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Abstract

We consider the minimum spanning tree (MST) problem under the restriction that for every vertex
v, the edges of the tree that are adjacent tov satisfy a given family of constraints. A famous example
thereof is the classical degree-bounded MST problem, wherefor every vertexv, a simple upper bound
on the degree is imposed. Iterative rounding/relaxation algorithms became the tool of choice for degree-
constrained network design problems. A cornerstone for this development was the work of Singh and
Lau [18], who showed that for the degree-bounded MST problem, one can find a spanning tree violating
each degree bound by at most one unit and with cost at most the cost of an optimal solution that respects
the degree bounds.

However, current iterative rounding approaches face several limits when dealing with more general
degree constraints. In particular, when several constraints are imposed on the edges adjacent to a vertex
v, as for example when a partition of the edges adjacent tov is given and only a fixed number of elements
can be chosen out of each set of the partition, current approaches might violate each of the constraints
by a constant, instead of violating the whole family of constraints by at most a constant number of edges.
Furthermore, it is also not clear how previous iterative rounding approaches can be used for degree
constraints where some edges are in a super-constant numberof constraints.

We extend iterative rounding/relaxation approaches both on a conceptual level as well as aspects
involving their analysis to address these limitations. Based on these extensions, we present an algorithm
for the degree-constrained MST problem where for every vertex v, the edges adjacent tov have to be
independent in a given matroid. The algorithm returns a spanning tree of cost at most OPT such that
for every vertexv, it suffices to remove at most8 edges from the spanning tree to satisfy the matroidal
degree constraint atv.

1 Introduction

Recently, much effort has been put on designing approximation algorithms for degree-constrained network
design problems. This development was motivated by variousapplications as for example VLSI design,
vehicle routing, and applications in communication networks [7, 3, 17]. One of the most prominent and
elementary problems here, which attracted lots of attention in recent years, are degree-constrained (MST)
problems.

In the most classical setting, known as thedegree-bounded MST problem, the problem is to find a
spanning treeT ⊆ E of minimum cost in a graphG = (V,E) under the restriction that the degree of
each vertexv with respect toT is at most some given valueBv. Since checking feasibility of a degree-
bounded MST problem is already NP-hard, interest arose in finding low-cost spanning trees that violate the
given degree constraints slightly. A long chain of papers (see [7, 12, 13, 4, 5] and references therein) led
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to algorithms with various trade-offs between cost of the spanning tree and violation of the degree bounds.
In recent years, important progress was achieved for the degree-bounded MST problem, which also led to a
variety of new techniques. Goemans [8] showed how to find a spanning tree violating each degree constraint
by at most two units, and whose cost is bounded by the cost OPT of an optimum spanning tree that satisfies
the degree constraints. Enhancing the iterative rounding framework introduced by Jain [9] with a relaxation
step, Singh and Lau [18] obtained a stronger version of the above result, which is essentially best possible,
where degree constraints are only violated by at most one unit. They work with an LP relaxation of the
problem, and iteratively drop degree constraints from the LP that cannot be violated by more than one unit
in later iterations. The adapted LP is then solved again to obtain a possibly sparser basic solution that allows
for further degree relaxations. Edges not used in the current optimal solution to the LP are removed from the
graph, and edges that have a weight of one are fixed, while updating degree bounds accordingly. A degree
bound at a vertexv is removed whenever it is at most one unit lower than the current number of edges
adjacent tov.

We are interested in obtaining results of similar strength for more general degree bounds. Consider for
example the following type of degree constraints: for everyvertexv, a partitionEv

1 , . . . , E
v
nv

of the setδ(v)
of edges adjacent tov is given, and within each setEv

i of the partition, only a given number of edges can be
chosen. The algorithm of Singh and Lau [18] as well as the one of Goemans [8] can easily be adapted to this
setting. (In particular, the algorithm of Singh and Lau was even presented in this precise setting.) However,
with both of these approaches, the constraint imposed by each setEv

i can be violated by a constant. We are
interested in having at most a constant violation over all degree constraints atv, i.e., for every vertexv ∈ V ,
at most a constant number of edges have to be removed from the spanning tree to satisfy all constraints
at v. Another more general example that will be useful to illustrate limits of current methods is obtained
when imposing constraints for each vertexv on a laminar family on the edges adjacent tov, instead of only
considering a partition.

Adapting Goemans’ algorithm to these stricter bounds on thedegree violation seems to be difficult, since
a crucial step of this algorithm is to cover the supportE∗ of a basic solution to the natural LP relaxation
by a constant number of spanning trees (for the degree-bounded MST problem, Goemans showed [8] that
two spanning trees suffice). This result allows for orienting the edges inE∗ such that every vertex has at
most a constant number of incoming arcs, at most one in each spanning tree. Dropping for every vertex
all incoming arcs from its degree constraint then leads to a matroid intersection problem, whose solution
violates each degree constraint by at most a constant. To be able to decomposeE∗ into a constant number
of spanning trees, one needs to show that for any subset of theverticesS ⊆ V , only a linear number (in|S|)
of edges have both endpoints inS. In the classical degree-bounded MST problem, this sparseness property
follows from the fact that when considering only edges with both endpoints inS, there are at most a linear
number (in|S|) of linearly independent and tight spanning tree constraints due to combinatorial uncrossing,
and only a linear number of degree constraints withinS. However, in more general settings as highlighted
above, the number of degree constraints withinS can be super-linear.

Iterative relaxation looks more promising for a possible extension to generalized degree bounds. How-
ever, current iterative rounding approaches face several limits when trying to adapt them. In particular, when
dealing with the partition bounds as explained above, a simple adaptation of the relaxation rule, where for
a vertexv all constraints atv would be dropped as soon as it is safe to do so due to a small support E∗,
risks to get stuck because there might be no vertex whose degree constraint can be relaxed. Furthermore,
previous approaches (as used in [18, 2]) to show that the support is sparse fail in our setting because of a
possible super-linearity of the total number of degree constraints. Additionally, previous iterative relaxation
approaches crucially rely on the property that any edge is inat most a constant number of degree constraints
to obtain violations that are bounded by a constant. However, this does not hold when dealing for example
with degree constraints given by a laminar family.

In this paper we show how to extend iterative relaxation approaches, both from a conceptual point of
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view as well as aspects involving their analysis, to tackle awide class of MST problems with generalized
degree bounds, namely when the degree bounds for every vertex are given by a matroid. In particular, this
includes the partition bounds and the more general laminar bounds mentioned above.

Our results. We present an iterative rounding/relaxation algorithm forfinding amatroidal degree-bounded
MST. The degree bounds are given as follows: for every vertexv, a matroidMv = (δ(v),Iv) over the
ground setδ(v) is given with independent sets denoted byIv ⊆ 2δ(v). The problem (without relaxed degree
constraints) is to find a spanning treeT in G satisfyingT ∩ δ(v) ∈ Iv ∀v ∈ V , and minimizing a linear
cost functionc : E → R+. We say that a given spanning treeT violates a degree constraintMv by at most
k ∈ N units, if it suffices to remove at mostk edgesR ⊆ δ(v) ∩ T from T to satisfy the constraintMv,
i.e.,(T \R) ∩ δ(v) ∈ Iv. Hence, the partition and laminar bounds mentioned above correspond to the case
where all matroidsMv are partition or laminar matroids, respectively. We show the following.

Theorem 1. There is an efficient algorithm for the matroidal degree-bounded MST problem that returns a
spanning tree of cost at most the cost of an optimal solution,and violates each degree bound by at most8
units.

To overcome problems faced by previous iterative relaxation approaches, we enhance the iterative relax-
ation step, and exploit polyhedral structures to prove stronger sparseness results. The polytope used as a
relaxation of the matroidal degree-bounded MST asks to find apointx ∈ RE in the spanning tree polytope
such that for every vertexv ∈ V , the restriction ofx to δ(v) is in the matroid polytopePMv

of Mv .
To be able to always find possible relaxation steps, our iterative rounding procedure tries to achieve

a somewhat weaker goal than previous approaches. The algorithm of Singh and Lau [18] relaxes degree
constraints with the goal to approach the spanning tree polytope, which is integral. In our approach, the goal
we pursue is to remove every edge{u, v} from at least one of the two degree constraints atu or v. As soon
as no edge is part of both degree constraints at its endpoints, the problem is a matroid intersection problem,
since all degree constraints together can be described by a single matroid over the support of the current
LP solution. Thus, once we are in this situation, the currentLP will be integral and no further rounding
steps are needed. Hence, in our relaxation step, we try to finda vertexv such that we can remove all edges
adjacent tov that are still in both degree constraints from the degree constraint atv. Edges adjacent tov that
are only contained in the degree constraint atv will not be removed from the constraintMv. Our approach
has thus some similarities with Goemans’ method, but instead of removing right at the start every edge from
one degree constraint, we do this iteratively and hereby profit from additional sparseness that is obtained
by solving the LP relaxation after each degree adaptation step. As we will see in Section 2, the way how
we remove edges from a constraint is strictly speaking not a relaxation, and we therefore prefer to use the
termdegree adaptationinstead of degree relaxation. The above degree adaptation step alone shows not to
be sufficient for our approach, since one might still end up ina situation were no further degree adaptation
can be performed because the graph is too dense. To obtain greater sparsity, we use a second type of degree
adaptation, where for some vertexv we remove (almost) the full degree constraint atv if this cannot lead to
a large violation of the degree constraint atv.

The main step in the analysis is to prove that it is always possible to apply at least one of two suggested
degree adaptations. A first step in this proof is to show that the support of a basic solution to the LP relaxation
is sparse. We obtain sparsity by showing that if there arek ∈ N linearly independent and tight constraints
(with respect to the current LP solutionx) of the polytopePMv

, thenx(δ(v)) ≥ k. Since summingx(δ(v))
over all vertices is equal to2(|V | − 1), becausex(E) = |V | − 1 asx is in the spanning tree polytope, there
are at most2(|V | − 1) linearly independent and tight degree constraints.

The crucial part in the analysis is to show that vertices to which no further degree adaptation can be
performed do not have very low degrees in average, implying that some of the other vertices are likely to
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have low degrees and therefore admit a degree constraint adaptation. To prove this property, we exploit the
interplay between degree bounds and spanning tree constraints to show that any degree two node can either
be treated separately and allows for reducing the problem, or implies a reduction in the maximum number
of linearly independent and tight spanning tree constraints.

Related work. The study of spanning trees with degree constraints can be traced back to Fürer and
Raghavachari [7], who presented an approximation algorithm for the degree-bounded Steiner Tree prob-
lem which violates each degree bound by at most one, but does not consider costs. This result generated
much interest in the study of degree-bounded network designproblems, leading to numerous results and
new techniques in recent years for a variety of problems, including degree-bounded arborescence problems,
degree-boundedk-edge-connected subgraphs, degree-bounded submodular flows, degree-bounded bases in
matroids (see [16, 17, 11, 14, 15, 10, 2, 6, 1] and references therein).

Spanning tree problems with a somewhat different notion of generalized degree bounds have been con-
sidered in [2] and [1]. In these papers, the term “generalized degree bounds” is used as follows: given is a
family of setsE1, . . . , Ek ⊆ E, and the number of edges that can be chosen out of each setEi is bounded
by some given valueBi ∈ N. In [2], using an iterative relaxation algorithm, whose analysis is based on
a fractional token counting argument, the authors show how to efficiently obtain a spanning tree of cost at
most OPT and violating each degree bound by at mostmaxe∈E |{i ∈ [k] | e ∈ Ei}|, the maximum coverage
of any edge by the setsEi. In [1], a new iterative rounding approach was presented forthe problem when the
setsE1, . . . , Ek correspond to the edgesEi = δ(Ci) of a family of cutsCi ⊆ V for i ∈ [k] that is laminar.
Contrary to previous settings where iterative rounding approaches were applied, here, it is possible that an
edge lies in a super-constant number of degree constraints.At each iteration, the algorithm reduces the num-
ber of degree constraints by a constant factor, replacing some constraints with new ones if necessary. This
is done in such a way that degree constraints are violated by at most a constant in every iteration, leading to
a spanning tree of cost at most OPT, that violates each degreeconstraint by at mostO(log(|V |)).

Organization. In Section 2 we present our algorithm for the matroidal degree-bounded MST problem.
The analysis of the algorithm is presented in Section 3.

2 The algorithm

Since during the execution of our algorithm the underlying graph will be modified, we denote byH =
(W,F ) the current state of the graph, whereasG = (V,E) always denotes the original graph. For brevity,
terminology and notation is with respect to the current graph H when not specified further. To distinguish
between initial degree constraints and current degree constraints, we denote byNw the current constraints
for w ∈ W—which will as well be of matroidal type—whereasMv denotes the initial degree constraints
at v ∈ V . The vertices ofH are callednodessince they might contain several vertices ofG due to edge
contractions.

The algorithm starts withH = G andNv = Mv for v ∈ V , and the LP relaxation we use is the
following,

(LP1)

min cTx
x ∈ Pst

x
∣

∣

δ(w)
∈ PNw

∀w ∈W

wherePst denotes the spanning tree polytope ofH, PNw
denotes the matroid polytope that corresponds

to Nw, andx
∣

∣

δ(w)
denotes the vector obtained fromx ∈ RE by considering only the components that

correspond toδ(w).
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Algorithm for Matroidal Degree-Bounded Minimum Spanning Trees

1. Initialization:H = (W,F )← G = (V,E), Nv ←Mv for v ∈ V .

2. While |W | > 1 do

a) Determine basic optimal solutionx to (LP1). Delete all edgesf ∈ F with x(f) = 0.

b) Contract all edgesf ∈ F with x(f) = 1.

c) Fix a maximal family of linearly independent and tight spanning tree constraints.

d) Type A degree adaptation: for each nodew ∈W such that the set of all edgesU ⊆ δ(w)
that are still in both degree constraints is non-empty and satisfies |U | − x(U) ≤ 4,
removeU from the degree constraintNw.

e) Type B degree adaptation: for each nodew ∈W such that the set of all edgesU ⊆ δ(w)
contained in the degree constraintNw but not adjacent to a node inQ is non-empty and
satisfies|U | − x(U) ≤ 4, removeU from the degree constraintNw.

3. Return all contracted edges.

There is a set of nodesQ = Q(H,x) ⊆ W that has a special role in our algorithm due to its relation
with tight spanning tree constraints. The node setQ is defined and used after having contracted edges of
weight one. Hence, assume thatH does not contain any edgef ∈ F with x(f) = 1. ThenQ is defined as
follows: we start withQ = ∅ and as long as there is a nodew ∈ W such thatx(δ(w) ∩ F [W \ Q]) = 1,
whereF [W \Q] is the set of all edges with both endpoints inW \Q, we addw toQ. One can easily observe
thatQ does not dependent on the order in which nodes are added to it1. As we will see later, edges adjacent
to these nodes can often be ignored from degree constraints due to strong restrictions that are imposed by
the spanning tree constraints.

The box on top of the page gives a description of our algorithm, omitting details of how to deal with
the matroidal degree bounds when removing or contracting edges. We discuss these missing points in the
following.

Notice, that a basic solution to(LP1) can be determined in polynomial time by the ellipsoid method,
even if the involved matroids are only accessible trough an independence oracle. Depending on the matroidal
degree bounds involved,(LP1) can be solved more efficiently by using a polynomially-sizedextended
formulation.

A tight spanning tree constraint, as considered in step (2c), corresponds to a setL ⊆ W,L 6= ∅ such
thatx(F [L]) = |L| − 1. Fixing a tight spanning tree constraint means that this constrainthas to be fulfilled
with equality in all linear programs of type(LP1) solved in future iterations. It is well-known that if
supp(x) = F , then any maximal family of linearly independent and tight spanning tree constraints with
respect tox defines the minimal face of the spanning tree polytope on which x lies (see e.g. [8]). Hence,
due to step (2c), we have that if the LP solution at some iteration of the algorithm is on a given face of the
spanning tree polytope, then all future solutions to(LP1) will be as well on this face.

Fixing tight spanning tree constraints shows to be useful since they often imply strong conditions on
the edges, which can be exploited when having to make sure that degree constraints are not violated too

1The fact thatH does not contain1-edges is needed here to make sure that the order is unimportant in the definition ofQ. With
1-edges it might be that during the iterative construction ofQ, one ends up with two nodes connected by a single edge of weight
one, in which case any one of the two remaining nodes can be included inQ, but not both. This is actually the only bad constellation
that leads to a dependency on the order in the definition ofQ.
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much. In particular, consider a nodew ∈ Q which, in the iterative construction ofQ, could have been
added as the first node, i.e.,x(δ(w)) = 1. When fixing tight spanning tree constraints, one can observe that
any spanning tree satisfying those tight constraints with equality contains precisely one edge adjacent tow.
Furthermore, the fixing of tight spanning tree constraints guarantees that a nodew ∈ Q will stay in Q in
later iterations until an edge adjacent tow is contracted. Hence, all edges being in some iteration adjacent to
a nodew ∈ Q, will be adjacent to a node inQ in all later iterations until they are either deleted or contracted.
This property is important in our approach since a type B degree adaptation ignores edges adjacent toQ,
and we want to make sure that an edge which is once ignored willnever be considered during a later type B
degree adaptation.

Contracting and removing edges. To fill in the remaining details of our algorithm, it remains to discuss
how edges are contracted and removed. Throughout the algorithm, any degree constraintNw of a nodew
containing the verticesv1, . . . , vk ∈ V can always be written as a disjoint union of matroidal constraints
Nv1 , . . . , Nvk , whereNvi corresponds to the “remaining” degree bound atvi and is a matroid over the edges
δ(w) that are adjacent tovi. Whenever an edgef = {w1, w2} of weight one is contracted in step (2b) of
the algorithm to obtain a new nodew, the new degree constraintNw atw is obtained by taking a disjoint
union of the matroidsNw1

/f andNw2
/f , whereNw1

/f andNw2
/f correspond to the matroids obtained

from Nw1
andNw2

, respectively, by contractingf . This operation simply translates the degree constraints
onw1 andw2 to the merged nodew. The property that a degree bound onw is a disjoint union of degree
bounds of the vertices represented byw, is clearly maintained by this contraction.

As highlighted in the box, we adapt constraints byremovingfor some nodew ∈ W a set of edges
U ⊆ δ(w) from the constraintNw. When removingU fromNw, we construct a new degree constraint given
by a matroidN ′

w over the elementsδ(w) such that the following properties hold.

Property 2.

i) N ′
w is a disjoint union of matroidal constraintsN ′

v1
, . . . , N ′

vk
corresponding to vertices contained inw,

ii) edges ofU are free elementsof N ′
w, i.e., if I is independent inN ′

w thenI ∪ U is independent inN ′
w,

iii) any independent set ofN ′
vi

can be transformed into one ofNvi by removing at most⌈|U |−x(U)⌉ edges,
iv) the previous LP solutionx is still feasible with respect toN ′

w, i.e.,x
∣

∣

δ(w)
∈ PN ′

w
.

Any removal operation satisfying the above properties can be used in our algorithm. Before presenting
such a removal operation, we first mention a few important points. To avoid confusion, we want to highlight
that removingU fromNw does not simply correspond to deleting the elementsU from the matroidNw. For
any edgef ∈ δ(w) that is free inNw, we say thatf is not containedin the degree constraintNw, and it is
containedotherwise. When all edges adjacent to a given nodew are not contained in its degree constraint,
which corresponds toNw being a free matroid, we say that the nodew has no degree constraint.

We now discuss how to remove a set of edgesU ⊆ δ(w) from Nw to obtain an adapted degree bound
N ′

w satisfying Property 2. Letv1, . . . , vp ∈ V be all vertices contained in the nodew, and we consider the
decomposition ofNw into a disjoint union of matroidsNv1 , . . . , Nvk , whereNvi for i ∈ [k] corresponds
to the “remaining” degree bound atvi. To removeU from Nw, we adapt each matroidNvi as follows to
obtain a new matroidN ′

vi
. Let Si be the ground set ofNvi , i.e., all edges inδ(w) being adjacent tovi. Let

M1 = (Si,I1) be the matroid with independent sets

I1 = {I ⊆ Si ∩ U | |I| ≤ |Si ∩ U | − ⌊x(Si ∩ U)⌋}.

Hence,M1 is a special case of a partition matroid. LetM2 = M1 ∨ Nvi be the union of the matroidsM1

andNvi , and letM3 = M2/(Si ∩ U) be the matroid obtained fromM2 by contractingSi ∩ U . The degree
boundN ′

vi
is obtained by a disjoint union ofM3 and a free matroid over the elements inSi ∩ U . The new

degree constraintN ′
w, that results byremovingU from Nw, is given by the disjoint union of the matroids

N ′
v1
, . . . , N ′

vk
.
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Lemma 3. The above procedure to remove elements from a degree constraint satisfies Property 2.

Proof. By construction, when removing a setU ⊆ δ(w) from a degree boundNw, which can be written
as a disjoint unions ofNv1 , . . . , Nvk , a matroidal boundN ′

w is determined which is a disjoint union of
N ′

v1
, . . . , N ′

vk
. Hence point (i) of Property 2 holds.

Let Si be the ground set of the matroidsN ′
vi
, Nvi for i ∈ [k]. SinceN ′

w is a disjoint union of
N ′

v1
, . . . , N ′

vk
, it suffices for point (ii) to prove that ifI ′ is independent inN ′

vi
then I ′ ∪ (Si ∩ U) is in-

dependent inN ′
vi

. This follows sinceN ′
vi

was obtained by a disjoint union of the matroidM3, as defined
above, and a free matroid overSi ∩ U .

For point (iii), consider an independent setI ′ in N ′
vi

. Since all edges inU ∩ Si are free inN ′
vi

, we
can assume(U ∩ Si) ⊆ I ′. Consider how the matroidN ′

vi
was constructed by the use of the matroids

M1,M2,M3. We start by observing thatU ∩Si is an independent set inM2 = M1 ∨Nvi . Let ri be the rank
function ofNvi , andr2 be the rank function ofM2. Sincex ∈ PNvi

, we have thatri(Si ∩ U) ≥ x(Si ∩ U).
Furthermore, sinceM2 = M1 ∨ Nvi and any|Si ∩ U | − ⌊x(Si ∩ U)⌋ elements ofSi ∩ U are independent
in M1, we have

r2(Si ∩ U) = min{|Si ∩ U |, ri(Si ∩ U) + |Si ∩ U | − ⌊x(Si ∩ U)⌋} = |Si ∩ U |,

showing independence ofSi ∩ U in M2. BecauseN ′
vi

was obtained by a disjoint union of the matroidM3

and a free matroid over the elementsSi ∩ U , we can writeI ′ = I3 ∪ (Si ∩ U) with I3 independent inM3.
Furthermore, asM3 = M2/(Si ∩ U) andSi ∩ U is independent inM2, the setI ′ is independent inM2.
As M2 = M1 ∨ Nvi , we haveI ′ = I1 ∪ I, with I1 independent inM1 andI independent inNvi . Since
M1 is a matroid of rank|Si ∩ U | − ⌊x(Si ∩ U)⌋, we have thatI is obtained fromI ′ by removing at most
|I1| ≤ |Si ∩ U | − ⌊x(Si ∩ U)⌋ ≤ |U | − ⌊x(U)⌋ elements as desired.

Let xi = x
∣

∣

Si

for i ∈ [k]. To show point (iv), it suffices to prove thatxi ∈ PN ′

vi

∀i ∈ [k], sinceN ′
w is a

disjoint union ofN ′
v1
, . . . , N ′

vk
. Let zi ∈ [0, 1]Si be given by

zi(f) =

{

1 if f ∈ Si ∩ U,

xi(f) if f ∈ Si \ U.

Observe thatzi − xi ∈ PM1
because the support ofzi − xi is a subset ofSi ∩ U , ‖zi − xi‖1 = |Si ∩ U | −

x(Si ∩ U) and any|Si ∩ U | − ⌊x(Si ∩ U)⌋ elements ofSi ∩ U are independent inM1. Hencezi ∈ PM2
,

sinceM2 = M1 ∨Nvi , xi ∈ PNvi
andzi − xi ∈ PM1

. AsM3 = M2/(Si ∩ U), we have that the restriction
of zi onSi \ U , which is equal toxi

∣

∣

Si\U
, is inPM3

. SinceN ′
vi

is the union ofM3 and a free matroid over
Si ∩ U , this finally implies thatxi ∈ PN ′

vi

.

3 Analysis of the algorithm

Lemma 4. During the execution of the algorithm, for every vertexv ∈ V , at most one constraint adaptation
of type A and one of type B is performed that removes edges ofδ(v) from degree constraints containingv.

Proof. When a type A degree adaptation is applied to a nodew ∈ W that containsv, no further type A
degree adaptation can remove any edges inδ(v) ∩F from the constraint containingv, since those edges are
not anymore contained in both degree constraints at their endpoints.

Similarly, when a type B degree adaptation is applied to a node w that containsv, all edges inδ(w) ∩
F [W \ Q] are removed from the degree constraint atw and thus cannot be removed again at a later type
B degree adaptation. Hence, the only possibility to remove further edges adjacent tov in a later type B
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degree adaptation is that some edgef ∈ F which was—at some iteration of the algorithm—not considered
for a possible removal by a type B adaptation because of beingadjacent to a node inQ, can be removed
by a type B adaptation at a later stage. However as already discussed, since we fix all tight spanning tree
constraints, an edge that is adjacent to a nodew ∈ Q in some iteration, will remain so until it is either deleted
or contracted in step (2a) or (2b) of the algorithm. Hence, this “bad constellation” can never occur.

We exploit that our removal operation satisfies point (iii) of Property 2 to bound the maximum possible
degree violation. In particular, for each vertexv ∈ V , every time edgesU with U ∩ δ(v) 6= ∅ are removed
from the current degree constraintNw at the nodew that containsv, the degree constraint atv can be
violated at most by an additional⌈|U | − x(U)⌉ units. Since we only perform degree adaptations for setsU
with |U | − x(U) ≤ 4, and Lemma 4 guarantees that at most two adaptations are performed that involve the
degree constraint atv, we obtain the following result.

Corollary 5. If the algorithm terminates, then the returned tree violates each degree constraint by at most
8 units.

A main step for proving that we can always apply one of the two suggested degree adaptations, is to
prove that a basic solution to(LP1) is sufficiently sparse. A first important building block for proving
sparsity is the following result.

Lemma 6. Let x be any solution to(LP1) whose support equalsF . Then for every nodew ∈ W , the
maximum number of linearly independent constraints of the matroid polytopePNw

that are tight with respect
to x, is bounded byx(δ(w)).

Proof. Let C ⊆ 2δ(w) be a family with a maximum number of sets that correspond to linearly independent
constraints of the matroid polytopePNw

that are tight with respect tox. By standard uncrossing arguments,
C can be chosen to be a chain, i.e.C = {C1, . . . , Cp} with C1 ( C2 ( · · · ( Cp (see [9] for more details).
We have to show thatp ≤ x(δ(w)). Let r be the rank function ofNw. DefineC0 = ∅ and fori ∈ [p] let
Ri = Ci \ Ci−1. SinceC is a family of tight constraints, we have

x(Ri) = r(Ci)− r(Ci−1) ∀i ∈ [p]. (1)

BecauseRi ⊆ supp(x), the left-hand side of (1) is strictly larger than zero. Furthermore, the right-hand
side is integral and must therefore be at least one. Hencex(Ri) ≥ 1 for i ∈ [p], which impliesx(δ(v)) ≥
∑p

i=1 x(Ri) ≥ p.

Notice, that the above lemma implies that a basic solutionx to (LP1) has a support of size at most
3(|W | − 1), because of the following. We can assume that all edges that are not in the support ofx are
deleted from the graph. Due to Lemma 6, at most

∑

w∈W x(δ(w)) linearly independent constraints of the
polytopes{PNw

| w ∈ W} can be tight with respect tox, and sincex is in the spanning tree polytope of
H, this bound equals

∑

w∈W x(δ(w)) = 2(|W | − 1). Furthermore, at most|W | − 1 linearly independent
constraints ofPst are tight with respect tox due to uncrossing. This shows in particular that in the first
iteration of the algorithm, we can find a nodew ∈W to which a type A degree constraint adaptation can be
applied, because

∑

w∈W

(|δ(w)| − x(δ(w)) = 2|F | − 2(|W | − 1) ≤ 4(|W | − 1),

and hence there must be a nodew ∈W with |δ(w)| − x(δ(w)) ≤ 4.
However, in later iterations, the above reasoning alone is not anymore sufficient because many vertices

do not have degree constraints anymore. Still, by assuming that no type B constraint adaptation is possible,
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and using several ideas to obtain stronger sparsity, we showthat the above approach of finding a good vertex
for a type A degree adaptation by an averaging argument can beextended to a general iteration.

For the rest of this section, we consider an iteration of the algorithm at step (2d) with a current basic
solutionx to (LP1), and assume that|W | > 1, and that no type B degree adaptation can be applied2. We
then show that there is a type A constraint adaptation that can be performed under these assumptions. This
implies that our algorithm never gets stuck, and hence proves its correctness.

Since we often deal with thespare1 − x(f) of an edgef ∈ F , we use the notationz = 1 − x.
Furthermore, we partitionF into the setsF2, F1 and F0 of edges that are contained in2, 1 and 0 de-
gree constraints, respectively. Hence, at the first iteration we haveF2 = F . Our goal is to show that
∑

w∈W z(δ(w) ∩ F2) = 2z(F2) ≤ 4|Y |, whereY ⊆ W is the set of all nodesw with δ(w) ∩ F2 6= ∅. By
an averaging argument this then implies that there is at least one nodew ∈ Y to which a type A constraint
adaptation can be applied. Notice that the setF2 cannot be empty (and hence alsoY 6= ∅): if F2 = ∅, then
the currentLP1 corresponds to a matroid intersection problem since every edge is contained in at most one
degree constraints, and hence all degree constraints form together a single matroid overF ; in this caseLP1
is integral and a full spanning tree would have been contracted after step (2b), which leads to|W | = 1 and
contradicts our assumption|W | > 1.

Lemma 7. LetL be a maximum family of linearly independent spanning tree constraints that are tight with
respect tox. Then

2z(F2) ≤ 2|L|+ 2(|W | − 1)− 2(|F0|+ |F1|)− 2x(F0).

Proof. We can rewrite2z(F2) as follows by using the fact thatx(F ) = |W |−1 (becausex is in the spanning
tree polytope ofH).

2z(F2) = 2z(F ) − 2z(F0)− 2z(F1)

= 2(|F | − x(F )) − 2z(F0)− 2z(F1)

= 2|F | − 2(|W | − 1)− 2z(F0)− 2z(F1)

(2)

Using classical arguments we can bound the size of the support of x, which is by assumption equal to|F |,
by the number of linearly independent tight constraints from the spanning tree polytope and the degree
polytopesPNw

for w ∈ W . In particularx is uniquely defined by the tight spanning tree constraintsL
completed with some setD of linearly independent degree constraints, and we have|F | = |L| + |D|. The
degree constraintsD can be partitioned intoDw for w ∈W , whereDw are linearly independent constraints
of the matroid polytopePNw

. By Lemma 6,|Dw| is bounded by the sum ofx over all edges inδ(w) that are
contained in the degree constraint atw. When summing these bounds up over allw ∈ W , each edge inF2

is counted exactly twice, and each edge inF1 exactly once. Hence,

|D| ≤ 2x(F2) + x(F1) = 2x(F ) − x(F1)− 2x(F0) = 2(|W | − 1)− x(F1)− 2x(F0).

Using |F | = |L|+ |D| and the above bound, we obtain from (2)

2z(F2) ≤ 2|L|+ 2(|W | − 1)− 2 (z(F0) + z(F1) + 2x(F0) + x(F1))

= 2|L|+ 2(|W | − 1)− 2(|F0|+ |F1|)− 2x(F0),

where the last inequality follows fromz(U) + x(U) = |U | for anyU ⊆ F .

The size of a familyL of linearly independent tight spanning tree constraints can easily be bounded by
|W |−1 using the fact that one can assumeL to be laminar by standard uncrossing arguments (andL contains

2Notice that the assumption|W | > 1 is not redundant. Whereas we know that at the beginning of theiteration|W | > 1 did
hold, this could have changed after contracting edges in step (2b).
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no singleton sets). However, this result shows not to be strong enough for our purposes. To strengthen this
bound we exploit the fact that ifL contains close to|W |−1 sets, then there are many nodesw ∈W that are
“sandwiched” between two sets ofL, i.e., there are two setsL1, L2 ∈ L with L2 = L1 ∪ {w}, which in turn
impliesx(δ(w) ∩E[L2]) = 1. Notice that for any degree two nodew which is not inQ, we havex(U) 6= 1
for all U ⊆ δ(w). Hence, such a node cannot be “sandwiched” between two tightspanning tree constraints,
and we expect that the more such nodes we have, the smaller is|L|. The following result quantifies this
observation. It is stated in the general context of a spanning tree polytope of a general connected graph (not
being linked to our degree-constrained problem).

Lemma 8. Lety be a point in the spanning tree polytope for a given graphG = (V,E), and let

S(G, y) = {v ∈ V | |δ(v)| = 2, y(U) 6= 1 ∀U ⊆ δ(v)}.

LetL ⊆ 2V be any linearly independent family of spanning tree constraints that are tight with respect toy.
Then

|L| ≤ |V | − 1−

⌊

1

2
|S(G, y)|

⌋

.

Proof. To simplify notation letS = S(G, y). By standard uncrossing arguments (see for example [8]), we
can assume thatL is laminar. We first consider the case that there is a setL ∈ L with L ⊆ S. Let L be a
minimal set inL with this property. SinceL is a tight spanning tree constraint, we have thaty

∣

∣

E[L]
is in the

spanning tree polytope ofG[L], and hencey(δ(v) ∩ E[L]) ≥ 1 for v ∈ L. AsL ⊆ S, we have|δ(v)| = 2
andy(e) < 1 for v ∈ L ande ∈ δ(v). This implies that every vertex inL must have both of its neighbors in
L to satisfyy(δ(v) ∩ E[L]) ≥ 1. SinceG is connected, as we assumed that there is a point in the spanning
tree polytope ofG, we must haveL = V = S. Furthermore|V | ≥ 3, because vertices inL have degree two.
Hence the claim trivially follows since|L| = 1.

Now assume that there is no setL ∈ L with L ⊆ S. We show that there exists a setR ⊆ S of size at
least|R| ≥ 1

2 |S|, such that the laminar familyLR = {L \R | L ∈ L} over the elementsV \R satisfies the
following:

i) LR has no singleton sets,
ii) |LR| = |L|, i.e., any two setsL1, L2 ∈ L with L1 ( L2, satisfyL2 \ L1 6⊆ R.

Notice that this will imply the claim since|LR| ≤ |V \ R| − 1, becauseLR is laminar without singleton
sets, and hence|L| = |LR| ≤ |V \R| − 1 ≤ |V | − 1− 1

2 |S|. It remains to define the setR with the desired
properties. ForL ∈ L, let VL ⊆ L be all vertices inL that are not contained in any setP ∈ L with P ⊆ L.
For each setL ∈ L, include an arbitrary set of⌈12 |S ∩ VL|⌉ elements ofS ∩ VL in R. Since the setsVL

for L ∈ L are a partition of all verticesV , we clearly have|R| ≥ 1
2 |S|. FurthermoreR satisfies the desired

properties as we show below.
i) Assume by sake of contradiction thatLR contains a singleton set, i.e., there is a setL ∈ L with

|L \R| = 1. We can assume thatL is a minimal set inL. By assumption we haveL 6⊆ S, and sinceR ⊆ S,
the element inL\R is not inS. Hence,R contains all elementsL∩S, which is only possible if|L∩S| = 1
and therefore|L| = 2. However, this implies that there must be an edges of weight one between the two
vertices inL, which contradicts the fact that one of those vertices is inS.

ii) Assume by contradiction that there are two setsL1, L2 ∈ L with L1 ( L2 that satisfyL2 \ L1 ⊆ R.
We can chooseL1 andL2 such that there is no setL ∈ L with L1 ( L ( L2. By choice ofR, this can only
happen ifL2 \ L1 contains exactly one vertexv ∈ S. This impliesy(δ(v) ∩ E[L2]) = 1, which contradicts
the fact thatv ∈ S.

Lemma 8 can easily be generalized to the subgraph of a given graphG obtained by deleting the vertices
Q(G, y). This form of the lemma is more useful for our analysis because of our special treatment of vertices
in Q.
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Lemma 9. Lety be a point in the spanning tree polytope of a given graphG = (V,E) withy(e) 6= 1 ∀e ∈ E,
let G′ = G[V \ Q(G, y)], and lety′ be the projection ofy to the edges inG′. Let L be any linearly
independent family of spanning tree constraints ofG that are tight with respect toy. Then

|L| ≤ |V | − 1−

⌊

1

2
|S(G′, y′)|

⌋

.

Proof. By standard uncrossing arguments, we can assume thatL is a maximal laminar family of tight
spanning tree constraints. We prove the result by inductionon the number of elements inQ = Q(G, y). If
Q = ∅, then the result follows from Lemma 8. Letq ∈ Q be a possible first element added toQ during the
iterative construction ofQ, i.e.,y(δ(q)) = 1. This implies thatV \ {q} is a tight spanning tree constraint.
Let H = G[V \ {q}], yH = y

∣

∣

E[V \{q}]
andQH = Q(H, yH). SinceQH = Q \ {q}, we can apply the

induction hypothesis to the graphH to obtain that any maximal familyLH of linearly independent tight
spanning tree constraints inH with respect toyH satisfies|LH | ≤ |V \ {q}| − 1 −

⌊

1
2 |S(G

′, y′)|
⌋

. The
claim follows by observing thatL = LH ∪ {V } is a maximal family of tight spanning tree constraints inG,
and hence

|L| = |LH |+ 1 ≤ |V | − 1−

⌊

1

2
|S(G′, y′)|

⌋

.

Combining Lemma 9 with Lemma 7 we obtain the following bound,where we useS = S(H[W \
Q], x

∣

∣

F [W\Q]
) to simplify the notation. To get rid of the rounding on12 |S| we use2⌊12 |S|⌋ ≥ |S| − 1.

Corollary 10.
2z(F2) ≤ 4(|W | − 1)− 2(|F0|+ |F1|)− 2x(F0)− |S|+ 1.

The following lemma implies the correctness of our algorithm. We recall thatY ⊆ W is the set of all
nodesw ∈W such thatδ(w) ∩ F2 6= ∅.

Lemma 11. There is a nodew ∈ Y such that a type A constraint adaptation can be applied tow.

Proof. Let Y = W \ Y . We will prove that

4|Y | ≤ 2(|F0|+ |F1|) + 2x(F0) + |S|. (3)

Together with Corollary 10 this then implies2z(F2) ≤ 4|Y | − 3, which in turn implies by an averaging
argument that there is at least one node inY to which a type A constraint adaptation can be applied. To
prove (3) we apply a fractional token counting argument: we show that if we interpret the right-hand side
of (3) as a (fractional) amount of tokens, then we can assign those tokens to the vertices inY such that each
vertex inY gets at least4 tokens.

We think of the tokens corresponding to2(|F0|+ |F1|)+2x(F0) as residing at the endpoints of the edges
in F0 ∪ F1. Each edgef ∈ F0 gets2 + 2x(f) tokens,1 + x(f) at each endpoint. Each edgef ∈ F1 gets
1+x(f) tokens at the endpoint which does not containf in its degree constraint, and1−x(f) tokens at the
other endpoint. The tokens assigned to the endpoints of the edges thus sum up to2(|F0|+ |F1|) + 2x(F0).

We start by assigning tokens to vertices inQ. By definition of the vertices inQ, we can order the
elements inQ = {q1, . . . , qp} such that fori ∈ [p], we havex(Fqi) = 1 whereFqi = {{qi, v} ∈ F | v ∈
W \ {q1, . . . , qi−1}}. Sincex(Fqi) = 1 and no edgef ∈ F satisfiesx(f) = 1 (such an edge would have
been contracted), we have|Fqi | ≥ 2. Each vertexqi ∈ Q gets all the tokens at both endpoints of the edges
in Fqi . Since|Fqi | ≥ 2, qi receives indeed at least four tokens.
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Let H ′ = (W ′, F ′) = H[W \Q] be the induced subgraph over the verticesW \Q , and letx′ = x
∣

∣

F ′
.

Notice thatx′ is in the spanning tree polytope ofH ′ since the set of edgesU ⊆ F that have at least one
endpoint inQ satisfyx(U) = |U |, and hencex′(F ′) = |F ′| − 1.

The remaining tokens are allocated as follows. Each nodew ∈ Y ∩W ′ gets for every edgef ∈ δH′(w),
the tokens off at the endpoint atw. Furthermore, every node inS gets an additional token from the term
|S|.

The attributed tokens clearly do not exceed the right-hand side of (3). It remains to show that each node
w ∈ Y ∩W ′ gets at least4 tokens. We distinguish the following three cases: (i)w ∈ S, (ii) w 6∈ S and
none of the edgesδH′(w) is contained in the degree constraint atv, and (iii)w 6∈ S and at least one edge of
δH′(w) is contained in the degree constraint atw. Notice that the vertices considered in case (i) are precisely
all vertices inH ′ of degree two, because if there was a degree two vertexw ∈ W ′ \ S, thenw would have
been included inQ. Hence, all vertices considered in case (ii) or case (iii) have degree at least3 in H ′.

Case (i): w ∈ S. Because|δH′(w)| = 2, we have that both edges inδH′(w) are not contained in the
degree constraint atw, since otherwise a type B degree adaptation could have been performed atw. Hence,w
receives2+x(f1)+x(f2) tokens from those two edges plus one token from|S|, resulting in3+x(f1)+x(f2)
tokens. Sincex′ is in the spanning tree polytope ofH ′, we havex(f1) + x(f2) = x(δH′(w)) ≥ 1, and thus
w receives at least4 tokens.

Case (ii): w 6∈ S and none of the edgesδH′(w) is contained in the degree constraint atw. The total
number of tokens received byw thus equals|δH′(w)| + x(δH′(w)) ≥ 3 + x(δH′(w)), since|δH′(w)| ≥
3. The claim follows again by observing thatx′ is in the spanning tree polytope ofH ′, which implies
x(δH′(w)) ≥ 1.

Case (iii): w 6∈ S and at least one edge ofδH′(w) is contained in the degree constraint atw. Let U
be the set of all edges inδH′(w) that are contained in the degree constraint atw. Since no type B degree
adaptation can be performed atw, we have|U | − x(U) > 4. However,|U | − x(U) is exactly the number of
tokens thatw receives from the edges inU . Hence, at least4 tokens are assigned tow.
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[7] M. Fürer and B. Raghavachari. Approximating the minimum-degree Steiner Tree to within one of
optimal. Journal of Algorithms, 17(3):409–423, 1994.

[8] M. X. Goemans. Minimum bounded degree spanning trees. InProceedings of the 47th IEEE Sympo-
sium on Foundations of Computer Science (FOCS), pages 273–282, 2006.

[9] K. Jain. A factor 2 approximation algorithm for the generalized Steiner Network Problem.Combina-
torica, 21:39–60, 2001.
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