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A new approach to the orientation

of random hypergraphs∗

M. Lelarge†

Abstract

A h-uniform hypergraph H = (V,E) is called (ℓ, k)-orientable if there exists an assignment of
each hyperedge e ∈ E to exactly ℓ of its vertices v ∈ e such that no vertex is assigned more than k

hyperedges. Let Hn,m,h be a hypergraph, drawn uniformly at random from the set of all h-uniform
hypergraphs with n vertices and m edges. In this paper, we determine the threshold of the existence
of a (ℓ, k)-orientation of Hn,m,h for k ≥ 1 and h > ℓ ≥ 1, extending recent results motivated by
applications such as cuckoo hashing or load balancing with guaranteed maximum load. Our proof
combines the local weak convergence of sparse graphs and a careful analysis of a Gibbs measure on
spanning subgraphs with degree constraints. It allows us to deal with a much broader class than the
uniform hypergraphs.

Keywords: hashing, local weak convergence, Gibbs measure.

AMS Subject Headings: 68Q87, 68P05, 60C99.

1 Introduction

Motivated by load balancing problems [27], Gao and Wormald [17] introduced the following generalisation
to random hypergraphs of a commonly studied orientation problem on graphs. A h-uniform hypergraph
is a hypergraph such that all its hyperedges have size h. Let h > ℓ be two given positive integers. A
hyperedge is said to be ℓ-oriented if exactly ℓ distinct vertices in it are marked with positive signs with
respect to the hyperedge. The indegree of a vertex is the number of positive signs it receives. Let k be a
positive integer. A (ℓ, k)-orientation of an h-uniform hypergraph is a ℓ-orientation of all hyperedges such
that each vertex has indegree at most k. If such a (ℓ, k)-orientation exists, we say that the hypergraph
is (ℓ, k)-orientable. We consider Gn,m,h the probability space of the set of all h-uniform hypergraphs on
n vertices and m hyperedges with the uniform distribution. A random h-uniform hypergraph is then
denoted by Hn,m,h. We are now ready to state our main result in this framework:

Theorem 1. Let Q(x, y) = e−x
∑

j≥y
xj

j! and Bin(n, p) denote a binomial random variable with param-

eters n ∈ N and p ∈ [0, 1], i.e. P(Bin(n, p) = k) =
(
n
k

)
pk(1 − p)n−k. For integers h > ℓ ≥ 1, k ≥ 1 with

max(h− ℓ, k) ≥ 2, let ξ∗ be the unique positive solution to

hk = ξ∗
E [max (ℓ− Bin(h, 1−Q(ξ∗, k)), 0)]

Q(ξ∗, k + 1)P (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ)
.

Let

c∗h,ℓ,k =
ξ∗

hP (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ)
.

∗A preliminary version of this paper appeared in [22].
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Then

lim
n→∞

P
(
Hn,⌊cn⌋,h is (ℓ, k)-orientable

)
=

{
0 if c > c∗h,ℓ,k,

1 if c < c∗h,ℓ,k.

The characterisation of the threshold c∗h,k,ℓ in [17] (for k sufficiently large) involves the solution of a
differential equation system which is rather complicated (according to the authors themselves) and does
not allow to get explicit values for c∗h,k,ℓ. We believe that our method of proof and the characterisation
of the threshold in Theorem 1 is much simpler. Note that for the case k = 1 and ℓ = h− 1, the threshold
for orientablity is equal to the threshold for the apparition of a giant component so that we have

c∗h,h−1,1 =
1

h(h− 1)
.

Hence our result allows to compute the orientation threshold on the whole range of parameters k ≥ 1 and

h > ℓ ≥ 1. To illustrate our result, we computed numerical values of the critical load
ℓc∗h,ℓ,k

k for different
values of the parameters. First when ℓ and k vary while h = 4 is fixed:

ℓ/k 1 2 3 4 5 6
1 0.9767701648 0.9982414840 0.9997951433 0.9999720662 0.9999958680 0.9999993570
2 0.7596968140 0.9266442602 0.9676950000 0.9834603210 0.9908051880 0.9946173050
3 0.0833333333 0.6612827547 0.7892143791 0.8525202000 0.8898186996 0.9141344769

Then when h and k vary while ℓ = 2 is fixed:

h/k 1 2 3 4 5 6
5 0.8833250296 0.9730747564 0.9909792334 0.9964896324 0.9985201920 0.9993444714
6 0.9378552354 0.9894605852 0.9974188480 0.9992698236 0.9997769140 0.9999284650
7 0.9652101902 0.9957801256 0.9992689074 0.9998543770 0.9999687056 0.9999929390

We should also stress that our result (and our proof) unifies various results available for different
ranges of the parameters.

The case ℓ = 1 has attracted a lot of attention and can be described in different terminologies. In
the balanced allocation paradigm [4], we have m balls and n bins. To each ball, two bins are assigned at
random. Each ball is to be placed in one of the two bins assigned to it; the aim is to keep the maximal
load small. Another formulation of the same problem can be given in data structure language: in the
cuckoo hashing method [24], each one of m keys is assigned two locations in a hash table of size n and
can be stored in one of the two locations. If each location has capacity one (or in the balanced allocation,
maximal load cannot exceed one), the offline version of this problem corresponds exactly to the standard
1-orientability of the classical random graph Gn,m drawn uniformly from the set of all graphs with n
vertices and m edges. To see the connection, associate to each location a vertex of the graph and to each
key an edge of the graph: the orientation of the edges correspond to the allocation. It is easily seen in
this case that we must have m < n/2 in order for Gn,m to be 1-orientable. An interesting generalisation
of this problem considers bins/locations of capacity k ≥ 1 [12]. This generalisation (with the number
of choices per ball/key still equals to 2) corresponds to the (1, k)-orientability described above for the
random graph Gn,m = Hn,m,2. For k ≥ 2, the sharp threshold for the k-orientability of the random
graph Gn,m, corresponding to c∗2,1,k in our Theorem 1 was found simultaneously by Cain, Sanders and
Wormald [9] and Fernholz and Ramachandran [13]. Another generalisation allows for h > 2 choices
of bins/locations. In this case, the graph associated to the problem is a random h-hypergraph. The
(1, 1)-orientability threshold of h-uniform random hypergraph with h ≥ 3, corresponding to our c∗h,1,1 in
Theorem 1, has been independently computed by Dietzfelbinger et al. [11], Fountoulakis and Panagiotou
[15] and Frieze and Melsted [16]. This corresponds to a case where bins/locations have unit capacity.
Recently, the extension to capacity k ≥ 1 has been solved by Fountoulakis, Kosha and Panagiotou [14]
for any h ≥ 3 (refining results of [17] for this particular case). Our derivation of c∗h,1,k agrees with [14]. In
the generalisation proposed in [17], each batch of ℓ balls has h > ℓ choices of bins and each of the n bins
has a capacity k. Our Theorem 1 gives the threshold ch,ℓ,k such that, as n goes to infinity: if n/m ≤ c
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with c < ch,ℓ,k then there exists with high probability an allocation of the m balls such that the maximal
capacity of a bin is one; and if n/m ≥ c with c > ch,ℓ,k then such allocation does not exist with high
probability.

Our approach is completely different form the works cited above. We consider the incidence graph of
the h-uniform hypergraph H , which is a bipartite graph G = (A∪B,E) where A is the set of hyperedges,
i.e. are vertices in G with degree h and B is the set of vertices ofH . We then consider spanning subgraphs
S = (A ∪B,F ) of G with degree constraints: any vertex from A must have degree at most ℓ in S while
any vertex from B must have degree at most k in S. Let the size of such a spanning subgraph be the
number of edges |F | in S. The following claim is easy to check and will be the basis of our approach:
H is (ℓ, k)-orientable if and only if all vertices in A have degree ℓ in any maximum spanning subgraph
with degree constraints (ℓ, k). In this case, the size of any maximum spanning subgraph is ℓ|A|. Indeed
in the case (ℓ, k) = (1, 1) a spanning subgraph with degree constraints (1, 1) is simply a matching of G.
Based on this observation, Bordenave, Salez and the author already derived the value of c∗h,1,1 in [7]. The
analysis of maximum spanning subgraphs with general degree constraints ℓ and k requires a significant
extension of the results in [7]. Wagner [28] and, more closely related to our work, Salez [26] study the
generating polynomial for spanning subgraphs with degree constraints. It follows from [28] that for a
sequence of graphs whose size goes to infinity and having a random weak limit (see definition in the sequel
or [5], [3]), the rescaled size of a maximum spanning subgraph converges. In the case, where the random
weak limit is a Galton Watson tree, this limit is characterised in [26] and computed in the particular
case of constant degree constraint. In this work, we are able to simplify the characterisation of [26] in
our Proposition 5 and to connect it to a simple message-passing algorithm. It allows us to bypass the
resolution of a difficult recursive distributional equation (which was a key step in [7] or [26]). It should
perhaps be noted that the result in this paper is stronger than [9, 13, 11, 15, 14, 17] in the sense that it
gives the size of the largest spanning subgraph for all values of the parameter c > 0. We state this result
explicitly in the following theorem:

Theorem 2. Denote by Mℓ,k(H) the size of a maximum spanning subgraph of the bipartite graph H with
degree constraints (ℓ, k). With the same notation as in Theorem 1 and for any integers h > ℓ ≥ 1 and
k ≥ 1, we define the function of (q, c) ∈ [0, 1]× R+:

Fℓ,k(q, c) = E [min (ℓ,Bin(h, 1−Q(chq, k)))] +
kQ(chq, k + 1)

c
.

Then we have for any c > 0,

lim
n→∞

1

cn
Mℓ,k(Hn,⌊cn⌋,h) = inf

q∈[0,1]
Fℓ,k(q, c).

It follows from calculations made in Section 6 that for c < c∗h,ℓ,k, we have infq∈[0,1] Fℓ,k(q, c) = ℓ
while for c > c∗h,ℓ,k, we have infq∈[0,1] Fℓ,k(q, c) < ℓ. In particular, for c > c∗h,ℓ,k, Theorem 2 gives
the asymptotic fraction for the number of balls/keys that cannot be stored in the system. A similar
statement was proved in [16] in the particular case of ℓ = k = 1 corresponding to spanning subgraphs
being matchings. In the sequel, we will give a more general statement of this result (see Theorem 3) which
allows to deal with a larger family of random hypergraphs. Indeed, we believe that this approach will
allow to deal with more complex situations where degree constraints could be random and/or asymptotic
degree distributions could be changed and can lead to efficient load balancing algorithms. We refer to
[21] where such extensions are explored.

The rest of this paper is organised as follows. We give an overview of our proof in Section 2. We start
with a careful analysis of a Boltzmann-Gibbs distribution on spanning subgraphs with degree constraints
in Section 3 and show some crucial monotonicity of the model. We then give an explicit characterisation
of the size of a maximum spanning subgraph when the underlying graph is a finite tree and are able to
extend it to a possibly infinite tree using the important notion of unimodularity [2]. In Section 5, we
apply these general results to the particular case where the underlying tree is a branching process. This
allows us to derive the asymptotic for the size of a maximum spanning subgraph for a converging sequence
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of bipartite graphs. In Section 6, we apply our results for the particular sequence of graph Hn,⌊cn⌋,h and
derive Theorem 1.

2 Gibbs measures and overview of the proof

We consider a finite simple graph G = (V,E) with a vector of NV denoted by w = (wv, v ∈ V ) and
called the vector of (degree) constraints. We are interested in spanning subgraphs (V, F ) with degree
constraints given by the vector w. Each such subgraph is determined by its edge-set F ⊆ E encoded by
the vector B = (Be, e ∈ E) ∈ {0, 1}E defined by Be = 1 if and only if e ∈ F . We say that a spanning
subgraph B satisfies the degree constraints or is admissible if for all v ∈ V , we have

∑
e∈∂v Be ≤ wv,

where ∂v denotes the set of incident edges in G to v. We introduce the family of probability distributions
on the set of admissible spanning subgraphs parametrised by a parameter z > 0:

µz
G(B) =

z
∑

e Be

PG(z)
, (1)

where PG(z) =
∑

B
z
∑

e
Be
∏

v∈V 1(
∑

e∈∂v Be ≤ wv). We also define the size of the spanning subgraph
by |F | =

∑
eBe and denote the maximum size by M(G) = max{

∑
e Be : B admissible}. Those spanning

subgraphs which achieve this maximum are called maximum spanning subgraphs. For any finite graph,
when z tends to infinity, the distribution µz

G converges to the uniform distribution over maximum spanning
subgraphs. For an admissible spanning subgraph, the degree of v in the subgraph is simply

∑
e∈∂v Be.

By linearity of expectation, the mean degree of v under the law µz
G is Dz

v :=
∑

e∈∂v µ
z
G (Be = 1) so that

we have

M(G) =
1

2

∑

v∈V

lim
z→∞

Dz
v. (2)

The main part of our work will be devoted to the computation of the limit on the right-hand side of
(2). In the remaining part of this section, we give an informal description of the main steps. The reader
interested in the mathematical proof can skip the rest of this section and proceeds directly to Section 3.

Recall from the Introduction that we see hypergraph H as bipartite graph G = (A ∪ B,E). Then,
an hypergraph is (ℓ, k)-orientable if and only if all vertices in A have degree ℓ in any maximum spanning
subgraph of the corresponding bipartite graph with degree constraints (ℓ, k). Indeed in this case, we
have for any v ∈ A, limz→∞ Dz

v = ℓ so that the size of a maximum spanning subgraph is M(G) = ℓ|A|.

Our main result will show that limn→∞
M(Gn(c))

|An|
= infq Fℓ,k(q, c), where Gn(c) = (An ∪ Bn, En) is the

bipartite graph associated to Hn,⌊cn⌋,h and the function Fℓ,k(q, c) is defined in Theorem 2. In particular,
when infq Fℓ,k(q, c) < ℓ, our result allows us to conclude that the hypergraph is not (ℓ, k)-orientable for
such values of c. In order to get the second half of the Theorem 1, when infq Fℓ,k(q, c) = ℓ, we need to
show that with high probability (as n tends to infinity) there are actually no vertices in An with degree
less than ℓ in a maximum spanning subgraph (since the limit ensures only that the number of such
vertices is o(n)). For this part of the proof, we use a density argument which relies on a combinatorial
argument of [18]. This is done in Section 6.

We now concentrate on the computation of the limit limn→∞
M(Gn(c))

|An|
using techniques from the

objective method developed by Aldous and Steele [3]. A fundamental ingredient of the proof is the
fact that the bipartite graphs associated to h-uniform hypergraphs considered in this paper, i.e. with n
vertices and cn hyperedges are locally tree-like: with high probability, there is no cycle in a ball (of fixed
radius) around a vertex chosen at random. It is then instructive to study maximum spanning subgraphs
when the underlying graph is a tree. Let first study the Gibbs measures defined by (1) in the limit z → ∞
in order to analyse maximum spanning subgraphs. When the underlying graph is a finite tree, we can
use a more direct and algorithmic way that we now describe.
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To study the (ℓ, k)-orientability of the hypergraph H associated to the bipartite graph G, the vector
of degree constraints w should be chosen such that wv = ℓ for v ∈ A and wv = k for v ∈ B. For
simplicity, we assume here that the vector of degree constraints is constant so that all vertices have the
same degree constraint say w ≥ 1. Consider now the following message-passing algorithm forwarding
messages in {0, 1} on the oriented edges of the underlying tree G as follows: at each round, each oriented
edge forwards a message, hence two messages are sent on each edge (one in each direction) at each round.
The message passed on the oriented edge −→e = (u, v) is 0 if the sum of the incoming messages to u from
neighbours different from v in previous round is at least w and the message is 1 otherwise, i.e. if the sum

of the incoming messages is strictly less than w. Let Ik ∈ {0, 1}
−→
E be the vector describing the messages

sent on the oriented edges in
−→
E at the k-th round of the algorithm. Denote by PG the action of the

algorithm on the messages in one round so that Ik+1 = PG(Ik). Assume that the algorithm is initialised
with all messages set to one: I0 = 1. Figure 1 shows an example with w = 2 for the messages exchanged
for the three first rounds. In Figure 1, iterating a fourth time the algorithm would again give I3. Indeed,

0
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0 0
0

0

0

0

0

1

1

1

I1 = PG(1)

1

1

1

1 0
0

1

1

1

1

1

1

1

1

I2 = PG(I1)

0

1

1

0

1 0
0

1

0

0

1

1

1

1

I3 = PG ◦ PG(I1)

Figure 1: Iterating PG on a finite tree (with wv = 2).

it is easy to see that the algorithm will converge on any finite tree after a number of steps equals to
at most the diameter of the tree, whatever the initial condition. Hence the messages of the algorithm

converge to a vector I∗ = (I∗−→e ,
−→e ∈

−→
E ) solving the fixed-point equation I∗ = PG(I

∗) and the size of a
maximum spanning subgraph is given by

1

2

∑

v∈V


2w1


 ∑

−→e ∈∂v

I∗−→e ≥ w + 1


+ 1


 ∑

−→e ∈∂v

I∗−→e ≤ w


 ∑

−→e ∈∂v

I∗−→e


 , (3)

where ∂v is the set of oriented edges toward v. For example, one can check on Figure 1 using I3 = I∗

that the formula given by (3) equals 5 which is the size of a maximum spanning subgraph.

Proving the correctness of the algorithm and of the formula (3) on finite trees is simple once the
following observations have been made:

• a vertex v such that
∑

−→e ∈∂v I
∗
−→e

≥ w + 1, will have degree w in any maximum spanning subgraph
and all messages in I∗ sent by v will be zero.

• an edge (u, v) such that I∗u→v = I∗v→u = 1 will be covered (i.e. with B(u,v) = 1) by any maximum
spanning subgraph.
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• an edge (u, v) such that I∗u→v = I∗v→u = 0 will never be covered (i.e. with B(u,v) = 0) in any
maximum spanning subgraph.

Note that the correctness of the algorithm is ensured for trees only, but the definition of the algorithm
does not require the graph to be a tree. It makes only local computations and can be used on any graph
(without guarantee of converging and even in this case without guarantee of correctness). Since the
bipartite graphs associated to Hn,⌊cn⌋,h are not trees but are locally tree like, it is tempting to use the
algorithm directly on these graphs. It turns out that for low values of c, the algorithm will converge and
will also be correct (with high probability). This is not a surprise since for c < 1/h, the random graph
is essentially a collection of small tree components. It turns out that the algorithm allows to compute
the size of a maximum spanning subgraph for values of c above 1/h but it breaks down at some higher
value of c, indeed exactly when the (ℓ, k+1)-core as defined in [17] appears. We did not try to make this
claim rigorous as it is not required for our analysis. In the particular case where h = 2 and ℓ = k = 1
(i.e. wv = 1 for all vertices v), our problem reduces to the problem of maximum matching in Erdős-Rényi
random graphs and our claim follows from the analysis of Karp and Sipser [19]. More precisely, the greedy
algorithm described above corresponds in this case to the standard leaf-removal algorithm studied in [19]
(see also Proposition 12 in [8] and the Appendix of [7]). The (1, 1)-core is simply called the core in these
references and it appears if the mean degree is above e. If there exists a (ℓ, k+1)-core, the intuition is as
follows: if we approximate the graph by a branching process and run the algorithm on this tree starting
from level k from a root, the influence of the boundary conditions on the value given by the algorithm
at the root is positive as we let k tends to infinity. This translates into the fact that on an infinite tree,
there might exist several solutions to the fixed-point equation I = PG(I). It is then natural to ask which
one is associated to the large n limit maximum spanning subgraphs. From an algorithmic viewpoint,
there is ’no correlation decay’ and the computations made by the algorithm is not anymore local.

In order to bypass this absence of ’correlation decay’, we borrow ideas from statistical physics by
introducing the Gibbs measures µz

G defined in (1) parametrised by a parameter z > 0 (usually called the
activity or the fugacity) [10]. Informally, the introduction of this parameter z will allow us to capture
sufficient additional information on our problem in order to identify the ’right’ solution to the fixed-point
equation I = PG(I), when we let z goes to infinity. Our first step in the analysis of these measures is to
derive a message-passing algorithm allowing to compute the mean degreeDz

v of any vertex v in a spanning
subgraph taken at random according to the probability distribution µz

G. We will proceed by first defining
the local computations required at each node and we call them the local operators. We use these building
blocks to define a message-passing algorithm which is valid on any finite tree. In particular, we show that
as z tends to infinity, the dynamic of the algorithm becomes exactly the one described previously in this
section. As a by-product, we prove the validity of (3), see Proposition 3. The advantage of considering
these algorithms with z < ∞ is that we are able to define them properly on infinite graphs if these
graphs have a natural stationarity property called unimodularity [2]. Section 3.3 presents this notion
in details and shows how it is used in our framework. Proposition 4 shows that ’the message-passing
algorithm converges to a unique fixed point for any z < ∞’. In other words, Proposition 4 shows that
for any z < ∞, there is ’correlation decay’. In the limit z = ∞, the algorithm may ’have more than
one fixed-point’ (corresponding to the absence of correlation decay mentioned above), but Proposition 5
allows to select the ’valid’ fixed-point which gives the mean degree of a vertex ’picked at random’ in a
’maximum’ spanning subgraph of a possibly infinite graph. The notion of unimodularity is a key concept
in making these statements rigorous. This is the price to pay in order to work directly with the infinite,
probabilistic object obtained as the limit of our finite problem as n tends to infinity. The reward of this
objective method [3] is that in our case, this infinite object with fixed distributional properties is simple
to analyse (see Section 5) and captures all the necessary information on the asymptotic behaviour of the
original sequence in order to compute the limit (2).
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3 Analysis of Gibbs measures

This section is devoted to the computation of the limit appearing on the right-hand side of (2). We first
deal with the particular case where G is a star (i.e. a tree with one internal node and several leaves)
then we show that the computation can be done recursively on a finite tree. We also show how these
recursions can be extended to possibly infinite unimodular networks (defined in the sequel).

3.1 Local operators

In this section, we define local operators associated to the degree constraints defining an admissible
spanning subgraph. In particular, the set E used in this section will be interpreted later as the set of
edges incident to a given vertex.

Let E be a finite set of elements e and Y = (Ye, e ∈ E) ∈ [0,∞)E . We define a probability measure
µ on {0, 1}E as follows: the binary random variables Be with e ∈ E are independent Bernoulli random
variables with µ(Be = 1) = Ye

1+Ye
∈ [0, 1). For a given integer w, we will be mainly interested in the

measure obtained from µ by conditioning on
∑

e∈E Be ≤ w and we denote it by µ. Simple calculations
show that for any (η(e), e ∈ E) ∈ {0, 1}E such that

∑
e∈E η(e) ≤ w, we have

µ (Be = η(e) : ∀e ∈ E) := µ

(
Be = η(e) : ∀e ∈ E

∣∣∣∣∣
∑

e∈E

Be ≤ w

)
=

∏
e∈E Y

η(e)
e∑

S⊂E,|S|≤w YS
,

where for any set S ⊂ E, YS is a convenient notation for YS :=
∏

e∈S Ye and Y∅ = 1 and |S| is the
number of elements in S. Note that with Ye = z for all e, we recover (1) for a simple star graph, where
all edges have exactly one node in common with associated degree constraint w and all other nodes have
constraints larger than one.

For a given e ∈ E, we introduce the following notations:

µ (Be = 1) = µ

(
Be = 1

∣∣∣∣∣
∑

e∈E

Be ≤ w

)
=

YeRe(Y)

1 + YeRe(Y)
,

where (we use the notation E\e for E\{e}):

Re(Y) :=

∑
S⊂E\e, |S|≤w−1Y

S

∑
S⊂E\e, |S|≤w YS

≤ 1. (4)

Note in particular that the function Y 7→ Re(Y) depends only on the components Yℓ with ℓ 6= e.

We also define

D(Y) :=
∑

e∈E

µ

(
Be = 1

∣∣∣∣∣
∑

e∈E

Be ≤ w

)
=
∑

e∈E

YeRe(Y)

1 + YeRe(Y)
.

With the interpretation given above of the star graph with all Ye = z, D(Y) is simply the mean degree
of the central node under the probability distribution (1).

The following proposition shows crucial monotonicity properties of the functions introduced above. It
follows the argument in [26] (see Lemma 1 and 2) using results from the theory of negative dependence
in [25].

Proposition 1. The mapping Re : [0,∞)E\e → (0, 1] is non-increasing in each variable. The mapping
D : [0,∞)E → [0, |E|) is strictly increasing in each variable. The mapping z ∈ [0,∞) 7→ zRe(zX) (where
zX denotes the vector with entries zXe) is strictly increasing if X > 0.
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Proof. From Theorem 2.7 in [25], we know that the measure µ is negatively correlated: for e 6= f ,

µ(Be = 1, Bf = 1) ≤ µ(Be = 1)µ(Bf = 1).

This result directly gives the first point of the proposition since we have:

∂Re(Y)

∂Yf
=

∑
S⊂E\{e,f}, |S|≤w−2 Y

S

∑
S⊂E\{e}, |S|≤w Y S

−

(∑
S⊂E\{e}, |S|≤w−1 Y

S
)(∑

S⊂E\{e,f}, |S|≤w−1 Y
S
)

(∑
S⊂E\{e}, |S|≤w Y S

)2

=
µ(Be = 0)µ(Be = 1, Bf = 1)− µ(Be = 1)µ(Be = 0, Bf = 1)

YeYfµ(Be = 0)2

=
µ(Be = 1, Bf = 1)− µ(Be = 1)µ(Bf = 1)

YeYfµ(Be = 0)2
≤ 0.

For the second point, we compute the derivative of D as follows:

∂D(Y)

∂Yf
=

Rf (Y)

(1 + YfRf )2
+
∑

e∈E\f

Ye

(1 + YeRe(Y))2
∂Re

∂Yf
(Y)

=
1

Yf

∑

e∈E

(µ(Be = 1, Bf = 1)− µ(Be = 1)µ(Bf = 1)) .

We need to prove that this last quantity is positive. Let µk denote the law µ conditioned on
∑

e∈E Be = k.
By Theorem 2.7 in [25], this measure is still negative correlated so that for e 6= f , we have:

µk(Be = 1, Bf = 0) = µk(Be = 1)− µk(Be = 1, Bf = 1) ≥ µk(Be = 1)µk(Bf = 0).

In particular, we get

µk(Be = 1|Bf = 0) ≥ µk(Be = 1) ≥ µk(Be = 1|Bf = 1).

Add an extra variable Bf∗ , so that µk(Be = 1|Bf∗ = 0) = µ
(
Be = 1

∣∣∣
∑

f∈E Bf = k
)

and µk(Be =

1|Bf∗ = 1) = µ
(
Be = 1

∣∣∣
∑

f∈E Bf = k − 1
)
. Hence we proved

µ


Be = 1

∣∣∣∣∣∣

∑

f∈E

Bf = k


 ≥ µ


Be = 1

∣∣∣∣∣∣

∑

f∈E

Bf = k − 1


 .

Denoting ak = µ
(
Be = 1,

∑
f∈E Bf = k

)
and bk = µ

(∑
f∈E Bf = k

)
, previous inequality shows that

ak

bk
is non-decreasing in k so that for 1 ≤ k ≤ w, we have

∑
j≤k−1

aj
∑

j≤k−1
bj

≤ ak

bk
≤

∑
w≥j≥k aj

∑
w≥j≥k bj

which gives

µ


Be = 1

∣∣∣∣∣∣

∑

f∈E

Bf ≤ k − 1


 ≤ µ


Be = 1

∣∣∣∣∣∣

∑

f∈E

Bf ≥ k


 ,
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so that we get

µ


Be = 1,

∑

f∈E

Bf ≥ k




1− µ


∑

f∈E

Bf ≥ k




 ≥ µ


∑

f∈E

Bf ≥ k


µ


Be = 1,

∑

f∈E

Bf ≤ k − 1




µ


Be = 1,

∑

f∈E

Bf ≥ k


 ≥ µ



∑

f∈E

Bf ≥ k


µ (Be = 1)

µ


Be = 1,

∑

f∈E

Bf ≥ k


 (1− µ (Be = 1)) ≥ µ



∑

f∈E

Bf ≥ k, Be = 0


µ (Be = 1)

µ



∑

f∈E

Bf ≥ k

∣∣∣∣∣∣
Be = 1


 ≥ µ



∑

f∈E

Bf ≥ k

∣∣∣∣∣∣
Be = 0


 ,

in particular, we get µ
(∑

f∈E Bf ≥ k
∣∣∣Be = 1

)
≥ µ

(∑
f∈E Bf ≥ k

)
. Note that for k = 0, the inequality

is strict so that summing over k, we get

∑

f∈E

µ(Bf = 1|Be = 1) >
∑

f∈E

µ(Bf = 1),

which concludes the proof for D. Finally, we compute:

∂zRe(zX)

∂z
= Re(zX) + z

∑

f∈E\e

Xf
∂Re(zX)

∂Xf

=
µz(Be = 1)

zXeµ
z(Be = 0)

+
∑

f∈E\e

µz(Be = 1, Bf = 1)− µz(Be = 1)µz(Bf = 1)

zXeµ
z(Be = 0)2

where µz is the conditioned measure obtained with parameter Y = zX. Then, we have

∂zRe(zX)

∂z
=

1

zXeµ
z(Be = 0)2


∑

f∈E

µz(Bf = 1, Be = 1)− µz(Bf = 1)µz(Be = 1)


 .

It follows again from Theorem 2.7 in [25] that µz is still negatively correlated (stability under external
fields) so that previous calculation is still valid and this concludes the proof.

In what follows, we will need to consider the extension of previous mappings in order to cover the
case Ye = ∞. We now consider Y ∈ [0,∞]E . Let E′(Y) ⊂ E be the set of elements e such that Ye = ∞.
We now show that it is possible to extend continuously the mappings Re and D. To start, it is easy to
check that for any extension of µ(.), we must have:

• if |E′(Y)| ≥ w, then
∑

e∈E′(Y) µ (Be = 1) = w, so that ∀e /∈ E′(Y), we have for any Ye ≥ 0,

µ(Be = 0) = 1;

• if |E′(Y)| < w, then for any Ye ≥ 0 with e /∈ E′(Y), we have for any (η(e), e ∈ E) ∈ {0, 1}E,

µ (Be = η(e) : e ∈ E) = 1




∏

e∈E′(Y)

η(e) = 1




∏
e∈E\E′(Y) Y

η(e)
e∑

S⊂E\E′(Y),|S|≤w−|E′(Y)| Y
S
. (5)

This simple fact allows to extend the mapping Re as follows:
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Lemma 1. We define the mapping Re : [0,∞]E\e → [0, 1] defined by (4) on [0,∞)E and on [0,∞]E\e\[0,∞)E\e,
we let E′

e(Y) = {f ∈ E\e, Yf = ∞} and define Re by

• if |E′
e(Y)| < w, then

Re(Y) :=

∑
S⊂E\E′

e(Y)∪{e}, |S|≤w−|E′
e(Y)|−1 Y

S

∑
S⊂E\E′

e(Y)∪{e}, |S|≤w−|E′
e(Y)| Y

S
∈ (0, 1].

• if |E′
e(Y)| ≥ w, then Re(Y) = 0.

In particular, we have

Re(Y) = 0 ⇔
∑

f∈E\e

1(Yf = ∞) ≥ w. (6)

The mapping Re is continuous.

Proof. If |E′
e(Y)| ≥ w, then we have for all Ye > 0, µ(Be = 0) = 1

1+YeRe(Y) = 1 so that Re(Y) = 0.

If |E′
e(Y)| < w, then from (5) we have for all Ye ∈ (0,∞),

µ(Be = 0) =
∑

U⊂E\E′(Y), |U|≤w−|E′(Y)|, e/∈U

YU

∑
S⊂E\E′(Y), |S|≤w−|E′(Y)| Y

S

=

∑
S⊂E\E′

e(Y)∪{e}, |S|≤w−|E′
e(Y)|Y

S

∑
S⊂E\E′

e(Y)∪{e}, |S|≤w−|E′
e(Y)| Y

S + Ye

∑
S⊂E\E′

e(Y)∪{e}, |S|≤w−|E′
e(Y)|−1 Y

S
.

And the lemma follows since µ(Be = 0) = 1
1+YeRe(Y) .

It is also possible to extend the mapping D as follows:

Lemma 2. The mapping D : [0,∞]E → [0, |E|] defined by

D(Y) =
∑

e∈E

YeRe(Y)

1 + YeRe(Y)
1(Ye < ∞) + w ∧

∑

e∈E

1 (Ye = ∞) ,

is continuous.

Proof. Since Re(Y) ∈ [0, 1], we need only to deal with the case where there exists an element e with
Ye = ∞ andRe(Y) = 0. In this case we have

∑
f∈E\e 1(Yf = ∞) ≥ w, so that E′(Y) = {f ∈ E, Yf = ∞}

is such that |E′(Y)| ≥ w + 1 so that Rf (Y) = 0 for all f ∈ E. In particular, we have

∑

e∈E

YeRe(Y)

1 + YeRe(Y)
1(Ye < ∞) = 0 and,

D(Y) =
∑

e∈E

YeRe(Y)

1 + YeRe(Y)
=

∑

e∈E

YeRe(Y)

1 + YeRe(Y)
1(Ye = ∞) =

∑

e∈E′(Y)

µ(Be) = w,

and the lemma follows.

A third operator will be important in the sequel. By Proposition 1, we can define for X ∈ (0, 1]E:

Qe(X) = lim
z→∞

↑ zRe(zX) =

∑
S⊂E\e, |S|=w−1X

S

∑
S⊂E\e, |S|=w XS

.
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Since the mapping (z,X) ∈ (0,∞)× (0, 1]E 7→ zRe(zX) is non-decreasing in z and non-increasing in
X, we can extend the mapping Qe : [0, 1]

E → [0,∞] continuously by,

Qe(X) = ∞ ⇔
∑

f∈E\e

1(Xf > 0) < w. (7)

Lemma 3. The mapping Qe : [0, 1]
E → [0,∞] is non-increasing in X and for any X ∈ [0, 1]E, we have

∑

e∈E

XeQe(X)

1 +XeQe(X)
1(Qe(X) < ∞) = w1

(
∑

e∈E

1(Xe > 0) ≥ w + 1

)
.

Proof. If ∀e, either Qe(X) = ∞, or Xe = 0, then the left-hand side is 0 and either there exists e such
that Qe(X) = ∞, so that by (7) the right-hand side also equals 0, or for all e, Qe(X) < ∞ and Xe = 0,
in which case

∑
e∈E 1(Xe > 0) = 0, so that the right-hand side also equals 0. Conversely, if there exists

e such that Qe(X) < ∞ and Xe > 0, then we have
∑

f∈E 1(Xf > 0) ≥ w + 1 so that Qf (X) < ∞ for all
f ∈ E. Hence we have

∑

e∈E

XeQe(X)

1 +XeQe(X)
1(Qe(X) < ∞) = 1

(
∑

e∈E

1(Xe > 0) ≥ w + 1

)
∑

e∈E

XeQe(X)

1 +XeQe(X)

= 1

(
∑

e∈E

1(Xe > 0) ≥ w + 1

)
∑

e∈E

∑
|S|=w,e∈S XS

∑
|S|=w XS

= w1

(
∑

e∈E

1(Xe > 0) ≥ w + 1

)
.

In view of (6) and (7), we now introduce a fourth important operator: for any I ∈ {0, 1}E and any
e ∈ E, we define

Pe(I) = 1


 ∑

f∈E\e

If < w


 , where a sum over the empty set is equal to zero. (8)

Clearly this operator is non-increasing in I. The local operators defined in this section will be the
building blocks of a global operator defined on the graph G. When the graph G is a tree, there is
a simple connection between this global operator and the distribution (1) and we describe it in the
next section. Before that, we introduce some notations. In the sequel, there will be more than one
set of element E and weight w involved. Indeed a local operator will be associated to each vertex
or (directed) edge of G. To avoid ambiguity, we denote explicitly the dependence in E,w as follows:

µ(E,w),R
(E,w)
e ,D(E,w),Q

(E,w)
e ,P

(E,w)
e .

3.2 Finite graphs

We now come back to the case where G = (V,E) is a finite simple graph and w = (wv, v ∈ V ) is a
vector of constraints. For any i ∈ V , recall that ∂i denotes the set of edges incident to i. We now define
local operators with associated set of elements ∂i, constraint wi and some weights Y. Clearly each edge
(ij) ∈ E will appear in the local operators associated to ∂i and ∂j with possibly different weights. In
order to distinguish between these two cases, we will add an orientation to each edge: for the operator
with constraint wi , the set of elements will be the oriented edges adjacent to i and directed towards i.

We introduce now some notations. We denote by
−→
E the set of oriented edges. For i, j ∈ V 2 two adjacent
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nodes, we denote by i → j the oriented edge from i to j. We still denote by ∂i the set of oriented edges
towards i. It will be clear from the context if we consider oriented or non-oriented edges when we write
∂i. We also define ∂i\j as the set of oriented edges towards i except j → i. For a vector X ∈ R

E (or

R
−→
E ) and a subset of edges F ⊂ E (or oriented edges F ⊂

−→
E ), we denote by X[F ] the vector restricted

to F : X[F ] = (Xi, i ∈ F ).

If the graph G is finite and acyclic, it is easy to see that the law of each marginal B[∂i] under µz
G

is exactly described by previous local probability measures µ(∂i,wi), with constraint: wi; set of elements:
the oriented edges toward i, ∂i; and for some parameters (Y−→e (z),

−→e ∈ ∂i) to be computed. We now

describe how to compute these parameters: Y(z) = (Y−→e (z),
−→e ∈

−→
E ) ∈ R

−→
E . We first define a global map

R : Y ∈ R
−→
E 7→ Z ∈ R

−→
E . For a given oriented edge j → i, we consider the local map R

(∂i,wi)
j→i (.) as in

previous section with set of elements ∂i, and constraint wi so that

R
(∂i,wi)
j→i (Y) =

∑
S⊂∂i\j, |S|≤wi−1 Y

S

∑
S⊂∂i\j, |S|≤wi

YS
.

In order to define Z = RG(Y), we set Zi→j = R
(∂i,wi)
j→i (Y). Note that the notations are consistent with

previous section and Zi→j = R
(∂i,wi)
j→i (Y) is a function of the Yℓ→i for ℓ 6= j neighbour of i. In order to

lighten the notation, when no ambiguity is possible, we will simply denote R
(∂i,wi)
j→i by Rj→i:

ℓ1
Yℓ1→i

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲

ℓ2
Yℓ2→i

// i
Zi→j=Rj→i(Y)

// j

ℓ3

Yℓ3→i

88rrrrrrrrrrrrr

Proposition 2. On a finite acyclic graph G and for any z > 0, there is a unique solution to the fixed
point equation:

Y(z) = zRG(Y(z)). (9)

Moreover the marginal law of B[∂i] under µz
G is given by the local probability measure µ(∂i,wi), with

constraint wi, set of elements ∂i and parameters (Y−→e (z),
−→e ∈ ∂i) being the restriction to coordinates in

∂i of the solution to (9).

The fact that the recursion (9) is exact on trees is a standard result in the literature on graphical
models [23] (in this context see Lemma 3 in [26]). It follows directly from this proposition, that the mean
degree of vertex v ∈ V under µz

G defined by (1) is given (when G is a tree) by:

Dv(Y(z)) =
∑

−→e ∈∂v

Y−→e (z)R−→e (Y(z))

1 + Y−→e (z)R−→e (Y(z))
. (10)

Recall that we are interested in the limit z ↑ ∞ in which case, µz
G converges to the uniform distribution

over maximum spanning subgraphs. Iterating (9), we obtain Y(z) = zRG(zRG(Y(z))). It is natural to

define on [0, 1]
−→
E ,

QG(X) = lim
z→∞

↑ zRG(zX),

which is well defined by the monotonicity properties shown in previous section. Then, X′ = QG(X) is
defined by:

X ′
i→j = Qj→i(X) =

∑
S⊂∂i\j, |S|=wi−1 X

S

∑
S⊂∂i\j, |S|=wi

XS
.
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As will be shown latter in a more general context, we have limz→∞ ↑ Y(z) = Y ∈ [0,∞]
−→
E so that by

passing to the limit in Y(z) = zRG(zRG(Y(z))), we see that Y = QG ◦ RG(Y).

Recall that Pe was defined in (8) and we extend it to a global operator: PG : {0, 1}
−→
E → {0, 1}

−→
E as

follows:

∀I ∈ {0, 1}
−→
E ,Pj→i(I) = 1


 ∑

f∈∂i\j

If < wi


 .

Proposition 3. Let I ∈ {0, 1}
−→
E be defined by I−→e = 1(Y−→e = ∞). For a finite acyclic graph G, I is the

unique solution to the fixed point equation: I = PG(I) and we have

2M(G) = lim
z→∞

∑

v∈V

Dv(Y(z)) =
∑

v∈V


wv1



∑

−→e ∈∂v

I−→e ≥ wv + 1


+ wv ∧

∑

−→e ∈∂v

I−→e


 . (11)

Proof. If X = RG(Y) and I′ is defined by I ′−→e = 1(X−→e > 0), then by (6) and (7), we see that I = PG(I
′)

and I′ = PG(I) so that I = PG ◦ PG(I). Moreover, starting form the leaves and iterating PG, is is easily
seen that I′ = I and that it is the unique solution to I = PG(I). Then, we have

lim
z→∞

∑

v∈V

Dv(Y(z)) =
∑

v∈V


 ∑

−→e ∈∂v

Y−→e R−→e (Y)

1 + Y−→e R−→e (Y)
1(Y−→e < ∞) + wv ∧

∑

−→e ∈∂v

I−→e


 .

Using X−−→e = R−→e (Y) and Y−→e = Q−−→e (X), we get

lim
z→∞

∑

v∈V

Dv(Y(z)) =
∑

v∈V


 ∑

−→e ∈∂v

X−→e Q−→e (X)

1 +X−→e Q−→e (X)
1(Q−→e (X) < ∞) + wv ∧

∑

−→e ∈∂v

I−→e




=
∑

v∈V


wv1


 ∑

−→e ∈∂v

1(X−→e > 0) ≥ wv + 1


+ wv ∧

∑

−→e ∈∂v

I−→e


 ,

where we used Lemma 3 to get the last equality. The proposition now follows from the observation noted
above that 1(X−→e > 0) = I ′−→e = I−→e .

Remark 1. If we remove the assumption that the graph is acyclic, then

• there might be no solution to the fixed point equation I = PG(I). This is the case for the complete
graph with 3 vertices and all weights equal to 1.

• there might exist several solutions to the fixed point equation I = PG(I). This is the case for
the complete graph with 4 vertices and all constraints equal to 2: all solutions can be obtained by
permuting the role of the edges in the following picture:

11

1

1

1

1

11

0

0
0

0

Figure 2: solutions to I = PG(I).
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If G is a finite tree, this proposition with (2) shows that the size of a maximal spanning subgraph
M(G) boils down to the computation of (11) which is exactly the formula (3) (for the particular case
wv = w). We will now show how to extend this computation to the case where G is possibly infinite.

3.3 Infinite unimodular networks

We first need to recall the general framework of [2]. We still denote by G = (V,E) a possibly infinite
graph with vertex set V and undirected edge set E. We always assume that the degrees are finite, i.e.
the graph is locally finite. A network is a graph G = (V,E) together with a complete separable metric

space Ξ called the mark space and maps from V and
−→
E to Ξ. Images in Ξ are called marks. Each edge is

given two marks, one associated to each of its orientation. A rooted network (G, ◦) is a network with a
distinguished vertex ◦ of G called the root. A rooted isomorphism of rooted networks is an isomorphism
of the underlying networks that takes the root of one to the root of the other. We do not distinguish
between a rooted network and its isomorphism class denoted by [G, ◦]. Indeed, it is shown in [2] how to
define a canonical representative of a rooted-isomorphism class.

Let G∗ denote the set of rooted isomorphism classes of rooted connected locally finite networks. Define
a metric on G∗ by letting the distance between [G1, ◦1] and [G2, ◦2] be 1/(1+α) where α is the supremum
of those r > 0 such that there is some rooted isomorphism of the balls of graph-distance radius ⌊r⌋ around
the roots of Gi such that each pair of corresponding marks has distance less than 1/r. G∗ is separable
and complete in this metric [2].

Similarly to the space G∗, we define the space G∗∗ of isomorphism classes of locally finite connected
networks with an ordered pair of distinguished vertices and the natural topology thereon.

Definition 1. [2] Let ρ be a probability measure on G∗. We call ρ unimodular if it obeys the Mass-
Transport Principle: for Borel f : G∗∗ → [0,∞], we have

∫ ∑

x∈V

f(G, ◦, x)dρ([G, ◦]) =

∫ ∑

x∈V

f(G, x, ◦)dρ([G, ◦]). (12)

Let U denote the set of unimodular Borel probability measures on G∗.

We now illustrate this concept with examples from our problem: a (possibly disconnected) finite graph
G = (V,E) with a vector of constraints w = (wv, v ∈ V ) is a network with mark space R and vertices
have marks given by the vector w (and oriented edges have mark zero). We still denote by G the network
and we write Gx for the connected component of x in G. For a (deterministic) finite network G, we
define UG as the distribution on G∗ induced by the uniform measure on the vertices of G: more precisely,
UG ([Gx, x]) = 1

|V |

∑
y∈V 1 ((Gy , y) ∈ [Gx, x]). It is easy to verify that UG is unimodular for any finite

network G since the equality (12) is equivalent to an interchange of (finite) summation in:

1

|V |

∑

◦∈V

∑

x∈V

f(G, ◦, x).

If ρ is a unimodular probability measure on G∗ with marks on vertices corresponding to their degree
constraints, it will be useful to construct other unimodular measures from ρ. We will always start with ρ
a unimodular probability measure on G∗ with marks on vertices corresponding to their degree constraints
(and marks on edges being zero). We will take as mark spaces: Ξ = R

N
+ so that the initial mark of vertex

v is simply (wv, 0 . . . ). Note that the map RG is still perfectly defined for any locally finite network G and
is isomorphism invariant, in the sense that for a graph isomorphism ϕ, we have Rϕ(G)(Y) = RG(Y◦ϕ−1)

where vectors in Z ∈ R
−→
E are viewed as maps from

−→
E to R. Hence, we define R[G,◦] = RG′ where (G′, o′) is

the canonical representative of [G, ◦]. To simplify notations, we write RG = R[G,◦]. We define Y0(z) = 0

and for k ≥ 0, Yk+1(z) = zRG(Y
k(z)). It is easy to show that if we set the mark for each edge −→e to
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(Y0
−→e
(z),Y1

−→e
(z), . . . ,Yk

−→e
(z), 0, . . . ) we should still get an unimodular probability on G∗. Indeed, write

explicitly the dependence in the mark and define g(G, ◦, x,Y(z)) = f(G, ◦, x, zRG(Y(z))). If we proved
that the measure ρ with the marks (Y0

−→e
(z),Y1

−→e
(z), . . . ,Yk−1

−→e
(z), 0, . . . ) is unimodular, we get

∫ ∑

x∈V

f(G, ◦, x,Yk(z))dρ([G, ◦]) =

∫ ∑

x∈V

g(G, ◦, x,Yk−1(z))dρ([G, ◦])

=

∫ ∑

x∈V

g(G, x, ◦,Yk−1(z))dρ([G, ◦])

=

∫ ∑

x∈V

f(G, x, ◦,Yk(z))dρ([G, ◦]),

and the claim for k follows.

By Proposition 1, we can define limk→∞ ↑ Y2k(z) = Y−(z) and limk→∞ ↓ Y2k+1(z) = Y+(z), with
Y+(z) = zRG(Y

−(z)) and Y−(z) = zRG(Y
+(z)) ρ-a.s. We now define for any Y ∈ R+:

f(G, ◦, x,Y) =
Yx→◦Rx→◦(Y)

1 + Yx→◦Rx→◦(Y)
, for ◦ and x adjacent,

and f(G, ◦, x,Y) = 0 if ◦ and x are not adjacent. Note that we have: 0 = Y0(z) ≤ Y−(z) ≤ Y+(z) ≤
z = Y1(z), in particular all quantities are finite, hence by definition:

∫
D◦(Y

−(z))dρ([G, ◦]) =

∫ ∑

x∈V

f(G, ◦, x,Y−(z))dρ([G, ◦])

=

∫ ∑

x∈∂◦

Y −
x→◦(z)Rx→◦(Y

−(z))

1 + Y −
x→◦(z)Rx→◦(Y−(z))

dρ([G, ◦])

=

∫ ∑

x∈∂◦

R◦→x(Y
+(z))Y +

◦→x(z)

1 +R◦→x(Y+(z))Y +
◦→x(z)

dρ([G, ◦])

=

∫ ∑

x∈V

f(G, x, ◦,Y+(z))dρ([G, ◦])

where we used the identity: Y −
x→◦(z)Rx→◦(Y

−(z)) = R◦→x(Y
+(z))Y +

◦→x(z). Since f is continuous in Y

and bounded by one, we can apply the dominated convergence theorem and the Mass-Transport Principle
with marks Y2k+1(z) which converge to Y+(z), to get:

∫
D◦(Y

−(z))dρ([G, ◦]) =

∫ ∑

x∈VG

f(G, ◦, x,Y+(z))dρ([G, ◦])

=

∫
D◦(Y

+(z))dρ([G, ◦]),

Write deg(ρ) for the expectation of the degree of the root with respect to ρ. If deg(ρ) < ∞, then the
above expectations are finite and since by Proposition 1, we have ρ-a.s. D◦(Y

−) ≤ D◦(Y
+), it follows

that we have indeed equality and then by the strict monotonicity of D◦, we get Y
−
x→◦(z) = Y+

x→◦(z), for
all x ∈ ∂◦ and z > 0, ρ-a.s. Then by Lemma 2.3 [2], this directly implies that Y−(z) = Y+(z) ρ-a.s. We
denote it simply by Y(z) and we have Y(z) = zRG(Y(z)).

Let now ρY be a probability measure on G∗ with marks on vertices w and on edges Y(z) such that
Y(z) = zRG(Y(z)) ρY -a.s. We assume that the marginal law ρ of ρY where marks on edges are ignored
(and only marks on vertices w are kept) is unimodular. Since 0 ≤ Y(z) ≤ z, we have by a simple
induction Y−(z) ≤ Y(z) ≤ Y+(z) so that Y−(z) = Y+(z) = Y(z) ρY -a.s. if deg(ρ) < ∞. Hence we
proved the following proposition:
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Proposition 4. Let ρ be a unimodular probability measure on G∗ with marks on vertices corresponding
to degree constraints w. If deg(ρ) < ∞, then the fixed point equation Y(z) = zRG(Y(z)) admits a unique
solution Y(z) for any z > 0 for ρ-almost every (G,w).

This proposition allows us to extend the fixed point equation of Proposition 2 to an infinite setting.
In the case where a sequence of finite graphs Gn admits a random weak limit ρ concentrated on trees (to
be defined in Section 4), the solution Y(z) will allow us to define the limit of µz

Gn
. We now concentrate

on the z → ∞ limit and derive a result similar to Proposition 3 for unimodular networks.

We first introduce a convenient definition:

Definition 2. Let ρ be a unimodular probability measure on G∗ with mark space Ξ. Let M be maps from
−→
E to Ξ. We say that M is spatially invariant if the measure obtained from ρ by adding the marks M

is still unimodular. With a slight abuse of notation (i.e. we still denote by ρ the measure with marks in

Ξ× Ξ), spatial invariance is characterised by: for Borel f : G∗∗ × Ξ
−→
E → [0,∞], we have:

∫ ∑

x∈VG

f(G, ◦, x,M)dρ([G, ◦]) =

∫ ∑

x∈VG

f(G, x, ◦,M)dρ([G, ◦]). (13)

For example, we already proved that Yk(z) is spatially invariant for our generic ρ.

Note that the maps QG and PG are well-defined for any locally finite network G and we can define
them for the isomorphism class [G, ◦] thanks to its canonical representative, as we did above for RG. We

can now define for any I ∈ {0, 1}
−→
E ,

F◦(I) = w◦1(
∑

x∈∂◦

P◦→x(I) ≥ w◦ + 1) + w◦ ∧
∑

x∈∂◦

Ix→◦.

Recall that for any Y(z), the ’degree’ of v: Dv(Y(z)) is defined by (10). We now prove the following
result

Proposition 5. Let ρ be a unimodular probability measure on G∗ with deg(ρ) < ∞. Let Y(z) be the
unique solution to Y(z) = zRG(Y(z)) as defined in Proposition 4, then Y(z) ↑ Y as z tends to infinity,
where Y is the minimal solution to Y = QG ◦ RG(Y) and we have

lim
z→∞

∫
D◦(Y(z))dρ([G, ◦]) =

∫
D◦(Y)dρ([G, ◦]) = inf

{∫
F◦(I)dρ([G, ◦])

}
, (14)

where the infimum is over all spatially invariant solution of I = PG ◦ PG(I). Moreover, when ρ is
concentrated on trees, we can restrict the infimum over all spatially invariant solution of I = PG ◦
PG(I) which are locally independent, i.e. such that the components of the vector I restricted to ∂◦ are
independent.

In the case where ρ is concentrated on finite trees, we recover exactly Proposition 3 since in this case
there is a unique solution to I = PG ◦ PG(I) = PG(I). One can check that in the example of Figure 1,
we have:

∫
F◦(I1)dρ([G, ◦]) =

9

8
,

∫
F◦(I2)dρ([G, ◦]) =

14

8
, and

∫
F◦(I3)dρ([G, ◦]) =

10

8
,

where the last quantity is the mean degree in a maximum spanning subgraph. Note that the condition
I = PG ◦ PG(I) is crucial for (14) to be valid.

In the infinite setting, there might exist different spatially invariant solutions to I = PG◦PG(I) even in
the case where ρ is concentrated on trees. In the particular case of branching processes, the computation
of
∫
F◦(I)dρ([G, ◦]) for each of them is easy and we do it in the following section. In order to conclude

and get the asymptotic size of a maximum spanning subgraph, we still need to show that we can invert
the limits in z and n and this is done in Proposition 6.
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Remark 2. Proposition 5 is valid for any unimodular probability measure ρ, even if ρ does not concentrate
on trees. However, we can interpret D◦(Y(z)) as the degree of the root in a spanning subgraph taken at
random according to the Gibbs measure with activity z, only when ρ concentrates on trees.

Proof. For x ∈ [0,∞], we define I(x) = 1(x = ∞) and I(.) acts similarly on vectors (componentwise).
For I ∈ {0, 1}E, we define ∞I as the vector in {0,∞}E having the same positive components as I. Note
that we have ∞I(x) ≤ x for any x ∈ [0,∞]E.

Lemma 4. Let ρ be a unimodular probability measure on G∗ with deg(ρ) < ∞. For Y spatially invariant,
we define Y′ = QG ◦ RG(Y). Then I(Y′) = PG ◦ PG(I(Y)) and

• if Y ≤ Y′ then
∫
D◦(Y)dρ ≥

∫
F◦(I(Y))dρ;

• if Y ≥ Y′ then
∫
D◦(Y)dρ ≤

∫
F◦(I(Y))dρ.

Proof. We have

∫
D◦(Y)dρ =

∫ (∑

x∈∂◦

Yx→◦Rx→◦(Y)

1 + Yx→◦Rx→◦(Y)
1(Yx→◦ < ∞) + w◦ ∧

∑

x∈∂◦

I(Yx→◦)

)
dρ([G, ◦])

≥

∫ (∑

x∈∂◦

Y ′
x→◦Rx→◦(Y)

1 + Y ′
x→◦Rx→◦(Y)

1(Y ′
x→◦ < ∞) + w◦ ∧

∑

x∈∂◦

I(Yx→◦)

)
dρ([G, ◦]),

if Y′ ≤ Y. Let X = RG(Y) so that Y′ = QG(X) and we have thanks to the MTP applied to the first
term:

∫
D◦(Y)dρ ≥

∫ (∑

x∈∂◦

Xx→◦Qx→◦(X)

1 +Xx→◦Qx→◦(X)
1(Qx→◦(X) < ∞) + w◦ ∧

∑

x∈∂◦

I(Yx→◦)

)
dρ([G, ◦])

=

∫ (
w◦1

(
∑

x∈∂◦

1(Xx→◦ > 0) ≥ w◦ + 1

)
+ w◦ ∧

∑

x∈∂◦

I(Yx→◦)

)
dρ([G, ◦]).

Let I be a spatially invariant solution of I = PG ◦ PG(I). We define W0 = ∞I and for k ≥ 0,
Wk+1 = QG ◦ RG(W

k). By previous lemma, we have

I(Wk+1) = PG ◦ PG(I(W
k)) = I.

Hence we have W0 ≤ W1 and since both QG and RG are both non-increasing the sequence Wk is
non-decreasing and we denote by WI its limit. We clearly have I(WI) ≥ I and WI = QG ◦ RG(W

I) so
that by previous lemma:

∫
D◦(W

I)dρ([G, ◦]) =

∫
F◦(I(W

I))dρ([G, ◦]).

Moreover since Wk+1 ≥ Wk, previous lemma implies
∫

F◦(I)dρ([G, ◦]) =

∫
F◦(I(W

k))dρ([G, ◦]) ≥

∫
D◦(W

k)dρ([G, ◦]).

Moreover, recall that D◦ is increasing so that by the monotone convergence theorem, we have

lim
k→∞

∫
D◦(W

k)dρ([G, ◦]) =

∫
D◦(W

I)dρ([G, ◦]).

Hence we proved:
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Lemma 5. Let I be a spatially invariant solution of I = PG ◦ PG(I). Then WI = QG ◦ RG(W
I) and is

such that I(WI) ≥ I and

∫
D◦(W

I)dρ([G, ◦]) =

∫
F◦(I(W

I))dρ([G, ◦]) ≤

∫
F◦(I)dρ([G, ◦]).

Lemma 6. If Y is a spatially invariant solution to Y = QG ◦ RG(Y), then we have Y = WI(Y).

Proof. Since W0 ≤ Y, we have Wk ≤ Y and WI(Y) ≤ Y, in particular I(WI(Y)) ≤ I(Y). By previous
lemma, we also have I(WI(Y)) ≥ I(Y) so that we have indeed equality and hence

∫
D◦(W

I(Y))dρ([G, ◦]) =

∫
F◦(I(W

I(Y)))dρ([G, ◦]) =

∫
F◦(I(Y))dρ([G, ◦]) =

∫
D◦(Y)dρ([G, ◦]).

Since D◦ is increasing and WI(Y) ≤ Y, we finally get equality.

We are now ready to prove Proposition 5. We first prove that z 7→ Y(z)
z and z 7→ Y(z) are respectively

non-increasing and non-decreasing. We need only to prove that this result is correct for Yk for any k ≥ 0
and this is shown by a simple induction on k as follows: consider z ≤ z′; if Yk(z) ≤ Yk(z′) then

we have Y
k+1(z)
z ≥ Y

k+1(z′)
z′ since RG is non-increasing by Proposition 1; if Y

k(z)
z ≥ Y

k(z′)
z′ then we

have Yk+1(z) ≤ Yk+1(z′) since (z,X) 7→ zRG(zX) is increasing in z and non-increasing in X still by
Proposition 1.

Hence we can define limz→∞ ↑ Y(z) = Y ∈ [0,∞]
−→
E and limz→∞ ↓ Y(z)

z = X ∈ [0, 1]
−→
E so that by

passing to the limit in Y
k+1(z)
z = RG(Y

k(z)) and Yk+1(z) = zRG

(
zY

k(z)
z

)
, we have X = RG(Y) and

Y = QG(X). Again since the pointwise limit of a sequence of measurable functions is measurable, we see
that (Y,X) is spatially invariant and Y = QG ◦ RG(Y).

Let now ρZ be a unimodular probability measure on G∗ with marks on vertices w and on edges Z

such that Z = QG ◦ RG(Z) ρZ-a.s. The marginal ρ of ρZ where marks on edges are ignored is still

unimodular and by definition ρ and ρZ are coupled. By definition, we have for any X ∈ [0, 1]
−→
E and

z > 0, zRG(zX) ≤ QG(X) so that an easy induction on k shows that: Y2k(z) ≤ Z, ρZ-a.s. Letting first
k and then z tend to infinity, we see that Y ≤ Z, ρZ-a.s.

Let Y0 = 0 and for k ≥ 0, Yk+1 = QG ◦ RG(Y
k) so that Yk is non-decreasing and (by previous

result) converges to Y, the smallest solution to Y = QG ◦ RG(Y). We have

lim
z→∞

∫
D◦(Y(z))dρ([G, ◦]) =

∫
D◦(Y)dρ =

∫
F◦(I(Y))dρ([G, ◦]).

Let I be a spatially invariant solution of I = PG ◦ PG(I), then by Lemma 5, we have

∫
F◦(I(W

I))dρ([G, ◦]) ≤

∫
F◦(I)dρ([G, ◦]), and since WI ≥ Y,

by Lemma 6, we get,

∫
D◦(Y)dρ([G, ◦]) ≤

∫
D◦(W

I)dρ([G, ◦]) =

∫
F◦(I(W

I))dρ([G, ◦]).

In the case where ρ is concentrated on trees, it is easily seen that Y is locally independent so that
the last claim of the proposition follows.
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Remark 3. With the notation introduced above, we define Ik = I(Yk), a sequence that monotonically
converges to I− the smallest solution to I− = PG ◦ PG(I

−). We have I(Y) ≥ I−. This implies that

∞I− ≤ Y so that we have Y = WI
−

. Hence by Lemma 5, we get
∫

D◦(Y)dρ([G, ◦]) =

∫
F◦(I(Y))dρ([G, ◦]) ≤

∫
F◦(I

−)dρ([G, ◦]).

In particular, it is NOT necessary the case that I(Y) achieving the minimum in (14) is the smallest
solution of I = PG ◦ PG(I).

4 From finite graphs to unimodular trees

In this section, we show that the analysis made in previous section on infinite unimodular networks allow
to compute the maximum size of a spanning subgraph of a sequence of finite graphs when the number
of vertices tend to infinity. We consider a sequence of finite networks (Gn = (Vn, En,w

n))n∈N. For
such sequence, we will use the notion of local weak convergence introduced by [5] and [3] (see also [2]).
Recall that we show in Section 3.3 that uniform rooting is a natural procedure to construct a unimodular
measure on G∗ from a finite network G. This measure is denoted by UG. For ρ a unimodular probability
measure on G∗, we say the random weak limit of Gn is ρ if UGn

converges weakly to ρ (see [6] for details
on weak convergence).

Proposition 6. Let (Gn = (Vn, En,w
n))n∈N be a sequence of finite networks with random weak limit

ρ ∈ BUGWT , with |En| = O(|Vn|) and supv∈Vn
wn

v ≤ K for a fixed K > 1. If ρ is concentrated on trees,
then we have

lim
n→∞

1

|Vn|
M(Gn) =

∫
D◦(Y)dρ([G, ◦]).

Proof. We start be stating a simple consequence of spatial Markov property, see Lemma 4 in [26].

Lemma 7. For a finite simple graph G = (V,E) with a vector of degree constraints w, let v ∈ V . If the
induced subgraph obtained by keeping only vertices at graph distance at most 2k+2 from v is a tree, then
we have for any z > 0,

Dv(Y
2k(z)) ≤ Dz

v =
∑

e∈∂v

µz
G (Be = 1) ≤ Dv(Y

2k+1(z)).

For a finite graph G = (V,E) and v ∈ V , we denote by χk(G, v) the indicator function that the
induced subgraph obtained by keeping only vertices at graph distance at most 2k + 2 from the vertex v
is a tree. By Lemma 7, we have

Dv(Y
2k(z))χk(G, v) ≤ Dz

v =
∑

e∈∂v

µz
G (Be = 1) ≤ Dv(Y

2k+1(z))χk(G, v) + (1− χk(G, v))wv

Assuming that, we have wv ≤ K for all v, we get

1

|V |

∑

v∈V

Dv(Y
2k(z))χk(G, v) ≤

1

|V |

∑

v∈V

Dz
v ≤

1

|V |

∑

v∈V

Dv(Y
2k+1(z))χk(G, v) +

K

|V |

∑

v∈V

(1 − χk(G, v)).

Let now Gn be a sequence of finite networks with random weak limit ρ. For simplicity, let denote by
ρn be the probability measure UGn

on G∗ obtained by taking as root of Gn a vertex in Vn uniformly at
random. We can rewrite previous inequalities as follows:
∫

D◦(Y
2k(z))χk(Gn, ◦)dρn ≤

∫
Dz

◦dρn ≤

∫
D◦(Y

2k+1(z))χk(Gn, ◦)dρn +K

∫
(1− χk(Gn, ◦)) dρn (15)
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Note that we have D◦(Y
k(z)) ≤ K and by definition of the metric on G∗, the left-hand side and the

right-hand side which depends only on the ball of (graph-distance) radius 2k + 2 around the root are
continuous on G∗ so that we can take the limit in (15). Since ρ is concentrated on trees, the function χk

is one on the support of ρ and we get
∫

D◦(Y
2k(z))dρ ≤ lim inf

n

∫
Dz

◦dρn ≤ lim sup
n

∫
Dz

◦dρn ≤

∫
D◦(Y

2k+1(z))dρ.

By Proposition 5, we can take the limit as k tends to infinity, to finally have for any z > 0,

lim
n

∫
Dz

◦dρn =

∫
D◦(Y(z))dρ. (16)

Recall that by definition,
∫

Dz
◦dρn =

1

|Vn|

∑

v∈Vn

Dz
v ≤

1

|Vn|
M(Gn),

so that we get by letting first n tend to infinity, using (16) and then letting z tend to infinity
∫

D◦(Y)dρ = lim
z→∞

∫
D◦(Y(z))dρ ≤ lim inf

n

1

|Vn|
M(Gn).

To prove the upper bound, we start with the following observation:

zP ′
Gn

(z)

|Vn|PGn
(z)

=

∫
Dz

◦dρn,

where the polynomial PGn
is the one appearing in the definition of Gibbs measure µGn

, see (1). Differ-
entiating once more, we get

z|Vn|
d

dz

∫
Dz

◦dρn =
zP ′

Gn
(z)

PGn
(z)

+
z2P ′′

Gn
(z)

PGn
(z)

−
z2P ′

Gn
(z)2

PGn
(z)2

= |Vn|

(∫
(Dz

◦)
2
dρn −

(∫
Dz

◦dρn

)2
)

≥ 0,

by Jensen’s inequality. In particular, we see that z 7→
∫
Dz

◦dρn is non-decreasing in z > 0 so that we
have for any 1 < s,

∫ s

1

z−1

∫
Dz

◦dρndz ≤

∫ s

1

z−1dz

∫
Ds

◦dρn

1

|Vn|
log

PGn
(s)

PGn
(1)

≤ log s

∫
Ds

◦dρn.

Moreover, we clearly have PGn
(1) ≤ 2|En| and PGn

(s) ≥ sM(Gn), so that we get

1

|Vn| log s
(M(Gn) log s− |En| log 2) ≤

∫
Ds

◦dρn,

or reorganising the terms

1

|Vn|
M(Gn) ≤

∫
Ds

◦dρn +
|En|

|Vn|

log 2

log s

Hence by letting first n tend to infinity (using the fact that |En| = O(|Vn|) and (16)) and then letting z
tend to infinity, we get

lim sup
n

1

|Vn|
M(Gn) ≤

∫
D◦(Y)dρ,

which concludes the proof.
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5 Computation for branching processes and asymptotics for large

graphs

In this section, we consider bipartite graphs G = (V,E) where V can be divided into two disjoint sets
A and B such that every edge connects a vertex in A to one in B. We also denote by wA and wB the
vectors of degree constraints associated to vertices in A and B respectively. We are mainly interested in
sequences of finite networks (Gn = (Vn, En),w

A
n ,w

B
n )n∈N simply denoted by Gn in the sequel, whose size

|Vn| diverges to infinity and such that |En| = O(|Vn|).

Our main assumption will be that the sequence of finite networks (Gn)n∈N admits a random weak
limit. Motivated by applications, we now describe a natural limit (arising when the network Gn itself
is random as described in the Introduction) which we call Bipartite Unimodular Galton Watson Trees
(BUGWT). A BUGWT is a branching process parametrised by two distributions: a distribution πA on
N

2 corresponding to joint distribution of the degree of vertices in A and their associated constraints and
a distribution πB on N

2 corresponding to the joint distribution of the degree and mark of vertices in B.
We will always assume that

mA =
∑

k,j≥1

kπA
k,j < ∞ and mB =

∑

k,j≥1

kπB
k,j < ∞.

In particular, the size-biased distributions associated to πA and πB are well defined:

π̂A
n,ℓ =

(n+ 1)πA
n+1,ℓ

mA
and, π̂B

n,ℓ =
(n+ 1)πB

n+1,ℓ

mB
.

A BUGWT is then a branching process defined as follows: with probability mB

mA+mB , the root is of type A

and has a random number of children and a random constraint drawn according to the distribution πA;
all odd generation genitors have a distribution for the couple offspring, constraint given by π̂B and all

even generation genitors this distribution is π̂A; similarly with probability mA

mA+mB , the root is of type B

and has a random number of children and a random constraint drawn according to the distribution πB;
all odd generation genitors have a distribution for the couple offspring, constraint given by π̂A and all
even generation genitors this distribution is π̂B . The set of distributions of BUGWT is clearly a subset
of the unimodular probability measure on G∗ and we denote it by BUGWT ⊂ U .

Before stating our main result in this framework, we introduce some notations: we denote by (DA,WA)
(resp. (NA,WA)) a random variable with distribution πA (resp. π̂A) and by (DB ,WB) (resp. (NB,WB))
a random variable with distribution πB (resp. π̂B). For 0 ≤ x ≤ 1, let DA(x) be the thinning of DA

obtained by taking DA points and randomly and independently keeping each of them with probability x
so that P(DA(x) = k) =

∑
n≥k

∑
ℓ π

A
n,ℓ

(
n
k

)
xk(1− x)n−k. We define similarly NB(x), DB(x), NB(x).

Theorem 3. Let (Gn)n∈N be a sequence of finite (simple) bipartite networks with random weak limit
ρ ∈ BUGWT such that DA (resp. DB) and WA (resp. WB) are independent with finite means. If
|En| = O(|An|) where An is one subset of the partition of vertices of Gn, then we have

lim
n→∞

1

|An|
M(Gn) = inf

q∈[0,1]
{FA(q), q = gA ◦ gB(q)} = inf

q∈[0,1]
FA(q),

where

FA(q) = E
[
WA ∧DA(gB(q))

]
+

E[DA]

E[DB]
E
[
WB1

(
DB(q) ≥ WB + 1

)]
, with

gA(p) = P
(
NA(p) < WA

)
and, gB(q) = P

(
NB(q) < WB

)
.

Proof. Let ρA (resp. ρB) be the probability measure on G∗ obtained from ρ by conditioning on the event
that the root is of type A (resp. type B): ◦ ∈ A (resp. ◦ ∈ B). The fact that

lim
n→∞

1

|An|
M(Gn) = lim

z→∞

∫
D◦(Y(z))dρA([G, ◦]),
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follows from Proposition 6. We will now use Proposition 5 to compute the right-hand term.

We first adapt the expression in (14) to our bipartite case and express it as a function of ρA. For
x ∈ [0,∞], we define I(x) = 1(x = ∞) and I(.) acts similarly on vectors (componentwise). By Lemma 2,
we have for any spatially invariant Y:

∫
D◦(Y)1(◦ ∈ A)dρ([G, ◦]) =

∫ (∑

x∈∂◦

Yx→◦Rx→◦(Y)

1 + Yx→◦Rx→◦(Y)
1(Yx→◦ < ∞) + w◦ ∧

∑

x∈∂◦

I(Yx→◦)

)
1(◦ ∈ A)dρ([G, ◦])

We now consider a spatially invariant Y solution of Y = QG ◦ RG(Y) and let X = RG(Y). Hence
applying first the MTP and then using Lemma 3, we get

∫ ∑

x∈∂◦

Yx→◦Rx→◦(Y)

1 + Yx→◦Rx→◦(Y)
1(Yx→◦ < ∞)1(◦ ∈ A)dρ([G, ◦])

=

∫
w◦1


 ∑

x∈∂◦,x∈A

1(Xx→◦ > 0) ≥ w◦ + 1


 dρ([G, ◦])

=

∫
w◦1(

∑

x∈∂◦

P◦→x(I(Y)) ≥ w◦ + 1)1(◦ ∈ B)dρ([G, ◦])

where we used the fact 1(Xx→◦ > 0) = P◦→x(I(Y)) by (6). By Proposition 5, we know that we should

consider the minimal such Y so that dividing by
∫
1(◦ ∈ A)dρ([G, ◦]) = E[DB]

E[DA+DB ] , we obtain:

lim
z→∞

∫
D◦(Y(z))dρA([G, ◦]) =

inf

{∫
w◦ ∧

∑

x∈∂◦

Ix→◦dρ
A([G, ◦]) +

E[DA]

E[DB]

∫
w◦1(

∑

x∈∂◦

P◦→x(I) ≥ w◦ + 1)dρB([G, ◦])

}
, (17)

where the infimum is over all spatially invariant solution of I = PG◦PG(I) which are locally independent.
Thanks to the Markovian nature of the BUGWT, these recursions simplify into a recursive distributional
equation that we now describe. Indeed the law of Ix→y is a Bernoulli distribution with parameter say
q if x ∈ A and p otherwise. Then the determination of p and q is done as follows: let IA→B, IA→B

i be
independent Bernoulli random variables with parameter p and IB→A, IB→A

i be independent Bernoulli
random variables with parameter q; let (NA,WA) and (NB,WB) be independent random variables
distributed according to π̂A and π̂B respectively. Then we must have the following equality in laws:

IA→B d
= 1




NA∑

i=1

IB→A
i < WA


 and, IB→A d

= 1




NB∑

i=1

IA→B
i < WB


 .

Taking the expectation, we get:

q = E
[
IA→B

]
= P

(
NA(p) < WA

)
= gA(p)

p = E
[
IB→A

]
= P

(
NB(q) < WB

)
= gB(q).

We see that FA(q) correspond exactly to the integral in (17) for a solution of I = PG ◦ PG(I) and the
first claim of the Proposition follows.

We define

F (p, q) =

E
[
WA

]
− E




∑

0≤j≤WA−1

(WA − j)pj

j!
φ
(j)
A (1− p)


+

E[DA]

E[DB]


E

[
WB

]
− E


WB

∑

0≤j≤WB

qj

j!
φ
(j)
B (1 − q)




 ,
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so that FA(q) = F (gB(q), q).

Let φA (resp. φB) be the generating functions of DA (resp. DB). After simple computations, we get
(by convention, the sum over the empty set is zero):

gA(x) = E




∑

0≤j≤WA−1

xj

j!

φ
(j+1)
A (1 − x)

φ
(1)
A (1)


 and

hA(x) = −
dgA

dx
(x) = E

[
xWA−1

(WA − 1)!

φ
(WA+1)
A (1 − x)

φ
(1)
A (1)

1(WA ≥ 1)

]
,

and similarly for gB and hB.

Simple computations show that:

∂F

∂p
(p, q) = E


 ∑

1≤j≤WA

pj−1

(j − 1)!
φ
(j)
A (1− p)


 = φ

(1)
A (1)gA(p)

∂F

∂q
(p, q) =

E[DA]

E[DB ]
E

[
qW

B

(WB − 1)!
φ
(WB+1)
B (1− q)1(WB ≥ 1)

]

= φ
(1)
A (1)qhB(q).

Hence we have

dFA

dq
(q) = φ

(1)
A (1)hB(q)

(
q − gA ◦ gB(q)

)

Note that if P
(
0 < WB < DB

)
= 0 then hB(x) = 0 for all x ∈ [0, 1] and if P

(
0 < WB < DB

)
> 0, then

hB(x) > 0 for all 0 < x < 1. Moreover, since gA ◦ gB(0) ≥ 0 and 1 ≥ gA ◦ gB(1), we see that (in the case
where FA is not constant) the local minimums of FA must satisfy q = gA ◦ gB(q) so that

inf
q∈[0,1]

{FA(q), q = gA ◦ gB(q)} = inf
q∈[0,1]

FA(q).

6 Application to orientability of random hypergraphs

We are now in position to prove Theorem 1 claimed in the Introduction. The fact that the random
hypergraph Hn,⌊cn⌋,h converges weakly almost surely is standard [20]. Hence we can apply our Theorem
3 with

DA = h, WA = ℓ and, DB = Poi(ch), WB = k,

where h > ℓ ≥ 1 and k ≥ 1. Note that Q(x, y) = e−x
∑

j≥y
xj

j! = P(Poi(x) ≥ y) so that we have:

FA(q, c) = E
[
ℓ ∧ Bin(h, gB(q))

]
+

kQ(chq, k + 1)

c
,

gB(q) = 1−Q(chq, k),

where we denoted explicitly the dependence in c in the expression of FA given in Theorem 3.
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With the notations taken in the proof of Theorem 3, we have for h− ℓ ≥ 2,

gA(x) = P (Bin(h− 1, x) < ℓ)

hA(x) =
(h− 1) . . . (h− ℓ)

(ℓ− 1)!
xℓ−1(1 − x)h−ℓ−1

hA′

(x) =
dhA

dx
(x) =

(h− 1) . . . (h− ℓ)

(ℓ− 1)!
xℓ−2(1 − x)h−ℓ−2 (ℓ− 1 + (h− 2ℓ)x) ,

and if ℓ = h − 1, hA(x) = (h − 1)xh−2 and hA′

(x) = (h − 1)(h − 2)xh−3. Similarly, we have for k ≥ 2
(and the convention 0! = 1),

gB(x) = 1−Q(chx, k)

hB(x) = che−chx (chx)
k−1

(k − 1)!

hB′

(x) =
dhB

dx
(x) = (ch)2e−chx (chx)

k−2

(k − 2)!

(
1−

chx

k − 1

)
.

If k = 1, we have hB(x) = che−chx and hB′

(x) = −(ch)2e−chx.

We also define

∆(x) = x− gA ◦ gB(x),

so that we get

∆′(x) = 1− hB(x)hA ◦ gB(x)

∆′′(x) = hA ◦ gB(x)
(
hB(x)

)2
(
hA′

◦ gB(x)

hA ◦ gB(x)
−

hB′

(x)

hB(x)2

)
= hA ◦ gB(x)

(
hB(x)

)2
δ(x)

A simple calculation shows that both hA′

hA and hB′

(hB)2 are non-increasing. Hence since gB is also non-

increasing, we see that δ is non-decreasing and ∆′′ can vanish at most once on (0, 1), so that ∆′ admits
at most two zeros on [0, 1] and ∆ at most three. Moreover since ∆(0) = 0 and ∆(1) > 0, there are
only two cases: either ∆(x) ≥ 0 for all x ∈ [0, 1] or there exists 0 ≤ u < v < 1 such that ∆(x) ≥ 0 for
x ∈ [0, u]∪ [v, 1] and ∆(x) ≤ 0 for x ∈ [u, v]. In particular in this last case, u (resp. v) is a local maximum
(resp. minimum) of FA.

Let x∗(c) be the largest solution of ∆(x) = 0, then we have

min
q∈[0,1]

FA(q, c) = min{ℓ,FA(x∗(c), c)},

since FA(0, c) = ℓ and in the first case x∗(c) = 0 while in the second case x∗(c) = v. A simple computation

shows that as soon as x∗(c) > 0, we have dFA

dc (x∗(c), c) < 0. Hence we need to find c such that x∗(c) > 0
and FA(x∗(c), c) = ℓ. Denoting ξ∗ = chx∗, we can rewrite this last equation as

cE
[
(ℓ− Bin(h, 1−Q(ξ∗, k)))

+
]
= kQ(ξ∗, k + 1). (18)

By definition, we have ξ∗ = chP (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ), so that since ξ∗ > 0, we can eliminate the
variable c in (18) and get

hk = ξ∗
E

[
(ℓ− Bin(h, 1−Q(ξ∗, k)))

+
]

Q(ξ∗, k + 1)P (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ)
,

which is exactly the equation appearing in Theorem 1. We now show that this equation has a unique
positive solution. By contradiction, assume that 0 < ξ1 < ξ2 are two solutions. Then applying the
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map ξ 7→ P (Bin(h− 1, 1−Q(ξ∗, k)) < ℓ) we can define x1 < x2 and then ci = ξi
hxi

, so that we have

FA(x1, c1) = FA(x2, c2) = ℓ with xi = x∗(ci). Since ∆ is a non-increasing function of c, it implies
that x∗(c) is a non-decreasing function of c and c1 < c2. But then FA(x∗(c), c) = ℓ for all c ∈ [c1, c2],

contradicting the relation dFA

dc (x∗(c), c) < 0 valid for x∗(c) > 0.

As noted in the Introduction, Hn,⌊cn⌋,h is (ℓ, k)-orientable if and only if M(Gn) = ℓ|An|. In particular,

for c > c∗h,ℓ,k as defined in Theorem 1, we see that Theorem 3 implies the result since limn→∞
M(Gn)
|An|

< ℓ.

However in the case c < c∗h,ℓ,k, there is still a difficulty since Theorem 3 only shows that limn→∞
M(Gn)
|An|

=

ℓ. In words, there might exist o(n) vertices in An with degree strictly less than ℓ in M(Gn). In order to
prove that with high probability, this will not occur we need to rely on specific properties of the h-uniform
hypergraph Hn,m,h.

This part of the proof is also done in [18] and we now describe the main steps of the end of the
proof. First, it will be more convenient to work with a different model of random hypergraph that we
denote Hn,p,h: each possible (h)-hyperedge is included independently with probability p. More precisely,
given n vertices with n ≥ h, we obtain Hn,p,h by including each h-tuple of vertices with probability p,
independently for each of the

(
n
h

)
tuples. Standard arguments show that if p

(
n
h

)
= cn, i.e. p = ch/

(
n−1
h−1

)

then the Hn,p,h model is essentially equivalent to the Hn,⌊cn⌋,h model [20].

Let c < c̃ < c∗h,ℓ,k and consider the bipartite graph G̃n obtained from Hn,p̃,h with p̃ = c̃h/
(
n−1
h−1

)
.

Given a maximum admissible spanning subgraph S(G̃n), we say that a vertex in An (resp. in Bn) with
degree ℓ (resp. k) in such a spanning subgraph is saturated. An alternating path is a path in which the
edges alternatively are covered in S and uncovered in S. If there exists a vertex v in An which is not
saturated, we consider the subgraph obtained as follows: remove the edges in S adjacent to v and keep
all alternating paths starting from v. We denote by K the resulting bipartite graph. It is easy to see that

• the degree in K of v is at least h− ℓ+ 1;

• if v ∈ Bn ∩K, then v is saturated in S and its degree in K is k + 1;

• if w ∈ An ∩K then if w is saturated in S, its degree in K is at least h− ℓ+ 1, otherwise its degree
is at least h− ℓ+ 2.

We now use a density argument in order to show that the size of K is linear in n w.h.p. Suppose
that we are in a case where k ≥ 2 (the case h − ℓ ≥ 2 is similar). Let i be the number of vertices in
Bn∩K. Each such vertex is adjacent to k covered edges in S and 1 uncovered edge in S. Hence, we have
|An ∩K| ≥ ki

ℓ . Hence by Lemma 4.1 of [17], there exist γ = γ(h, kℓ ) such that |K ∩Bn| ≥ γn (note that
the probability space considered in Lemma 4.1 of [18] is slightly different from ours but asymptotically
equivalent as shown by Lemma 3.1 of [18]).

For c < c∗h,ℓ,k, we now construct an admissible spanning subgraph on Hn,p,h with p = ch/
(
n−1
h−1

)
and

saturating all vertices in An. Note that since p < p̃, there is a natural coupling between Hn,p,h and
Hn,p̃,h: we can obtain Hn,p,h from Hn,p̃,h by removing each hyperedge independently with probability

p̃ − p > 0. Start with a maximum admissible spanning subgraph M(G̃n) as above. If this maximum
spanning subgraph has all vertices in Ãn which are saturated, then we are done, since to obtain an
admissible spanning subgraph on Hn,p,h we need only to remove the hyperedges in Hn,p̃,h which are not

in Hn,p,h. If this maximum spanning subgraph has o(n) vertices in Ãn which are not saturated. We

denote by gapn = ℓ|Ãn|−M(G̃n) = o(n). Note that for any non saturated hyperedge, we can construct a
subgraph K as above. If we remove an hyperedge in K, then either this edge was non-saturated and gapn
decreased by more than one or, this edge was saturated but then at least one nonsaturaded hyperedge
increases its degree in the spanning subgraph. So that in all cases, gapn decreased by at least one. We
then proceed as follows: attach to each hyperedge a uniform [0, 1] random variable independently from
each other and denoted Ua, for a ∈ An. To obtainHn,p,h, we remove all hyperedges a such that Ua ≤ p̃−p.
We can do this sequentially starting with the one with the lowest Ua. Suppose that at the k-th step (with
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k ≥ 1), there are still non saturated hyperedges, we consider the union of the subgraphs K described
above. We showed that their size is at least γn. Hence with positive probability, the hyperedge removed
will decrease the value of gapn. If it reaches zero, then we are done, otherwise, we consider the new sets
K and proceed to the next step. Suppose that at the end of the procedure, gapn is still positive. We see
that we decreased gapn in total by a binomial random variable with a number of trials linear in n and
with a positive probability so that with high probability, this binomial random variable is larger than
say ǫn for a sufficiently small ǫ > 0. Hence with high probability gapn reached zero by the end of the
procedure and this concludes the proof.
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