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Abstract

We give two different and simple constructions for dimensionality reduction in ℓ2 via linear
mappings that are sparse: only an O(ε)-fraction of entries in each column of our embedding
matrices are non-zero to achieve distortion 1 + ε with high probability, while still achieving the
asymptotically optimal number of rows. These are the first constructions to provide subconstant
sparsity for all values of parameters, improving upon previous works of Achlioptas (JCSS 2003)
and Dasgupta, Kumar, and Sarlós (STOC 2010). Such distributions can be used to speed up
applications where ℓ2 dimensionality reduction is used.

1 Introduction

The Johnson-Lindenstrauss lemma states:

Lemma 1 (JL Lemma [21]). For any integer d > 0, and any 0 < ε, δ < 1/2, there exists a
probability distribution on k × d real matrices for k = Θ(ε−2 log(1/δ)) such that for any x ∈ R

d,

P
S
((1− ε)‖x‖2 ≤ ‖Sx‖2 ≤ (1 + ε)‖x‖2) > 1− δ.

Proofs of the JL lemma can be found in [1, 6, 7, 13, 14, 17, 21, 23, 28]. The value of k in the
JL lemma is optimal [20] (also see a later proof in [22]).

The JL lemma is a key ingredient in the JL flattening theorem, which states that any n points
in Euclidean space can be embedded into O(ε−2 log n) dimensions so that all pairwise Euclidean
distances are preserved up to 1 ± ε. The JL lemma is a useful tool for speeding up solutions to
several high-dimensional problems: closest pair, nearest neighbor, diameter, minimum spanning
tree, etc. It also speeds up some clustering and string processing algorithms, and can further be
used to reduce the amount of storage required to store a dataset, e.g. in streaming algorithms.
Recently it has also found applications in approximate numerical algebra problems such as linear
regression and low-rank approximation [10, 34]. See [19, 36] for further discussions on applications.

Standard proofs of the JL lemma take a distribution over dense matrices (e.g. i.i.d. Gaussian or
Bernoulli entries), and thus performing the embedding näıvely takes O(k · ‖x‖0) time where x has
‖x‖0 non-zero entries. Several works have devised other distributions which give faster embedding
times [2, 3, 4, 18, 27, 38], but all these methods require Ω(d log d) embedding time even for sparse
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vectors (even when ‖x‖0 = 1). This feature is particularly unfortunate in streaming applications,
where a vector x receives coordinate-wise updates of the form x ← x + v · ei, so that to maintain
some linear embedding Sx of x we should repeatedly calculate Sei during updates. Since ‖ei‖0 = 1,
even the näıve O(k · ‖ei‖0) embedding time method is faster than these approaches.

Even aside from streaming applications, several practical situations give rise to vectors with
‖x‖0 ≪ d. For example, a common similarity measure for comparing text documents in data
mining and information retrieval is cosine similarity [33], which is approximately preserved under
any JL embedding. Here, a document is represented as a bag of words with the dimensionality
d being the size of the lexicon, and we usually would not expect any single document to contain
anywhere near d distinct words (i.e., we expect sparse vectors). In networking applications, if xi,j
counts bytes sent from source i to destination j in some time interval, then d is the total number
of IP pairs, whereas we would not expect most pairs of IPs to communicate with each other. In
linear algebra applications, a rating matrix A may for example have Ai,j as user i’s score for item
j (e.g. the Netflix matrix where columns correspond to movies), and we would expect that most
users rate only small fraction of all available items.

One way to speed up embedding time in the JL lemma for sparse vectors is to devise a distribu-
tion over sparse embedding matrices. This was first investigated in [1], which gave a JL distribution
where only one third of the entries of each matrix in its support was non-zero, without increasing
the number of rows k from dense constructions. Later, the works [9, 35] gave a distribution over
matrices with only O(log(1/δ)) non-zero entries per column, but the algorithm for estimating ‖x‖2
given the linear sketch then relied on a median calculation, and thus these schemes did not provide
an embedding into ℓ2. In several applications, such as nearest-neighbor search [17] and approximate
numerical linear algebra [10, 34], an embedding into a normed space or even ℓ2 itself is required,
and thus median estimators cannot be used. Median-based estimators also pose a problem when
one wants to learn classifiers in the dimension-reduced space via stochastic gradient descent, since
in this case the estimator needs certain differentiability properties [39]. In fact, the work of [39]
investigated JL distributions over sparse matrices for this reason, in the context of collaborative
spam filtering. The work [12] later analyzed the JL distribution in [39] and showed that it can
be realized where for each matrix in the support of the distribution, each column has at most
s = Õ(ε−1 log3(1/δ))1 non-zero entries, thus speeding up the embedding time to O(s · ‖x‖0). This
“DKS construction” requires O(ds log k) bits of random seed to sample a matrix from their distri-
bution. The work of [12] left open two main directions: (1) understand the sparsity parameter s
that can be achieved in a JL distribution, and (2) devise a sparse JL transform distribution which
requires few random bits to sample from, for streaming applications where storing a long random
seed requires prohibitively large memory.

The previous work [23] of the current authors made progress on both these questions by showing
Õ(ε−1 log2(1/δ)) sparsity was achievable by giving an alternative analysis of the scheme of [12]
which also only required O(log(1/(εδ)) log d) seed length. The work of [7] later gave a tighter
analysis under the assumption ε < 1/ log2(1/δ), improving the sparsity and seed length further by
log(1/ε) and log log(1/δ) factors in this case. In Section 5 we show that the DKS scheme requires
s = Ω̃(ε−1 log2(1/δ)), and thus a departure from their construction is required to obtain better
sparsity. For a discussion of other previous work concerning the JL lemma see [23].

1We say g = Ω̃(f) when g = Ω(f/polylog(f)), g = Õ(f) when g = O(f ·polylog(f)), and g = Θ̃(f) when g = Ω̃(f)
and g = Õ(f) simultaneously.
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(a) (b)

k/s

(c)

Figure 1: In all three constructions above, a vector in R
d is projected down to R

k. Figure (a) is
the DKS construction in [12], and the two constructions we give in this work are represented in (b)
and (c). The out-degree in each case is s, the sparsity.

Main Contribution: In this work, we give two new constructions which achieve sparsity s =
Θ(ε−1 log(1/δ)) for ℓ2 embedding into optimal dimension k = Θ(ε−2 log(1/δ)). This is the first
sparsity bound which is always o(k) for the asymptotically optimal value of k for all ranges of ε, δ.
One of our distributions can be sampled from using O(log(1/δ) log d) uniform random bits.

It is also worth nothing that after the preliminary version of this work was published in [24],
it was shown in [32] that our bound is optimal up to an O(log(1/ε)) factor. That is, for any
fixed constant c > 0, any distribution satisfying Lemma 1 that is supported on matrices with k =
O(ε−c log(1/δ)) and at most s non-zero entries per column must have s = Ω(ε−1 log(1/δ)/ log(1/ε))
as long as k = O(d/ log(1/ε)). Note that once k ≥ d one can always take the distribution supported
solely on the d× d identity matrix, giving s = 1 and satisfying Lemma 1 with ε = 0.

We also describe variations on our constructions which achieve sparsity Õ(ε−1 log(1/δ)), but
which have much simpler analyses. We describe our simpler constructions in Section 3, and our
better constructions in Section 4. We show in Section 5 that our analyses of the required sparsity
in our schemes are tight up to a constant factor. In Section 6 we discuss how our new schemes
speed up the numerical linear algebra algorithms in [10] for approximate linear regression and best
rank-k approximation in the streaming model of computation. We also show in Section 6 that a
wide range of JL distributions automatically provides sketches for approximate matrix product as
defined in [34]. While [34] also showed this, it lost a logarithmic factor in the target dimension
due to a union bound in its reduction; the work of [10] avoided this loss, but only for the JL
distribution of random sign matrices. We show a simple and general reduction which incurs no loss
in parameters. Plugging in our sparse JL transform then yields faster linear algebra algorithms
using the same space. In Section 7 we state two open problems for future work.

1.1 Our Approach

Our constructions are depicted in Figure 1. Figure 1(a) represents the DKS construction of [12]
in which each item is hashed to s random target coordinates with replacement. Our two schemes
achieving s = Θ(ε−1 log(1/δ)) are as follows. Construction (b) is much like (a) except that we hash
coordinates s times without replacement; we call this the graph construction, since hash locations

3



are specified by a bipartite graph with d left vertices, k right vertices, and left-degree s. In (c), the
target vector is divided into s contiguous blocks each of equal size k/s, and a given coordinate in the
original vector is hashed to a random location in each block (essentially this is the CountSketch

of [9], though we use a higher degree of independence in our hash functions); we call this the block
construction. In all cases (a), (b), and (c), we randomly flip the sign of a coordinate in the original
vector and divide by

√
s before adding it in any location in the target vector.

We give two different analyses for both our constructions (b) and (c). Since we consider linear
embeddings, without loss of generality we can assume ‖x‖2 = 1, in which case the JL lemma follows
by showing that ‖Sx‖22 ∈ [(1 − ε)2, (1 + ε)2], which is implied by |‖Sx‖22 − 1| ≤ 2ε − ε2. Thus it
suffices to show that for any unit norm x,

P
S
(|‖Sx‖22 − 1| > 2ε− ε2) < δ. (1)

We furthermore observe that both our graph and block constructions have the property that the
entries of our embedding matrix S can be written as

Si,j = ηi,jσi,j/
√
s, (2)

where the σi,j are independent and uniform in {−1, 1}, and ηi,j is an indicator random variable
for the event Si,j 6= 0 (in fact in our analyses we will only need that the σi,j are O(log(1/δ))-wise
independent). Note that the ηi,j are not independent, since in both constructions we have that
there are exactly s non-zero entries per column. Furthermore in the block construction, knowing
that ηi,j = 1 for j in some block implies that ηi,j′ = 0 for all other j′ in the same block.

To outline our analyses, look at the random variable

Z
def
= ‖Sx‖22 − 1 =

1

s
·

k
∑

r=1

∑

i 6=j∈[d]

ηr,iηr,jσr,iσr,jxixj. (3)

Our proofs all use Markov’s bound on the ℓth moment Zℓ to give P(|Z| > 2ε−ε2) < (2ε−ε2)−ℓ ·EZℓ

for ℓ = log(1/δ) an even integer. The task is then to bound EZℓ. In our first approach, we observe
that Z is a quadratic form in the σi,j of Eq. (2), and thus its moments can be bounded via the
Hanson-Wright inequality [16]. This analysis turns out to reveal that the hashing to coordinates
in the target vector need not be done randomly, but can in fact be specified by any sufficiently
good code (i.e. the ηi,j need not be random). Specifically, it suffices that for any j 6= j′ ∈ [d],
∑k

i=1 ηi,jηi,j′ = O(s2/k). That is, no two columns have their non-zero entries in more than O(s2/k)
of the same rows. In (b), this translates to the columns of the embedding matrix (ignoring the
random signs and division by

√
s) to be codewords in a constant-weight binary code of weight s

and minimum distance 2s−O(s2/k). In (c), if for each j ∈ [d] we let Cj be a length-s vector with
entries in [k/s] specifying where coordinate j is mapped to in each block, it suffices for {Cj}dj=1 to

be a code of minimum distance s−O(s2/k). It is fairly easy to see that if one wants a deterministic
hash function, it is necessary for the columns of the embedding matrix to be specified by a code:
if two coordinates have their non-zeroes in many of the same rows, it means those coordinates
collide often. Since collision is the source of error, an adversary in this case could ask to embed a
vector which has its mass equally spread on these two coordinates, causing large error with large
probability over the choice of random signs. What our analysis shows is that not only is a good
code necessary, but it is also sufficient.
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In our second analysis approach, we define

Zr =
∑

i 6=j∈[d]

ηr,iηr,jσr,iσr,jxixj . (4)

so that

Z =
1

s

k
∑

r=1

Zr. (5)

We show that to bound EZℓ it suffices to bound EZt
r for each r ∈ [k], t ∈ [ℓ]. To bound EZt

r,
we expand expand Zt

r to obtain a polynomial with roughly d2t terms. We view its monomials
as being in correspondence with graphs, group monomials that map to the same graph, then do
some combinatorics to make the expectation calculation feasible. We remark that a similar tactic
of mapping monomials to graphs then carrying out combinatorial arguments is frequently used to
analyze the eigenvalue spectrum of random matrices; see for example work of Wigner [40], or the
work of Füredi and Komlós [15]. In our approach here, we assume that the random signs as well
as the hashing to coordinates in the target vector are done O(log(1/δ))-wise independently. This
combinatorial approach of mapping to graphs played a large role in our previous analysis of the
DKS construction [23], as well as a later analysis of that construction in [7].

We point out here that Figure 1(c) is somewhat simpler to implement, since there are simple
constructions of O(log(1/δ))-wise hash families [8]. Figure 1(b) on the other hand requires hashing
without replacement, which amounts to using random permutations and can be derandomized using
almost O(log(1/δ))-wise independent permutation families [26] (see Remark 14).

2 Conventions and Notation

Definition 2. For A ∈ R
n×n, the Frobenius norm of A is ‖A‖F =

√

∑

i,j A
2
i,j.

Definition 3. For A ∈ R
n×n, the operator norm of A is ‖A‖2 = sup‖x‖2=1 ‖Ax‖2. In the case A

is symmetric, this is also the largest magnitude of an eigenvalue of A.

Henceforth, all logarithms are base-2 unless explicitly stated otherwise. For a positive integer
n we use [n] to denote the set {1, . . . , n}. We will always be focused on embedding a vector x ∈ R

d

into R
k, and we assume ‖x‖2 = 1 without loss of generality (since our embeddings are linear).

All vectors v are assumed to be column vectors, and vT denotes its transpose. We often implicitly
assume that various quantities, such as 1/δ, are powers of 2 or 4, which is without loss of generality.
Space complexity bounds (as in Section 6), are always measured in bits.

3 Code-Based Constructions

In this section, we provide analyses of our constructions (b) and (c) in Figure 1 when the non-zero
entry locations are deterministic but satisfy a certain condition. In particular, in the analysis in
this section we assume that for any i 6= j ∈ [d],

k
∑

r=1

ηr,iηr,j = O(s2/k). (6)
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That is, no two columns have their non-zero entries in more than O(s2/k) of the same rows. We
show how to use error-correcting codes to ensure Eq. (6) in Remark 8 for the block construction,
and in Remark 9 for the graph construction. Unfortunately this step will require setting s to be
slightly larger than the desired O(ε−1 log(1/δ)). We give an alternate analysis in Section 4 which
avoids assuming Eq. (6) and obtains an improved bound for s by not using deterministic ηr,i.

In what follows, we assume k = C · ε−2 log(1/δ) for a sufficiently large constant C, and that s
is some integer dividing k satisfying s ≥ 2(2ε − ε2)−1 log(1/δ) = Θ(ε−1 log(1/δ)). We also assume
that the σi,j are 2ℓ-wise independent for ℓ = log(1/δ), so that E(‖Sx‖22 − 1)ℓ is fully determined.

Analysis of Figure 1(b) and Figure 1(c) code-based constructions: Recall from Eq. (3)

Z
def
= ‖Sx‖22 − 1 =

1

s

k
∑

r=1

∑

i 6=j∈[d]

ηr,iηr,jσr,iσr,jxixj.

Note Z is a quadratic form in σ which can be written as σTTσ for a kd× kd block-diagonal matrix
T . There are k blocks, each d × d, where in the rth block Tr we have (Tr)i,j = ηr,iηr,jxixj/s for
i 6= j and (Tr)i,i = 0 for all i. Now, P(|Z| > 2ε − ε2) = P(|σTTσ| > 2ε − ε2). To obtain an upper
bound for this probability, we use the Hanson-Wright inequality combined with a Markov bound.

Theorem 4 (Hanson-Wright inequality [16]). Let z = (z1, . . . , zn) be a vector of i.i.d. Rademacher
±1 random variables. For any symmetric B ∈ R

n×n and ℓ ≥ 2,

E

∣

∣zTBz − trace(B)
∣

∣

ℓ ≤ Cℓ ·max
{√

ℓ · ‖B‖F , ℓ · ‖B‖2
}ℓ

for some universal constant C > 0 independent of B,n, ℓ.

We prove our construction satisfies the JL lemma by applying Theorem 4 with z = σ,B = T .

Lemma 5. ‖T‖2F = O(1/k).

Proof.

‖T‖2F =
1

s2
·
∑

i 6=j∈[d]

x2ix
2
j ·
(

k
∑

r=1

ηr,iηr,j

)

≤ O(1/k) ·
∑

i 6=j∈[d]

x2ix
2
j ≤ O(1/k) · ‖x‖42 = O(1/k),

where the first inequality used Eq. (6). �

Lemma 6. ‖T‖2 ≤ 1/s.

Proof. Since T is block-diagonal, its eigenvalues are the eigenvalues of each block. For a block Tr,
write Tr = (1/s) · (Sr −Dr). Dr is diagonal with (Dr)i,i = ηr,ix

2
i , and (Sr)i,j = ηr,iηr,jxixj . Since

Sr and Dr are both positive semidefinite, we have ‖T‖2 ≤ (1/s) · max{‖Sr‖2, ‖Dr‖2}. We have
‖Dr‖2 ≤ ‖x‖2∞ ≤ 1. Define u ∈ R

d by ui = ηr,ixi so Sr = uuT . Thus ‖Sr‖2 = ‖u‖22 ≤ ‖x‖22 = 1. �

By Eq. (1), it now suffices to prove the following theorem.

Theorem 7. Pσ(|Z| > 2ε− ε2) < δ.

6



Proof. By a Markov bound applied to Zℓ for ℓ an even integer,

P
σ
(|Z| > 2ε− ε2) < (2ε − ε2)−ℓ · E

σ
Zℓ.

Since Z = σTTσ and trace(T ) = 0, applying Theorem 4 with B = T , z = σ, and ℓ = log(1/δ) gives

P
σ
(|Z| > ε) < Cℓ ·max

{

O(ε−1) ·
√

ℓ

k
, (2ε − ε2)−1 ℓ

s

}ℓ

. (7)

since the ℓth moment is determined by 2 log(1/δ)-wise independence of σ. We conclude the proof
by noting that the expression in Eq. (7) is at most δ for our choices for s, k, ℓ. �

We now discuss how to choose the non-zero locations in S to ensure Eq. (6).

Remark 8. Consider the block construction, and for i ∈ [d] let Ci ∈ [k/s]s specify the locations
of the non-zero entries for column i of S in each of the s blocks. Then Eq. (6) is equivalent to
C = {C1, . . . , Cd} being an error-correcting code with relative distance 1 − O(s/k), i.e. that no
Ci, Cj pair for i 6= j agree in more than O(s2/k) coordinates. It is thus important to know whether
such a code exists. Let h : [d]× [s]→ [k/s] be such that h(i, r) gives the non-zero location in block
r for column i, i.e. (Ci)r = h(i, r). Note that having relative distance 1−O(s/k) is to say that for
every i 6= j ∈ [d], h(i, r) = h(j, r) for at most O(s2/k) values of r. For r ∈ [s] let Xr be an indicator
random variable for the event h(i, r) = h(j, r), and define X =

∑s
r=1Xr. Then EX = s2/k, and

if s2/k = Ω(log(d/δ)), then a Chernoff bound shows that X = O(s2/k) with probability at least
1− δ/d2 over the choice of h (in fact it suffices to use Markov’s bound applied to the O(log(d/δ))th

moment implied by the Chernoff bound so that h can be O(log(d/δ))-wise independent, but we do
not dwell on this issue here since Section 4 obtains better parameters). Thus by a union bound over
all
(d
2

)

pairs i 6= j, C is a code with the desired properties with probability at least 1−δ/2. Note that
the condition s2/k = Ω(log(d/δ)) is equivalent to s = Ω(ε−1

√

log(d/δ) log(1/δ)). We also point
out that we may assume without loss of generality that d = O(ε−2/δ). This is because there exists
an embedding into this dimension with sparsity 1 using only 4-wise independence with distortion
(1 + ε) and success probability 1 − δ/2 [9, 35]. It is worth noting that in the construction in this
section, potentially h could be deterministic given an explicit code with our desired parameters.

Remark 9. It is also possible to use a code to specify the hash locations in the graph construction.
In particular, let the jth entry of the ith column of the embedding matrix be the jth symbol of the
ith codeword (which we call h(i, j)) in a weight-s binary code of minimum distance 2s−O(s2/k) for
s ≥ 2ε−1 log(1/δ). Define ηi,j,r for i, j ∈ [d], r ∈ [s] as an indicator variable for h(i, r) = h(j, r) = 1.
Then, the error is again exactly as in Eq. (3). Also, as in Remark 8, such a code can be shown to
exist via the probabilistic method (the Chernoff bound can be applied using negative dependence,
followed by a union bound) as long as s = Ω(ε−1

√

log(d/δ) log(1/δ)). We omit the details since
Section 4 obtains better parameters.

Remark 10. Only using Eq. (6), it is impossible to improve our sparsity bound further. For
example, consider an instantiation of the block construction in which Eq. (6) is satisfied. Create
a new set of ηr,i which change only in the case r = 1 so that η1,i = 1 for all i, so that Eq. (6)
still holds. In our construction this corresponds to all indices colliding in the first chunk of k/s
coordinates, which creates an error term of (1/s) ·∑i 6=j xixjσr,iσr,j. Now, suppose x consists of

7



t = (1/2) · log(1/δ) entries each with value 1/
√
t. Then, with probability

√
δ ≫ δ, all these entries

receive the same sign under σ and contribute a total error of Ω(t/s) in the first chunk alone. We
thus need t/s = O(ε), which implies s = Ω(ε−1 log(1/δ)).

4 Random Hashing Constructions

In this section, we show that if the hash functions h described in Remark 8 and Remark 9 are
not specified by fixed codes, but rather are chosen at random from some family of sufficiently high
independence, then one can achieve sparsity O(ε−1 log(1/δ)) (in the case of Figure 1(b), we actually
need almost k-wise independent permutations). Recall our bottleneck in reducing the sparsity in
Section 3 was actually obtaining the codes, discussed in Remark 8 and Remark 9.

We perform our analysis by bounding the ℓth moment of Z = ‖Sx‖22−1 from first principles for
ℓ = Θ(log(1/δ)) an even integer (for this particular scheme, it seems the Hanson-Wright inequality
does not simplify any details of the proof). To show Eq. (1) we then use Markov’s inequality to say
P(|Z| > λ) < λ−ℓ ·EZℓ. Although the ηi,j are specified differently in the two constructions, in both
cases they are easily seen to be negatively correlated; that is, for any subset T ⊆ [k] × [d] (in fact
in our proof we will only be concerned with |T | ≤ ℓ) we have E

∏

(i,j)∈T ηi,j ≤ (s/k)|T |. Also, each

construction has
∑k

i=1 ηi,j = s with probability 1 for all j ∈ [d], and thus, recalling the definition
of Zr from Eq. (4),

Z =
1

s
·

k
∑

r=1

∑

i 6=j∈[d]

xixjσr,iσr,jηr,iηr,j =
1

s
·

k
∑

r=1

Zr.

We first bound the tth moment of each Zr for 1 ≤ t ≤ ℓ. As in the Frobenius norm moment
bound of [23], and also used later in [7], the main idea is to construct a correspondence between
the monomials appearing in Zt

r and certain graphs. Notice

Zt
r =

∑

i1,...,it,j1,...,jt∈[d]
i1 6=j1,...,it 6=jt

t
∏

u=1

ηr,iuηr,juxiuxjuσr,iuσr,ju. (8)

To each monomial above we associate a directed multigraph with labeled edges whose vertices
correspond to the distinct iu and ju. An xiuxju term corresponds to a directed edge with label u
from the vertex corresponding to iu to the vertex corresponding to ju. The basic idea we use to
bound EZt

r is to group these monomials based on their associated graphs.

Lemma 11. For t > 1 an integer, Eη,σ Z
t
r ≤ t(2e2)t ·

{

(s/k)2 t < 2 ln(k/s)

(t/ ln(k/s))t otherwise
.

Proof. We have

E
η,σ

Zt
r =

∑

i1,...,it,j1,...,jt∈[d]
i1 6=j1,...,it 6=jt

(

t
∏

u=1

xiuxju

)

·
(

E
σ

t
∏

u=1

σr,iuσr,ju

)

·
(

E
η

t
∏

u=1

ηr,iuηr,ju

)

. (9)

Define Gt as the set of directed multigraphs with t edges having distinct labels in [t] and no
self-loops, with between 2 and t vertices (inclusive), and where every vertex has non-zero and even
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Figure 2: Example of a graph in Gt on the left with v = 5, t = 7 and j1 = j5, i1 = j4, i4 = i5, j2 =
i3 = i6 = i7, i2 = j3 = j6 = j7. Example graph with the same restrictions on the right, but in G′t.

degree (we use degree to denote the sum of in- and out-degrees). Let f map variable sequences to
their corresponding graph. That is, we draw a directed edge labeled u from the vertex representing
iu to that representing ju for u = 1, . . . , t, where one vertex represents all the iu, ju which are
assigned the same element of [d] (see Figure 2). For a graph G, let v be its number of vertices,
and let du be the degree of vertex u. By construction every monomial maps to a graph with t
edges. Also we need only consider graphs with all even vertex degrees since a monomial whose
graph has at least one vertex with odd degree will have at least one random sign σi,ru appearing
an odd number of times and thus have expectation zero. Then,

E
η,σ

Zt
r =

∑

G∈Gt

∑

i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1

)=G

(

t
∏

u=1

xiuxju

)

· E
η

t
∏

u=1

ηr,iuηr,ju

=
∑

G∈Gt

∑

i1 6=j1,...,it 6=jt∈[d]
f((iu,ju)tu=1

)=G

(

t
∏

u=1

xiuxju

)

·
( s

k

)v
(10)

≤
∑

G∈Gt

( s

k

)v
· v! · 1

(

t
d1/2,...,dv/2

) (11)

=
∑

G∈G′
t

( s

k

)v
· 1
( t
d1/2,...,dv/2

) (12)

≤ (e/2)t ·
t
∑

v=2

( s

k

)v
· 1
tt
·





∑

G∈G′
t

v
∏

u=1

√

du
du



 , (13)

where G′t is the set of all directed multigraphs as in Gt, but in which vertices are labeled as well,
with distinct labels in [v] (see Figure 2; the vertex labels can be arbitrarily permuted).

Eq. (10) used that ηr,1, . . . , ηr,d are independent for any r. For Eq. (11), note that (‖x‖22)t = 1,
and the coefficient of

∏v
u=1 x

du
au in its expansion for

∑v
u=1 du = 2t is

(

t
d1/2,...,dv/2

)

. Meanwhile, the
coefficient of this monomial when summing over all i1 6= j1, . . . , it 6= jt for a particular G ∈ Gt is
at most v!. For Eq. (12), we move from graphs in Gt to those in G′t, and for any G ∈ Gt there are
exactly v! ways to label vertices. This is because for any graph G ∈ Gt there is a canonical way
of labeling the vertices as 1, . . . , v since there are no isolated vertices. Namely, the vertices can
be labeled in increasing order of when they are first visited by an edge when processing edges in

9



order of increasing label (if two vertices are both visited for the first time simultaneously by some
edge, then we can break ties consistently using the direction of the edge). Thus the vertices are all
identified by this canonical labeling, implying that the v! vertex labelings all give distinct graphs
in G′t. Eq. (13) follows since t! ≥ tt/et and

v
∏

u=1

(du/2)! ≤
v
∏

u=1

2−du/2
√

du
du

= 2−
∑v

u=1
du/2

v
∏

u=1

√

du
du

= 2−t
v
∏

u=1

√

du
du
.

The summation over G in Eq. (13) is over the G ∈ G′t with v vertices. Let us bound this
summation for some fixed choice of vertex degrees d1, . . . , dv . For any given i, consider the set of
all graphs G′′i on v labeled vertices with distinct labels in [v], and with i edges with distinct labels
in [i] (that is, we do not require even edge degrees, and some vertices may even have degree 0). For
a graph G ∈ G′′i , let d′u represent the degree of vertex u in G. For a1, . . . , av > 0 define the function

Si(a1, . . . , av) =
∑

G∈G′′
i

v
∏

u=1

√
au

d′u . (14)

Let G′t(d1, . . . , dv) be those graphs G ∈ G′t with v vertices such that vertex u has degree du. Then

∑

G∈G′
t(d1,...,dv)

v
∏

u=1

√

du
du ≤ St(d1, . . . , dv)

since G′t(d1, . . . , dv) ⊂ G′′t . To upper bound St(a1, . . . , av), note S0(a1, . . . , av) = 1. For i > 1, note
any graph in G′′i can be formed by taking a graph G ∈ G′′i−1 and adding an edge labeled i from
u to w for some vertices u 6= w in G. This change causes d′u, d

′
w to both increase by 1, whereas all

other degrees stay the same. Thus considering Eq. (14),

Si+1(a1, . . . , av)/Si(a1, . . . , av) ≤





∑

u 6=w∈[v]

√
au ·
√
aw



 ≤
(

v
∑

u=1

√
au

)2

≤
(

v
∑

u=1

au

)

· v,

with the last inequality using Cauchy-Schwarz. Thus by induction, St(a1, . . . , av) ≤ (
∑v

u=1 au)
t ·vt.

Since
∑v

u=1 du = 2t, we have St(d1, . . . , dv) ≤ (2tv)t. We then have that the summation in Eq. (13)
is at most the number of choices of even d1, . . . , dv summing to 2t (there are

(t−1
v−1

)

< 2t such
choices), times (2tv)t, implying

E
η,σ

Zt
r ≤ (2e)t ·

t
∑

v=2

( s

k

)v
· vt.

By differentiation, the quantity (s/k)vvt is maximized for v = max {2, t/ ln(k/s)} (recall v ≥ 2),
giving our lemma. �

Corollary 12. For t > 1 an integer, Eη,σ Z
t
r ≤ t(2e3)t(s/k)2tt.

Proof. We use Lemma 11. In the case t < 2 ln(k/s) we can multiply the (s/k)2 term by tt and
still obtain an upper bound, and in the case of larger t we have (t/ ln(k/s))t ≤ tt since k ≥ s. Also
when t ≥ 2 ln(k/s) we have et(s/k)2 ≥ 1, so that t(2e2)ttt ≤ t(2e3)t(s/k)2tt. �

10



Theorem 13. For some s ∈ Θ(ε−1 log(1/δ)), k ∈ Θ(ε−2 log(1/δ)), we have Ph,σ(|Z| > 2ε−ε2) < δ.

Proof. We choose ℓ an even integer to be specified later. Using Eq. (5) and EZr = 0 for all r,

EZℓ =
1

sℓ
·
ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

(

ℓ

ℓ1, . . . , ℓq

)

· E
q
∏

i=1

Zℓi
ri

≤ 1

sℓ
·
ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

(

ℓ

ℓ1, . . . , ℓq

)

·
q
∏

i=1

EZℓi
ri (15)

≤ 1

sℓ

ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

ℓ!
∏q

i=1 ℓi!
·
(

q
∏

i=1

ℓi

)

· (2e3)ℓ ·
( s

k

)2q
·

q
∏

i=1

ℓℓii (16)

≤ 1

sℓ

ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

e−q · ℓ! ·
(

q
∏

i=1

ℓi

)

· (2e4)ℓ ·
( s

k

)2q
(17)

≤ 1

sℓ

ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

e−q · ℓ! · (4e4)ℓ ·
( s

k

)2q
(18)

≤
(

4e3(ℓ+ 1)

s

)ℓ

· (ℓ+ 1) ·
ℓ/2
∑

q=1

∑

r1<...<rq∈[k]
ℓ1,...,ℓq
∀i ℓi>1∑

i ℓi=ℓ

e−q ·
( s

k

)2q
(19)

≤
(

8e3(ℓ+ 1)

s

)ℓ

· (ℓ+ 1) ·
ℓ/2
∑

q=1

e−q ·
(

k

q

)

·
( s

k

)2q
(20)

≤
(

8e3(ℓ+ 1)

s

)ℓ

· (ℓ+ 1) ·
ℓ/2
∑

q=1

(

s2

qk

)q

(21)

Eq. (15) follows since the expansion of
∏

i Z
ℓi
ri into monomials contains all nonnegative terms,

in which the participating ηr,i terms are negatively correlated, and thus E
∏

i Z
ℓi
ri is term-by-term

dominated when expanding into a sum of monomials by the case when the ηr,i are independent.
Eq. (16) uses Corollary 12, and Eq. (17) uses ℓi! ≥ e(ℓi/e)

ℓi . Eq. (18) compares geometric and
arithmetic means, giving

∏q
i=1 ℓi ≤ (

∑q
i=1 ℓi/q)

q ≤ (ℓ/q)q ≤
(ℓ
q

)

< 2ℓ. Eq. (19) bounds ℓ! ≤

11



(ℓ + 1) · ((ℓ + 1)/e)ℓ. Eq. (20) follows since there are
(k
q

)

ways to choose the ri, and there are at

most 2ℓ−1 ways to choose the ℓi summing to ℓ. Taking derivatives shows that the right hand side
of Eq. (21) is maximized for q = max{1, s2/(ek)}, which will be bigger than 1 and less than ℓ/2 by
our choices of s, k, ℓ that will soon be specified. Then q = s2/(ek) gives a summand of eq ≤ eℓ/2.
We choose ℓ ≥ ln(δ−1(ℓ+ 1)ℓ/2) = Θ(log(1/δ)) and s ≥ 8e4

√
e(ℓ+ 1)/(2ε − ε2) = Θ(ε−1 log(1/δ))

so that Eq. (21) is at most (2ε − ε2)ℓ · δ. Then to ensure s2/(ek) ≤ ℓ/2 we choose k = 2s2/(eℓ) =
Θ(ε−2 log(1/δ)). The theorem then follows by Markov’s inequality. �

Remark 14. In order to use fewer random bits to sample from the graph construction, we
can use the following implementation. We realize the distribution over S via two hash functions
h : [d] × [k] → {0, 1} and σ : [d] × [s]→ {−1, 1}. The function σ is drawn from from a 2 log(1/δ)-
wise independent family. The function h has the property that for any i, exactly s distinct r ∈ [k]
have h(i, r) = 1; in particular, we pick d seeds log(1/δ)-wise independently to determine hi for
i = 1, . . . , d, and where each hi is drawn from a γ-almost 2 log(1/δ)-wise independent family
of permutations on [d] for γ = (εs/(d2k))Θ(log(1/δ)). The seed length required for any one such
permutation is O(log(1/δ) log d + log(1/γ)) = O(log(1/δ) log d) [26], and thus we can pick d such
seeds 2 log(1/δ)-wise independently using total seed length O(log2(1/δ) log d). We then let h(i, r) =
1 iff some j ∈ [s] has hi(j) = r. Recall that a γ-almost ℓ-wise independent family of permutations
from [d] onto itself is a family of permutations F where the image of any fixed ℓ elements in [d]
has statistical distance at most γ when choosing a random f ∈ F when compared with choosing
a uniformly random permutation f . Now, there are (kd2)ℓ monomials in the expansion of Zℓ. In
each such monomial, the coefficient of the E

∏

u h(iu, ru)h(ju, ru) term is at most s−ℓ. In the end,
we want Eh,σ Z

ℓ < O(ε)ℓ to apply Markov’s inequality. Thus, we want (kd2/s)ℓ · γ < O(ε)ℓ.

Remark 15. It is worth noting that if one wants distortion 1 ± εi with probability 1 − δi si-
multaneously for all i in some set S, our proof of Theorem 13 reveals that it suffices to set
s = C · supi∈S ε−1

i log(1/δi) and k = C · supi∈S ε−2
i log(1/δi).

5 Tightness of analyses

In this section we show that sparsity Ω(ε−1 log(1/δ)) is required in Figure 1(b) and Figure 1(c),
even if the hash functions used are completely random. We also show that sparsity Ω̃(ε−1 log2(1/δ))
is required in the DKS construction (Figure 1(a)), nearly matching the upper bounds of [7, 23].
Interestingly, all three of our proofs of (near-)tightness of analyses for these three constructions use
the same hard input vectors. In particular, if s = o(1/ε), then we show that a vector with t =
⌊1/(sε)⌋ entries each of value 1/

√
t incurs large distortion with large probability. If s = Ω(1/ε) but

is still not sufficiently large, we show that the vector (1/
√
2, 1/
√
2, 0, . . . , 0) incurs large distortion

with large probability (in fact, for the DKS scheme one can even take the vector (1, 0, . . . , 0)).

5.1 Near-tightness for DKS Construction

The main theorem of this section is the following.

Theorem 16. The DKS construction of [12] requires sparsity s = Ω(ε−1 ·
⌈

log2(1/δ)/ log2(1/ε)
⌉

)
to achieve distortion 1± ε with success probability 1− δ.
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Before proving Theorem 16, we recall the DKS construction (Figure 1(a)). First, we repli-
cate each coordinate s times while preserving the ℓ2 norm. That is, we produce the vector
x̃ = (x1, . . . , x1, x2, . . . , x2, . . . , xd, . . . , xd)/

√
s, where each xi is replicated s times. Then, pick

a random k × ds embedding matrix A for k = Cε−2 log(1/δ) where each column has exactly one
non-zero entry, in a location defined by some random function h : [ds] → [k], and where this non-
zero entry is ±1, determined by some random function σ : [ds]→ {−1, 1}. The value C > 0 is some
fixed constant. The final embedding is A applied to x̃. We are now ready to prove Theorem 16.
The proof is similar to that of Theorem 19.

Our proof will use the following standard fact.

Fact 17 ([30, Proposition B.3]). For all t, n ∈ R with n ≥ 1 and |t| ≤ n,

et(1− t2/n) ≤ (1 + t/n)n ≤ et.

Proof (of Theorem 16). First suppose s ≤ 1/(2ε). Consider a vector with t = ⌊1/(sε)⌋ non-
zero coordinates each of value 1/

√
t. If there is exactly one pair {i, j} that collides under h,

and furthermore the signs agree under σ, the ℓ2 norm squared of our embedded vector will be
(st− 2)/(st) + 4/(st). Since 1/(st) ≥ ε, this quantity is at least 1 + 2ε. The event of exactly one
pair {i, j} colliding occurs with probability

(

st

2

)

· 1
k
·
st−2
∏

i=0

(1− i/k) ≥ Ω

(

1

log(1/δ)

)

· (1− ε/2)1/ε

= Ω(1/ log(1/δ)),

which is much larger than δ/2 for δ smaller than some constant. Now, given a collision, the colliding
items have the same sign with probability 1/2.

We next consider the case 1/(2ε) < s ≤ 4/ε. Consider the vector x = (1, 0, . . . , 0). If there
are exactly three pairs {i1, j1}, . . . , {i3, j3} that collide under h in three distinct target coodinates,
and furthermore the signs agree under σ, the ℓ2 norm squared of our embedded vector will be
(s− 6)/(s) + 12/(s) > 1 + 3ε/2. The event of three pairs colliding occurs with probability

(

s

2

)(

s− 2

2

)(

s− 4

2

)

· 1
3!
· 1
k3
·
s−4
∏

i=0

(1− i/k) ≥ Ω

(

1

log3(1/δ)

)

· (1− ε/8)4/ε

= Ω(1/ log3(1/δ)),

which is much larger than δ/2 for δ smaller than some constant. Now, given a collision, the colliding
items have the same sign with probability 1/8.

We lastly consider the case 4/ε < s ≤ 2cε−1 log2(1/δ)/ log2(1/ε) for some constant c > 0
(depending on C) to be determined later. First note this case only exists when δ = O(ε). Define
x = (1, 0, . . . , 0). Suppose there exists an integer q so that

1. q2/s ≥ 4ε

2. q/s < ε

3. (s/(qk))q(1− 1/k)s > δ1/3.

13



First we show it is possible to satisfy the above conditions simultaneously for our range of s.
We set q = 2

√
εs, satisfying item 1 trivially, and item 2 since s > 4/ε. For item 3, Fact 17 gives

(s/(qk))q · (1− 1/k)s ≥
(

s

qk

)q

· e−s/k ·
(

1− s

k2

)

.

The e−s/k · (1 − (s/k2)) term is at least δ1/6 by the settings of s, k, and the (s/(qk))q term is also
at least δ1/6 for c sufficiently small.

Now, consider the event E that exactly q of the s copies of x1 are hashed to 1 by h, and to +1
by σ. If E occurs, then coordinate 1 in the target vector contributes q2/s ≥ 4ε to ℓ22 in the target
vector by item 1 above, whereas these coordinates only contribute q/s < ε to ‖x‖22 by item 2 above,
thus causing error at least 3ε. Furthermore, the s− q coordinates which do not hash to 1 are being
hashed to a vector of length k − 1 = ω(1/ε2) with random signs, and thus these coordinates have
their ℓ22 contribution preserved up to 1± o(ε) with constant probability by Chebyshev’s inequality.
It thus just remains to show that P(E)≫ δ. We have

P(E) =
(

s

q

)

· k−q ·
(

1− 1

k

)s−q

· 1/2q

≥
(

s

qk

)q

·
(

1− 1

k

)s

· 1
2q

> δ1/3 · 1
2q

.

The 2−q term is ω(δ1/3) and thus overall P(E) = ω(δ2/3)≫ δ. �

5.2 Tightness of Figure 1(b) analysis

Theorem 18. For δ smaller than a constant depending on C for k = Cε−2 log(1/δ), the graph
construction of Section 4 requires s = Ω(ε−1 log(1/δ)) to obtain distortion 1 ± ε with probability
1− δ.

Proof. First suppose s ≤ 1/(2ε). We consider a vector with t = ⌊1/(sε)⌋ non-zero coordinates
each of value 1/

√
t. If there is exactly one set i, j, r with i 6= j such that Sr,i, Sr,j are both non-zero

for the embedding matrix S (i.e., there is exactly one collision), then the total error is 2/(ts) ≥ 2ε.
It just remains to show that this happens with probability larger than δ. The probability of this
occurring is

s2 ·
(

t

2

)

· 1
k
· k − s

k − 1
· · · k − 2s+ 2

k − s+ 1
·
(

(k − 2s+ 1)!

(k − ts+ 1)!

)

·
(

(k − s)!

k!

)t−2

≥ s2t2

2k
·
(

k − st

k

)st

≥ s2t2

2k
·
(

1− s2t2

k

)

= Ω(1/ log(1/δ)).

Now consider the case 1/(2ε) < s < c · ε−1 log(1/δ) for some small constant c. Consider the
vector (1/

√
2, 1/
√
2, 0, . . . , 0). Suppose there are exactly 2sε collisions, i.e. 2sε distinct values of

r such that Sr,i, Sj,r are both non-zero (to avoid tedium we disregard floors and ceilings and just
assume sε is an integer). Also, suppose that in each colliding row r we have σ(1, r) = σ(2, r). Then,
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the total error would be 2ε. It just remains to show that this happens with probability larger than
δ. The probability of signs agreeing in exactly 2εs chunks is 2−2εs > 2−2c log(1/δ), which is larger
than

√
δ for c < 1/4. The probability of exactly 2εs collisions is

(

s

2εs

)

·
(

2εs−1
∏

i=0

s− i

k − i

)

·
(

s−2εs−1
∏

i=0

k − i− s

k − i− 2εs

)

≥
(

1

2ε

)2εs

·
(

(1− 2ε)s

k

)2εs

·
(

1− s

k − s

)s−2εs

≥
( s

4εk

)2εs
·
(

1− 2s

k

)s

. (22)

It suffices for the right hand side to be at least
√
δ since h is independent of σ, and thus the

total probability of error larger than 2ε would be greater than
√
δ
2
= δ. Taking natural logarithms,

it suffices to have

2εs ln

(

4εk

s

)

− s ln

(

1− 2s

k

)

≤ ln(1/δ)/2.

Writing s = q/ε and a = 4C log(1/δ), the left hand side is 2q ln(a/q)+Θ(s2/k). Taking a derivative
shows 2q ln(a/q) is monotonically increasing for q < a/e. Thus as long as q < ca for a sufficiently
small constant c, 2q ln(a/q) < ln(1/δ)/4. Also, the Θ(s2/k) term is at most ln(1/δ)/4 for c suffi-
ciently small. �

5.3 Tightness of Figure 1(c) analysis

Theorem 19. For δ smaller than a constant depending on C for k = Cε−2 log(1/δ), the block
construction of Section 4 requires s = Ω(ε−1 log(1/δ)) to obtain distortion 1 ± ε with probability
1− δ.

Proof. First suppose s ≤ 1/(2ε). Consider a vector with t = ⌊1/(sε)⌋ non-zero coordinates each
of value 1/

√
t. If there is exactly one set i, j, r with i 6= j such that h(i, r) = h(j, r) (i.e. exactly

one collision), then the total error is 2/(ts) ≥ 2ε. It just remains to show that this happens with
probability larger than δ.

The probability of exactly one collision is

s ·
[

t! ·
(k/s

t

)

(k/s)t

]s−1

·
(

t

2

)

·
(

k

s

)

·
[

(t− 2)! ·
(

k/s−1
t−2

)

(k/s)t

]

≥ s ·
(

1− st

k

)t(s−1)

·
(

t

2

)

·
( s

k

)

(

1− st

k

)t−2

=
s2t(t− 1)

2k
·
(

1− st

k

)st−2

≥ s2t(t− 1)

2k
·
(

1− s2t2

k

)

= Ω(1/ log(1/δ)),

which is larger than δ for δ smaller than a universal constant.
Now consider 1/(2ε) < s < c · ε−1 log(1/δ) for some small constant c. Consider the vector

x = (1/
√
2, 1/
√
2, 0, . . . , 0). Suppose there are exactly 2sε collisions, i.e. 2sε distinct values of r

such that h(1, r) = h(2, r) (to avoid tedium we disregard floors and ceilings and just assume sε is
an integer). Also, suppose that in each colliding chunk r we have σ(1, r) = σ(2, r). Then, the total
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error would be 2ε. It just remains to show that this happens with probability larger than δ. The
probability of signs agreeing in exactly 2εs chunks is 2−2εs > 2−2c log(1/δ), which is larger than

√
δ

for c < 1/4. The probability of exactly 2εs collisions is

(

s

2εs

)

( s

k

)2εs (

1− s

k

)(1−2ε)s
≥
( s

2εk

)2εs (

1− s

k

)(1−2ε)s

The above is at most
√
δ, by the analysis following Eq. (22). Since h is independent of σ, the

total probability of having error larger than 2ε is greater than
√
δ
2
= δ. �

6 Faster numerical linear algebra streaming algorithms

The works of [10, 34] gave algorithms to solve various approximate numerical linear algebra problems
given small memory and a only one or few passes over an input matrix. They considered models
where one only sees a row or column at a time of some matrix A ∈ R

d×n. Another update model
considered was the turnstile streaming model. In this model, the matrix A starts off as the all
zeroes matrix. One then sees a sequence of m updates (i1, j1, v1), . . . , (im, jm, vm), where each
update (i, j, v) triggers the change Ai,j ← Ai,j +v. The goal in all these models is to compute some
functions of A at the end of seeing all rows, columns, or turnstile updates. The algorithm should
use little memory (much less than what is required to store A explicitly). Both works [10, 34]
solved problems such as approximate linear regression and best rank-k approximation by reducing
to the problem of sketches for approximate matrix products. Before delving further, first we give
a definition.

Definition 20. Distribution D over R
k×d has (ε, δ, ℓ)-JL moments if for all x with ‖x‖2 = 1,

E
S∼D

∣

∣‖Sx‖22 − 1
∣

∣

ℓ ≤ εℓ · δ.

Now, the following theorem is a generalization of [10, Theorem 2.1]. The theorem states that any
distribution with JL moments also provides a sketch for approximate matrix products. A similar
statement was made in [34, Lemma 6], but that statement was slightly weaker in its parameters
because it resorted to a union bound, which we avoid by using Minkowski’s inequality.

Theorem 21. Given ε, δ ∈ (0, 1/2), let D be any distribution over matrices with d columns with
the (ε, δ, ℓ)-JL moment property for some ℓ ≥ 2. Then for A,B any real matrices with d rows,

P
S∼D

(

‖ATSTSB −ATB‖F > 3ε‖A‖F ‖B‖F
)

< δ.

Proof. Let x, y ∈ R
d each have ℓ2 norm 1. Then

〈Sx, Sy〉 = ‖Sx‖
2
2 + ‖Sy‖22 − ‖S(x− y)‖22

2
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so that, defining ‖X‖p = (E |X|p)1/p (which is a norm for p ≥ 1 by Minkowski’s inequality),

‖〈Sx, Sy〉 − 〈x, y〉‖ℓ =
1

2
·
∥

∥(‖Sx‖22 − 1) + (‖Sy‖22 − 1)− (‖S(x− y)‖22 − ‖x− y‖22)
∥

∥

ℓ

≤ 1

2
·
(∥

∥‖Sx‖22 − 1
∥

∥

ℓ
+
∥

∥‖Sy‖22 − 1
∥

∥

ℓ
+
∥

∥‖S(x− y)‖22 − ‖x− y‖22
∥

∥

ℓ

)

≤ 1

2
·
(

ε · δ1/ℓ + ε · δ1/ℓ + ‖x− y‖22 · ε · δ1/ℓ
)

≤ 3ε · δ1/ℓ

Now, if A has n columns and B has m columns, label the columns of A as x1, . . . , xn ∈ R
d and the

columns of B as y1, . . . , ym ∈ R
d. Define the random variable Xi,j = 1/(‖xi‖2‖yj‖2) · (〈Sxi, Syj〉 −

〈xi, yj〉). Then ‖ATSTSB −ATB‖2F =
∑n

i=1

∑m
j=1 ‖xi‖22 · ‖yj‖22 ·X2

i,j . Then again by Minkowski’s
inequality since ℓ/2 ≥ 1,

∥

∥‖ATSTSB −ATB‖2F
∥

∥

ℓ/2
=

∥

∥

∥

∥

∥

∥

n
∑

i=1

m
∑

j=1

‖xi‖22 · ‖yj‖22 ·X2
i,j

∥

∥

∥

∥

∥

∥

ℓ/2

≤
n
∑

i=1

m
∑

j=1

‖xi‖22 · ‖yj‖22 · ‖X2
i,j‖ℓ/2

=

n
∑

i=1

m
∑

j=1

‖xi‖22 · ‖yj‖22 · ‖Xi,j‖2ℓ

≤ (3εδ1/ℓ)2 ·





n
∑

i=1

m
∑

j=1

‖xi‖22 · ‖yj‖22





= (3εδ1/ℓ)2 · ‖A‖2F ‖B‖2F

Then by Markov’s inequality and using E ‖ATSTSB −ATB‖ℓF = ‖‖ATSTSB −ATB‖2F ‖
ℓ/2
ℓ/2,

P
(

‖ATSTSB −ATB‖F > 3ε‖A‖F ‖B‖F
)

≤
(

1

3ε‖A‖F ‖B‖F

)ℓ

· E ‖ATSTSB −ATB‖ℓF ≤ δ.

�

Remark 22. Often when one constructs a JL distribution D over k× d matrices, it is shown that
for all x with ‖x‖2 = 1 and for all ε > 0,

P
S∼D

(∣

∣‖Sx‖22 − 1
∣

∣ > ε
)

< e−Ω(ε2k+εk).

Any such distribution automatically satisfies the (ε, e−Ω(ε2k+εk),min{ε2k, εk})-JL moment property
for any ε > 0 by converting the tail bound into a moment bound via integration by parts.

Remark 23. After this work there was interest in finding sparse oblivious subspace embeddings,
i.e. a randomized and sparse S ∈ R

k×n such that for any U ∈ R
n×d with orthonormal columns,
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P(‖(SU)T (SU)−I‖ > ε) < δ. Here the norm is ℓ2 to ℓ2 operator norm, and thus ‖(SU)T (SU)−I‖ ≤
ε implies that (1− ε)‖x‖22 ≤ ‖Sx‖22 ≤ (1 + ε)‖x‖22 for all x in the column span of U . It was shown
in [11, 29, 31] that such S exists with one non-zero entry per column and k = O(d2/(ε2δ)) rows. It
has sinced been pointed out to us by Huy Lê Nguy˜̂en that this result also follows from Theorem 21.
Indeed, [35] provides a distribution with (ε′, δ, 2)-JL moments with k = O(ε′−2δ−1) rows, and
supported on matrices each with exactly one non-zero entry per column. The claim then follows
by applying Theorem 21 with A = B = U and ε′ = ε/(3d) by noting that ‖U‖F =

√
d and that

operator norm is upper bounded by Frobenius norm.

Now we arrive at the main point of this section. Several algorithms for approximate linear
regression and best rank-k approximation in [10] simply maintain SA as A is updated, where S
comes from the JL distribution with Ω(log(1/δ))-wise independent ±1/

√
k entries. In fact though,

their analyses of their algorithms only use the fact that this distribution satisfies the approximate
matrix product sketch guarantees of Theorem 21. Due to Theorem 21 though, we know that any
distribution satisfying the (ε, δ)-JL moment condition gives an approximate matrix product sketch.
Thus, random Bernoulli matrices may be replaced with our sparse JL distributions in this work. We
now state some of the algorithmic results given in [10] and describe how our constructions provide
improvements in the update time (the time to process new columns, rows, or turnstile updates).

As in [10], when stating our results we will ignore the space and time complexities of storing
and evaluating the hash functions in our JL distributions. We discuss this issue later in Remark 26.

6.1 Linear regression

In this problem we have an A ∈ R
d×n and b ∈ R

d. We would like to compute a vector x̃ such that
‖Ax̃− b‖F ≤ (1+ε) ·minx∗ ‖Ax∗− b‖F with probability 1− δ. In [10], it is assumed that the entries
of A, b require O(log(nd)) bits of precision to store precisely. Both A, b receive turnstile updates.

Theorem 3.2 of [10] proves that such an x̃ can be computed with probability 1 − δ from SA
and Sb, where S is drawn from a distribution that simultaneously satisfies both the (1/2, η−rδ)
and (

√

ε/r, δ)-JL moment properties for some fixed constant η > 1 in their proof, and where
rank(A) ≤ r ≤ n. Thus due to Remark 15, we have the following.

Theorem 24. There is a one-pass streaming algorithm for linear regression in the turnstile model
where one maintains a sketch of size O(n2ε−1 log(1/δ) log(nd)). Processing each update requires
O(n+

√

n/ε · log(1/δ)) arithmetic operations and hash function evaluations.

Theorem 24 improves the update complexity of [10], which was O(nε−1 log(1/δ)).

6.2 Low rank approximation

In this problem, we have an A ∈ R
d×n of rank ρ with entries that require precision O(log(nd)) to

store. We would like to compute the best rank-r approximation Ar to A. We define ∆r
def
= ‖A−Ar‖F

as the error of Ar. We relax the problem by only requiring that we compute a matrix A′
r such that

‖A−A′
r‖F ≤ (1 + ε)∆r with probability 1− δ over the randomness of the algorithm.

Two-pass algorithm: Theorem 4.4 of [10] gives a 2-pass algorithm where in the first pass,
one maintains SA where S is drawn from a distribution that simultaneously satisfies both the
(1/2, η−rδ) and (

√

ε/r, δ)-JL moment properties for some fixed constant η > 1 in their proof. It is
also assumed that ρ ≥ 2r + 1. The first pass is thus sped up again as in Theorem 24.
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One-pass algorithm for column/row-wise updates: Theorem 4.5 of [10] gives a one-pass
algorithm in the case that A is seen either one whole column or row at a time. The algorithm
maintains both SA and SAAT where S is drawn from a distribution that simultaneously satisfies
both the (1/2, η−rδ) and (

√

ε/r, δ)-JL moment properties. This implies the following.

Theorem 25. There is a one-pass streaming algorithm for approximate low rank approximation
with row/column-wise updates where one maintains a sketch of size O(rε−1(n+d) log(1/δ) log(nd)).
Processing each update requires O(r +

√

r/ε · log(1/δ)) amortized arithmetic operations and hash
function evaluations per entry of A.

Theorem 25 improves the amortized update complexity of [10], which was O(rε−1 log(1/δ)).

Three-pass algorithm for row-wise updates: Theorem 4.6 of [10] gives a three-pass algorithm
using less space in the case that A is seen one row at a time. Again, the first pass simply maintains
SA where S is drawn from a distribution that satisfies both the (1/2, η−rδ) and (

√

ε/r, δ)-JL
moment properties. This pass is sped up using our sparser JL distribution.

One-pass algorithm in the turnstile model, bi-criteria: Theorem 4.7 of [10] gives a one-pass
algorithm under turnstile updates where SA and RAT are maintained in the stream. S is drawn
from a distribution satisfying both the (1/2, η−r log(1/δ)/εδ) and (ε/

√

r log(1/δ), δ)-JL moment prop-
erties. R is drawn from a distribution satisfying both the (1/2, η−rδ) and (

√

ε/r, δ)-JL moment
properties. Theorem 4.7 of [10] then shows how to compute a matrix of rank O(rε−1 log(1/δ))
which achieves the desired error guarantee given SA and RAT .

One-pass algorithm in the turnstile model: Theorem 4.9 of [10] gives a one-pass algorithm
under turnstile updates where SA and RAT are maintained in the stream. S is drawn from a distri-
bution satisfying both the (1/2, η−r log(1/δ)/ε2δ) and (ε

√

ε/(r log(1/δ)), δ)-JL moment properties. R
is drawn from a distribution satisfying both the (1/2, η−rδ) and (

√

ε/r, δ)-JL moment properties.
Theorem 4.9 of [10] then shows how to compute a matrix of rank r which achieves the desired error
guarantee given SA and RAT .

Remark 26. In the algorithms above, we counted the number of hash function evaluations that
must be performed. We use our construction in Figure 1(c), which uses 2 log(1/δ)-wise independent
hash functions. Standard constructions of t-wise independent hash functions over universes with
elements fitting in a machine word require O(t) time to evaluate [8]. In our case, this would blow
up our update time by factors such as n or r, which could be large. Instead, we use fast multipoint
evaluation of polynomials. The standard construction [8] of our desired hash functions mapping
some domain [z] onto itself for z a power of 2 takes a degree-(t − 1) polynomial p with random
coefficients in Fz. The hash function evaluation at some point y is then the evaluation p(y) over
Fz. Theorem 27 below states that p can be evaluated at t points in total time Õ(t). We note that
in the theorems above, we are always required to evaluate some t-wise independent hash function
on many more than t points per stream update. Thus, we can group these evaluation points into
groups of size t then perform fast multipoint evaluation for each group. We borrow this idea from
[25], which used it to give a fast algorithm for moment estimation in data streams.

Theorem 27 ([37, Ch. 10]). Let R be a ring, and let q ∈ R[x] be a degree-t polynomial. Then, given
distinct x1, . . . , xt ∈ R, all the values q(x1), . . . , q(xt) can be computed using O(t log2 t log log t)
operations over R.
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7 Open Problems

In this section we state two explicit open problems. For the first, observe that our graph construction
is quite similar to a sparse JL construction of Achlioptas [1]. The work of [1] proposes a random
normalized sign matrix where each column has an expected number s of non-zero entries, so that in
the notation of this work, the ηi,j are i.i.d. Bernoulli with expectation s/k. Using this construction,
[1] was able to achieve s = k/3 without causing k to increase over analyses of dense constructions,
even by a constant factor. Meanwhile, our graph construction requires that there be exactly s non-
zero entries per column. This sole change was the reason we were able to obtain better asymptotic
bounds on the sparsity of S in this work, but in fact we conjecture an even stronger benefit than
just asymptotic improvement. The first open problem is to resolve the following conjecture.

Conjecture 28. Fix a positive integer k. For x ∈ R
d, define ZA

x,s as the error random variable

|‖Sx‖22 − ‖x‖22| when S is the sparse construction of [1] with sparsity parameter s. Let ZG
x,s be

similarly defined, but when using our graph construction. Then for any x ∈ R
d and any s ∈ [k], ZA

x,s

stochastically dominates ZG
x,s. That is, for all x ∈ R

d, s ∈ [k], λ > 0, P(ZA
x,s > λ) ≥ P(ZG

x,s > λ).

A positive resolution of this conjecture would imply that not only does our graph construction
obtain better asymptotic performance than [1], but in fact obtains stronger performance in a very
definitive sense.

The second open problem is the following. Recall that the “metric Johnson-Lindenstrauss
lemma” [21] states that for any n vectors in R

d, there is a linear map into R
k for k = O(ε−2 log n)

which preserves all pairwise Euclidean distances of the n vectors up to 1± ε. Lemma 1 implies this
metric JL lemma by setting δ < 1/

(

n
2

)

then performing a union bound over all
(

n
2

)

pairwise difference
vectors. Alon showed that k = Ω(ε−2 log n/ log(1/ε)) is necessary [5]. Our work shows that metric
JL is also achievable where every column of the embedding matrix has at most s = O(ε−1 log n)
non-zeroes, and this is also known to be tight up to an O(log(1/ε)) factor [32]. Thus, for metric
JL, the lower bounds for both k and s are off by O(log(1/ε)) factors. Meanwhile, for the form of
the JL lemma in Lemma 1 where one wants to succeed on any fixed vector with probability 1 − δ
(the “distributional JL lemma”), the tight lower bound on k of Ω(ε−2 log(1/δ)) is known [20, 22].
Thus it seems that obtaining lower bounds for distributional JL is an easier task.

Question: Can we obtain a tight lower bound of s = Ω(ε−1 log(1/δ)) for distributional JL in the
case that k = O(ε−2 log(1/δ)) < d/2, thus removing the O(log(1/ε)) factor gap?
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[28] Jiŕı Matousek. On variants of the Johnson-Lindenstrauss lemma. Random Struct. Algorithms,
33(2):142–156, 2008.

[29] Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the 45th ACM
Symposium on Theory of Computing (STOC), pages 91–100, 2013.

[30] Rajeev Motwani and Prabakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[31] Jelani Nelson and Huy L. Nguy˜̂en. OSNAP: Faster numerical linear algebra algorithms via
sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), 2013.

22



[32] Jelani Nelson and Huy L. Nguy˜̂en. Sparsity lower bounds for dimensionality reducing maps.
In Proceedings of the 45th ACM Symposium on Theory of Computing (STOC), pages 101–110,
2013.

[33] Vipin Kumar Pang-Ning Tan, Michael Steinbach. Introduction to Data Mining. Addison-
Wesley, 2005.

[34] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 143–152, 2006.

[35] Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications to
linear probing and second moment estimation. SIAM J. Comput., 41(2):293–331, 2012.

[36] Santosh Vempala. The random projection method, volume 65 of DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. American Mathematical Society, 2004.

[37] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge Univer-
sity Press, 1999.

[38] Jan Vyb́ıral. A variant of the Johnson-Lindenstrauss lemma for circulant matrices. J. Funct.
Anal., 260(4):1096–1105, 2011.

[39] Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh At-
tenberg. Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual
International Conference on Machine Learning (ICML), pages 1113–1120, 2009.

[40] Eugene P. Wigner. Characteristic vectors of bordered matrices with infinite dimensions. Ann.
Math., 62:548–564, 1955.

23


	1 Introduction
	1.1 Our Approach

	2 Conventions and Notation
	3 Code-Based Constructions
	4 Random Hashing Constructions
	5 Tightness of analyses
	5.1 Near-tightness for DKS Construction
	5.2 Tightness of Figure ??(b) analysis
	5.3 Tightness of Figure ??(c) analysis

	6 Faster numerical linear algebra streaming algorithms
	6.1 Linear regression
	6.2 Low rank approximation

	7 Open Problems

