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Abstract

We consider the minimum spanning tree (MST) problem underdéstriction that for every vertex
v, the edges of the tree that are adjacent gatisfy a given family of constraints. A famous example
thereof is the classical degree-bounded MST problem, wioerevery vertexv, a simple upper bound
on the degree is imposed. Iterative rounding/relaxatigor@hms became the tool of choice for degree-
constrained network design problems. A cornerstone fardeivelopment was the work of Singh and
Lau [18], who showed that for the degree-bounded MST proptera can find a spanning tree violating
each degree bound by at most one unit and with cost at mosbgh@fan optimal solution that respects
the degree bounds.

However, current iterative rounding approaches face séligrits when dealing with more general
degree constraints. In particular, when several consgraie imposed on the edges adjacent to a vertex
v, as for example when a partition of the edges adjacenitgiven and only a fixed number of elements
can be chosen out of each set of the partition, current appesamight violate each of the constraints
by a constant, instead of violating the whole family of coaistts by at most a constant number of edges.
Furthermore, it is also not clear how previous iterativending approaches can be used for degree
constraints where some edges are in a super-constant nofrdmarstraints.

We extend iterative rounding/relaxation approaches batla @onceptual level as well as aspects
involving their analysis to address these limitations. d8bgn these extensions, we present an algorithm
for the degree-constrained MST problem where for everyexert the edges adjacent tohave to be
independent in a given matroid. The algorithm returns a sipgntree of cost at most OPT such that
for every vertex, it suffices to remove at mostedges from the spanning tree to satisfy the matroidal
degree constraint at

1 Introduction

Recently, much effort has been put on designing approxanatigorithms for degree-constrained network
design problems. This development was motivated by vardpmdications as for example VLSI design,
vehicle routing, and applications in communication neksd7,[3,[17]. One of the most prominent and
elementary problems here, which attracted lots of attariticecent years, are degree-constrained (MST)
problems.

In the most classical setting, known as tthegree-bounded MST problertihe problem is to find a
spanning trel” C E of minimum cost in a grapliz = (V, E) under the restriction that the degree of
each vertexy with respect tdl" is at most some given valuB,. Since checking feasibility of a degree-
bounded MST problem is already NP-hard, interest arose dmignlow-cost spanning trees that violate the
given degree constraints slightly. A long chain of papeee (§,[12[ 1B, 4,]5] and references therein) led
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to algorithms with various trade-offs between cost of thensjing tree and violation of the degree bounds.
In recent years, important progress was achieved for theeddgpunded MST problem, which also led to a
variety of new techniques. Goemahs [8] showed how to find arspg tree violating each degree constraint
by at most two units, and whose cost is bounded by the cost @R aptimum spanning tree that satisfies
the degree constraints. Enhancing the iterative roundargédwork introduced by Jain![9] with a relaxation
step, Singh and Lali [18] obtained a stronger version of tioeabesult, which is essentially best possible,
where degree constraints are only violated by at most orte diiey work with an LP relaxation of the
problem, and iteratively drop degree constraints from tRehat cannot be violated by more than one unit
in later iterations. The adapted LP is then solved again taiola possibly sparser basic solution that allows
for further degree relaxations. Edges not used in the cuomimal solution to the LP are removed from the
graph, and edges that have a weight of one are fixed, whiletingddegree bounds accordingly. A degree
bound at a vertex is removed whenever it is at most one unit lower than the aumember of edges
adjacent ta.

We are interested in obtaining results of similar strengtimfiore general degree bounds. Consider for
example the following type of degree constraints: for ewantexv, a partitionEy, . .., E; of the setj(v)
of edges adjacent tois given, and within each sét of the partition, only a given number of edges can be
chosen. The algorithm of Singh and Laul[18] as well as the d@oemans([8] can easily be adapted to this
setting. (In particular, the algorithm of Singh and Lau wasrepresented in this precise setting.) However,
with both of these approaches, the constraint imposed by seté’’ can be violated by a constant. We are
interested in having at most a constant violation over ajrele constraints at i.e., for every vertex € V/,
at most a constant number of edges have to be removed fronpdmmiag tree to satisfy all constraints
atv. Another more general example that will be useful to illatdrlimits of current methods is obtained
when imposing constraints for each vertegn a laminar family on the edges adjacenttinstead of only
considering a partition.

Adapting Goemans’ algorithm to these stricter bounds ouléigeee violation seems to be difficult, since
a crucial step of this algorithm is to cover the suppbit of a basic solution to the natural LP relaxation
by a constant number of spanning trees (for the degree-lroultST problem, Goemans showeéd [8] that
two spanning trees suffice). This result allows for oriemtihe edges irZ* such that every vertex has at
most a constant number of incoming arcs, at most one in eanimsm tree. Dropping for every vertex
all incoming arcs from its degree constraint then leads tcafraid intersection problem, whose solution
violates each degree constraint by at most a constant. Tbleeéadecomposé’™ into a constant number
of spanning trees, one needs to show that for any subset véttieesS C V, only a linear number (ifhS|)
of edges have both endpoints$h In the classical degree-bounded MST problem, this spasseproperty
follows from the fact that when considering only edges witthbendpoints ir, there are at most a linear
number (in|S|) of linearly independent and tight spanning tree condsaine to combinatorial uncrossing,
and only a linear number of degree constraints withirHowever, in more general settings as highlighted
above, the number of degree constraints withlican be super-linear.

Iterative relaxation looks more promising for a possibléeagion to generalized degree bounds. How-
ever, current iterative rounding approaches face sevarilwhen trying to adapt them. In particular, when
dealing with the partition bounds as explained above, alsimgaptation of the relaxation rule, where for
a vertexv all constraints av would be dropped as soon as it is safe to do so due to a smalbi$upp,
risks to get stuck because there might be no vertex whoseel@gnstraint can be relaxed. Furthermore,
previous approaches (as used[in! [18, 2]) to show that theosujspsparse fail in our setting because of a
possible super-linearity of the total number of degree tamgs. Additionally, previous iterative relaxation
approaches crucially rely on the property that any edgeas most a constant number of degree constraints
to obtain violations that are bounded by a constant. Howélisrdoes not hold when dealing for example
with degree constraints given by a laminar family.

In this paper we show how to extend iterative relaxation eaghnes, both from a conceptual point of
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view as well as aspects involving their analysis, to tackieide class of MST problems with generalized
degree bounds, namely when the degree bounds for everyxeggajiven by a matroid. In particular, this
includes the partition bounds and the more general lamioandls mentioned above.

Our results.  We present an iterative rounding/relaxation algorithnfifadting amatroidal degree-bounded
MST. The degree bounds are given as follows: for every vertex matroidM, = (d(v),Z,) over the
ground seb(v) is given with independent sets denotedZhyC 29(v) The problem (without relaxed degree
constraints) is to find a spanning tréein G satisfying7T N §(v) € Z, Yo € V, and minimizing a linear
cost functionec : E — R... We say that a given spanning tréeviolates a degree constraiff, by at most

k € N units, if it suffices to remove at mostedgesRk C §(v) N T from T to satisfy the constraint/,,
i.e., (T'"\ R)Nd(v) € Z,. Hence, the partition and laminar bounds mentioned abowesyond to the case
where all matroids\/, are partition or laminar matroids, respectively. We shogvftilowing.

Theorem 1. There is an efficient algorithm for the matroidal degree-hded MST problem that returns a
spanning tree of cost at most the cost of an optimal solutio, violates each degree bound by at st
units.

To overcome problems faced by previous iterative relaradioproaches, we enhance the iterative relax-
ation step, and exploit polyhedral structures to provengteo sparseness results. The polytope used as a
relaxation of the matroidal degree-bounded MST asks to fipdirat = € R in the spanning tree polytope
such that for every vertex € V, the restriction ofc to 6(v) is in the matroid polytopée’,,, of M,,.

To be able to always find possible relaxation steps, ourtiteraounding procedure tries to achieve
a somewhat weaker goal than previous approaches. Thethlgoof Singh and Lau [18] relaxes degree
constraints with the goal to approach the spanning tregqudy which is integral. In our approach, the goal
we pursue is to remove every edfe v} from at least one of the two degree constraints at v. As soon
as no edge is part of both degree constraints at its endpdietproblem is a matroid intersection problem,
since all degree constraints together can be described imgi@ snatroid over the support of the current
LP solution. Thus, once we are in this situation, the curtégdhiwill be integral and no further rounding
steps are needed. Hence, in our relaxation step, we try t@afirggitexy such that we can remove all edges
adjacent ta that are still in both degree constraints from the degrestcaimt atv. Edges adjacent tothat
are only contained in the degree constraint &atill not be removed from the constraidt,,. Our approach
has thus some similarities with Goemans’ method, but idstéaemoving right at the start every edge from
one degree constraint, we do this iteratively and herebfitgrom additional sparseness that is obtained
by solving the LP relaxation after each degree adaptatiem sAs we will see in Sectidn 2, the way how
we remove edges from a constraint is strictly speaking netaxation, and we therefore prefer to use the
term degree adaptatiomstead of degree relaxation. The above degree adapta@prabne shows not to
be sufficient for our approach, since one might still end ua gituation were no further degree adaptation
can be performed because the graph is too dense. To obtaieigsparsity, we use a second type of degree
adaptation, where for some vertexve remove (almost) the full degree constraint &tthis cannot lead to
a large violation of the degree constrainvat

The main step in the analysis is to prove that it is alwaysipes$go apply at least one of two suggested
degree adaptations. Afirst step in this proof is to show tiastipport of a basic solution to the LP relaxation
is sparse. We obtain sparsity by showing that if therekaeeN linearly independent and tight constraints
(with respect to the current LP solutiar) of the polytopePy,, , thenz(d(v)) > k. Since summing:(d(v))
over all vertices is equal (|V'| — 1), because:(E) = |V| — 1 asz is in the spanning tree polytope, there
are at mos2(|V| — 1) linearly independent and tight degree constraints.

The crucial part in the analysis is to show that vertices tactvimo further degree adaptation can be
performed do not have very low degrees in average, implhyliag $ome of the other vertices are likely to



have low degrees and therefore admit a degree constraiptagida. To prove this property, we exploit the
interplay between degree bounds and spanning tree canisttaishow that any degree two node can either
be treated separately and allows for reducing the problenmlies a reduction in the maximum number
of linearly independent and tight spanning tree constsaint

Related work. The study of spanning trees with degree constraints candeedrback to Firer and
Raghavachari [7], who presented an approximation alguriftr the degree-bounded Steiner Tree prob-
lem which violates each degree bound by at most one, but duiesonsider costs. This result generated
much interest in the study of degree-bounded network dgsighlems, leading to numerous results and
new techniques in recent years for a variety of problemsuydticg degree-bounded arborescence problems,
degree-bounded-edge-connected subgraphs, degree-bounded submodulay dlegree-bounded bases in
matroids (se€ [16, 17, 11,114,/15] 10, 2,16, 1] and referezasin).

Spanning tree problems with a somewhat different notioneoiegalized degree bounds have been con-
sidered in[[2] and[[1]. In these papers, the term “generdldegree bounds” is used as follows: given is a
family of setsF, ..., By, C FE, and the number of edges that can be chosen out of eadl) sebounded
by some given valué3; € N. In [2], using an iterative relaxation algorithm, whose lgss is based on
a fractional token counting argument, the authors show wogfficiently obtain a spanning tree of cost at
most OPT and violating each degree bound by at mest.c |{i € [k] | e € E;}|, the maximum coverage
of any edge by the sefs;. In [1], a new iterative rounding approach was presentethioproblem when the
setsEy,. .., Ej correspond to the edgds = 6(C;) of a family of cutsC; C V for i € [k] that is laminar.
Contrary to previous settings where iterative roundingreaphes were applied, here, it is possible that an
edge lies in a super-constant number of degree constréinézach iteration, the algorithm reduces the num-
ber of degree constraints by a constant factor, replacingesmnstraints with new ones if necessary. This
is done in such a way that degree constraints are violatetilopst a constant in every iteration, leading to
a spanning tree of cost at most OPT, that violates each degrestraint by at mosD (log(|V])).

Organization. In Section[2 we present our algorithm for the matroidal degreunded MST problem.
The analysis of the algorithm is presented in Sedtion 3.

2 Thealgorithm

Since during the execution of our algorithm the underlyimgpdn will be modified, we denote b =
(W, F) the current state of the graph, wheréas= (V, E') always denotes the original graph. For brevity,
terminology and notation is with respect to the current Qrapwhen not specified further. To distinguish
between initial degree constraints and current degredreams, we denote by, the current constraints
for w € W—which will as well be of matroidal type—wheredd,, denotes the initial degree constraints
atv € V. The vertices offf are callednodessince they might contain several vertices(ofdue to edge
contractions.

The algorithm starts wittH = G and N, = M, for v € V, and the LP relaxation we use is the
following,

min cTr

(LPI) x € Pg
w!d(w) € Py, YweW

where P,; denotes the spanning tree polytopefdf Py, denotes the matroid polytope that corresponds
to Ny, andx|6(w) denotes the vector obtained framec R by considering only the components that

correspond t@(w).



Algorithm for Matroidal Degree-Bounded Minimum Spanning Trees
1. Initialization: H = (W, F) <~ G = (V,E), N, < M, forv € V.
2. While|WW| > 1do

a) Determine basic optimal solutianto (LP1). Delete all edgeg € F with z(f) = 0.
b) Contract all edgeg € F with z(f) = 1.
¢) Fix a maximal family of linearly independent and tight spang tree constraints.

d) Type A degree adaptatiofor each nodev € W such that the set of all edgésC §(w)
that are still in both degree constraints is non-empty andfis |U| — (U) < 4,
removelU from the degree constraifi,,.

e) Type B degree adaptatioffor each nodev € W such that the set of all edgésC o6 (w)
contained in the degree constrai¥j, but not adjacent to a node @ is non-empty and
satisfiedU| — z(U) < 4, removeU from the degree constraif{,,.

3. Return all contracted edges.

There is a set of node9 = Q(H,z) C W that has a special role in our algorithm due to its relation
with tight spanning tree constraints. The node@eas defined and used after having contracted edges of
weight one. Hence, assume tlfatdoes not contain any edgec F with z(f) = 1. Then( is defined as
follows: we start withQ) = () and as long as there is a nodec W such thatz(6(w) N F[W \ Q) = 1,
whereF[IW\ Q] is the set of all edges with both endpointdin\ @, we addw to ). One can easily observe
that@ does not dependent on the order in which nodes are addéd Asitve will see later, edges adjacent
to these nodes can often be ignored from degree constraietsodstrong restrictions that are imposed by
the spanning tree constraints.

The box on top of the page gives a description of our algoritmitting details of how to deal with
the matroidal degree bounds when removing or contractigg®dWe discuss these missing points in the
following.

Notice, that a basic solution {d.P1) can be determined in polynomial time by the ellipsoid method
even if the involved matroids are only accessible trougmdependence oracle. Depending on the matroidal
degree bounds involved,LP1) can be solved more efficiently by using a polynomially-sizedended
formulation.

A tight spanning tree constraint, as considered in giejy (@oyesponds to a sét C W, L # ) such
thatz(F[L]) = |L| — 1. Fixing a tight spanning tree constraint means that this constnasito be fulfilled
with equality in all linear programs of typel P1) solved in future iterations. It is well-known that if
supp(x) = F, then any maximal family of linearly independent and tigb&rsning tree constraints with
respect tar defines the minimal face of the spanning tree polytope onhvhites (see e.g[]8]). Hence,
due to step[(Zc), we have that if the LP solution at some itaraif the algorithm is on a given face of the
spanning tree polytope, then all future solutiongXd>1) will be as well on this face.

Fixing tight spanning tree constraints shows to be usefdesthey often imply strong conditions on
the edges, which can be exploited when having to make suteltigaee constraints are not violated too

1The fact that? does not contain-edges is needed here to make sure that the order is unimpirthe definition ofQ. With
1-edges it might be that during the iterative constructioi)pone ends up with two nodes connected by a single edge of tveigh
one, in which case any one of the two remaining nodes can hedext in(, but not both. This is actually the only bad constellation
that leads to a dependency on the order in the definitigp.of



much. In particular, consider a node € @ which, in the iterative construction @, could have been
added as the first node, i.e(d(w)) = 1. When fixing tight spanning tree constraints, one can olestrat
any spanning tree satisfying those tight constraints wqiaéty contains precisely one edge adjacenbto
Furthermore, the fixing of tight spanning tree constraintargntees that a node € @ will stay in @ in
later iterations until an edge adjacentdas contracted. Hence, all edges being in some iteratiorcadjdo
anodew € @, will be adjacent to a node i) in all later iterations until they are either deleted or caated.
This property is important in our approach since a type B elegdaptation ignores edges adjacenpio
and we want to make sure that an edge which is once ignoredevilr be considered during a later type B
degree adaptation.

Contracting and removing edges. To fill in the remaining details of our algorithm, it remairsdiscuss
how edges are contracted and removed. Throughout the thlgorany degree constraiff,, of a nodew
containing the verticesy, ..., v, € V can always be written as a disjoint union of matroidal caaists
Ny, ..., Ny, , WhereN,, corresponds to the “remaining” degree bound;&nd is a matroid over the edges
d(w) that are adjacent to,. Whenever an edg¢ = {w,wy} of weight one is contracted in step {2b) of
the algorithm to obtain a new node, the new degree constraint,, atw is obtained by taking a disjoint
union of the matroidsV,,, /f and N,/ f, whereN,,, /f and N,,,/f correspond to the matroids obtained
from N, andN,,,, respectively, by contracting. This operation simply translates the degree constraints
onw; andw- to the merged node. The property that a degree boundwris a disjoint union of degree
bounds of the vertices representedunyis clearly maintained by this contraction.

As highlighted in the box, we adapt constraints feynovingfor some nodev € W a set of edges
U C 6(w) from the constraintV,,. When removind’/ from N,,, we construct a new degree constraint given
by a matroidN,, over the element§(w) such that the following properties hold.

Property 2.

i) NV, is adisjoint union of matroidal constrainty’, , ... ,N[)k corresponding to vertices containedan
i) edges ofU arefree elementsf N/, i.e., if I is independent itV,, then! U U is independent iiV,,,
iif) any independent set @¥; can be transformed into one &f,, by removing at mostiU| — z(U)] edges,
iv) the previous LP solution is still feasible with respect t&v), i.e.,:r|5(w) € Py, .

Any removal operation satisfying the above properties aanded in our algorithm. Before presenting
such a removal operation, we first mention a few importamigoiTo avoid confusion, we want to highlight
that removing’ from V,, does not simply correspond to deleting the eleménfom the matroidV,,. For
any edgef € ¢(w) that is free in\V,,, we say thatf is not containedn the degree constrairY,,, and it is
containedotherwise. When all edges adjacent to a given nodge not contained in its degree constraint,
which corresponds t&/,, being a free matroid, we say that the nadéas no degree constraint.

We now discuss how to remove a set of edffes. ¢(w) from N,, to obtain an adapted degree bound
N}, satisfying Propert{]2. Let;,...,v, € V be all vertices contained in the node and we consider the
decomposition ofV,, into a disjoint union of matroidsv,,, ..., N,,, whereN,, for i € [k] corresponds
to the “remaining” degree bound at. To removeU from N,,, we adapt each matroity,, as follows to
obtain a new matroidV,, . LetS; be the ground set oV, i.e., all edges in(w) being adjacent to;. Let
M, = (S;,Z;) be the matroid with independent sets

T, ={IC8NU||I<|SnU|-|2(SinT)|}.

Hence,M; is a special case of a partition matroid. L'éb = M, vV N, be the union of the matroids/;
andN,,, and letMs = M, /(S; N U) be the matroid obtained frod/, by contractingS; N U. The degree
boundN,, is obtained by a disjoint union df/3 and a free matroid over the elementsSin U. The new
degree constraindV,,, that results byemovingU from N,,, is given by the disjoint union of the matroids
Nypseoo s Ny,

vyt



Lemma 3. The above procedure to remove elements from a degree cimstadisfies Property]2.

Proof. By construction, when removing a s€t C §(w) from a degree bound,,, which can be written
as a disjoint unions ofV,,,..., N,,, a matroidal boundV,, is determined which is a disjoint union of

N, ..., Ny, . Hence point({i) of Propertyl2 holds.
Let S; be the ground set of the matroid$/ , N,, for i € [k]. SinceN,, is a disjoint union of
N,,-.., Ny, it suffices for point[(ii) to prove that if" is independent inV,, thenI’ U (S; N U) is in-

dependent inV,,. This follows sinceN;, was obtained by a disjoint union of the matrdids, as defined
above, and a free matroid ovéyN U.

For point [i), consider an independent sétin N, . Since all edges i/ N S; are free inN,_, we
can assume¢U N S;) € I'. Consider how the matroidV; was constructed by the use of the matroids
M, My, M3. We start by observing that N.S; is an independent set iV, = M; vV N,,. Letr; be the rank
function of N, andrs be the rank function o,. Sincez € Py, , we have that; (S; NU) > z(S; NU).
Furthermore, sinc@/y = M; V N,, and any|S; N U| — |z(S; N U)| elements ofS; N U are independent
in M, we have

TQ(Si M U) = min{|5i N U|,T‘Z'(SZ' N U) + |SZ N U| — Lw(SZ N U)J} = |SZ N U|,

showing independence 6f N U in M,. BecauseV,, was obtained by a disjoint union of the matrdid
and a free matroid over the elemestsn U, we can ertel’ = I3 U (S; N U) with I3 independent inV/s.
Furthermore, ad/f3s = M>/(S; NU) andS; N U is independent in\/y, the setl’ is independent inV/s.
As My = My V N,,, we havel’ = I, U I, with I; independent inV/; and I independent inV,,. Since
M is a matroid of rankS; N U| — |=(S; N U)|, we have thaf is obtained from/’ by removing at most
L] <[SinU|—|z(S;inU)| <|U|— |z(U)] elements as desired.

Letz; = $|Si for i € [k]. To show point[(iV), it suffices to prove that € Py, Vi€ [k], sinceN,, is a
disjoint union of N, ..., N, . Letz € [0,1] be given by

1 dresing,
Zl(f)_{wi(f) if f e\ U.

Observe that; — z; € Py, because the support of — z; i zi — x|l = |SiNnU| —
z(S;NU) and any|S; N U| — |z(S; N U)| elements of5; N U are independent in/;. Hencez; € Pyy,,
sinceMy = M; V N, x; € Pn,, andz; — x; € Py,. AsMs = My /(S; N U), we have that the restriction
of z; on S; \ U, which is equal tOUZ'|Si\U, iS in Pyy,. SinceN{)i is the union ofM3 and a free matroid over
S; N U, this finally implies thatz; € PN@-

O

3 Analysisof thealgorithm

Lemma 4. During the execution of the algorithm, for every vertex 1/, at most one constraint adaptation
of type A and one of type B is performed that removes edggs pfrom degree constraints containing

Proof. When a type A degree adaptation is applied to a nede W that containsy, no further type A
degree adaptation can remove any edgegdnN F' from the constraint containing, since those edges are
not anymore contained in both degree constraints at thdpants.

Similarly, when a type B degree adaptation is applied to &nothat containg, all edges i (w) N
F[W \ Q] are removed from the degree constraintvaand thus cannot be removed again at a later type
B degree adaptation. Hence, the only possibility to removthér edges adjacent toin a later type B



degree adaptation is that some edge I’ which was—at some iteration of the algorithm—not considere
for a possible removal by a type B adaptation because of tsdjgrent to a node iy, can be removed
by a type B adaptation at a later stage. However as alreadystied, since we fix all tight spanning tree
constraints, an edge that is adjacent to a node( in some iteration, will remain so until it is either deleted
or contracted in stefy_(Ra) dr (2b) of the algorithm. Hencis,‘thad constellation” can never occur. [

We exploit that our removal operation satisfies pdink (ifiPooperty[2 to bound the maximum possible
degree violation. In particular, for each vertexc V, every time edge& with U N é(v) # () are removed
from the current degree constrain, at the nodew that containsy, the degree constraint atcan be
violated at most by an addition&)U| — z(U)]| units. Since we only perform degree adaptations for Bets
with |U| — z(U) < 4, and Lemm@l4 guarantees that at most two adaptations amrped that involve the
degree constraint at we obtain the following result.

Corollary 5. If the algorithm terminates, then the returned tree vioda¢é@ch degree constraint by at most
8 units.

A main step for proving that we can always apply one of the tuggested degree adaptations, is to
prove that a basic solution t@.P1) is sufficiently sparse. A first important building block foroping
sparsity is the following result.

Lemma 6. Letz be any solution tq LP1) whose support equalg’. Then for every nodes € W, the
maximum number of linearly independent constraints of theait polytopePy,, that are tight with respect
to z, is bounded by:(6(w)).

Proof. LetC C 2°(®) be a family with a maximum number of sets that correspondnislily independent
constraints of the matroid polytop@y,, that are tight with respect te. By standard uncrossing arguments,
C can be chosen to be a chain, Ce= {C},...,Cp} with C; C Cy € --- C C, (see 9] for more details).
We have to show that < z(é(w)). Letr be the rank function oiN,,. DefineCy, = ) and fori € [p] let

R; = C; \ C;_4. SinceC is a family of tight constraints, we have

l’(RZ) = T’(CZ) — T’(Ci_l) Vi € [p] (l)

BecauseR; C supp(zx), the left-hand side of{1) is strictly larger than zero. Rermore, the right-hand
side is integral and must therefore be at least one. HetlBe) > 1 for i € [p], which impliesz(d(v)) >
p 4
iz 2(R:) = p. O

Notice, that the above lemma implies that a basic solutido (LP1) has a support of size at most
3(]W| — 1), because of the following. We can assume that all edges thaiat in the support of are
deleted from the graph. Due to Lemia 6, at mp$t .,y z(6(w)) linearly independent constraints of the
polytopes{ Py, | w € W} can be tight with respect te, and sincer is in the spanning tree polytope of
H, this bound equaly_ .y (6(w)) = 2(|W| — 1). Furthermore, at mostV| — 1 linearly independent
constraints ofP,; are tight with respect ta due to uncrossing. This shows in particular that in the first
iteration of the algorithm, we can find a nodec W to which a type A degree constraint adaptation can be
applied, because

Y (6(w)] = 2(5(w)) = 2[F| = 2(|W| = 1) < 4(|W]| = 1),
weW
and hence there must be a nadec W with |6(w)| — z(d(w)) < 4.

However, in later iterations, the above reasoning alon@isnymore sufficient because many vertices

do not have degree constraints anymore. Still, by assurhatgib type B constraint adaptation is possible,



and using several ideas to obtain stronger sparsity, we 8teivwhe above approach of finding a good vertex
for a type A degree adaptation by an averaging argument cartbaded to a general iteration.

For the rest of this section, we consider an iteration of igerahm at step[(2d) with a current basic
solutionzx to (LP1), and assume thatl’| > 1, and that no type B degree adaptation can be aﬁ)lm
then show that there is a type A constraint adaptation thabegoerformed under these assumptions. This
implies that our algorithm never gets stuck, and hence gritsecorrectness.

Since we often deal with thepare1 — z(f) of an edgef € F, we use the notation = 1 — z.
Furthermore, we partitiorf” into the setsFy, Fy and Fy of edges that are contained M1 and 0 de-
gree constraints, respectively. Hence, at the first iematve haveF, = F. Our goal is to show that
Yowew 2(0(w) N Fy) = 22(F,) < 4]Y], whereY C W is the set of all nodes with 6(w) N F» # (0. By
an averaging argument this then implies that there is at t@@snodew € Y to which a type A constraint
adaptation can be applied. Notice that thelSetannot be empty (and hence also# ()): if F, = (), then
the currentL P1 corresponds to a matroid intersection problem since ewdgg & contained in at most one
degree constraints, and hence all degree constraints égethier a single matroid oveéf; in this casel. P1
is integral and a full spanning tree would have been corgdaatter sted (2b), which leads [id’| = 1 and
contradicts our assumptigi/| > 1.

Lemma?7. Let £ be a maximum family of linearly independent spanning treesiaints that are tight with
respect tor. Then
22(F3) <2|L]+2(]W| = 1) = 2(|Fo| + |F1) — 22(Fo).

Proof. We can rewrit&z(F») as follows by using the fact thai ') = |IW|—1 (because: is in the spanning
tree polytope offf).
22(Fy) = 22(F) — 2z(Fo) — 22(FY)

=2(|F| = 2(F)) — 22(Fo) — 22(F1) )

= 2|F| — 2(|W| — 1) — 22(Fo) — 22(F)
Using classical arguments we can bound the size of the suppor which is by assumption equal {&'|,
by the number of linearly independent tight constraintsnfrine spanning tree polytope and the degree
polytopesPy,, for w € W. In particularz is uniquely defined by the tight spanning tree constraihts
completed with some s&® of linearly independent degree constraints, and we h&Ve= |£| + |D|. The
degree constraint® can be partitioned int®,, for w € W, whereD,, are linearly independent constraints
of the matroid polytopd’y,, . By Lemmd6,|D,,| is bounded by the sum afover all edges id(w) that are
contained in the degree constraintiatWhen summing these bounds up overalE W, each edge it
is counted exactly twice, and each edgdinexactly once. Hence,

|D| < 22(Fy) + x(Fy) = 22(F) — x(Fy) — 2z(Fo) = 2(|W| — 1) — 2(F1) — 2x(Fp).
Using|F| = |£| + |D| and the above bound, we obtain frdnh (2)

22(Fy) <2|L] +2(|W| = 1) = 2(2(Fo) + 2(F1) + 22(Fp) + 2(F1))
=2|L] +2(|W[—1) = 2(|Fo| + [F1]) — 2z(F)),

where the last inequality follows from(U) + x(U) = |U| for anyU C F. O

The size of a familyZ of linearly independent tight spanning tree constraintseasily be bounded by
|W|—1 using the fact that one can assuh® be laminar by standard uncrossing arguments (acohtains

“Notice that the assumptigi’| > 1 is not redundant. Whereas we know that at the beginning oft¢nation|W| > 1 did
hold, this could have changed after contracting edges n(&i@).



no singleton sets). However, this result shows not to bexgtemough for our purposes. To strengthen this
bound we exploit the fact that if contains close tp1| — 1 sets, then there are many nodes W that are
“sandwiched” between two sets 6f i.e., there are two sefs,, Ly € £ with Ly = L U {w}, which in turn
impliesz(6(w) N E[L2]) = 1. Notice that for any degree two nodewhich is not in@, we haver(U) # 1
forall U C §(w). Hence, such a node cannot be “sandwiched” between twodjitning tree constraints,
and we expect that the more such nodes we have, the smalléf. i¥he following result quantifies this
observation. It is stated in the general context of a spgnimée polytope of a general connected graph (not
being linked to our degree-constrained problem).

Lemma8. Lety be a point in the spanning tree polytope for a given gréphk- (V, E), and let
S(G,y) ={veVI]o(v)] =2, yU)#1VU Cé(v)}.

Let £ C 2" be any linearly independent family of spanning tree comstsahat are tight with respect tg.
Then

el < V- 1- |3lsGl .

Proof. To simplify notation letS = S(G, y). By standard uncrossing arguments (see for exarnple [8]), we
can assume that is laminar. We first consider the case that there is d&set, with L C S. Let L be a
minimal set in£ with this property. Sincd. is a tight spanning tree constraint, we have EH%I[L] is in the
spanning tree polytope @¥[L], and hencey(6(v) N E[L]) > 1forv € L. AsL C S, we have|d(v)| = 2
andy(e) < 1forv € L ande € 6(v). This implies that every vertex ih must have both of its neighbors in
L to satisfyy(é(v) N E[L]) > 1. SinceG is connected, as we assumed that there is a point in the siganni
tree polytope of7, we must haved, = V' = S. FurthermoreV| > 3, because vertices ih have degree two.
Hence the claim trivially follows sincgl| = 1.

Now assume that there is no detc £ with L C 5. We show that there exists a getC S of size at
least|?| > 3|5, such that the laminar famil¢ = {L \ R | L € L} over the element¥’ \ R satisfies the
following:

i) Lr has no singleton sets,

i) |[Lgr| =|L], i.e., any two setd,q, Ly € L with Ly C Lo, satisfyL, \ L1 Z R.
Notice that this will imply the claim sinceCr| < |V \ R| — 1, becauseCr, is laminar without singleton
sets, and hende| = |Lx| < [V \ R|— 1 < |V|—1— $|S|. It remains to define the s& with the desired
properties. Fol. € L, letV;, C L be all vertices inL that are not contained in any sete £ with P C L.
For each seL € £, include an arbitrary set g[S NV |] elements ofS NV, in R. Since the set¥,
for L € £ are a partition of all vertice®’, we clearly haveR| > 1|5|. FurthermoreR satisfies the desired
properties as we show below.

i) Assume by sake of contradiction thif; contains a singleton set, i.e., there is a et £ with
|L\ R| = 1. We can assume thatis a minimal set inC. By assumption we have ¢ S, and sinceR C S,
the elementir \ R is notinS. Hence,R contains all elements N S, which is only possible ifLN S| = 1
and therefordL| = 2. However, this implies that there must be an edges of weighthetween the two
vertices inL, which contradicts the fact that one of those vertices iS.in

ii) Assume by contradiction that there are two skisL, € £ with L; C Lo that satisfyL, \ L; C R.
We can choosé,; and L, such that there is no séte £ with Ly C L C Ly. By choice ofR, this can only
happen ifL, \ L; contains exactly one vertexe S. This impliesy(d(v) N E[Ls]) = 1, which contradicts
the fact thaty € S. O

Lemmd 8 can easily be generalized to the subgraph of a giegrngf obtained by deleting the vertices
Q(G,y). This form of the lemma is more useful for our analysis beeaf®ur special treatment of vertices

in Q.
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Lemma9. Lety be a point in the spanning tree polytope of a given grépk (V, E) withy(e) # 1 Ve € E,
let @ = G[V \ Q(G,vy)], and lety’ be the projection ofy to the edges inG’. Let £ be any linearly
independent family of spanning tree constraintg-dhat are tight with respect tg. Then

1
€1 VI -1- |5IS(@ 1)

Proof. By standard uncrossing arguments, we can assumecltligta maximal laminar family of tight
spanning tree constraints. We prove the result by induaiothe number of elements @ = Q(G, y). If

Q@ = 0, then the result follows from Lemnia 8. Lete Q be a possible first element addedaluring the
iterative construction o), i.e.,y(d(¢)) = 1. This implies thafi” \ {¢} is a tight spanning tree constraint.
Let H = GV \ {¢}], yu = y\EW\{q}] andQp = Q(H,ym). SinceQy = Q \ {¢}, we can apply the
induction hypothesis to the graphi to obtain that any maximal familZ ; of linearly independent tight
spanning tree constraints # with respect toyy satisfies|/Cy| < |V \ {¢}| — 1 — [3|S(G".v')|]. The
claim follows by observing thaf = L5 U {V'} is a maximal family of tight spanning tree constraint<in
and hence

1
€= el + 12 V] - 1= | IS
]

Combining Lemma]9 with Lemmid 7 we obtain the following boundiere we usesS = S(H[W \

Q],x\F[W\Q}) to simplify the notation. To get rid of the rounding ghS| we use2|$|S|| > |S| — 1.

Corollary 10.
22(F) < 4(|W[—1) = 2(|Fo| + [F1]) — 22(Fp) — [S]+ 1.

The following lemma implies the correctness of our alganthWe recall that” C W is the set of all
nodesw € W such that (w) N Fy # 0.

Lemma 1l. There is a nodev € Y such that a type A constraint adaptation can be applied to

Proof. LetY = W \ Y. We will prove that
Y[ < 2(|Fol + |F1]) + 22(Fp) +1S]. ©)

Together with Corollary 10 this then impli€s(F;) < 4]|Y| — 3, which in turn implies by an averaging
argument that there is at least one node&’imo which a type A constraint adaptation can be applied. To
prove [3) we apply a fractional token counting argument: thansthat if we interpret the right-hand side
of @) as a (fractional) amount of tokens, then we can as$igset tokens to the vertices Yasuch that each
vertex inY gets at least tokens.

We think of the tokens corresponding2@ Fy |+ | F1 |) + 2z (F)) as residing at the endpoints of the edges
in Fy U Fy. Each edgef € Fj gets2 + 2z(f) tokens,1 + z(f) at each endpoint. Each eddec F; gets
1+ z(f) tokens at the endpoint which does not contgin its degree constraint, arld- z( f) tokens at the
other endpoint. The tokens assigned to the endpoints ofdifpesethus sum up (| Fy| + |F1|) + 22(Fp).

We start by assigning tokens to vertices(in By definition of the vertices i), we can order the
elements i = {q,...,q,} such that fori € [p], we havez(F,,) = 1 whereF,, = {{g;,v} € F | v €
W\ {q,...,qi-1}}. Sincez(F,,) = 1 and no edgef € F satisfiest(f) = 1 (such an edge would have
been contracted), we hayg),,| > 2. Each vertex; € @ gets all the tokens at both endpoints of the edges
in Fy,. Since|Fy,| > 2, ¢; receives indeed at least four tokens.

11



Let H' = (W', F') = H[W \ Q] be the induced subgraph over the vertités, @ , and letz’ = z| .
Notice thatz’ is in the spanning tree polytope &f’ since the set of edgdg C F that have at least one
endpoint in@ satisfyz(U) = |U|, and hence’(F') = |F'| — 1.

The remaining tokens are allocated as follows. Each modeY N W’ gets for every edgé € 65/ (w),
the tokens off at the endpoint atv. Furthermore, every node il gets an additional token from the term
|S|.

The attributed tokens clearly do not exceed the right-hadhel af (3). It remains to show that each node
w €Y N W' gets at least tokens. We distinguish the following three cases:u(iE S, (i) w ¢ S and
none of the edges;, (w) is contained in the degree constrainbaand (i) w ¢ S and at least one edge of
dr (w) is contained in the degree constraintiatNotice that the vertices considered in case (i) are prigcise
all vertices inH’ of degree two, because if there was a degree two vertexiV’ \ S, thenw would have
been included ir). Hence, all vertices considered in case (ii) or case (iNehdegree at leasgtin H'.

Case (i):w € S. Becausgdy(w)| = 2, we have that both edges i (w) are not contained in the
degree constraint at, since otherwise a type B degree adaptation could have legtorped atv. Hencew
receive2+x( f1)+x( f2) tokens from those two edges plus one token ffSimresulting in3+z( f1)+x( f2)
tokens. Since’ is in the spanning tree polytope &F, we haver(f;) + z(f2) = x(dg(w)) > 1, and thus
w receives at least tokens.

Case (ii): w ¢ S and none of the edges; (w) is contained in the degree constraint@t The total
number of tokens received hy thus equalsddy (w)| + z(0m (w)) > 3 + z (g (w)), since|dn (w)| >
3. The claim follows again by observing that is in the spanning tree polytope @', which implies
(0 (w)) > 1.

Case (iii): w ¢ S and at least one edge 6f;/(w) is contained in the degree constraintat Let U
be the set of all edges iy (w) that are contained in the degree constrainbatSince no type B degree
adaptation can be performedwatwe haveU| — z(U) > 4. However,|U| — z(U) is exactly the number of
tokens thatv receives from the edges n. Hence, at least tokens are assigned ta O

References

[1] N. Bansal, R. Khandekar, J. Kbnemann, V. Nagarajan, BnBeis. On generalizations of network
design problems with degree bounds. Rroceedings of Integer Programming and Combinatorial
Optimization (IPCO)pages 110-123, 2010.

[2] N.Bansal, R. Khandekar, and V. Nagarajan. Additive gnsges for degree-bounded directed network
design.SIAM Journal on Computing9(4):1413-1431, 2009.

[3] F. Bauer and A. Varma. Degree-constrained multicasiiingoint-to-point networks. IiProceedings
of the Fourteenth Annual Joint Conference of the IEEE Cosmpaihd Communication Societies (IN-
FOCOM) pages 369-376, 1995.

[4] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. A predabel approximation algorithm for
approximating the minimum-degree MST problem and its gaization to matroids. Theoretical
Computer Sciencel10:4489-4503, October 2009.

[5] K. Chaudhuri, S. Rao, S. Riesenfeld, and K. Talwar. Whatild Edmonds do? Augmenting paths and
witnesses for degree-bounded MSAdgorithmicg 55:157-189, May 2009.

[6] C. Chekuri, J. Vondrak, and R. Zenklusen. Dependendaarized rounding via exchange properties
of combinatorial structures. IRroceedings of the 51st IEEE Symposium on Foundations opGtem
Science (FOCSpages 575-584, 2010.

12



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

M. Furer and B. Raghavachari. Approximating the minimdegree Steiner Tree to within one of
optimal. Journal of Algorithms17(3):409-423, 1994.

M. X. Goemans. Minimum bounded degree spanning tree®raceedings of the 47th IEEE Sympo-
sium on Foundations of Computer Science (FQ@8yes 273-282, 2006.

K. Jain. A factor 2 approximation algorithm for the geakzed Steiner Network Problen€ombina-
torica, 21:39-60, 2001.

T. Kiraly, L. C. Lau, and M. Singh. Degree bounded matscand submodular flows. IRroceedings
of Integer Programming and Combinatorial Optimization @®), pages 259-272, 2008.

P. N. Klein, R. Krishnan, B. Raghavachari, and R. Ravpp#foximation algorithms for finding low-
degree subgraphdletworks 44:203-215, October 2004.

J. Kbnemann and R. Ravi. A matter of degree: Improvem@amation algorithms for degree-bounded
minimum spanning treesSIAM Journal on Computing1:1783—-1793, June 2002.

J. Kénemann and R. Ravi. Primal-dual meets local $eaapproximating MST’s with nonuniform
degree bounds. IRroceedings of the 35th Annual ACM Symposium on Theory opGiomy (STOC)
pages 389-395, 2003.

L. C. Lau, J. Naor, M. R. Salavatipour, and M. Singh. Salble network design with degree or order
constraints. InProceedings of the 39th Annual ACM Symposium on Theory opGiimy (STOC)
pages 651-660, 2007.

L. C. Lau and M. Singh. Additive approximation for bowttldegree survivable network design. In
Proceedings of the 40th Annual ACM Symposium on Theory opQtimg (STOC) pages 759-768,
2008.

B. RaghavachariAlgorithms for finding low degree structurgzages 266—295. PWS Publishing Co.,
Boston, MA, USA, 1997.

R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, Bn@. Hunt 1ll. Approximation algorithms
for degree-constrained minimum-cost network-design lerab. Algorithmicg 31(1):58-78, 2001.

M. Singh and L. C. Lau. Approximating minimum boundedycee spanning trees to within one of
optimal. InProceedings of the 39th Annual ACM Symposium on Theory opQamy (STOC)pages
661-670, 2007.

13



	1 Introduction
	2 The algorithm
	3 Analysis of the algorithm

