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1 Introduction

There is only one technique for prior-free optimal mechanism design that generalizes beyond the
structurally benevolent setting of digital goods. This technique uses random sampling to estimate
the distribution of agent values and then employs the Bayesian optimal mechanism for this esti-
mated distribution on the remaining players. Though quite general, even for digital goods, this
random sampling auction has a complicated analysis and is known to be suboptimal. To overcome
these issues we generalize the consensus technique from [5] to structurally rich environments that
include, e.g., single-minded combinatorial auctions.

The classical economic theory of mechanism design is Bayesian: it is assumed that the prefer-
ences of the agents are drawn at random from a known probability distribution and the designer
aims to optimize their objective in expectation over this randomization. This leads to mechanisms
that are tailored to the distributional setting. In contrast prior-free mechanism design looks at
mechanisms that perform well without knowledge or assumptions on agent preferences. While
these mechanisms do not perform as well as ones tailored to the distribution, in many setting they
provide good approximations, and are more robust.

The simplest environment in which to explore mechanism design is that of selling a digital good,
i.e., where the seller has no constraint over the subsets of agents that can be served simultaneously.
Recent contributions to the literature on prior-free mechanism design have focused on extending
results for digital good environments to ones that are more structurally rich. From least-general
to most-general, these include multi-unit environments, where there are a given k number of units
available for sale (i.e., any subset of the agents of size at most k can be served); matching envi-
ronments, where feasible sets correspond to one side of a bipartite matching; and downward-closed
environments, where the only constraint on feasible sets is that any subset of a feasible set is
feasible.

The only prior-free mechanisms known to give good approximations for general downward-
closed environments are variants of the random sampling auction. This auction first gathers distri-
butional information from a random sample of the agents and then simulates the Bayesian optimal
auction for the empirical distribution on the remaining agents. The agents in the sample are al-
ways rejected. Tight analysis of the random sampling auction is difficult, upper-bounds on its
approximation factor are 4.68, 25, 50, and 2560 for digital good [1], multi-unit [3], matching [6],
and downward closed environments [6], respectively. Other mechanism design techniques give 3.25
and 6.5-approximations for digital-good [8] and multi-unit environments [6], respectively, and no-
tably the 3.25 approximation for digital goods surpasses the lower-bound of 4 which is known for
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the random sampling auction. These limitations suggest the need to consider other techniques for
obtaining good approximations for general downward-closed environments.

To obtain good approximation mechanisms for general downward-closed environments, we gen-
eralize the digital good auction technique of consensus estimates from [5]. The two main ingredients
of this approach are a profit extraction mechanism and a consensus function. Given a target profit,
the profit extraction mechanism should approximate the target if the target is less than the optimal
revenue possible. If we had a good estimate of the revenue, we could then obtain a good revenue
with the profit extractor. The consensus function is used to get an estimate of the revenue from
the reports of the agents in a way that is non-manipulable. In particular, for each agent we can
calculate the optimal profit from the other agents, plug this profit into the consensus function,
and with high probability the estimated profit produced will be the same for all agents. We can
then simulate the profit extraction mechanism for each agent with their consensus estimate. If the
estimates agree, the result of this simulation is the agreed-upon profit, otherwise, it is at least zero.

There are two main challenges to extending this approach for general downward-closed envi-
ronments. The first challenge is in designing a profit-extraction mechanism for these environments.
Our profit extraction mechanism will be parameterized by a revenue curve, the revenue as a func-
tion of number of winners (without taking into account any feasibility constraints). Given a target
revenue curve that is below the actual revenue curve, our mechanism obtains revenue comparable
to that which would be obtained by the optimal mechanism on the input that corresponds to the
target revenue curve. The second challenge is in ensuring infeasible outcomes are not produced in
the case that the mechanism does not have a consensus. Note that for digital good environments,
there is no feasibility constraint that could be violated when the estimates do not reach consensus.
The same is not so for general downward-closed environments. A parameterized mechanism (such
as a profit extractor) is of course required to always produced feasible outcomes. However, if we
determine the outcome for each agent by simulating the parameterized mechanism with different
parameters, the combined outcome may not be feasible. To address this potential inconsistency we
give a cross checking approach for identifying a subset of agents which which consensus is achieved.

Our mechanism is a 30.4-approximation in general downward-closed environments.

Related Work. This paper derives its framework for prior-free mechanism design and analysis
from Hartline and Yan [6]. It extends the profit-extraction and consensus techniques from Goldberg
and Hartline [5, 7]. Other than these, the closest related work to ours is that of Dhangwatnotai,
Roughgarden, and Yan [4]. They consider abstract service provision in downward-closed environ-
ments with the added assumption that the values of the agents are distributed according to a
unknown distribution that satisfies a standard monotone hazard rate assumption. Under this as-
sumption, they give an (essentially) 4-approximation mechanism. In contrast, our mechanism gives
a worse bound, but does so without the distributional assumption.

Organization. In Section 2 we will formally describe our auction environment, design and anal-
ysis framework, and review the consensus technique. In Section 3 we describe our cross-checking
approach as it applies to obtaining a consistent consensus estimate. In Section 4 we describe a
mechanism for extracting the profit suggested by a given target revenue curve. In Section 5 we
describe an approach for obtaining a consensus estimate on revenue curves. Finally, in Section 6
we combine the three parts to give a good mechanism and analyze its performance.
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2 Preliminaries

Here we describe the abstract setting in which we consider mechanism design and the structural
tools that we will be using to design and analyze mechanisms.

Model. Let N be a set of n ≥ 2 bidders. Each bidder i ∈ N has a private valuation vi for
receiving some abstract service. A bidder i, upon reporting his valuation, will be served with a
probability xi and charged a payment of pi. We denote the valuation profile, allocation vector, and
payment vector by v = (v1, . . . , vn), x = {x1, . . . , xn} ∈ [0, 1]n, and p = (p1, . . . , pn) respectively.
Without loss of generality we index the agents in decreasing order of value, i.e., vi ≥ vi+1.

There is a feasibility constraint which describes the subsets of the agents that can be served
simultaneously. We assume that this feasibility constraint is downward closed, i.e., any subset of a
feasible set is feasible. As described in the introduction, many common environments for mechanism
design are downward-closed.

We allow the feasibility constraint to be probabilistic, i.e., given by a convex combination of
downward closed set systems. We assume the following semantics for a randomized feasibility
constraint: (i) agents bid, (ii) the randomization over the feasibility constraint is realized, and
then (iii) the mechanism runs on the reported valuations and the realized set system. For the
purpose of calculating revenue the allocation x and payments p are taken in expectation over the
randomization in the mechanism and the set system. That said, the mechanisms we consider will
be incentive compatible even when the order of steps (i) and (ii) are reversed.

A fundamental and potentially restrictive assumption that we will make is one of symmetry.
Given an asymmetric set system we can always make it symmetric by randomly permuting the
identities of the agents. This assumption is akin to standard assumptions for the secretary problem
and in settings where one might consider the agents to be a priori identical (e.g., if there values
were drawn from an i.i.d. distribution) it is without loss. The resulting feasibility constraint we
refer to as a downward-closed permutation environment.

Our mechanisms will be based on simple algorithms. Given weights w = (w1, . . . , wn) indexed
in non-increasing order, we assume we have an algorithm for selecting a feasible set to optimize the
sum of the selected weights (for the realized set system) with ties broken randomly. As suggested
above, xi will denote the probability (over randomization in the set system and random tie-breaking)
that the ith largest weight is selected. Clearly x maximizes

∑

iwixi subject to feasibility and so
we will refer to x as the maximizer for weights w.

We assume the standard risk-neutral quasi-linear utility model, i.e., an agent i wishes to max-
imize their expected utility which is given by ui = vixi − pi. We will focus solely on incentive
compatible (IC) mechanisms; which means for any agent, reporting their true valuation would be a
dominant strategy; and we assume that agents follow this dominant strategy. We view a mechanism
as a function from reports to allocation and payments and denote these functions by x(·) and p(·).
A mechanism is incentive compatible if and only if [9]:

1. xi(v) is monotone non-decreasing in vi, and

2. pi(v) satisfies the payment identity:

pi(v) = vixi(v) −

∫ vi

0
xi(z,v−i) dz, (1)
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where (z,v−i) is the valuation profile with vi replaced with z. The second equation is referred to
as the payment identity. When we give a mechanism we will describe only the allocation rule and
infer the payment rule from this identity.1 We will denote the expected payment for agent i with
allocation rule x(·) as ICx

i (v) and the total revenue as ICx(v).

Revenue Analysis. We adopt the framework from Hartline and Yan [6] wherein the revenue
of the designed mechanism is compared to the envy-free revenue benchmark. We will denote the
maximum envy-free revenue by EFO(v). For technical reasons we define our benchmark to be
EFO(2)(v) = EFO(v2, v2, v3, . . . , vn). The goal of such a design and analysis framework is then to
give a mechanism that obtains a revenue that is a good approximation to the benchmark EFO(2)(v)
in worst case over valuation profiles v.

Envy-free revenue is defined only for allocation vectors x that are monotone, i.e., xi ≥ xi+1.
The envy-free payment for agent i with monotone allocation x on v is given by [6]:

EFx

i (v) =
∑n

j≥i
vj · (xj − xj+1) (2)

The envy-free revenue, denoted EFx(v), is the sum of the envy-free payments.
The envy-free revenue can be understood structurally in terms of the revenue curve and virtual

values. The revenue curve R for v describes the optimal revenue as a function of the number of
agents served (when feasibility constraints are ignored). The ith coordinate of the revenue curve,
Ri, can be calculated by evaluating at i the smallest concave non-decreasing function that contains
the point set {(i, ivi) : i ∈ {1, . . . , n}}. The virtual value at i is the left-slope of this function, i.e.,
φi = Ri −Ri−1. See Figure 1.

Lemma 1 (Hartline and Yan [6]). The envy-free revenue of monotone allocation x satisfies

EFx(v) =
∑n

i=1
φi · xi =

∑n

i=1
Ri · (xi − xi+1) (3)

as long as xi = xi+1 whenever φi = φi+1.

The optimal envy-free revenue, EFO(v), can be found from Lemma 1, in particular, by opti-
mizing virtual surplus, i.e.,

∑

i φixi, with random tie-breaking. Random tie-breaking results in an
allocation x that satisfies xi = xi+1 whenever φi = φi+1.

Notice that for the same allocation rule x, the envy-free payments (2) and incentive compatible
payments (1) are distinct, i.e., ICx

i (v) 6= EFx
i (v).

Consensus estimates. A central ingredient in our approach is the technique of consensus es-
timates that was introduced by Goldberg and Hartline [5]. A consensus function maps shared
randomness and a statistic to an estimate of the statistic. The objective of such a consensus func-
tion is that, when applied individually to each of a set of statistics that are within some bounded
range, with high probability (in the shared randomness) the estimates will coincide, i.e., there will
be a consensus among the estimates.

Definition 1. For implicit parameter c > 1 and shared randomness σ ∼ U [0, 1], the consensus
function on statistic s is,

Consens(σ, s) = ⌊s⌋{cσ+d : d∈Z},

where ⌊s⌋S denotes s rounded down to the nearest element of S.

1Of course such a payment can be easily calculated, e.g., with techniques from Archer et al. [2].
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Figure 1: Agents are indexed in decreasing order by value. The point set {(i, ivi) : i ∈ {1, . . . , n}}
is depicted. The revenue curve is the smallest non-decreasing concave function that upper-bounds
this point set. The value of agent i can be represented by a line from the origin with slope vi; the
virtual value of agent i is the left-slope of the revenue curve at i.

Lemma 2. [5] For c ≥ β, The probability (over randomization of σ) that the consensus function
is constant on interval [s/β, s] is 1− logc β.

3 Cross-checking

Given some statistic on valuation profiles, we will be using the consensus function (Definition 1)
to get an estimate of this statistic, e.g., by calculating Consens(σ, s(v−i)) for each i where s(·)
calculates the statistic for a valuation profile. Notice that if we had some mechanism Ms that
was parameterized by statistic s then, if there is consensus, simulations of MConsens(σ,s(v−i)) to
determine the allocation xi and payment pi for agent i are internally consistent. I.e., the outcome
produced by Ms is feasible for any s; therefore, so is the combined outcome. Unfortunately, when
consensus is not achieved then these simulations may not be consistent.

In this section we give a method of cross-checking to ensure that consistent estimates of the
statistic for some subset of the agents. For environments with downward closed feasibility con-
straints, such a method can be used in mechanism design as agents outside this consistent subset
can be rejected.

Definition 2. For shared randomness σ, statistic s, and consensus function Consens, and valuation
profile v calculate the following:

1. For all pairs i 6= j ∈ {1, . . . , n}, calculate the consensus estimate s̃i,j = Consens(σ, s(v−i,j)).

2. I is the set of agents i that have consensus on s̃i,j for all j; or ∅ if no such i exists.

3. s̃ is the consensus s̃i,j of any i ∈ I and any j (they are all the same).
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The cross-checked consensus function is defined as

CrossConsens(σ, s,v) = (s̃, I).

Cross-checked consensus estimates are non-manipulable in a strong sense. Whether or not an
agent i is in I is not a function of that agents value. Furthermore, the final consensus is not a
function of the report of any agent i ∈ I. This implies that mechanisms which take the following
form are incentive compatible.

Definition 3 (cross-checked consensus estimate composition). Given an incentive compatible mech-
anism Ms that is parameterized by some statistic s and a consensus function Consens for the
statistic, compose them as follows:

1. Calculate cross-checked consensus estimate (s̃, I) = CrossConsens(σ, s,v).

2. Simulate incentive compatible mechanism Ms̃ on v.

3. For agents i ∈ I output result of simulation, reject all others.

Theorem 1. Mechanisms produced by the cross-checked consensus estimate construction are in-
centive compatible.

4 Profit Extraction Mechanism

Using the techniques in the previous section we will construct a consensus estimate for the revenue
curve. In this section we will show how to design a mechanism with good revenue that is parame-
terized by an approximation of the revenue curve. Such a mechanism is termed a profit extractor.
Given a target revenue curve that is upper-bounded by our actual revenue curve, this mechanism
will obtain at least the optimal envy-free revenue for the target revenue curve. The target revenue
curve will be provided to the mechanism in the form of the valuation profile ṽ that generates it.
We will denote by R̃ and φ̃ the revenue curve and virtual values for ṽ.

Definition 4 (Profit Extractor, PEṽ). Parameterized by non-increasing valuation vector ṽ:

1. Sort the bids in a non-increasing order, break ties arbitrary. If ṽi > vi for some i, reject
everyone and charge nothing.

2. Assign weights φ̃ to agents in the same order as their values.

3. Serve the set of agents to maximize the sum of their assigned weights.

We will show that the IC revenue obtained from the profit extractor for ṽ on v is higher
than the optimal envy-free revenue for ṽ. Furthermore, for appropriately chosen ṽ, this revenue
approximates the optimal envy-free revenue for v.

Lemma 3. For any ṽ ≤ v, the revenue of the profit extractor on v is at least the envy-free optimal
revenue for ṽ. Moreover, the inequality holds on each agent’s payment, i.e., ICPEṽ

i (v) ≥ EFOi(ṽ).
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Proof. We show the second condition of the lemma for any agent i (the first condition follows). Let
x̃ be the allocation for EFO(ṽ). This is the same allocation as used by PEṽ unless v ≥ ṽ fails to
hold.

First, notice that the IC payments, from equation (1), and EF payments, from equation (2),
correspond to the area in the region bounded by x ≤ x̃i (above), v ≥ 0 (left), and the “allocation
rule” (bottom right). For IC payments, this allocation rule is the probability that the agent is served
for any possible misreport z. For EF payments, this “allocation rule” is the smallest monotone
function that upper-bounds the point set {(ṽi, x̃i) : i ∈ {1, . . . , n}}. To prove the lemma we need
only show that the IC allocation rule gives a weaker bound than the EF “allocation rule.”

For any j > i, the EF allocation rule drops from x̃j to x̃j+1 at ṽj. We claim that the IC
allocation rule makes the same drop but at a value that is at least ṽj . To see this claim, consider
the minimum bid z that agent i can make to secure allocation probability at least x̃j. First, she
must out bid agent j+1, i.e., z ≥ vj+1. Assuming she out bids j+1, she must also z ≥ ṽj otherwise,
the condition (z,v−i) ≥ ṽ is not met and all agents are rejected. Therefore, if i bids z < ṽj then
she is allocated with probability at most x̃j+1. Hence the IC allocation rule drops from x̃j to (at
most) x̃j+1 at value at least ṽj.

Lemma 4. For any ṽ and v with R̃ ≥ 1
β
R, the envy-free optimal revenue for ṽ is a β-approximation

to that from v, i.e., EFO(ṽ) ≥ 1
β
· EFO(v).

Proof. Let x and x̃ be the allocations EFO(v) and EFO(ṽ), respectively.

EFO(ṽ) =
∑

i
R̃i · (x̃i − x̃i+1) ≥

∑

i
R̃i · (xi − xi+1) ≥

1
β

∑

i
Ri · (xi − xi+1) =

1
β
EFO(v).

The first inequality follows from the optimality of x̃ for ṽ and Lemma 1. The second inequality
follows from monotonicity of x and the assumption that ∀i, R̃i ≥

1
β
·Ri.

Combining these lemmas, we see that with the right ṽ, PEṽ(v) can approximate the optimal
envy free revenue on v.

Theorem 2. For any ṽ ≤ v with R̃ ≥ 1
β
R, the profit extractor for ṽ on v is a β-approximation

to the optimal envy-free revenue for v, i.e., ICPEṽ(v) ≥ 1
β
· EFO(v).

5 Consensus Estimates of Revenue Curves

Our objective now is to get a consensus estimate of the revenue curve. We will express the estimate
revenue curve, R̃, in terms of an estimate valuation profile, ṽ, that generates it.

In addition to the implicit parameter c > 1 in the definition of consensus (Definition 1) we
will also use implicit parameter α > 1 and a minimum required support m ∈ Z+. A statistic we
will be interested in getting consensus on is the number of agents with values at least αj for any
given j. We will use nj(v) to denote this statistic. As per our notation in the previous section, we
will denote ñj(σ,v) = ⌈Consens(σ, nj(v))⌉ where we round the estimate up to the nearest integer
because it is an integer statistic. Estimates that do not have the minimum required support of
ñj(σ,v) ≥ m will be discarded. We will use the remaining estimates to construct an estimate of
the valuation profile ṽ(σ,v) and revenue curve R̃(σ,v) as follows.
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Definition 5 (estimated revenue curve and valuation profile). For any j for which the estimates
ñj of the number of agents with values αj is at least the minimum required support m, define point
Qj = (ñj, α

j ñj). The estimated revenue curve, R̃, is the minimum non-decreasing concave function
that upper-bounds the point set {Qj}j∈Z and the origin. Let jk denote the kth largest index such
that point Qjk is on R̃. The estimated valuation profile, ṽ, has ñjk − ñjk−1

values equal to αjk .
Pad the remainder of ṽ with zeros to get an n-vector.
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ñj(σ,v)m

Figure 2: The dotted vertical lines are ⌈cd+σ⌉ for d ∈ Z; while the diagonal lines from the origin
represent value αj (as their slopes) for j ∈ Z. Each value vi is represented with “•” at point
(i, ivi). The line upper-bounding the black dots represents the original revenue curve, R. For
each diagonal line representing αj , nj(v) is the number of values that lie above it; the dotted
vertical line immediately to the left of the right-most among these values represents ñj(σ,v); finally
the intersection between this line and αj is the point Qj, represented with “×”. R̃ and ṽ are
constructed from estimates ñj(σ,v) ≥ m and their corresponding Qjs. The thick dotted function
upper-bounding these Qjs is R̃, and each ṽi is represented by the point (i, iṽi) with a “�”.

In the above construction ṽ is the smallest (point-wise) valuation profile that has revenue curve
R̃, and furthermore, ṽ ≤ v. For statistical estimates ñj(σ,v) the estimated revenue curve and
valuation profile will be denoted ṽ(σ,v) and R̃(σ,v). Our goal now is to show that with high
probability the estimated revenue curve (and valuation profile) has consensus when a few agents,
S, are omitted, i.e., R̃(σ,v) = R̃(σ,v−S). To do this we define a notion of relevance for statistics
j and show that with high probability there is simultaneous consensus for all relevant statistics.

Definition 6 (t-consensus on v). Given a fixed valuation vector v, a positive integer constant t
and a fixed choice of σ, the jth statistic has a t-consensus on v if for every set S ⊂ {1, 2, . . . , n} of
no more than t elements,

ñj(σ,v) = ñj(σ,v−S).
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Definition 7. For a given valuation vector v and a positive integer t, the jth statistic nj is relevant
if there exists σ ∈ [0, 1], and a set S ⊆ {1, 2, . . . , n} of no more than t elements such that the point
Qj(σ,v−S) is on R̃(σ,v−S).

Notice that when t-consensus happens for a relevant statistic j, then points Qj(σ,v) and
Qj(σ,v−S) in the construction of the estimated revenue curve are identical.

We now argue that the probability that any statistic j has does not have consensus is roughly
proportional to 1/nj(v), that for relevant statistics the nj(v) values are geometrically increasing,
and thus the union bound implies that all estimates of relevant statistics, and thus the estimated
revenue curve, have consensus with high probability. This approach is adapted from Goldberg and
Hartline [7].

Lemma 5. For any v and σ ∼ U [0, 1], the probability that the jth statistic has a t-consensus on v

is at least 1 + logc

(

1− t
nj(v)

)

.

Proof. Observe that for every set S of no more than t elements, nj(v)−t ≤ nj(v−S) ≤ nj(v). These
inequalities hold since when some bids are removed, the number of bids above any αj decrease,
but only by at most the size of the removed set. Thus the probability that Consens(σ, nj(v)) =

Consens(σ, nj(v−S)) is at least 1− logc
nj(v)

nj(v)−t
as suggested by Lemma 2. The lemma follows from

the power rule for logarithm.

Lemma 6. The values above successive relevant statistics are bounded by a geometrically increasing
function: for any relevant statistic j, nj(v) ≥ mαr−j where r is the largest index of any relevant
statistic.

Proof. First note that the largest index of a relevant statistic r is well defined. For any j that is
relevant, it must be that nj(v) ≥ m; otherwise, j would be discarded by the estimated revenue
curve construction. Thus, the largest index that may not be discarded is ⌊vm⌋{αj : j∈Z}.

From the definition of ñj(σ,v−S), we have αj ñj(σ,v−S) ≤ αjnj(v−S) ≤ αjnj(v). Since
j is relevant, the corresponding point Qj(σ,v−S) must be higher than Qr(σ,v−S); therefore,
αj ñj(σ,v−S) ≥ αrñr(σ,v−S) ≥ mαr. Combining this with the previous inequality, we have the
desired claim.

Lemma 7. The probability of t-consensus at all relevant values is at least

1 + logc

[

1− tα
m(α−1)

]

.

Proof. We will first bound the probability of consensus at one relevant value, then use the union
bound to find the lower-bound of the probability of consensus at all relevant values. For any relevant
statistic j, let Ej denote the event that nj has a t-consensus on v.

Pr[Ej ] ≥ 1 + logc

(

1− t
nj(v)

)

≥ 1 + logc

(

1− t
m
α−(r−j)

)

.

The first inequality is from Lemma 5, while the second inequality is from Lemma 6. Let R =
{j nj is relevant}. The probability that all relevant statistics have t-consensus on v, using the
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union bound, is

Pr[t-consensus] ≥ 1−
∑

j∈R
Pr[¬Ej] ≥ 1 +

∑

j∈R
logc

(

1− t
m
α−(r−j)

)

≥ 1 +
∑

i≥0
logc

(

1− t
m
α−i

)

= 1 + logc

[

∏

i≥0

(

1− t
m
α−i

)

]

≥ 1 + logc

[

1−
∑

i≥0

t
m
α−i

]

= 1 + logc

[

1− t
m

α
α−1

]

.

The last thing that we need for our estimated revenue curves is for them to be good estimates.
This follows directly from their definition.

Lemma 8. For any σ and v, the consensus revenue curve R̃(σ,v) is a cα-approximation of the rev-
enue curve R(m′) for m′ = ⌊mc⌋ and truncated valuation profile v(m′) = (vm′ , . . . , vm′ , vm′+1, vm′+2, . . . , vn),
i.e., R̃(σ,v) ≥ 1

cα
R(m′).

Proof. It is sufficient to show that R̃i ≥
1
cα
ivi for i ≥ m′ as concavity of revenue curves would then

imply the lemma. Consider then any index i ≥ m′ and let j be the index of the statistic that satisfies
αj ≤ vi < αj+1. Since nj(v) ≥ i, by the definition of ñj and m′, respectively, ñj ≥ ⌈i/c⌉ ≥ m;
therefore, statistic j is not discarded in the first step of the construction of R̃. Furthermore, the
point Qj = (ñj, α

j ñj) is above and to the left of (i, 1
cα
ivi) because ñj ≤ i, αj ≥ vi/α, and ñj ≥ i/c.

Monotonicity of R̃, then, implies the desired R̃i ≥
1
cα
ivi.

6 Designed Mechanisms

We now proceed to define a mechanism that is a good approximation to EFO(2)(v). This mecha-
nism will be a convex combination of a primitive cross-checked consensus-estimate profit-extraction
mechanism and an extension of the Vickrey auction to downward-closed permutation environments.

Definition 8. The primitive cross-checked consensus-estimate profit-extraction mechanism, CCEPE′

is the profit extraction mechanism PEṽ (Definition 4) composed (Definition 2) with the valuation
profile estimate (Definition 5). CCEPE′ is parameterized implicitly by α, c, and m.

Definition 9. The Pseudo-Vickrey auction, Vic, serves the highest valued agent (and charge her
the second highest agent’s value) if doing so is feasible with respect to the set system, otherwise,
serve no one.

Definition 10. The cross-checked consensus-estimate profit-extraction mechanism, CCEPE, is a
convex combination of the Pseudo-Vickrey auction (with probability p) and CCEPE′ (with proba-
bility 1− p). CCEPE′ is parameterized implicitly by α, c, m, and p.

The Pseudo-Vickrey mechanism is intended to obtain good revenue from the highest-valued
agents where as CCEPE′ is intended to obtain good revenue from the lower-valued agents. The
convex combination obtains good revenue over all. This analysis is given by the following lemmas
and theorem.
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Lemma 9. For any v and m′ = ⌊mc⌋, the expected revenue of CCEPE′ is a β′ approximation of
approximates EFO(m′) with

β′ ≤ cα
[

1 + logc

(

1− 2α
m(α−1)

)]−1
.

Proof. Let (ṽ, I) denote the outcome of the cross-checked consensus estimate of the valuation
profile. By Lemma 7 (with t = 2) all agents are cross-checked and I = {1, . . . , n} with probability

at least 1 + logc

[

1− 2α
m(α−1)

]

. In this case, ṽ ≤ v (Definition 5) and R̃ ≥ 1
cα
R(m′) (Lemma 8)

therefore, the profit-extraction mechanism for ṽ, PEṽ, on v obtains revenue at least 1
cα

EFO(m′)(v)
(Theorem 2).

Lemma 10. For any v, the Pseudo-Vickrey auction revenue is at least the envy-free optimal

payment of the highest-valued agent, i.e., ICVic(v) ≥ EFO
(2)
1 (v).

Proof. Assume that v1 = v2, this is without loss for this lemma because both Pseudo-Vickrey’s
revenue and EFO(2)’s revenue is the same on v and v(2) = (v2, v2, v3, . . . , vn). The payment for
agent 1 upon winning in Pseudo-Vickrey is v2 = v1; the payment upon winning in EFO(2) is at
most v1 = v2. The probability that agent 1 wins in Pseudo-Vickrey is the highest of any feasible
allocation (because agent 1 wins whenever serving agent 1 is feasible); in particular it is as high
as that of EFO(2). Therefore, the revenue from agent 1 in Pseudo-Vickrey is at least that of
EFO(2).

Theorem 3. For any v, CCEPE is a β-approximation to EFO(2)(v) where β satisfies

β ≤ max

{

⌊mc⌋
p

, cα
1−p

[

1 + logc

(

1− 2α
m(α−1)

)]−1
}

.

Proof. We will separate our revenue into two parts; the first part is obtained from the topm′ = ⌊mc⌋
agents, denoted H = {1, . . . ,m′}; and the second part is obtained from the remaining n − m′,
denoted L = {m′ + 1, . . . , n}.

The contribution to the envy-free optimal revenue by the top agents satisfies EFO
(2)
H (v) ≤

m′ ICVic(v). This bound follows from Lemma 10 and the observation that envy-free payments are
monotonically non-increasing in agent values.

The contribution to the envy-free optimal revenue by the bottom agents satisfies EFO
(2)
L (v) ≤

EFO(m′)(v). This bound follows as EFO(m′) could try to simulate the outcome of EFO(2) and would
then receive the same contribution to revenue from agents L as EFO(2); of course, its revenue from
all agents must only be higher.

In conclusion, EFO(2)(v) ≤ m′ ICVic(v) + EFO(m′)(v).
The revenue of our mechanism, CCEPE, the sum of a β1 = m′/p approximation to m′ ICVic(v)

and a β2 = β′/(1− p) approximation to EFO(m′)(v), with β′ as defined in Lemma 9. Therefore, it
is a β = max(β1, β2) approximation to EFO(2)(v).

We can optimize the parameters of CCEPE to obtain the following corollary.

Corollary 1. For any v, CCEPE with p = 0.627, c = 1.666, α = 2.734 and m = 12 is a 30.4-
approximation to EFO(2)(v).
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