgraph with more than twice the number of edges
than vertices. This prevents the graph from being 2-
orientable, contradicting the 2-orientability threshold
theorems of [8, 4].

We prove the bound on the size of the giant rigid
component by showing this following result.

Theorem 1.2. Let c > c2 be a constant. Then, w.h.p.,
there is a subgraph of the (3 + 2)-core such that the
edges of this subgraph can be oriented to give all but
O(log3 n

√
n) of the vertices in the (3 + 2)-core an out-

degree of two.

The results of [8, 4] show that for c > c2, with
high probability G(n, c/n) is not 2-orientable, they
don’t give quantitative bounds on the size of the set
of vertices in G(n, c/n) that can be guaranteed an
out-degree 2. Theorem 1.2, achieves this goal. Our
proof for Theorem 1.2 is constructive and uses an
extension of the 2-orientability algorithm of Fernholz
and Ramachandran [8]. Our analysis is quite different
from [8] and is based on proving subcriticality of the
various branching processes generated by our algorithm.
We use differential equations to model the branching
process, and show subcriticality by analyzing these
differential equations.

2We use out-degree for consistency with the pebble game [17].

In [8, 4], 2-orientability is defined in terms of in-degree exactly
two orientations.

1.3 Other Related Work. Jackson et al. [12] stud-
ied the space of random 4-regular graphs and showed
that with high probability they are globally rigid (a
stronger notion of rigidity [6]). In the G(n, p) model
they prove that when p = n−1(log n+2 log log n+ω(1)),
then with high probability G(n, p) is rigid, but they
have no results for G(n, p) when the expected number
of edges is O(n). In a recent result, Theran [27] showed
using a simple counting argument that for a constant c
w.h.p. all rigid components in G(n, c/n) are either tiny
or giant. Since we use this result as a technical tool, it
is introduced in more detail in Section 3.

1.4 Organization. This paper is organized as fol-
lows. We introduce the required background in com-
binatorial rigidity in Section 2 (rigidity experts may
skip this section), and the technical tools from random
graphs we use to prove Theorem 1.1 in Section 3 (ran-
dom graphs experts may skip this section). With the
background in place, we prove some graph theoretic lem-
mas in Section 4. The proof that Theorem 1.2 implies
Theorem 1.1 is in Section 5.

The remainder of the paper is devoted to the proof
of Theorem 1.2. Section 6 introduces the facts about
the random configuration model we need, and then we
present our 2-orientation algorithm in Section 7. Section
8 proves Theorem 1.2.

1.5 Notations. Throughout this paper G is a graph
(V,E) with |V | = n and |E| = m. All our graphs are
simple unless explicitly stated otherwise. Subgraphs are
typically denoted by G′ with n′ vertices and m′ edges.
Whether a subgraph is edge-induced or vertex-induced
is always made clear. A spanning subgraph is one that
includes the entire vertex set V .

Erdős-Rényi random graphs on n vertices with
edge probability p are denoted G(n, p). Since we are
interested in random graphs with constant average
degree, we use the parameterization G(n, c/n), where
c > 0 is a fixed constant.

1.6 Asymptotics. We are concerned with the
asymptotic behavior of G(n, c/n) as n → ∞. The con-
stants implicit in the O(·), Ω(·), Θ(·); and the conver-
gence implicit in o(·) are all taken to be uniform. A
sequence of events En = (En)∞n=1 holds with high prob-
ability (shortly w.h.p.) if Pr [En] = 1− o(1).

2 Rigidity preliminaries

In this section, we introduce the notations of and a num-
ber of standard results on combinatorial rigidity that
we use throughout. All of the (standard) combinato-
rial lemmas presented here can be established by the

methods of (and are cited to) [17, 10], but we give some
proofs for completeness and to introduce non-experts to
style of combinatorial argument employed below.

2.1 Sparse and Spanning Graphs. A graph G
with n vertices and m edges is (k, `)-sparse if, for all
edge-induced subgraphs on n′ vertices and m′ edges,
m′ ≤ kn′ − `. If, in addition m = kn − `, G is (k, `)-
tight. If G has a (k, `)-tight spanning subgraph it is
(k, `)-spanning. When k and ` are non-negative integer
parameters with ` ∈ [0, 2k) the (k, `)-sparse graphs form
a matroidal family [17, Theorem 2] with rich structural
properties, some of which we review below. In the
interest of brevity, we introduce only the parts of the
theory required.

In particular, throughout, we are interested in only
two settings of the parameters k and `: k = 2 and
` = 3; and k = 2 and ` = 0. For economy, we establish
some standard terminology following [17]. A (2, 3)-
tight graph is defined to be a Laman graph; a (2, 3)-
sparse graph is Laman-sparse; a (2, 3)-spanning graph
is Laman-spanning.

2.2 The Maxwell-Laman Theorem and Combi-
natorial Rigidity. The terminology of Laman graphs
is motivated by the following remarkable theorem of
Maxwell-Laman.

Proposition 2.1. (Maxwell-Laman [18, 16]) A generic
bar-joint framework in the plane is minimally rigid if
and only if its graph is a Laman graph.

An immediate corollary is that a generic framework
is rigid, but not necessarily minimally so, if and only
if its graph is Laman-spanning. From now on, we will
switch to the language of sparse graphs, since our setting
is entirely combinatorial.

2.3 Rigid Blocks and Components. Let G be a
graph. A rigid block in G is defined to be a vertex-
induced Laman-spanning subgraph. We note that if
a block is not an induced Laman graph, then there
may be many different choices of edge sets certifying
that it is Laman spanning. A rigid component of G
is an inclusion-wise maximal block.3 As a reminder
to the reader, although we have retained the standard
terminology of “rigid” components, these definitions are
graph theoretic.

A Laman-basis of a graph G is a maximal subgraph
of G that is Laman-sparse. All of these are the same
size by the matroidal property of Laman graphs [17,

3Readers familiar with [17] will notice that our definition is
slightly different, since we allow graphs that are not (k, `)-sparse.

Theorem 2], and each rigid block in G induces a Laman
graph on its vertex set in any Laman basis of G. Thus,
we are free to pass through to a Laman basis of G or any
of its rigid components without changing the rigidity
behavior of G.

We now present some properties of rigid blocks and
components that we use extensively.

Lemma 2.1 ([17, Theorem 5]). Any graph G decomposes
uniquely into rigid components, with each edge in ex-
actly one rigid component. These components intersect
pairwise on at most one vertex, and they are indepen-
dent of the choice of Laman basis for G

Proof. Since a single edge forms a rigid block, each
edge must be in a maximal rigid block, which is the
definition of a components. By picking a Laman basis
of G, we may assume, w.l.o.g., that G is Laman-sparse.
In that case, it is easy to check that two rigid blocks
intersecting on at least two vertices form a larger rigid
block. Since components are rigid blocks, we then
conclude that components intersect on at most one
vertex. The rest of the lemma then follows from edges
having two endpoints.

Lemma 2.2 ([17, Theorem 2]). Adding an edge to a
graph G never decreases the size of any rigid component
in G; i.e., rigidity is a monotone property of graphs.

Proof. There are two cases: either the new edge has
both endpoints in a rigid component of G or it does not.
In the first case, the component was already a Laman-
spanning induced subgraph and remains that way. In
the second case, Lemma 2.1 implies that the new edge
is in exactly one component of the new graph; this may
subsume other components of G or be just the new edge.
Either way, all of the components of G remain rigid
blocks in the new graph.

The following lemma is quite well-known.

Lemma 2.3. Let G be a graph, and let G1 = (V1, E1)
and G2 = (V2, E2) be rigid blocks in G and suppose that
either:

• V1 ∩ V2 = ∅ and there are at least three edges with
one endpoint in V1 and the other in V2, and these
edges are incident on at least two vertices in V1 and
V2

• V1 ∩ V2 6= ∅ (and so by Lemma 2.1 the intersection
is a single vertex v) and there is one edge ij with
i ∈ V1, j ∈ V2 and i and j distinct from v

Then V1 ∪ V2 is a rigid block in G.

Proof. There are two cases to check. In either case, by
Lemma 2.1 it is no loss of generality to assume that G1

and G2 are Laman graphs on n1 and n2 vertices. The
stated result follows from picking bases.

If V1 and V2 are disjoint, we further assume that
there are exactly three edges going between them. Call
this set E3. Since the Ei are disjoint by Lemma 2.1, we
see that V1∪V2 spans 2(n1 +n2)−3 total edges. Taking
an arbitrary subset V ′ ⊂ V1 ∪ V2 of n′ vertices, we see
that it spans at most |E1 ∩E(V ′ ∩ V1)|+ |E2 ∩E(V ′ ∩
V2)|+ 3 = 2n′ − 3 edges, proving that V1 ∪ V2 spans an
induced Laman graph.

The cases where V1 and V2 is similar, after
accounting for a one-vertex overlap with inclusion-
exclusion.

Lemma 2.4 ([17, Corollary 6]). If G is a simple graph
on n vertices and has m > 2n − 3 edges, then G
spans a rigid block that is not Laman-sparse on at least
four vertices. This block has minimum vertex degree at
least 3.

Proof. Since G has more than 2n − 3 edges, it is not
Laman-sparse. Select an edge-wise minimal subgraph
G′ on n′ vertices and m′ edges that is not Laman-sparse,
and, additionally, make n′ minimum. By minimality of
m′, m′ = 2n′ − 2, and since G is simple, G′ is not a
doubled edge, and thus has at least four vertices. Since
dropping any edge from G′ results in a subgraph on the
same vertices with 2n′ − 3 edges that is Laman-sparse,
G′ is Laman-spanning, giving the desired rigid block.
Finally, removing a degree one or two vertex from G′

would result in a smaller subgraph that is not Laman-
sparse, so minimality of n′ implies that G′ has minimum
vertex degree 3.

Lemma 2.5 ([17, Lemma 4]). If G = (V,E) is Laman-
spanning graph on n vertices, then G has minimum
degree at least two.

Proof. Pick a Laman basis G′ of G. If G′ has a degree
one vertex v, then V −v spans 2n−4 > 2(n−1)−3 edges,
contradicting the assumption that G′ was a Laman
graph. Thus no graph G with a degree one vertex can
have a spanning subgraph that is a Laman graph.

Lemma 2.6 ([17, Lemma 17]). If G = (V,E) is a
Laman-spanning graph on n vertices, removing a degree
two vertex results in a smaller Laman-spanning graph.

Proof. Let v be a degree two vertex in G. Pick a Laman
basis G′ of G. By Lemma 2.5, both edges incident on v
are in G′. In G′, V − v spans 2n− 3− 2 = 2(n− 1)− 3
edges, implying that V − v induces a smaller Laman
graph in G′, from which it follows that V − v is Laman-
spanning.

2.4 2-orientatbility and (2, 0)-sparsity. We now
consider the structure properties of (2, 0)-sparse graphs.
The properties we review here can be obtained from [10].
A graph G is defined to be 2-orientable if its edges can
be oriented such that each vertex has out-degree at most
2. There is a close connection between 2-orientability
and (2, 0)-sparsity expressed in the following lemma.

Lemma 2.7 ([10, Lemma 6] or [17, Theorem 8 and
Lemma 10]). A graph G is (2, 0)-tight if and only if it
is a maximal 2-orientable graph.

Proof sketch. If G = (V,E) is maximal and 2-
orientable, is has n vertices and 2n edges. Counting
edges by their tails in an out-degree at most two orien-
tation, any subset of n′ vertices is incident on, and there-
fore induces, at most 2n′ edges. On the other hand, the
sparsity counts and Hall’s Matching Theorem implies
that the bipartite graph with vertex classes indexed by
E and two copies of V with edges between “edge ver-
tices” and the copies of their endpoints has a perfect
matching. The matching yields the desired orientation
by orienting edges into the vertex they are matched to,
as there are two copies of every vertex in the bipartite
graph.

As a corollary, we obtain,

Lemma 2.8 ([17, Theorem 8 and Lemma 10]). A graph
G is 2-orientable if and only if it is (2, 0)-sparse.

Proof. If G is 2-orientable, than any subset V ′ of n′

vertices is incident on, and thus induces, at most 2n′

edges. On the other hand, if G is (2, 0)-sparse, extend
it to being (2, 0)-tight and then apply Lemma 2.7 to get
the required orientation.

2.5 Henneberg Moves and 2-orientability. In
our analysis of the 2-orientation heuristic, we will make
use of so-called Henneberg moves, which give inductive
characterizations of all (k, `)-sparse graphs. Henneberg
moves originate from [11] and are generalized to the en-
tire family of (k, `)-sparse graphs in [17]. The moves are
defined as follows:

Henneberg I: Let G be a graph on n−1 vertices. Add
a new vertex v to G and two new edges to neighbors
i and j.

Henneberg II: Let G be a graph on n − 1 vertices,
and let ij be an edge in G. Add a new vertex v to
G, select a neighbor k, remove the edge ij, and add
edges between v and i, j, and k.

Figure 2 shows examples of the two moves. Since we
are concerned with (2, 0)-sparsity, while v must be new,

vi

j⇒H. I

(a)

⇒
vk

j
H. II

i

(b)

Figure 2: Examples of the Henneberg moves: (a)
Henneberg I; (b) Henneberg II. In (b), the edge that
is “split,” and the two new edges that replace it, are
shown in red.

the neighbors i, j, and k may be the same as each other
or v. When this happens we get self-loops or multiple
copies of the same edge (i.e., a multigraph). The fact
we need later is,

Lemma 2.9 ([17, Lemma 10 and Lemma 17] or [8]4).
The Henneberg moves preserve 2-orientability.

We give a proof for completeness, since we will use
the proof idea later.

Proof. Assume G is 2-orientable. For the Henneberg I
move, orient the two new edges out of the new vertex v.
For the Henneberg II move, suppose that ij is oriented
i → j in G. Orient the new edges i → v, v → j,
v → k.

We remark that although the development here
follows along the lines of the rigidity-inspired [17], this
idea was developed (to our knowledge) independently
by Fernholz and Ramachandran [8].

2.6 Almost Spanning Subgraphs. We introduce a
final piece of notation, which is the concept of an almost
spanning graph. A graph G on n vertices is defined to
be almost (2, 0)-spanning if it contains a (2, 0)-spanning
subgraph on n− o(n) vertices.

4Under the name “excess degree reduction.”

(a)

(b)

(c)

Figure 3: A family of graphs in which adding any edge
rigidifies the entire graph.

2.7 The Explosive Growth of Rigid Compo-
nents. We conclude this section with an example that
shows how the behavior of rigid components can be very
different than that of connectivity. Unlike connectivity,
the size of the largest rigid component in a graph may
increase from O(1) to Ω(n) after adding only one edge.
A dramatic family of examples is due to Ileana Streinu
[25]. We begin with the graph obtained by dropping
an edge from K3,3; this graph has 2 · 6 − 4 = 8 edges,
and its rigid components are simply the edges. We then
repeatedly apply the Henneberg II move, avoiding tri-
angles whenever possible. As we increase the number
of vertices n, for even n, we obtain graphs with 2n− 4
edges and no rigid components spanning more than two
vertices (see Figure 3(c)); but adding any edge to these
graphs results in a Laman-spanning graph.

This example can be interpreted as saying that
rigidity is an inherently non-local phenomenon.

3 Random graphs preliminaries

Let G(n, p) be a random graph on n vertices where
each edge appears independently of all others with
probability p. In this paper, we are interested in
sparse random graphs, which are generated by p =
c/n for some constant c. This section introduces the
results from random graphs that we need as technical
tools, along with our Theorem 1.2 to prove the main
Theorem 1.1.

3.1 Size of the 3-core. The k-core of a graph is
defined as the maximal induced subgraph of minimum
degree at least k. The k-core thresholds for random
graphs have been studied in [23, 7, 19, 15]. For µ >
0, let Po(µ) denote a Poisson random variable with
mean µ. Let us denote the Poisson probabilities by
πj(µ) = Pr[Po(µ) = j]. Let ψj(µ) = Pr[Po(µ) ≥ j].
Also, let λk = minµ>0 µ/ψk−1(µ). For λ > λk, let
µk(λ) > 0 denote the largest solution to µ/ψk−1(µ) = λ.
In [23], Pittel, Spencer and Wormald discovered that for
k ≥ 3, λ = λk is the threshold for the appearance of a
nonempty k-core in the random graph G(n, λ/n).

Proposition 3.1 (Pittel, Spencer, and Wormald [23]).
Consider the random graph G(n, λ/n), where λ > 0 is
fixed. Let k ≥ 2 be fixed. If λ < λk, then w.h.p. the
k-core is empty in G(n, λ/n). If λ > λk, then w.h.p.
there exists a k-core in G(n, λ/n) whose size is about
ψk(µk(λ))n.

We will use the k = 3 instance of Proposition
3.1. Substituting k = 3 in the above equation gives
λ3 ≈ 3.351, and the size of the 3-core at λ = λ3 is
about 0.27n.

3.2 The (3+2)-core. Extending the 3-core, we define
the 3 + 2-core of a graph as the maximal subgraph
that can be constructed starting from the 3-core and
inductively adding vertices with at least two neighbors
in the subgraph built so far.

From the definition, it is easy to see that the (3+2)-
core emerges when the 3-core does, and, since it contains
the 3-core, it it, w.h.p., empty or giant in a G(n, p).
A branching process heuristic indicates that, after it
emerges, the fraction of the vertices in the (3 + 2)-core
is the root q of the equation q = 1− e−qc(1 + qc) (where
e−qc(1 + qc) comes from Pr[Po(qc) < 2]). However, we
do not know how to make the argument rigorous, and so
we leave it as a conjecture. At c = 3.588 the conjectured
number of vertices in the (3 + 2)-core is about 0.749n.

3.3 The 2-orientability Threshold. Define the
constant c2 to be the supremum of c such that the 3-core
of G(n, c/n) has average degree at most 4.

Fernholz and Ramachandran and Cain, Sanders,
and Wormald independently proved that c2 is the
threshold for 2-orientability of G(n, c/n).

Proposition 3.2 ([8, 4]). With high probability, for any
fixed constant c > 0:

• If c < c2, G(n, c/n) is 2-orientable.

• If c > c2, G(n, c/n) is not 2-orientable.

3.4 Rigid Components are Small or Giant. An
edge counting argument ruling out small dense sub-
graphs in G(n, c/n) shows the following fact about rigid
components in random graphs.

Proposition 3.3 (Theran [27]). Let c > 0 be a con-
stant. Then, w.h.p., all rigid components in a random
graph G(n, c/n) have size 1, 2, 3, or Ω(n).

4 Graph-theoretic lemmas

This short section gives the combinatorial lemmas we
need to derive Theorem 1.1 from Theorem 1.2. The
first is a simple observation relating adding edges to the
span of a rigid component and 2-orientability.

Lemma 4.1. Let G = (V,E) be a graph and let G′ =
(V ′, E′) be a rigid component of G. Then after adding
any 4 edges to the span of V ′, the resulting graph is not
2-orientable.

Proof. Let V ′ have n′ vertices. Since G′ is a rigid
component, it has a Laman basis by definition and thus
spans at least 2n′ − 3 edges. After the addition of 4
edges to the span of V ′, it spans at least 2n′ + 1 edges,
blocking 2-orientability by Lemma 2.8.

Another simple property we will need is that if G
is not Laman-sparse it spans a rigid component with
non-empty (3 + 2)-core.

Lemma 4.2. Let G be a simple graph that is not Laman-
sparse. Then G spans a rigid component on at least four
vertices that is contained in the (3 + 2)-core.

Proof. Since G is simple and fails to be Laman sparse,
the hypothesis of Lemma 2.4 is met, so there is a rigid
block in G with a non-empty 3-core. The component
containing this block has minimum degree two by
Lemma 2.5, and peeling off degree two vertices will
never result in a degree one vertex by Lemma 2.6, so
it is in the (3 + 2)-core.

We conclude with the main graph-theoretic lemma
we need.

Lemma 4.3. Let G = (V,E) be a simple graph that:

• coincides with its (3 + 2)-core;

• spans a rigid component G′ = (V ′, E′) on n′ ≥ 4
vertices;

• and the set of n′′ vertices V ′′ = V \ V ′ is incident
on at least 2n′′ edges.

Then at least one of the following is true

• G is Laman-spanning

• G spans a rigid component other than G′ on at least
4 vertices

Proof. Pick a Laman basis for G′ and discard the rest of
the edges spanned by V ′. Call the remaining graph H.
Observe that G and H have the same rigid components.
By hypothesis, H now has at least 2n′−3+2n′′ = 2n−3
edges. If H is Laman-spanning we are done, so we
suppose the contrary and show that this assumption
implies the second conclusion.

Because H is not Laman-spanning and has 2n − 3
edges, it must not be Laman-sparse. By Lemma 2.4, H
spans a rigid block that is not Laman-sparse, and this
block must be contained in some rigid component H ′

of H. Finally, since V ′ induces a Laman-sparse rigid
component of H and H ′ is a rigid component that isn’t
Laman-sparse, H ′ and G′ are different rigid components
of H and thus G.

5 Proof of the Main Theorem 1.1

In this section, we prove our main theorem:

Theorem 1.1 (Main Theorem). For any constant c > 0
the following holds,

• If c < c2, then, w.h.p., all rigid components in
G(n, c/n) span at most three vertices and

• If c > c2, then, w.h.p., there is a unique giant
rigid component in G(n, c/n) spanning a (1− o(1))
fraction of the (3 + 2)-core.

5.1 Roadmap. The structure of this section is as
follows. We start by establishing that the constant c2
is the sharp threshold for giant rigid components to
emerge. This is done in two steps:

• That there is a giant rigid component, w.h.p., when
c > c2 is the easier direction, coming from counting
the number of edges in the 3-core using Proposition
3.2. (Lemma 5.2)

• The more difficult direction is that when c < c2 all
components are w.h.p. size two or three is proved
using the following idea: if there is a giant rigid
component, adding Θ(1) more random edges will
block 2-orientability, contradicting Proposition 3.2.
(Lemma 5.1)

The idea of the proof of the size of the giant rigid
component is to apply the main combinatorial Lemma
4.3 to the (3 + 2)-core of G(n, c/n) after adding a
small number of uniform edges. This is possible as a
consequence of the more technical Theorem 1.2. Since
only the first conclusion of Lemma 4.3 is compatible
with Proposition 3.3, w.h.p., the presence of a large
enough giant rigid component follows. Before we can do
that we establish two important structural properties:

• There is a unique giant rigid component, w.h.p.,
(Lemma 5.3)

• It is contained in the (3 + 2)-core (Lemma 5.4)

With these results, Lemma 5.6 formalizes the plan
described above, and Theorem 1.1 follows.

5.2 Sharp Threshold. We first establish that c2
is the sharp threshold for emergence of giant rigid
components. This is done in the next two lemmas,
starting with the more difficult direction.

Lemma 5.1. Let c < c2. Then w.h.p, G(n, c/n) has only
rigid components of size at most three.

Proof. Proposition 3.3 implies that all rigid components
inG(n, c/n) have size at most three or are giant. We will
show that, w.h.p., there are no giant rigid components.
Let Γ be the event that G spans a rigid component
G′ = (V ′, E′) on n′ > 3 vertices and m′ edges.

Define the graph H to be the one obtained by
adding edges sampled with probability 1/n2, indepen-
dently, from the complement of G in Kn. Since H is

a random graph with edge probability (c + 1/n)/n, by
Proposition 3.2 H is, w.h.p., 2-orientable so:

Pr [H is not 2-orientable|Γ] Pr [Γ] +

Pr
[
H is not 2-orientable|Γ̄

]
Pr
[
Γ̄
]

= o(1)

We will show that Pr [H is not (2, 0)-sparse|Γ] is uni-
formly bounded away from zero, which then forces the
probability of a rigid component on more than three
vertices to be o(1).

If Γ holds, Proposition 3.3 implies that, n′ = Ω(n),
w.h.p. It follows that, conditioned on Γ, each of the
added edges is in the span of V ′ with probability
(1 − o(1)) 1

n2 Ω(n2) = Θ(1), so the probability that at
least four of them end up in the span of V ′ is Θ(1)
as well. This shows that with probability Θ(1), the
combinatorial lemma Lemma 4.1 applies and so

Pr [H is not 2-orientable|Γ] = Θ(1).

Lemma 5.2. Let c > c2. Then w.h.p., G(n, c/n) has at
least one giant rigid component.

Proof. By Lemma 2.4, any simple graph with n vertices
and at least 2n− 2 edges spans a rigid block on at least
4 vertices. Proposition 3.2 implies that for c > c2,
the 3-core of G(n, c/n) induces such a graph w.h.p.
Finally Proposition 3.3 implies that there is a giant rigid
component w.h.p.

5.3 Uniqueness of the Giant Rigid Component.
Before we determine the size, we show that w.h.p.
there is only one giant rigid component and that it is
contained in the (3 + 2)-core.

Lemma 5.3. Let c > c2. Then w.h.p., there is a unique
giant rigid component in G(n, c/n).

Proof. By Lemma 5.2, when c > c2 w.h.p. there is
at least one giant rigid component in G(n, c/n). To
show the giant rigid component is unique, we consider
G(n, c/n) as being generated by the following random
graph process: first select a linear ordering of the

(
n
2

)
edges of Kn uniformly at random and take the first
m edges from this ordering, where m has binomial
distribution with parameters

(
n
2

)
and c/n.

Consider the sequence of graphs G1, G2, . . . , G(n2)
defined by adding the edges one at a time according to
the selected ordering. Define t ∈ [1,

(
n
2

)
] to be critical if

Gt has one more rigid component spanning more than
three vertices than Gt−1 and bad if Gt has more than
one such rigid component.

By Proposition 3.3, w.h.p., all rigid components on
more than three vertices that appear during the process
have size Ω(n). Thus, w.h.p., at most O(1) t are critical.

To bound the number of bad t we note that if
G′ = (V ′, E′) and G′′ = (V ′′, E′′) are distinct giant
rigid components, then the probability that a random
edge has one endpoint in V1\V2 and the other in V2\V1 is
Θ(1), and the probability that two of the added edges
are incident on the same vertex is O(1/n). So after
the addition of O(log n) random edges, at least three
of them have this property, w.h.p. Lemma 2.3 then
implies that, w.h.p., G′ and G′′ persist as giant rigid
components for at most O(log n) steps in the process.
Since there are at most O(1) such pairs, the total
number of bad or critical t is O(log n), w.h.p.

The probability that m = t is O(1/
√
n), by

standard properties of the binomial distribution. A
union bound shows that the probability m is bad is
O(log n/

√
n), so the probability there is only one rigid

component on more than three vertices and that it is
giant is 1− o(1) as desired.

We need two more structural lemmas about the
relationship between the giant rigid component and the
(3 + 2)-core.

Lemma 5.4. Let c > c2. Then, the unique giant rigid
component that exists w.h.p. by Lemma 5.3 is contained
in the (3 + 2)-core of G(n, c/n). Moreover, the giant
rigid component contains a (smaller) unique giant rigid
block that lies entirely in the 3-core.

Proof. By Lemma 5.3, w.h.p., G(n, c/n) has exactly
one rigid component of size at least 4, and it spans at
least twice as many edges as vertices. Thus Lemma
4.2 applies to the rigid component, w.h.p., so it is in
the (3 + 2)-core. Because the 3-core itself has average
degree at least 4, the second part of the lemma follows
from the same argument.

Lemma 5.5. Let c > c2 and suppose that the giant rigid
block in the 3-core implied by Lemma 5.4 spans all but
o(n) of the vertices in the 3-core. Then, w.h.p., the
giant rigid component spans all but o(n) vertices in the
(3 + 2)-core.

Proof. Since c > c2, both the 3-core and the (3 + 2)-
core span Ω(n) vertices, w.h.p. If the (3 + 2)-core has
o(n) more vertices than the 3-core, then we are already
done. Thus for the rest of the proof, we assume that the
(3 + 2)-core spans Ω(n) more vertices than the 3-core.

Let G denote G(n, c/n), let G0 = (V0, E0) denote
the 3-core, let G1 = (V1, E1) be the (3+2)-core, and let
G′ = (V ′, E′) be the giant rigid block in the 3-core. We
now observe that each v ∈ V1−V0 sits at the “top” of a

binary tree with its “leaves” in V0. A branching process
argument shows that each of these has height at most
log log n, w.h.p. On the other hand, a vertex v ∈ V0 is
in the giant rigid component when all of these O(log n)
“leaves” lie in V ′. Since V0 − V ′ has o(n) vertices, this
happens with probability 1− o(1).

5.4 Size of the giant rigid component. We are
now ready to bound the size of the giant rigid compo-
nent when it emerges. Here is the main lemma.

Lemma 5.6. Let c > c2. Then, w.h.p., the unique
giant rigid component implied by Lemma 5.3 spans a
(1− o(1))-fraction of the vertices in the (3 + 2)-core.

Proof. Let G = G(n, c/n), let G0 = (V0, E0) be the 3-
core of G, and let G′ = (V ′, E′) be a giant rigid block
of G0 implied, w.h.p. by Lemma 5.4. Let n0 be the size
of V0 and n′ the size of V ′. With high probability, n0
and n′ are Ω(n).

By Theorem 1.2 (and this is the hard technical
step), V ′′ = V0 \ V ′ is incident on 2(n0 − n′) −
O(log3 n

√
n) edges in G0.

Define H to be the graph obtained by adding each
edge of Kn \G to G with probability such that H and
G(n, (c+ 1/n5/4)/n) are asymptotically equivalent.

Let γ > 0 be a fixed constant and define Γ to be the
event that n0−n′ ≥ γn0; i.e., the giant rigid component
spans at most a (1−γ)-fraction of the (3+2)-core in G.
Conditioned on Γ, the expected number of edges added
between V ′ and V ′′ is Θ(n3/4), so w.h.p., Lemma 4.3
applies to V0 in H. Recall that Lemma 4.3 has two
conclusions:

• V0 induces a Laman-spanning subgraph

• V0 spans multiple components spanning at least
four vertices in H

The second case happens with probability o(1) by
Proposition 3.3, so w.h.p., V0 is Laman-spanning in H.

To complete the proof, we note that by [23] adding
o(n) edges causes the 3-core to grow by o(n) vertices,
w.h.p. Thus the 3-core ofG spans all but o(n) vertices in
the 3-core of H. Now Lemma 5.5 applies to H, showing
that, w.h.p., all but o(n) vertices in the (3 + 2)-core lie
in the giant rigid component.

5.5 Proof of Theorem 1.1. The theorem follows
from Lemma 5.1, Lemma 5.2, and Lemma 5.6.

6 Configurations and the algorithmic approach

We now develop the setting used in the proof of Theo-
rem 1.2, which is based on our analysis of a 2-orientation
heuristic for random graphs, which is introduced in the

next section. The heuristic operates in the random con-
figuration model (introduced in [1, 2]), which we briefly
introduce here.

6.1 Random Configurations. A random configura-
tion is a model for random graphs with a pre-specified
degree sequence; the given data is a vertex set V and a
list of degrees for each vertex such that the sum of the
degrees is even. Define deg(v) to denote the degree of a
vertex v ∈ V .

A random configuration is formed from a set A
consisting of deg(v) copies of each vertex v ∈ V ,
defined to be the set of (vertex) copies of V . Let M
denote a uniformly random perfect matching in A. The
multigraph GA = (V,E) defined by A and M has V as
its vertex set and and edge vw for each copy of a vertex
v matched to a copy of a vertex w.

The two key facts about random configurations that
we use here are:

• Any property that is holds w.h.p. in GA holds
w.h.p. when conditioned on GA being simple
[20, 21].

• Any property that holds w.h.p. for GA in a random
configuration with asymptotically Poisson degrees
holds w.h.p. in the sparse G(n, c/n) model [3].

Since we are only interested in proving results on
G(n, c/n), from now all random configurations discussed
have asymptotically Poisson degree sequences.

6.2 The Algorithmic Method. Our proof of The-
orem 1.2 relies on the following observation: a property
that holds w.h.p. for any algorithm that generates a
uniform matching M holds w.h.p. for a random con-
figuration. The following two moves were defined by
Fernholz and Ramachandran [8].

FR I Let A be a set of vertex copies. Select (arbitrar-
ily) any copy a0 and match it to a copy a1, selected
uniformly at random. The matchingM is given by
the matched pair {a0, a1} and a uniform matching
on A \ {a0, a1}.

FR II Select two copies a0 and a1. Let M′ be a
uniform matching on A \ {a0, a1}. Produce the
matching M as follows:

• with probability 1/(|A| − 1) add the matched
pair {a0, a1} to M′

• otherwise, select a matched pair {b0, b1} uni-
formly at random and replace it in M′ with
the pairs {a0, b0}, {a1, b1}.

These two moves generate uniform matchings.

Lemma 6.1 ([8, Lemma 3.1]). Matchings generated by
recursive application of the moves FR I and FR II
generate uniform random matchings on the set of vertex
copies A.

We will only use the move FRII in the special
situation in which a0 and a1 are copies of the same
vertex. With this specialization, in terms of the graph
GA, the two moves correspond to:

FR I Reveal an edge of GA incident on the vertex v
that a0 is a copy of.

FR II Pick two copies a0 and a1 of a vertex v. Gener-
ate GA−{a0,a1} and then complete generating GA
by either adding a self-loop to v or splitting the edge
ij corresponding to {b0, b1} by replacing it with
edges iv and vj, with probabilities as described
above.

7 The 2-orientation algorithm

We are now ready to describe our 2-orientation algo-
rithm. It generates the random multigraph GA using
the moves FR I and FR II in a particular order and
orients the edges of GA as they are generated.

Since Theorem 1.2 is only interested in the (3 + 2)-
core, we assume that our algorithm only runs on the
(3 + 2)-core of GA. Since we can always orient degree
two vertices so that both incident edges point out, the
only difficult part of the analysis is the behavior of our
algorithm on the 3-core of GA. We denote the set
of copies corresponding to the 3-core by As and the
corresponding multigraph by GAs . Define the number
of copies of a vertex v in As by degAs(v).

7.1 The 2-orientation Algorithm. We now define
our orientation algorithm in terms of the FR moves.

2-orienting the 3-core

Until As is empty, select a minimum degree vertex v in
As, and let d = degAs(v).

1. If d ≤ 2, execute the FR I move, selecting a copy
of v deterministically. Orient the resulting edge or
self-loop away from v. If v still has any copies left,
call this algorithm recursively, choosing v as the
minimum degree vertex.

2. If d = 3, execute the FR II move, selecting two
copies of v, and then recursively call this algorithm,
starting the recursive call on v using case 1. If
the FR II move generated a self-loop, orient it
arbitrarily. If the FR II move split an oriented
edge i→ j, orient the new edges i→ v and v → j.

3. If d ≥ 4, perform FR I move on v, leaving the
resulting edge unoriented. Then recursively call
this algorithm, choosing v as a minimum degree
vertex.

We define a vertex v to be processed if it is selected
deterministically at any time. A vertex is defined to be
tight if the algorithm orients exactly two edges out of
it and loose otherwise. For convenience, when a vertex
runs out of copies, we simply remove it from As; thus
when we speak of the number of remaining vertices, we
mean the number of vertices with any copies left on
them.

7.2 Correctness and Structural Properties. We
now check that the 2-orientation algorithm is well-
defined.

Lemma 7.1. The 2-orientation algorithm generates a
uniform matching.

Proof. This follows from the fact that it is based on
the FR moves and Lemma 6.1. The only other thing to
check is that if v is being processed and the algorithm is
called on v again that v is still a minimum degree vertex
in As. This is true, since v started as minimum-degree
and the FR moves decrease its degree at least as much
as any other vertex.

The following structural property allows us to focus
only on the evolution of the degree sequence.

Lemma 7.2. A loose vertex is v generated only in one
of three ways:

L1 v is never processed, because it runs out of copies
before it is selected

L2 v has degree one in As when it is processed

L3 v has degree two in As when it is processed, and a
self-loop is revealed

Proof. The proof is a case analysis.

• In step 1, if a self-loop is not generated, this is
equivalent to the Henneberg I move, so by Lemma
2.9 v ends up being tight.

• Step 2 always corresponds to a Henneberg II move
or creates a self-loop, and so by Lemma 2.9 v ends
up being tight either way, and the out-degree of no
other vertex changes.

• Step 3 cannot leave v with fewer than two copies.

• The other cases are the ones in the statement of
the lemma, completing the proof.

Because of the algorithm’s recursive nature, we can,
at any time, suspend the algorithm and just generate a
uniform matching on the remaining configuration. In
the next section, we will use this observation to split
the analysis into two parts.

Lemma 7.3. Let As|t denote the remaining configura-
tion at time t. Suppose that, w.h.p., a random configu-
ration G∗ on As|t is (2, 0)-spanning. Then, w.h.p., there
is an orientation of GAs in which all the vertices of As|t
are tight, and the out-degrees of vertices in As \As|t are
the same as in the full algorithm.

Proof. Since G∗ comes from a uniform matching on the
remaining copies, and the FR II move only requires
this as input, the cut-off version of the 2-orientation
algorithm generates a uniform matching. Thus, w.h.p.,
results for it hold for GAs .

By hypothesis, w.h.p., we can orient G∗ such that
each vertex has out-degree at least two: G∗ has a sub-
graph that is (2, 0)-spanning and orient the remaining
edges arbitrarily, so all the vertices of G∗ are tight,
w.h.p. Moreover, since before G∗ is generated, the cut-
off algorithm acts the same way as the full algorithm,
which implies that how we orient the edges of G∗ does
not change the out-degrees in As \ As|t.

So the final thing to check is that the FR I and FR
II moves don’t change the out-degrees in G∗ after the
recursive calls return to them.

• For FR I, no edges induced by G∗ are involved, so
the statement is trivial.

• For FR II, either a self-loop is generated, in which
case the proof is the same as for FR I; or an edge is
split, in which case the construction used to prove
Lemma 2.9 shows that the out-degree of vertices in
G∗ remains unchanged.

This completes the proof.

7.3 The Simplified Algorithm. In light of Lemma
7.2, we can simplify the analysis by simply tracking
how the degree sequence evolves as we remove copies
from As. Since loose vertices are generated only when
a vertex runs out of copies before the algorithm had a
chance to orient two edges out of them, we can ignore
the edges and just remove copies as follows.

Simplified 2-orientation algorithm

Repeatedly execute the following on a vertex v of
minimum degree in As, until As is empty

1. If degAs(v) ≤ 2, repeat the loop until all copies of
v are removed

a. remove a copy of v from As.
b. remove a copy chosen uniformly at random

from As.

2. If degAs(v) = 3, first remove the 2 copies of v from
As; then execute step 1.

3. If degAs(v) ≥ 4, repeat the following loop
degAs(v)− 3 times and then execute step 2

a. remove a copy of v from As.
b. remove a copy chosen uniformly at random

from As.

As a corollary to Lemma 7.2 we have,

Lemma 7.4. The number of loose vertices generated by
the simplified algorithm is exactly the number of vertices
that run out of copies as in L1–L3 in Lemma 7.2

Proof. The number of remaining copies of each vertex
in As evolves as in the full algorithm.

8 Proof of Theorem 1.2

In this section we prove,

Theorem 1.2. Let c > c2 be a constant. Then, w.h.p.,
there is a subgraph of the (3 + 2)-core such that the
edges of this subgraph can be oriented to give all but
O(log3 n

√
n) of the vertices in the (3 + 2)-core an out-

degree of two.

8.1 Roadmap. The proof is in two stages: before the
minimum numbers of copies on any vertex remaining
reaches four and after. The overall structure of the
argument is as follows:

• At the start, the minimum number of copies on
any vertex in As is three. We run the simplified

algorithm until the minimum degree in As rises to
four, or the number of vertices remaining reaches√
n.

• Since we only run the simplified algorithm when
there are are Ω(

√
n) copies remaining, we can give

bounds on the number of loose vertices generated
by analyzing it as a series of branching processes.

• Once the minimum degree in As has reached four,
we can use the combinatorial Lemma 4.3 along
with the counting argument Proposition 3.3 to
show that, w.h.p., a random configuration on what
remains is (2, 0)-spanning. If it never does, we just
declare the last

√
n vertices to be loose, so either

way we get the desired bound.

We define the first stage, when we run the simplified
algorithm, to be phase 3; the second stage is phase
4. The main obstacle is that during phase 3, there
may be many degree two vertices, which increases the
probability of generating loose vertices. Let us briefly
sketch our approach.

At the start of phase 3, every vertex has degree at
least three (and Ω(n) have degree three, w.h.p.). The
algorithm will:

• Pick a degree three vertex, remove all of its copies
and a random copy.

• Removing the random copy may create a degree
two vertex, which is then removed, along with two
random copies.

• These random copies may create more degree two
vertices or even a loose vertex.

We call the cascade described above a round of the
algorithm. We model each round as a branching process,
which we analyze with a system of differential equations
(this step occupies most of the section). The key fact is
that, with high probability, all rounds process O(log n)
vertices, which is enough to bound the number of loose
vertices using arguments similar to those from the high-
degree phase analysis.

8.2 Phase 3: The Main Lemma. We start with
the analysis of phase 3. In phase 3, all iterations of the
algorithm take step 1 or 2. We define a round of the
algorithm in phase 3 to start with a step 2 iteration and
contain all the step 1 iterations before the next step 2.
The critical lemmas are.

Lemma 8.1. With probability at least 1−1/n, all rounds
during phase 3 process O(log n) vertices.

We defer the proofs for now, and instead show how
they yield a bound on the number of loose vertices.

Lemma 8.2. With high probability, the expected num-
ber of loose vertices generated in a phase 3 round is
O(log2 n/

√
n).

Proof. All vertices start the round with at least three
copies on them, so Lemma 7.2 implies that a loose vertex
is either

• hit at least twice at random (L1 and L2)

• reaches degree two and then gets a self-loop (L3)

Both of these events happen with probability
O(1/

√
n), since we are only running the algorithm with

this many vertices left, and the probability any specific
vertex is hit is O(1/k), where k is the number of remain-
ing copies, and w.h.p. this is Ω(n) during any phase 3
round.

Since the round lasts O(log n) iterations, w.h.p.,
the probability any vertex becomes loose is at most
O(log n/

√
n). Because any loose vertex gener-

ated in a round must be processed in that round,
the expected number of loose vertices generated is
O(log n)O(log n/

√
n) = O(log2 n/

√
n).

Lemma 8.3. With high probability, the number of loose
vertices generated during phase 3 is O(log3 n

√
n).

Proof. Let Γ be the event that all rounds process
O(log n) vertices. The main Lemma 8.1 implies that
Γ fails to hold with probability 1/n, so we are done if
the lemma holds when conditioning on Γ.

Assuming, Γ, Lemma 8.2 applies to O(n) rounds.
From Lemma 8.2, we see that, w.h.p., the expected
number of loose vertices generated in phase 3 is
O(n)O(log2 /

√
n) = O(log2 n

√
n). It then follows from

Markov’s inequality that the probability of Ω(log3 n
√
n)

loose vertices generated in phase 3 is at most 1/ log n =
o(1).

If phase 3 runs until it hits its cutoff point, then
there are an additional O(

√
n) loose vertices, but this

preserves the desired bound.

8.3 Phase 4. At the start of phase 4, we stop the
simplified algorithm, since we can prove the following
lemma more directly.

Lemma 8.4. With high probability, at the start of phase
4, a uniform simple graph generated from As is (2, 0)-
spanning.

Proof. Since the degree sequence of As has minimum
degree 4 and is truncated Poisson, a simple graph G∗

generated by As is asymptotically equivalent to the 4-
core of some G(n, c′/n). By edge counts, Lemma 4.3
applies to it, and the conclusion in which it is not
Laman-spanning is ruled out, w.h.p., by Proposition
3.3. Since G∗ is a Laman graph plus at least three
more edges, the main theorem of [10] implies that G∗ is
(2, 0)-spanning.

8.4 Proof of Theorem 1.2 Because we are inter-
ested in results on G(n, c/n), we condition on the event
that GAs is simple. By Lemma 8.3, w.h.p., phase 3
generates O(log3 n

√
n) loose vertices. By Lemma 8.4

(which applies when GAs is simple), w.h.p., we can ap-
ply Lemma 7.3 to conclude that there is an orientation
with no loose vertices that were not generated during
phase 3.

8.5 Further Remarks. The assumption that GAs
is simple can be removed at the notational cost of
introducing (2, 0)-blocks and components and proving
the appropriate generalization of Lemma 4.3 to that
setting. Since the added generality doesn’t help us here,
we leave this to the reader.

In the rest of this section we prove Lemma 8.1.

8.6 The Branching Process. Consider a round in
phase 3. Its associated branching process is defined as
follows:

• The root vertex of the process is the degree three
vertex processed to start the round.

• The children of any vertex v processed in the round
are any degree one or two vertices created while
processing v.

Figure 4 shows an example of the process, and how a
loose vertex is generated. We define λ to be the expected
number of children. We will show,

Lemma 8.5. With high probability, λ < 1 in all phase 3
rounds.

This implies the key Lemma 8.1.

Proof of Lemma 8.1. If λ < 1 in all rounds, then
standard results on branching processes imply that the
probability any particular round processes more than
O(log n) vertices is O(1/n2), for appropriate choices
of constants. A union bound then implies that the
probability all of them process O(log n) vertices is at
least 1− 1/n.

This assumption on λ holds w.h.p. by Lemma 8.5,
completing the proof.

FR II

Loose vertex

Figure 4: Example of the Phase 3 branching process.
A loose vertex is generated when it is hit twice by a
previous generation.

8.7 Analysis of the Branching Process: Proof
of Lemma 8.5. We will use the method of differential
equations [30] to establish Lemma 8.5. All the required
Lipchitz conditions and tail bounds in our process are
easy to check, since the degree sequence is asymptoti-
cally Poisson. Thus the main step is to define and ana-
lyze the system of differential equations describing the
evolution of the degree sequence as the algorithm runs.

In order to simplify the analysis, we break the loop
into individual timesteps. At each timestep, two vertex
copies are removed from As. For example, the step 1 of
the algorithm is divided into degAs(v) many timesteps,
where in each timestep we remove a copy of v and
another random copy. Similarly, step 3 of the algorithm
gets divided into degAs(v)− 3 many timesteps.

For all i ≥ 3, let a(i) denote the number of vertices
of degree i in the 3-core divided by n (where n is the
number of vertices in G = G(n, c/n)). We say a vertex
is hit during a round in phase 3 if a copy of the vertex is
selected by step 1(b) of the algorithm during the round.
Since in phase 3 vertices of degree 4 and greater get hit
randomly with probability proportional to their degree,
they always obey a truncated Poisson distribution.
Therefore, for i ≥ 4, a(i) will be a truncated Poisson
distribution with a time-varying mean δ,

(8.1) a(i) =
e−δ δi

i!
.

Let µ denote the total number of vertex copies in the

3-core divided by n. That is,

µ =
∑
i≥3

ia(i) = 3a(3) +
∑
i≥4

e−δ δi

(i− 1)!

= 3a(3) + δ

(
1− e−δ

(
1 + δ +

δ2

2

))
.

We will use the following notation for the number of
copies of degree j or greater divided by n, µ≥j =∑∞
i=j ia

(i) .
Since an edge hits a vertex of degree 3 with proba-

bility 3a(3)/µ, and since it creates two new edges when
it does so, the branching ratio of the branching process
defined above is λ = 6a(3)/µ. To show that the branch-
ing process is subcritical we need to analyze λ and show
that throughout phase 3 it is bounded away from 1.

Now, in one timestep the expected change in a(i)

(i ≥ 4) is

n · E[∆a(i)] =
(i+ 1)a(i+1)

µ
− ia(i)

µ
.

Here, the first term on the right hand side represents the
probability that a degree i+ 1 vertex is hit (this creates
a new degree i vertex). The second term represents the
probability that a degree i vertex is hit (this destroys a
degree i vertex). Similarly, the expected change in a(3)

in one timestep is

n · E[∆a(3)] =
4a(4)

µ
− 3a(3)

µ
− (1− λ) .

Here, the additional 1 − λ term comes due to the FR
II step. The expected probability on a given timestep
that there are no degree-2 vertices is 1− λ.

Setting the derivatives of these variables to their
expectations gives us our differential equations:

n · da(3)

dt
=
−3a(3) + 4a(4)

µ
− (1− λ)

and, for all i ≥ 4

n · da(i)

dt
=
−ia(i) + (i+ 1)a(i+1)

µ

Changing the variable of integration to s where ds/dt =
1/(nµ) and substituting λ = 6a(3)/µ gives

da(3)

ds
= −3a(3) + 4a(4) − µ+ 6a(3) = −µ≥5(8.2)

da(i)

ds
= −ia(i) + (i+ 1)a(i+1) for all i ≥ 4 .(8.3)

This infinite system is consistent with the truncated
Poisson form for a(i). Since (8.1) implies

da(i)

ds
=

(
i

δ
− 1

)
a(i)

dδ

ds
and a(i+1) =

δ

i+ 1
a(i) ,

Equation (8.3) becomes(
i

δ
− 1

)
a(i)

dδ

ds
= (−i+ δ)a(i) or

dδ

ds
= −δ .

Thus, δ as a function of s is, δ = δ0 e−s. Here, δ0
is the parameter of the truncated Poisson distribution
describing the degree distribution of the 3-core. We can
also express µ as a function of s. Since λ = 6a(3)/µ,
we can also express λ as a function of s. Then we show
using analytic arguments that λ < 1 for all values of s
in phase 3.

We start by computing the integral,

a(3) = a
(3)
0 −

∫ s

0

µ≥5 ds,

analytically. Since dδ
ds = −δ, we have ds = −dδ

δ . Let
δ0 = τ . Remember, δ0 is the parameter of the truncated
Poisson distribution describing the degree distribution
of the 3-core. Now, µ≥5 can be expressed as

µ≥5 =

∞∑
i=5

e−δδi

(i− 1)!
= δ

(
1− e−δ

(
1 + δ +

δ2

2
+
δ3

6

))
.

We can compute a(3) as

a(3)

= a
(3)
0 −

∫ s

0

µ≥5 ds = a
(3)
0 +∫ τe−s

τ

δ

(
1− e−δ

(
1 + δ +

δ2

2
+
δ3

6

))
dδ

δ

= a
(3)
0 +

∫ τe−s

τ

(
1− e−δ

(
1 + δ +

δ2

2
+
δ3

6

))
dδ

= a
(3)
0 + τe−s + e−τe

−s
(
τ3e−3s

6
+ τ2e−2s + 3τe−s + 4

)
−
(
τ +

τ3e−τ

6
+ τ2e−τ + 3τe−τ + 4e−τ

)
.

Now, a
(3)
0 = e−ττ3/6. Therefore, a(3) as a function of s

is

a(3)

=
e−ττ3

6
+ τe−s + e−τe

−s
(
τ3e−3s

6
+ τ2e−2s + 3τe−s + 4)

−
(
τ +

τ3e−τ

6
+ τ2e−τ + 3τe−τ + 4e−τ

)
.

Since both a(3) and δ can be expressed as a function of

s, we can write

µ

= 3a(3) + δ

(
1− e−δ

(
1 + δ +

δ2

2

))
= 3

(
e−ττ3

6
+ τe−s

)
+ 3

(
e−τe

−s
(
τ3e−3s

6
+ τ2e−2s + 3τe−s + 4

))
− 3

(
τ +

τ3e−τ

6
+ τ2e−τ + 3τe−τ + 4e−τ

)
+ τe−s

(
1− e−τe

−s
(

1 + τe−s +
τ2e−2s

2

))
,

as a function of s. Now, given a(3) and µ as functions
of s, we can compute λ = 6a(3)/µ as a function of s.
We need to show that λ < 1 for all values of s ≥ 0
in phase 3. Let s∗ be the value of s at which a(3) (as
a function of s) evaluates to 0 (this signals the end of
phase 3). By taking derivatives, it can be shown that
λ is a decreasing function of s in the interval (0, s∗)
(we omit this calculation here). So, all left to verify is
whether at s = 0, λ < 1. Evaluating λ at s = 0, we get

λ|s=0 =
6 · e

−ττ3

6
3e−ττ3

6 + τ − e−τ (τ + τ2 + τ3

2)
=

e−ττ2

1− e−τ (1 + τ)
.

For τ > 1.794, λ|s=0 < 1. At the birth of the giant rigid
component (c = c2 ≈ 3.58804), τ = 2.6885, and as we
increase c, the value of τ only increases. Therefore, for
all c > c2, λ|s=0 < 1. As, λ is a decreasing function of
s, therefore for c > c2, λ < 1 throughput phase 3. This
shows that for c > c2 all branching processes in phase 3
are subcritical.

9 Conclusions

We studied the emergence of rigid components in sparse
Erdős-Rényi random graphs, proving that there is a
sharp threshold and a quantitative bound on the size
of the rigid component when it emerges. These results
confirm theoretically the simulations of [24].

As conjectures, we leave the following:

Conjecture 9.1. With high probability, the entire (3+
2)-core is Laman-spanning in G(n, c/n), for c > c2.

5Remember, τ(= δ0) is the parameter of the truncated Poisson
distribution describing the degree distribution of the 3-core. The
value of τ equals qc where q = 1− e−qc(1 + qc) is the fraction of

the vertices in the 3+2-core of G (see, e.g., [23]). For c = 3.58804,
we get q = 0.749154 and τ = 2.688.

Conjecture 9.2. With high probability, the 3-core of
G(n, c/n) is globally rigid (i.e., there is exactly one
embedding of the framework’s edge lengths, as opposed
to a discrete set), for c > c2.

In the plane, generic global rigidity is character-
ized by the framework’s graph being 3-connected and
remaining Laman-spanning if any edge is removed [6].
Proving either of these conjectures using the plan pre-
sented here would most likely require a stronger state-
ment than Theorem 1.2, such as the 3-core being, w.h.p.,
(2, 0)-spanning.

Conjecture 9.3. With high probability, the size of the
(3 + 2)-core when it emerges is given by qn, where q is
the root of the equation q = 1− e−qc(1 + qc).

The term e−qc(1 + qc) comes from Pr[Po(qc) < 2].
This conjecture, with Theorem 1.1, implies that when
the giant rigid component emerges it spans about 0.749n
vertices.

9.1 Acknowledgements. We would like to thank
Michael Molloy, Alexander Russell, and Lenka Zde-
borovà for initial discussions. We would also like to
thank Daniel Fernholz and Vijaya Ramachandran for
discussions regarding [8].

References

[1] EA Bender and ER Canfield. The asymptotic number
of labeled graphs with given degree sequences. Journal
of Combinatorial Theory, Series A, 24(3):296–307,
1978.

[2] B Bollobás. A probabilistic proof of an asymptotic
formula for the number of labelled regular graphs.
Journal européen de combinatoire, 2:311, 1980.

[3] B Bollobás. Random graphs. Cambridge Studies in
Advanced Mathematics, 2001.

[4] Julie Anne Cain, Peter Sanders, and Nick Wormald.
The random graph threshold for k-orientiability and a
fast algorithm for optimal multiple-choice allocation.
In SODA, pages 469–476. Society for Industrial and
Applied Mathematics, 2007.

[5] M V Chubynsky and Michael F Thorpe. Rigidity per-
colation and the chemical threshold in network glasses.
J.Optoelectron.Adv.Mater, pages 229–240, 2002.

[6] Robert Connelly. Generic global rigidity. Discrete
Comput. Geom., 33(4):549–563, 2005.

[7] C Cooper. The cores of random hypergraphs with
a given degree sequence. Random Structures and
Algorithms, 25(4):353–375, 2004.

[8] Daniel Fernholz and Vijaya Ramachandran. The k-
orientability thresholds for Gn,p. In SODA ’07: Pro-
ceedings of the eighteenth annual ACM-SIAM sympo-
sium on Discrete algorithms, pages 459–468. Society
for Industrial and Applied Mathematics, 2007.

[9] Jack Graver, Brigitte Servatius, and Herman Servatius.
Combinatorial rigidity. Amer Mathematical Society,
1993.

[10] Ruth Haas, Audrey Lee, Ileana Streinu, and Louis
Theran. Characterizing sparse graphs by map decom-
positions. Journal of Combinatorial Mathematics and
Combinatorial Computing, 62:3–11, 2007.

[11] L. Henneberg. Die graphische Statik der starren Sys-
teme. BG Teubner, 1911.

[12] Bill Jackson, Brigitte Servatius, and Herman Servatius.
The 2-dimensional rigidity of certain families of graphs.
Journal of Graph Theory, 54(2):154–166, 2007.

[13] Donald J Jacobs and Bruce Hendrickson. An algorithm
for two-dimensional rigidity percolation: the pebble
game. Journal of Computational Physics, 137:346–365,
1997.

[14] Donald J Jacobs and Michael F Thorpe. Generic
rigidity percolation: The Pebble Game. Physical
review letters, 75(22):4051–4054, 1995.

[15] S Janson and MJ Luczak. A simple solution to the
k-core problem. Random Structures and Algorithms,
30(1-2):50–62, 2007.

[16] Gerard Laman. On graphs and rigidity of plane skeletal
structures. J. Engrg. Math., 4:331–340, 1970.

[17] Audrey Lee and Ileana Streinu. Pebble game algorihms
and sparse graphs. Discrete Math., 308(8):1425–1437,
Apr 2008.

[18] J Maxwell. L. on the calculation of the equilibrium
and stiffness of frames. Philosophical Magazine Series
4, Jan 1864.

[19] M. Molloy. The pure literal rule threshold and cores in
random hypergraphs. In SODA, pages 672–681, 2004.

[20] M Molloy and B Reed. A critical point for random
graphs with a given degree sequence. Random Struc-
tures and Algorithms, 6(2-3):161–180, 1995.

[21] M Molloy and B Reed. The size of the giant component
of a random graph with a given degree sequence.
Combin. Probab. Comput, 7:295–306, 1998.

[22] C.F. Moukarzel. Rigidity percolation in a field. Phys-
ical Review E, 68(5):56104, 2003.

[23] Boris Pittel, Joel Spencer, and Nicholas Wormald.
Sudden emergence of a giant k-core in a random graph.
J. Comb. Theory Ser. B, 67(1):111–151, 1996.

[24] O. Rivoire and J. Barré. Exactly solvable mod-
els of adaptive networks. Physical review letters,
97(14):148701, 2006.

[25] Ileana Streinu. Personal communication.
[26] Ileana Streinu and Louis Theran. Slider-pinning rigid-

ity: a maxwell-laman-type theorem. Discrete Comput.
Geom., 44(4):812–837, 2010.

[27] Louis Theran. Rigid components of random graphs.
Proceedings of CCCG’09, 2009.

[28] Michael F Thorpe and M V Chubynsky. Self-
organization and rigidity in network glasses. Current
Opinion in Solid State & Materials Science, 5:525–532,
2002.

[29] Michael F Thorpe, Donald J Jacobs, M V Chubynsky,
and A J Rader. Generic rigidity of network glasses.

In Rigidity theory and applications, pages 239–277.
Springer, 2002.

[30] Nicholas C Wormald. Differential equations for ran-
dom processes and random graphs. Ann. Appl.
Probab., 5(4):1217–1235, 1995.

	1 Introduction
	1.1 The Planar Bar-Joint Rigidity Problem.
	1.2 Contributions.
	1.3 Other Related Work.
	1.4 Organization.
	1.5 Notations.
	1.6 Asymptotics.

	2 Rigidity preliminaries
	2.1 Sparse and Spanning Graphs.
	2.2 The Maxwell-Laman Theorem and Combinatorial Rigidity.
	2.3 Rigid Blocks and Components.
	2.4 2-orientatbility and (2,0)-sparsity.
	2.5 Henneberg Moves and 2-orientability.
	2.6 Almost Spanning Subgraphs.
	2.7 The Explosive Growth of Rigid Components.

	3 Random graphs preliminaries
	3.1 Size of the 3-core.
	3.2 The (3+2)-core.
	3.3 The 2-orientability Threshold.
	3.4 Rigid Components are Small or Giant.

	4 Graph-theoretic lemmas
	5 Proof of the Main Theorem ??
	5.1 Roadmap.
	5.2 Sharp Threshold.
	5.3 Uniqueness of the Giant Rigid Component.
	5.4 Size of the giant rigid component.
	5.5 Proof of Theorem ??.

	6 Configurations and the algorithmic approach
	6.1 Random Configurations.
	6.2 The Algorithmic Method.

	7 The 2-orientation algorithm
	7.1 The 2-orientation Algorithm.
	7.2 Correctness and Structural Properties.
	7.3 The Simplified Algorithm.

	8 Proof of Theorem ??
	8.1 Roadmap.
	8.2 Phase 3: The Main Lemma.
	8.3 Phase 4.
	8.4 Proof of Theorem ??
	8.5 Further Remarks.
	8.6 The Branching Process.
	8.7 Analysis of the Branching Process: Proof of Lemma ??.

	9 Conclusions
	9.1 Acknowledgements.

