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Abstract

Until recently, techniques for obtaining lower bounds for kernelization were one of the most
sought after tools in the field of parameterized complexity. Now, after a strong influx of tech-
niques, we are in the fortunate situation of having tools available that are even stronger than
what has been required in their applications so far. Based on a result of Fortnow and San-
thanam (STOC 2008, JCSS 2011), Bodlaender et al. (ICALP 2008, JCSS 2009) showed that,
unless NP ⊆ coNP/poly, the existence of a deterministic polynomial-time composition algo-
rithm, i.e., an algorithm which outputs an instance of bounded parameter value which is yes if
and only if one of t input instances is yes, rules out the existence of polynomial kernels for a prob-
lem. Dell and van Melkebeek (STOC 2010) continued this line of research and, amongst others,
were able to rule out kernels of size O(kd−ǫ) for certain problems, assuming NP * coNP/poly.
It is an immediate consequence of their work that even the existence of a co-nondeterministic
composition rules out polynomial kernels. However, in contrast to the numerous applications of
deterministic composition, the added power of co-nondeterminism has not yet been harnessed
to obtain kernelization lower bounds.

In this work we present the first example of how co-nondeterminism can help to make a
composition algorithm. We study the existence of polynomial kernels for a Ramsey-type prob-
lem: Given a graph G and an integer k, the question is whether G contains an independent
set or a clique of size at least k. It was asked by Rod Downey whether this problem admits a
polynomial kernelization, and such a result would greatly speed up the computation of Ramsey
numbers. We provide a co-nondeterministic composition based on embedding t instances into a
single host graph H . The crux is that the host graph H needs to observe a bound of ℓ ∈ O(log t)
on both its maximum independent set and maximum clique size, while also having a cover of its
vertex set by independent sets and cliques all of size ℓ; the co-nondeterministic composition is
build around the search for such graphs. Thus we show that, unless NP ⊆ coNP/poly (and the
polynomial hierarchy collapses), the problem does not admit a kernelization with polynomial
size guarantee.

1 Introduction

Parameterized complexity refines classical complexity by taking into account not only the size of a
given input but also one or more additional parameters like solution size, or structural measures like
various notions of width for graphs. The main positive result that one seeks to obtain, is to show
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that instances (x, k) of a given NP-hard problem can be solved in time O(f(k) · |x|c) where f is a
computable function and c is a constant independent of k; this is called fixed-parameter tractability.
It entails O(|x|c) algorithms for every bounded value of k. If the chosen parameter k can be expected
to be small in practice, then this is a strong improvement over a worst-case exponential time,
e.g., O(α|x|), algorithm that one would otherwise have to resort to (given our current knowledge
of P vs. NP and hypotheses like the exponential time hypothesis, cf. [22]).

Kernelization takes the perspective that if the chosen parameter k is small when compared to
the size of a given instance (x, k), then strong insights into the structure of the instance should
be possible which allow to discard large parts of x in polynomial time and leave an equivalent
instance of size bounded by some function in k. Interestingly, by a folklore result, the problems
with such a kernelization are exactly those in the class FPT of fixed-parameter tractable problems.
This shows that kernelization is a robust definition of data reduction, which is not possible when
taking into account only the input size (see also the discussion by Harnik and Naor [13] in a study
of compression related to witness size). An important subclass of FPT is formed by those problems
allowing kernelizations with size guarantee polynomial in k, capturing plenty of results with linear
or quadratic size kernels, e.g., [21, 3, 10], but enjoying the good closure properties of polynomials.

A nice feature of kernelization is that since many parameters can be well approximated, it is
not necessary to follow up with an exact or FPT algorithm or even to adopt the framework of
parameterized complexity in the first place. Since only polynomial time is invested to get the
kernelized instance, it is just as valid to run an approximation, randomized, or heuristic algorithm
afterwards. In fact, reduction rules have had fair use in other areas already and, e.g., primal-dual
approximation techniques are quite related to standard arguments in kernelization which start from
a packing of forbidden structures (see, for example, Paul et al. [18]).

Until recently, techniques for obtaining lower bounds for kernelization were one of the most
sought after tools in the field of parameterized complexity (see, e.g., a 2007 survey of Guo and
Niedermeier [12]). This was especially true for the threshold of whether or not a problem would
allow a polynomial kernel. Now, after a strong influx of techniques [2, 11, 5, 7, 4, 14], we are in
the fortunate situation of having tools that are even stronger than what has been required in their
applications so far.

Let us take a high level view of the main technique for excluding polynomial kernels. The
central piece is that of a composition algorithm which takes as input t instances (x1, k), . . . , (xt, k)
and produces in polynomial time an instance (y, k′) which is yes if and only at least one (xi, k) is
yes, and, crucially, with k′ polynomially bounded in k. When combined with a polynomial kernel-
ization this gives a distillation algorithm for the underlying classical problem which given x̃1, . . . , x̃t
computes in polynomial time an instance ỹ which is yes if at least one x̃i is yes, and whose size
is polynomially bounded in the largest x̃i. The intuition of this framework given by Bodlaender et
al. [2] is that when t exceeds the size of ỹ (which is independent of t) then there will be less than one
bit of information per instance; they conjectured that NP-hard problems do not have distillation
algorithms. Fortnow and Santhanam [11] proved the conjecture to be true under the assumption
that NP * coNP/poly (known to otherwise cause a collapse of the polynomial hierarchy [23]). This
led to flurry of papers showing composition algorithms for various problems, e.g., [8, 9, 5, 16], and
thus excluding polynomial kernelizations assuming NP * coNP/poly.

By a generalization of the work of Fortnow and Santhanam [11] Dell and van Melkebeek [7] show
that languages L which have an oracle communication protocol for deciding instances (x1, . . . , xt)
of OR(L) with (communication) cost O(t log t) are contained in coNP/poly; given (x1, . . . , xt),
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the OR(L) problem asks whether at least one xi is contained in L. They conclude that NP-hard lan-
guages L do not have such protocols unless NP ⊆ coNP/poly. Combined with an intricate packing
lemma, this led to their main result that satisfiability of d-CNF formulas does not allow nontrivial
sparsification, i.e., instances with n variables cannot be compressed to size O(nd−ǫ). Amongst other
things, they also obtain polynomial lower bounds for kernelization, e.g., non-existence of a O(k2−ǫ)
sized kernel for Vertex Cover (all results assuming NP * coNP/poly). Combining a polynomial
kernelization and a composition algorithm naturally gives an oracle communication protocol [7].

An interesting new aspect in the lower bounds via oracle communication protocols (see Section 3
for a definition) is that the exclusion of protocols of cost O(t log t) holds, explicitly, even when the
first player (holding the input and communicating with an all-powerful oracle) is allowed to behave
co-nondeterministically [7]. The fact that co-nondeterminism can be allowed is already implicit
in the work of Fortnow and Santhanam [11], as observed by Chen and Müller (cf. [13]). The
key observation seems to be that, essentially, a kernel and a composition are used as subroutines
in a coNP-machine for accepting an NP-hard language. Hence, relaxing the subroutines to co-
nondeterministic behavior as well does not harm the properties of the accepting machine. To our
knowledge, the only result so far making use of co-nondeterminism is the lower bound of O(nd−ǫ)
on PCPs for d-SAT [7]. In particular, the implicit notion of co-nondeterministic composition is left
largely unexplored, despite of the high interest in a set of problems that so far resisted a classification
into admitting or non admitting a polynomial kernelization, e.g., Directed Feedback Vertex

Set and Multiway Cut. Building on the work of Dell and van Melkebeek [7], recent work of
Hermelin and Wu [14] defines a notion called weak composition which permits a larger dependence
on the number t of instances. They obtain concrete polynomial lower bounds in the style of Dell
and van Melkebeek [7], i.e., for problems which admit some polynomial kernel. By definition, weak
compositions allow co-nondeterminism, but the current results make no use of this option. Our
co-nondeterministic composition excludes kernels of any polynomial size.

The Ramsey problem. Recently, Rod Downey posed the interesting question of whether the
following combination of the well-known Clique and Independent Set problems admits a poly-
nomial kernel [17]. We call it Ramsey(k) for brevity.

Ramsey(k)
Input: A graph G and an integer k.
Parameter: k.
Question: Does G contain an independent set or clique of size k?

Unlike Clique and Independent Set, the problem is FPT by a more general result of Khot
and Raman [15] which uses Ramsey’s Theorem: Let R(k) denote the smallest integer N such that
each graph with N vertices contains an independent set or a clique of size k; Ramsey showed these
numbers to exist and to be computable [19]. If G has more than R(k) vertices, then the instance
is yes. Otherwise, the number of possible solutions is bounded by f(k) = (R(k))k; since R(k) is
computable this suffices to prove fixed-parameter tractability (see Section 2 for explicit upper and
lower bounds on R(k)). However, it is open whether or not there is a polynomial kernelization for
it. The question of small kernels for the Ramsey(k) problem is well-motivated: There are as of
yet no efficient algorithms known for computing Ramsey numbers; a brute-force way is to check
all non-isomorphic graphs on N vertices for k-cliques or k-independent sets in order to determine
whether R(k) ≤ N . The known bounds for R(k) imply that this requires N to be of order O(αk),
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giving a runtime of O(αk2) per graph (trying all sets of k vertices). A polynomial kernelization
which guarantees reduction to O(kc) vertices would yield runtime O((kc)k) = O(αk log k) per graph.

Our work. Regarding polynomial kernelization for Ramsey(k) we demonstrate two things. We
disprove the existence of polynomial kernels for Ramsey(k) unless NP ⊆ coNP/poly. We thereby
show for the first time how to exploit co-nondeterminism to construct a composition algorithm.
It appears that the co-nondeterminism is necessary to realize our composition algorithm, since it
involves detection of cliques and independent sets (see below).

Techniques and related work. Unlike for the problems Clique and k-Path [13, 2], the disjoint
union of t instances of Ramsey(k) does not work satisfactorily as a composition algorithm (and
neither would a join of the instances) as it would contain independent sets of size Ω(t). The intricate
Packing Lemma due to Dell and van Melkebeek [7, Lemma 1], designed of course for a different
purpose, does not seem to be applicable either as it constructs an n-partite graph containing
independent sets of size n which cannot be bounded in O(log t) when t := t(n) is polynomially-
bounded. Generally, it appears to be unlikely that one could pack the instances in such a way that
solutions are confined to a part representing a single original instance.

Our construction can best be motivated by a simplified example. Let t = ℓ2 instances of
Ramsey(k) be given, say, (G1, k), . . . , (Gt, k), and assume that each instance contains at least one
independent set and one clique of size k − 1. We construct a graph G′ as follows: Let G′ contain
copies of the graphs G1, . . . , Gt, and pick an arbitrary partition of the graphs into ℓ groups of size ℓ
each. Then add all edges between vertices of different graphs that are in the same group. Now, if
all t instances are no, then it can be verified that G′ contains no clique and no independent set of
size greater than ℓ · (k − 1): The reason is that any clique or independent set can contain vertices
from at most ℓ graphs Gi (each clique only from one group; each independent set only from one
graph per group). If at least one instance is yes then its independent set or clique of size k can be
extended with k− 1 vertices of each of ℓ− 1 other graphs; this gives a solution of size ℓ · (k− 1)+1.
Thus asking whether G′ has an independent set or clique of size at least ℓ · (k − 1) + 1 ∈ O(

√
tk)

is equivalent to whether at least one instance (Gi, k) is yes. We mention in passing that such
a composition excludes kernels of size O(k2−ǫ) by recent work of Hermelin and Wu [14], or by
deriving an appropriate communication protocol and applying the mentioned result of Dell and
van Melkebeek [7].

The reader may have noticed that in the example we have connected the instances according to
the complement of the Turán graph T (t, ℓ) which (for t = ℓ2) contains no independent set or clique
of size greater than ℓ. The other equally important feature of the Turán graph that we exploited
is that each vertex is contained in both an independent set and a clique of size exactly ℓ. This way
the distinction whether or not any one graph Gi has a solution of size k (instead of just k − 1)
makes the crucial difference for the instance (G′, ℓ(k − 1) + 1). Motivated by this example the
main work lies in finding a better host graph H to replace T (n, ℓ) which has similar properties
but with ℓ ∈ O(log t). No deterministic construction is known for such graphs, despite fairly
recent progress on deterministic construction of Ramsey graphs without cliques or independent
sets of size t∗ + 1 = to(1) [1]. While ℓ = t∗ can be seen to still exclude polynomial kernels (cf.
Section 3), it seems unlikely that those graphs would support a cover with cliques and independent
sets each of size t∗; also, our tighter logarithmic dependence on t may have other consequences for
kernels. We ensure the covering property by using gaps between Ramsey numbers R(ℓ) and R(ℓ+1)
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when ℓ ∈ O(log t). This in turn would require deterministic constructions for O(log t)-Ramsey
graphs which is open.

Organization. In Section 2 we recall the necessary definitions, mention upper and lower bounds
on Ramsey numbers, and introduce a refinement version of Ramsey(k) which will be used for the
composition. In Section 3, we state the required result of Dell and van Melkebeek [7], introduce the
notion of co-nondeterministic composition which we will use, and show that this concept excludes
polynomial kernels, assuming NP * coNP/poly. In Section 4 we show an embedding of graphs into
a host graph, motivated by the example using the edge complement of a Turán graph, but somewhat
tweaked to lessen the restriction on the host graph. Section 5 then gives the co-nondeterministic
composition and derives our main result. We conclude in Section 6.

2 Preliminaries

Graphs. All graphs considered in this work are finite, simple, and undirected. By the join of
two graphs (or two connected components), we mean the operation of adding all edges between
vertices of different graphs (or components). With α(G) and ω(G) we denote the maximum size of
independent sets or cliques in G, respectively.

Ramsey numbers. The Ramsey number R(k) is the smallest integer such that every graph
on R(k) vertices contains a clique or an independent set of size k. Ramsey’s Theorem [19] shows
that this number is finite. Currently the best bounds on these diagonal Ramsey numbers are as
follows: Providing an upper bound, Conlon [6] shows that there is a constant D, such that for
sufficiently large k ∈ N we have

R(k + 1) ≤ k
−D log k

log log k

(

2k

k

)

.

Spencer [20] shows with an application of Lovász’ Local Lemma that

R(k) > k2k/2
(

1

e
√
2
+ o(1)

)

.

Parameterized problems and kernels. A parameterized problem Q over alphabet Σ is a subset
of Σ∗×N. The problem Q is fixed-parameter tractable if there exists an algorithm A, a computable
function f , and a constant c, such that A decides membership in Q for any instance (x, k) in
time O(f(k)nc). The problem Q admits a kernelization (or kernel) if there is a polynomial-time
algorithm K and a computable function h, such that K transforms any instance (x, k) into an equiv-
alent instance (x′, k′) with |x′|, k′ ≤ h(k). The function h is called the size of the kernelization K

and we say K is a polynomial kernelization if h(k) is polynomially bounded.

Refinement version of Ramsey(k). Instead of considering Ramsey(k) directly, we focus on
the following refinement version, in which the given graph is guaranteed to contain both a clique
and an independent set of size k−1 (for ease of notation we omit the details of giving the k−1-sized
independent set and clique in the input). Bodlaender et al. [2] use such problem variants to exclude,
e.g., polynomial kernels for Independent Set parameterized by treewidth.
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Refinement Ramsey(k)
Input: A graph G and an integer k, such that G has both an independent set and a
clique of size k − 1.
Parameter: k.
Question: Does G contain an independent set or clique of size k?

A simple reduction from Ramsey(k) to Refinement Ramsey(k) which only increases the
parameter by one shows that lower bounds transfer directly from the latter to the former problem;
it is useful to note that instances for Refinement Ramsey(k) are also legal for Ramsey(k), and
applying the latter gives the same answer. We will use this later to transfer our obtained lower
bound from Refinement Ramsey(k) to Ramsey(k) (a more general argument for transferring
lower bounds is due to Bodlaender et al. [5]).

Lemma 1. There is a polynomial-time reduction reducing any instance (G, k) of Ramsey(k) to
an equivalent instance (G′, k + 1) of Refinement Ramsey(k).

Proof. Given an instance (G, k) of Ramsey(k), and assuming w.l.o.g. that k ≥ 3, construct G′

starting with a copy of G. Add a clique C on k− 1 vertices to G′. Then add an independent set I
with k vertices to G′ and make a join with all other vertices of G′ (in the copy of G and in the
clique C). Return (G′, k + 1).

If G contains a k-clique, then in G′ a vertex of I can be added to this clique to obtain a k + 1-
clique; if it contains a k-independent set then in G′ a vertex of C can be added. Conversely, if G′

has a k + 1-clique C ′, then this clique contains at most one vertex of I. Furthermore C ′ cannot
intersect C, else it could contain no vertex of the copy of G limiting its size to k (including the
one vertex of I); thus C ′ contains a k-clique in the copy of G. Similarly, if G′ contains a k + 1-
independent set I ′ then it cannot contain vertices of I, otherwise it could contain no further vertices
due to the join operation. Thus it contains at most one vertex of the clique C and an independent
set of size at least k in the copy of G. Finally, we observe that G′ contains a k-independent set,
namely I, and a k-clique, formed by C plus an arbitrary vertex of I. This completes the proof.

We give a straightforward proof for NP-hardness of Refinement Ramsey(k) and Ramsey(k).
This is a prerequisite for the lower bound tools.

Theorem 1. The problems Ramsey(k) and Refinement Ramsey(k) are hard for NP.

Proof. We give a reduction from Clique. Let (G, k) be an instance of Clique, where G has n

vertices. We construct a graph G′ by adding to G a clique C on n + 1 vertices, and adding
all edges between the vertices of G and C (i.e., we perform a join operation on G and C). We
return (G′, k + n+ 1) and claim that it is an equivalent instance of Ramsey(k).

Clearly the maximum clique size ω(G′) of G′ is equal to ω(G) + n + 1. We note also that the
maximum independent size α(G′) of G′ is at most n, since independent sets in G′ can either use
the vertices of G or a single vertex of the clique C.

Thus if (G, k) is a yes-instance then ω(G) ≥ k and ω(G′) ≥ k + n+ 1, and (G′, k + n+ 1) is a
yes-instance too. On the other hand, if (G′, k + n + 1) is a yes-instance then ω(G′) ≥ k + n + 1
since α(G′) ≤ n, implying that ω(G) ≥ k and that (G, k) is a yes-instance. Thus Ramsey(k) is
NP-hard. NP-hardness of Refinement Ramsey(k) now follows from Lemma 1.
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3 Lower bounds for kernelization

In this section we briefly recall the relevant results and definitions required to obtain our lower
bound result. The main tool is the following lemma due to Dell and van Melkebeek [7]. Before
stating the lemma, we recall their definition of an oracle communication protocol.

Definition 1 ([7]). An oracle communication protocol for a language L is a communication protocol
for two players. The first player is given the input x and has to run in time polynomial in the length
of the input; the second player is computationally unbounded but is not given any part of x. At the
end of the protocol the first player should be able to decide whether x ∈ L. The cost of the protocol
is the number of bits of communication from the first player to the second player.

Lemma 2 ([7]). Let L be a language and t : N → N \ {0} be polynomially bounded such that
the problem of deciding whether at least one out of t(s) inputs of length at most s belongs to L

has an oracle communication protocol of cost O(t(s) log t(s)), where the first player can be co-
nondeterministic. Then L ∈ coNP/poly.

It is an easy consequence of Lemma 2 that co-nondeterministic compositions lead to kerneliza-
tion lower bounds. Being one of many other applications this extension is not made explicit by
Dell and van Melkebeek [7] (though deterministic compositions are discussed), but their work mo-
tivated our search for a co-nondeterministic composition. Somewhat surprisingly, from sketching
a proof for self-containment, it turns out that Lemma 2 not only permits co-nondeterminism. In
fact, compositions with a dependence of to(1) on t can be showed to still exclude polynomial kernels
(in [4] only a factor of logc t is permitted for cross-compositions, and it comes from a different
argument). Hermelin and Wu [14] gave a similar (if less explicit on coNP) proof for their notion
of weak composition where k′ = t1/dkO(1), showing that it excludes kernels of size O(kd−ǫ). Their
proof also allows k′ = t1/d+o(1)kO(1).

We first give a definition of the version of composition that we are going to use.

Definition 2. Let Q ⊆ Σ∗×N. A co-nondeterministic polynomial-time algorithm C is a coNP-com-
position for Q if there is a polynomial p such that on input of t instances (x1, k), . . . , (xt, k) ∈ Σ∗×N
the algorithm C takes time polynomial in

∑t
i=1 |xi| and outputs on each computation path an

instance (y, k′) ⊆ Σ∗ × N with k′ ≤ to(1)p(k) and such that the following holds:

• If at least one instance (xi, k) is a yes-instance then all computation paths lead to the output
of a yes-instance (y, k′).

• Otherwise, if all instances (xi, k) are no-instances, then at least one computation path leads
to the output of a no-instance.

We require the following notion of Bodlaender et al. [2] to state our lemma: The unparameterized
version Q̃ of a parameterized problem Q is defined as Q̃ := {x#1k | (x, k) ∈ Q}. It is essentially the
same as Q except for the unary encoding of the parameter value, affecting its classical complexity.

Lemma 3. Let Q ⊆ Σ∗ × N be a parameterized problem such that Q̃ is NP-hard. If Q has a
coNP-composition then it does not admit a polynomial kernelization unless NP ⊆ coNP/poly and
the polynomial hierarchy collapses to its third level.
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Proof. Assume that Q admits a polynomial kernelization K with polynomially bounded size h,
say h(k) = O(kc). Furthermore, let C be a coNP-composition for Q which outputs instances with
parameter bounded by to(1)kd. We define a polynomially bounded function t by t(N) := N cd+2.
By Lemma 2 it suffices to provide an oracle communication protocol for Q̃ where the first player is
co-nondeterministic and with cost O(t(N) log t(N)) for t inputs each of size at most N .

Fixing N and t := t(N), let t instances each of size at most N be given to the first player,
say x̃1, . . . , x̃t. Let (x1, k1), . . . , (xt, kt) denote the corresponding parameterized instances of Q.

Let us go through the protocol, but consider only the communication cost (for now). By
definition of Q̃ it follows that all ki are bounded by N . The first player groups the instances
by parameter value (at most N groups), and applies the co-nondeterministic composition to each
group. In each computation path this gives r ≤ N instances (G′

1, k
′
1), . . . , (G

′
r, k

′
r). Let us bound the

parameter values k′i, assuming that (G′
i, k

′
i) was obtained by composing all instances with parameter

value k̂:
k′i = to(1)k̂d ≤ to(1)Nd.

Now the first player applies the assumed polynomial kernelization to each instance (G′
i, k

′
i). Then

he sends the obtained kernels to the second player, who tests membership for Q for each one. The
second player answers yes if at least one of the instances send to him is yes, and no otherwise.

Each kernelized instance has size at most h(k′i) = O((k′i)
c) = O((to(1)Nd)c). Thus we can bound

the cost of sending the at most N kernelized instances to the second player as follows:

O(N(to(1)Nd)c) = O(N cd+1(to(1))c) = O(t),

using that t = N cd+2.
It remains to show correctness, in particular taking into account the co-nondeterministic behav-

ior of the composition. If at least one input instance x̃i is a yes-instance, then the corresponding
instance (G′

j , k
′
j) will be yes on each computation path. Thus the oracle will answer yes on each

computation path. Otherwise, if all instances are no, then there must be at least one computation
path in which all N runs of the coNP-composition return no-instances. Applying the kernelization
will thus create N no-instances as well (but note that a coNP-kernelization would suffice). These
are then send to the oracle, causing it to answer no (on at least one path).

Thus, assuming a polynomial kernelization for Q, we get an oracle communication protocol for
deciding the OR of t instances of Q̃ of cost O(t). By Lemma 2 this implies that Q̃ is contained in
coNP/poly, and hence, by NP-hardness of Q̃, that NP ⊆ coNP/poly.

4 The embedding construction

In this section we will describe the embedding to be used in the composition algorithm once a
suitable host graph is found. Given t instances of Ramsey(k), the construction requires a host
graph H with at least t vertices. Furthermore, an integer ℓ must be provided such that H neither
contains a clique nor an independent set of size greater than ℓ, but also such that each vertex of H
is contained in an independent set or a clique of size exactly ℓ. The magnitude of ℓ in comparison
to the magnitude of t plays a crucial role for the quality of our construction.

We emphasize that the requirements on the host graph are loosened slightly compared to the
example of Section 1. We achieve this by embedding each instance first in another local structure
then to be embedded in the host graph.
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Given a host graph H on t′ vertices and graphs G1, . . . , Gt with t ≤ t′ we construct a graph
G′ = Embed(H, k;G1, . . . , Gt), the embedding of the graphs Gi into the graph H, as follows. We
use the dummy graph Dc that is defined as the join of a (c− 2)-clique with an independent set of
size c− 1. Note that α(Dc) = ω(Dc) = c− 1. Now, assign each instance (Gi, k) to a unique vertex
of H. By possibly repeating instances we achieve that each vertex of H is assigned an instance. For
each assignment of an instance Gi to a vertex v of H create a local graph Hv obtained by joining
a copy of Gi to a copy of Dk−1, joining a copy of the complement Gi to another copy of Dk−1, and
then forming the disjoint union of the two joins. Finally, to obtain G′, we connect all graphs Hv

according to the adjacency in H: We fully connect Hv and Hv′ if and only if v and v′ are adjacent
vertices of H.

The fact that we may obtain different embeddings, by assigning the instances in a different
fashion to the vertices of the host graph will be irrelevant for our purposes.

Lemma 4. Let H be a host graph on t′ vertices and (G1, k), . . . , (Gt, k) legal inputs with t ≤ t′

for Refinement Ramsey(k). Suppose every vertex of H is contained in a clique of size ℓ or
an independent set of size ℓ but H neither contains a clique nor an independent set of size ℓ + 1,
then Embed(H, k;G1, . . . Gt) has a clique or an independent set of size ℓ · (2k− 2). Furthermore, it
contains a clique or an independent set of size ℓ · (2k−2)+1 if and only if (Gi, k) is a yes instance
for some i ∈ {1, . . . , t}.

Proof. It is easy to see that the local structures Hv from the Embedding construction contain both
cliques and independent sets of size 2k − 2. Furthermore, if an instance (Gi, k) is a yes instance,
then the graph Hv contains both an independent set and a clique of size 2k − 1 (in both cases
using k − 1 vertices from one of the two copies of Dk−1).

Suppose V ′ ⊆ V (H) forms a clique of size ℓ in H. We can choose a clique of size 2k − 2 in
every local graph Hv that is assigned to vertex v ∈ V ′. The union of these cliques forms a clique of
size ℓ · (2k − 2) in Embed(H, k;G1, . . . Gt). The analogous statement is true for independent sets.

Since every vertex in H is contained in a clique or an independent set of size ℓ, if some (Gi, k)
is a yes instance, then we can choose a clique or an independent set of size 2k − 2 + 1 in Hv,
where v is the vertex of H to which (Gi, k) is assigned to, and thus in total we obtain clique or an
independent set of size ℓ · (2k − 2) + 1 in Embed(H, k;G1, . . . Gt).

Finally, if no instance (Gi, k) is a yes instance then no clique and no independent set in the
graph Embed(H, k;G1, . . . Gt) can contain more than 2k−2 vertices from the same local graph Hv.
Since no clique or independent set in Embed(H, k;G1, . . . Gt) can contain vertices from more than ℓ

different local graphs, Embed(H, k;G1, . . . Gt) contains neither a clique nor an independent set of
size ℓ · (2k − 2) + 1.

5 A kernelization lower bound for Ramsey(k)

In this section we derive our kernelization lower bound for Ramsey(k). The main work lies in
developing a co-nondeterministic composition algorithm for Refinement Ramsey(k). Using the
embedding construction of the previous section, this is centered around finding a suitable host graph.
The following lemma about gaps between consecutive Ramsey numbers is required to ensure that
such a graph can be found. We remark that a general result for additive or even multiplicative gaps
that holds for any pair of consecutive (diagonal) Ramsey numbers is not known. All logarithms are
base 2, and we take log t to be at least 1 for t ≥ 0.
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Algorithm 1 Compose

Input: t instances (G1, k), . . . , (Gt, k) of Ramsey(k)
Output: “yes” or an instance (G′, k′) with k′ = O(log t · k).
1: If k < 3 then solve each instance in time O(nk+2) = O(n4) and answer accordingly.
2: Guess integers T ∈ {1, . . . , (⌈8 log t⌉+ 1) · t} and ℓ ∈ {1, . . . , ⌈8 log(t)⌉}.
3: Guess a host graph H with T vertices.
4: Guess t vertex sets A1, . . . , At ∈

(V (H)
ℓ

)

, which are allowed to overlap.
5: Unless all Ai induce independent sets or cliques and their union has size at least t, return yes.

6: Let A′ denote an arbitrary minimal choice of sets Ai such that their union has size at least t.
7: Let H ′ = H[A′].
8: Let G′ = Embed(H ′, k;G1, . . . , Gt).
9: return (G′, k′) where k′ := ℓ · (2k − 2) + 1.

Lemma 5. For every integer t > 3 there exists an integer ℓ ∈ {1, . . . , ⌈8 log(t)⌉} such that R(ℓ+1) >
R(ℓ) + t.

Proof. We assume the statement of the lemma is not true, thenR(⌈8 log(t)⌉+1) ≤ t·⌈8 log(t)⌉+R(1).
We use Erdős’ classical bound on the Ramsey number which shows that R(N) ≥ 2(N−1)/2 for
all N ∈ N. This gives us R(⌈8 log(t)⌉ + 1) ≥ 2⌈8 log(t)⌉/2 ≥ 24log(t) = t4. Assembling the two
inequalities we get t4 ≤ t⌈8 log(t)⌉+R(1), which is false for t > 3 since R(1) = 1.

We now give a co-nondeterministic algorithm Compose (see Algorithm 1) that given t instances
(G1, k), . . . , (Gt, k) of Refinement Ramsey(k) will on each computation path return either the
answer yes or a single instance (G′, k′) with k′ = O(log t · k). (The answer yes may be replaced by
any constant size yes-instance.) We will then show that Compose is a co-nondeterministic composi-
tion for Refinement Ramsey(k). As usual, “guessing” some integer or structure in the algorithm
corresponds to a (co-)nondeterministic branching of the computation into one independent path
for each possible value that the integer can take or possible structure that can occur.

Lemma 6. Compose is a co-nondeterministic composition for Refinement Ramsey(k).

Proof. Let t instances (G1, k), . . . , (Gt, k) be given. W.l.o.g. k ≥ 3, otherwise we can solve all
instances in deterministic polynomial time and answer accordingly. Assume for now that t > 3.

We will first consider the case that at least one input instance is yes. Clearly, it suffices to check
that all instances (G′, k′) returned by the algorithm in Step 9 are yes too. We have k′ = ℓ·(2k−2)+1.
If the host graph used for the embedding contains an independent set or a clique of size at least ℓ+1,
then using that each local structure contains both independent sets and cliques of size 2k − 2 we
know that G′ contains such a set of size at least (ℓ + 1) · (2k − 2) > ℓ · (2k − 2) + 1; thus (G′, k′)
is yes. Otherwise, it follows from the cover with independent sets and cliques of size ℓ that H ′

is a suitable host graph fulfilling the requirements of Lemma 4. It then follows from the lemma
that (G′, k′) is yes.

The other case is that all input instances are no. It now suffices to show that the algorithm
finds a suitable host graph on at least one computation path. Lemma 4 then ensures that the
output (G′, k′) is a no-instance.
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Let ℓ denote the smallest positive integer such that R(ℓ+1) > R(ℓ)+ t. According to Lemma 5,
we have that ℓ ≤ ⌈8 log t⌉. Furthermore, by choice of ℓ it follows that R(ℓ) ≤ (ℓ − 1)t + R(1) ≤
⌈8 log t⌉ · t. Thus for some choice of T ∈ {1, . . . , (⌈8 log t⌉+ 1) · t} and ℓ ∈ {1, . . . , ⌈8 log t⌉} guessed
by Compose it holds that T = R(ℓ) + t < R(ℓ + 1). It follows that there exists a graph H on T

vertices which contains neither a clique nor an independent set on ℓ + 1 vertices. Thus in at
least one computation path of the algorithm such a graph H will be found. Let us consider such
a computation path and the corresponding graph H. (If t ≤ 3, then R(3) = 6 and R(2) = 2
guarantees that appropriate values of T and ℓ are found.)

As T = R(ℓ) + t there must exist cliques and independent sets Ai each of size ℓ which cover
at least t vertices of H; this follows from the definition of Ramsey numbers: While there are at
least R(ℓ) uncovered vertices, the subgraph induced by the uncovered vertices must contain an
independent set or clique of size ℓ. Clearly, t sets A1, . . . , At can be chosen in such a way that they
cover at least t vertices. Hence, in one computation path such sets A1, . . . , At are found in H.

Thus, from Step 7 we get a graph H ′ on at least t vertices which contains no independent set
or clique of size ℓ+1 but such that each vertex is contained in a clique or independent set of size ℓ.
Hence, by Lemma 4, the graph G′ = Embed(H ′, k;G1, . . . , Gt) has an independent set or a clique
of size at least k′ = ℓ · (2k − 2) + 1 if and only if a least one graph Gi contains a independent set
or clique of size at least k. We note that k′ = ℓ · (2k − 2) + 1 is bounded by to(1)kO(1), completing
the proof.

Now, having the co-nondeterministic composition, the following theorem is an immediate con-
sequence of this composition and Lemma 3. NP-hardness of the unparameterized version of Re-

finement Ramsey(k) follows from Theorem 1 using that nontrivial instances have k ≤ n.

Theorem 2. Unless NP ⊆ coNP/poly and the polynomial hierarchy collapses to its third level
Refinement Ramsey(k) admits no polynomial kernelization.

From Lemma 1 we get the desired lower bound for Ramsey(k). For completeness we sketch this
argument as well (see Bodlaender et al. [5] for a more general version of transferring kernelization
lower bounds via NP-completeness and the implicit Karp reduction).

Corollary 1. Ramsey(k) does not admit a polynomial kernelization unless NP ⊆ coNP/poly.

Proof. Let K be a polynomial kernelization for Ramsey(k) with polynomially bounded size h.
It is easy to see that K also gives a polynomial kernelization for Refinement Ramsey(k): Ap-
plying K to any instance (G, k) of Refinement Ramsey(k) gives an equivalent instance (G′, k′)
with |G′|, k′ ≤ h(k) of Ramsey(k). Applying the reduction from Lemma 1 yields an equivalent
instance (G′′, k′′) of Refinement Ramsey(k) such that the size of this instance is polynomial in
the size of (G′, k′) and with k′′ = k′ + 1. Thus from K we get also a polynomial kernelization for
Refinement Ramsey(k), implying that NP ⊆ coNP/poly.

6 Conclusion

We have presented a co-nondeterministic composition for the Refinement Ramsey(k) problem,
thereby showing that Ramsey(k) and Refinement Ramsey(k) do not admit polynomial kernel-
izations unless NP ⊆ coNP/poly. On a high level, the use of co-nondeterminism allowed us to
essentially guess an appropriate pattern in which to combine the given instances.
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In conclusion we believe that the use of co-nondeterminism in compositions may help in resolv-
ing whether other problems like, e.g., Multiway Cut and Directed Feedback Vertex Set

admit polynomial kernels. We mention in passing that similarly to compositions, the use of co-
nondeterminism may also be of use for kernelization itself. While a polynomial coNP-kernelization
that crucially uses nondeterminism can hardly be seen as practical, it is of significant theoretical in-
terest. Indeed, a polynomial coNP-kernelization can be easily seen to exclude coNP-compositions as
well as weak compositions (the latter depending of course on the degree of the size bound), assum-
ing NP * coNP/poly; the key point is that a coNP-kernelization together with a coNP-composition
gives an oracle communication protocol with co-nondeterministic first player.
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