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Abstract

In this paper we present improved bounds for approximating maximum matchings in bipartite graphs in

the streaming model. First, we consider the question of how well maximum matching can be approximated

in a single pass over the input when Õ(n) space is allowed, where n is the number of vertices in the

input graph. Two natural variants of this problem have been considered in the literature: (1) the edge

arrival setting, where edges arrive in the stream and (2) the vertex arrival setting, where vertices on one

side of the graph arrive in the stream together with all their incident edges. The latter setting has also

been studied extensively in the context of online algorithms, where each arriving vertex has to either be

matched irrevocably or discarded upon arrival. In the online setting, the celebrated algorithm of Karp-

Vazirani-Vazirani achieves a 1 − 1/e approximation by crucially using randomization (and using Õ(n)
space). Despite the fact that the streaming model is less restrictive in that the algorithm is not constrained

to match vertices irrevocably upon arrival, the best known approximation in the streaming model with

vertex arrivals and Õ(n) space is the same factor of 1− 1/e.
We show that no (possibly randomized) single pass streaming algorithm constrained to use Õ(n) space

can achieve a better than 1− 1/e approximation to maximum matching, even in the vertex arrival setting.

This leads to the striking conclusion that no single pass streaming algorithm can get any advantage over

online algorithms unless it uses significantly more than Õ(n) space. Additionally, our bound yields the

best known impossibility result for approximating matchings in the edge arrival model (improving upon

the bound of 2/3 proved by Goel at al[SODA’12]).

Second, we consider the problem of approximating matchings in multiple passes in the vertex arrival

setting. We show that a simple fractional load balancing approach achieves approximation ratio 1 −
e−kkk−1/(k − 1)! = 1 − 1

√

2πk
+ o(1/k) in k passes using linear space. Thus, our algorithm achieves

the best possible 1 − 1/e approximation in a single pass and improves upon the 1 − O(
√

log log k/k)
approximation in k passes due to Ahn and Guha[ICALP’11]. Additionally, our approach yields an efficient

solution to the Gap-Existence problem considered by Charles et al[EC’10].
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1 Introduction

The need to process modern massive data sets necessitates rethinking classical solutions to many combinato-

rial optimization problems from the point of view of space usage and type of access to the data that algorithms

assume. Applications in domains such as processing web-scale graphs, network monitoring or data mining

among many others prohibit solutions that load the whole input into memory and assume random access to

it. The streaming model of computation has emerged as a more realistic model for processing modern data

sets. In this model the input is given to the algorithm as a stream, possibly with multiple passes allowed. The

goal is to design algorithms that require small space and ideally one or a small constant number of passes over

the data stream to compute a (often approximate) solution. For many problems with applications in network

monitoring, it has been shown that space polylogarithmic in the size of the input is often sufficient to compute

very good approximate solutions. On the other hand, even basic graph algorithms have been shown to require

Ω(n) space in the streaming model[FKM+05], where n is the number of vertices. A common relaxation is to

allow O(n · polylog(n)) space, a setting often referred to as the semi-streaming model.

1.1 Matchings in the streaming model

The problem of approximating maximum matchings in bipartite graphs has received significant attention

recently, and very efficient small-space solutions are known when multiple passes are allowed[FKM+04,

McG05, EKS09, AG11, KMM12]. The best known algorithm due to Ahn and Guha [AG11] achieves a

1 − O(
√

log log k/k) in k passes for the weighted as well as the unweighted version of the problem using

Õ(kn) space.

All algorithms mentioned above require at least two passes to achieve a nontrivial approximation. The

problem of approximating matchings in a single pass has recently received significant attention[GKK12,

KMM12]. Two natural variants of this problem have been considered in the literature: (1) the edge arrival

setting, where edges arrive in the stream and (2) the vertex arrival setting, when vertices on one side of

the graph arrive in the stream together with all their incident edges. The latter setting has also been studied

extensively in the context of online algorithms, where each arriving vertex has to either be matched irrevocably

or discarded upon arrival.

In a single pass, the best known approximation in the edge arrival setting is still 1/2, achieved by simply

keeping a maximal matching (this was improved to 1/2+ ǫ for a constant ǫ > 0 under the additional assump-

tion of random edge arrivals [KMM12]). It was shown in [GKK12] that no Õ(n) space algorithm can achieve

a better than 2/3 approximation in this setting.

In the vertex arrival setting, the best known algorithms achieve an approximation of 1 − 1/e. The as-

sumption of vertex arrivals allows one to leverage results from online algorithms [KVV90, MY11, KMT11].

In the online model vertices on one side of the graph are known, and vertices on the other side arrive in

an adversarial order. The algorithm has to either match a vertex irrevocably or discard upon arrival. The

celebrated algorithm of Karp-Vazirani-Vazirani achieves a 1 − 1/e approximation for the online problem by

crucially using randomization (additionally, this algorithm only uses Õ(n) space). A deterministic single pass

Õ(n) space 1 − 1/e approximation in the vertex arrival setting was given in [GKK12] (such a deterministic

solution is provably impossible in the online setting). In [GKK12], the authors also showed by analyzing a

natural one-round communication problem that no single-pass streaming algorithm that uses Õ(n) space can

obtain a better than 3/4 approximation in the vertex arrival setting. They also provided a protocol for this

communication problem that matches the 3/4 approximation ratio, suggesting that new techniques would be

needed to prove a stronger impossibility result.

Recent work. The lower bound presented in this paper has recently been improved to 1
1+ln 2 ≈ 0.591

by [Kap21] for the more general edge arrival model, following exciting developments in online match-
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ing [WW15, ELSW13, GKM+19]. A 2/3-approximation to maximum matching in a single pass over a

randomly ordered stream of edges in n logO(1) n space has recently been given by [Ber20] (reducing the

space complexity of the approach of [ABB+19] from Õ(n3/2) to n logO(1) n), and very recently improved

to 2/3 + Ω(1) by [AB21]. A 1 − O(1/
√
k) approximation in k passes using n logO(1) n space was given

by [ALT21].

1.2 Our results

In this paper, we improve upon the best known bounds for both the single pass and multi-pass settings. In

the single pass setting, we prove an optimal impossibility result for vertex arrivals, which also yields the best

known impossibility result in the edge arrival model. For the multipass setting, we give a simple algorithm

that improves upon the approximation obtained by Ahn and Guha in the vertex arrival setting, as well as yields

an efficient solution to the Gap-Existence problem considered by Charles et al[CCD+10].

Lower bounds. Our main result is an optimal bound on the best approximation ratio that a single-pass Õ(n)
space streaming algorithm can achieve in the vertex arrival setting:

Theorem 1 No (possibly randomized) one-pass streaming algorithm can obtain a (1−1/e+c)-approximation

to the maximum matching with probability at least 3/4 for any constant c > 0, unless it uses at least

n1+Ωc(1/ log logn) space, even in the vertex arrival model.

Remark 2 In fact, we prove a more refined statement: for every integer k ≥ 2 if the edge set is partitioned

among k players communicating in the number-in-hand model (with the i-th player sending a single message

to the (i + 1)-th after receiving a message from the (i − 1)-th player) no algorithm can achieve a 1 − (1 −
1/k)k +Ω(1) approximation to maximum matching unless it uses n1+Ω(1/ log logn) communication.

We note that this bound is matched by the randomized KVV algorithm[KVV90] for the online problem and

the deterministic Õ(n) space algorithm of [GKK12]. One striking consequence of our bound is that no single-

pass streaming algorithm can improve upon the more constrained online algorithm of KVV, which has to make

irrevocable decisions, unless is uses significantly more than Õ(n) space. Our bound also improves upon the

best known bound of 2/3 for small space one-pass streaming algorithms in the edge arrival model.

It was shown in [GKK12] via an analysis of the natural two-party communication problem that no one-pass

streaming algorithm that uses Õ(n) space can achieve approximation better than 2/3 in the edge arrival setting

and 3/4 in the vertex arrival setting. Furthermore, the authors also gave a communication protocol that proves

the optimality of both bounds for the communication problem, thus suggesting that a more intricate approach

would be needed to prove better impossibility results. While the lower bounds from [GKK12] follow from a

construction of a distribution on inputs that consists of two parts and hence yields a two-party communication

problem, here we obtain an improvement by constructing hard input sequences that consist of k parts instead

of two, getting a lower bound that approaches 1− 1/e for large k.

Upper bounds. We show that a simple algorithm based on fractional load balancing achieves the optimal

1− 1/e approximation in a single pass and 1− 1√
2πk

+ o(k−1/2) approximation in k passes, improving upon

the best known algorithms for this setting:

Theorem 3 There exists an algorithm for approximating the maximum matching M in a bipartite graph

G = (P,Q,E) with the P side arriving in the stream to factor 1−e−kkk−1/(k−1)! = 1− 1√
2πk

+O(k−3/2)

in k passes using O(|P | + |Q|) space. The algorithm can be implemented to run in nearly linear time in the

number of edges in the graph per pass, with space complexity Õ(|P |+ |Q|).
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The gap-existence problem. In [CCD+10] the authors give an algorithm for the closely related gap-existence

problem. In this problem the algorithm is given a bipartite graph G = (A, I,E), where A is the set of

advertisers with budgets Ba, a ∈ A and I is the set of impressions. The graph is lopsided in the sense that

|I| ≫ |A|. A matching M is complete if |M ∩ δ(i)| = 1 for all i ∈ I and |M ∩ δ(a)| = Ba for all a ∈ A.

The gap-existence problem consists of distinguishing between two cases:

(YES) there exists a complete matching with budgets Ba;

(NO) there does not exist a complete matching with budgets ⌊(1 − ǫ)Ba⌋.

The approach of [CCD+10] is via sampling the I side of the graph, and yields a solution that allows

for non-trivial subsampling when the budgets are large. In particular, they obtain an algorithm with runtime

O
(
|A| log |A|

ǫ2
· |I|
mina |Ba|

)
, which is sublinear in the size of the graph when all budgets are large. In Section 5

we improve significantly upon their result, showing

Theorem 4 Gap-Existence can be solved in O(log(1ǫ
∑

a∈Ba
Ba)/ǫ

2) passes using space O(
∑

a∈ABa/ǫ).
The time taken for each pass is nearly linear in the representation of the graph.

It should also be noted that the result of [CCD+10] could be viewed as a single pass algorithm, albeit with the

stronger assumption that the arrival order in the stream is random.

Organization: We start by presenting a toy version of our lower bound construction in Section 2. The

construction in Section 2 does not give a strong streaming lower bound, but captures most of the properties

of our hard input distribution, while at the same time being quite simple to describe. In Section 3 we give

the actual lower bound construction and prove Theorem 1. Our basic multipass algorithm for approximating

matchings is presented in Section 4, and the algorithm for Gap-existence is given in Section 5.

2 A toy construction

In this section we show that for every integer k ≥ 2 there exists a distribution D on input instances to the

bipartite matching problem such that a graph G with N vertices sampled from distribution D has a nearly

perfect matching with high probability, but any single-pass streaming algorithm that maintains a subset of

edges of G in memory and outputs a matching in the subset of edges retained cannot achieve a better than

1− (1− 1/k)k + δ approximation for a constant δ > 0 unless it maintains Ω(N logN) edges.

We define a family of graphs that forms the basis of our hard input instances in Section 2.1. In Section 2.2

we define a hard input distribution based on these graphs, prove Theorem 15 (our main result in this section),

which provides the 1− (1 − 1/k)k + δ upper bound on the approximation ratio that an algorithm that stores

o(n log n) edges.

2.1 Construction of the input family of graphs

We construct bipartite graphs G = (S, T,E), with S and T the two sides of the bipartition.

Vertices of G: the T side of the bipartition Let k ≥ 2 be a large constant integer. Let m ≥ 1 a multiple

of k be a sufficiently large integer. Let T = [m]n, i.e. vertices in T are vectors of dimension n, with each

co-ordinate taking values in [m] = {1, 2, . . . ,m}. This way we have N := |T | = mn, so n = Ω(logN)
for every constant m. The vertices on the S side of the bipartition will also be associated with points on the

hypercube [m]n, as defined below.
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Vertices ofG: the S side of the bipartition To define the vertices in the partition S = S0∪S1∪. . .∪Sk, we

first partition the set of coordinates [n] into k equal size blocks [n] = B1∪. . .∪Bk. GraphsG = G(j1, . . . , jk)
will be parameterized by a sequence (j1, . . . , jk) ∈ B1×. . .×Bk of coordinates. Also for each point x ∈ [m]n

let Zx be an independent Bernoulli 0/1 random variable with expectation 1/k – we will later choose some

fixing of these random variables for the final construction. Then for every i = 0, . . . , k we let

Ti = {y ∈ [m]n : yjr ∈ (m/k,m] for all r = 1, . . . , i}
Si = {x ∈ Ti : Zx = 1} . (1)

Note that T0 = T , and for every i = 0, . . . , k − 1 the set Si is a subsampling of Ti at rate 1/k. We also let,

for every i = 0, . . . , k − 1 and j ∈ Bi+1

T j
i = {y ∈ Ti : yj ∈ (m/k,m]}
Sj
i = {x ∈ Si : Zx = 1 and xj ∈ (m/k,m]} .

We also define for each i = 0, . . . , k − 1

S∗
i = {x ∈ Si : xjr ∈ (m/k,m] for all r = i+ 1, . . . , k} . (2)

We will use

Theorem 5 (Chernoff bound) LetX1, . . . ,Xn be independent Bernoulli random variables, let µ := E[
∑n

i=1Xi].

Then for every δ ∈ (0, 1) one has P[|∑n
i=1Xi − µ| > δµ] ≤ 2e−δ2µ/3.

We first note that

Lemma 6 For any k ≥ 2 the following conditions hold. (1) For every choice of j1, . . . , jk and every i =
0, . . . , k one has |Ti| = (1 − 1

k )
i|T |. For every η ∈ (0, 1/2) there exists an event Eset−sizes that occurs with

probability at least 1− k(logN)ke−Ω(η2N/k) over the random variables Zx, x ∈ [m]n such that conditioned

on Eset−sizes one has for every choice of (j1, . . . , jk) ∈ B1×. . .×Bk simultaneously for every i = 0, . . . , k−1
(2) |Si| = (1 ± η)|Ti|/k, (3) |Sj

i | = (1 ± O(η))(1 − 1/k)|Si|, and (4) |S∗
i | = (1 ± η)|Tk|/k (note that this

quantity does not depend on i).

Proof: (1) follows directly by definition of Ti. For (2) we first note that by an application of Chernoff bounds

for a fixed collection j1, . . . , jk one has |Si| = (1± η)|Ti|/k with probability at least 1− e−Ω(η2N/k), where

we used the fact that (1−1/k)i ≥ (1−1/k)k ≥ (1−1/2)2 for every i = 0, . . . , k, since k ≥ 2 by assumption

of the lemma. A union bound over at most (logN)k choices for j1, . . . , jk and k choices for i gives the result

of the lemma. The third and fourth bound follow analogously.

We need the following simple lemma:

Lemma 7 For every i = 0, . . . , k − 1, every (j1, . . . , ji) ∈ B1 × . . .×Bi the following conditions hold. For

every j ∈ Bi+1, every z ∈ T j
i let degj(z) denote the number of j′ ∈ Bi+1 \ {j} such that z ∈ T j′

i . Let

degj(z) denote the number of j′ ∈ Bi+1 \ {j} such that z ∈ Ti \ T j
i . Then for every η ∈ (0, 1/2) one has

degj(z) ∈ (1 ± η)(1 − 1/k)(|Bi+1| − 1) and degj(z) ∈ (1 ± η)(|Bi+1| − 1)/k for all but a N−Ω(η2/m2)

fraction of z ∈ T . The same bounds hold for z ∈ Sj
i .

Proof: Recall that Ti = {y ∈ [m]n : yjr ∈ (m/k,m] for all r = 1, . . . , i}. We thus have

T j
i = {y ∈ [m]n : yjr ∈ (m/k,m] for all r = 1, . . . , i and yj ∈ (m/k,m]}
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and

T j′

i =
{
y ∈ [m]n : yjr ∈ (m/k,m] for all r = 1, . . . , i and yj′ ∈ (m/k,m]

}
.

Since jr ∈ Br for every r = 1, . . . , i, and j, j′ ∈ Bi+1, and B1, . . . , Bk are disjoint, we have that coordinate

yj′ is unconstrained in T j
i , a uniformly random z ∈ T j

i satisfies zj′ ∈ (m/k,m] with probability exactly

1 − 1/k. Furthermore, these events are independent for different collections of coordinates in Bi+1 \ {j}.
Select z ∈ T j

i uniformly at random. For j′ ∈ Bi+1 \ {j} let Fj′ = 1 if z ∈ T j′

i and Fj′ = 0 otherwise (note

that E[Fj′ ] = 1 − 1/k for every j′ ∈ Bi+1 \ {j}). We now have by the Chernoff bound (Theorem 5) that for

every η ∈ (0, 1/2)

P
z∼UNIF (T j

i )


 ∑

j′∈Bi+1\{j}
Fj′ 6∈ (1± η)(1 − 1/k)(|Bi+1| − 1)


 ≤ 2e−Ω(η2|Bi+1|) = N−Ω(η2/m2),

where we used the fact that |Bi+1| = n/m = (logmN)/m in the last transition. This proves the first claim.

The proof of the second and third claim is analogous.

Edges of G. For each i = 0, . . . , k − 1 edges of the subgraph G = (Pi, Q,Ei) will be associated with

coordinates in Bi+1, as we now describe. Specifically, each coordinate j ∈ Bi+1 will correspond to a set of

edges in G that form a rather large near-matching (of size Ω(N/k), as described below).

For each i = 0, . . . , k − 1 the edge set Ei ⊆ Si × Ti are defined as follows. For each coordinate j ∈ Bi

for each x ∈ [m]n we let

linej(x) = {x′ ∈ [m]n : (x′ − x)s = 0 for all s 6= j}

denote the line through x in coordinate direction j. Note that |linej(x)| = m for all x. Furthermore, we have

Lemma 8 For every η ∈ (0, 1/2), if C > 0 is a sufficiently large constant, then for m ≥ Cη−2k log η−1 a

multiple of k, for every i = 0, . . . , k− 1, every (j1, . . . , ji) ∈ B1× . . .×Bi for each y ∈ Ti one has for each

j ∈ Bi+1

(1) |linej(y)| = m and linej(y) ⊆ Ti;

(2) |linej(y) \ T j
i | = m/k;

(3) there exists an event Elarge−lines(j1, . . . , ji, j) that occurs with probability at least 1 − e−Ω(η2N/k)

such that conditioned on Elarge−lines(j1, . . . , ji, j) the number of y ∈ Ti such that |linej(y) ∩ Sj
i | 6∈

(1± η)|linej(y)|(1 − 1/k)/k is upper bounded by η2|Ti|.

In particular, there exists an event Elarge−lines that occurs with probability at least 1 − k(logN)ke−Ω(ηN/k)

such that for every i = 0, . . . , k − 1, every collection j1, . . . , ji, every j ∈ Bi+1 one has that the number of

y ∈ Ti such that |linej(y) ∩ Si| 6∈ (1± η)|linej(x)|/k is upper bounded by 2η2|Ti|.

Proof: The first claim follows since, due to the assumption that y ∈ Ti we have

linej(y) =
{
y′ ∈ [m]n : (y′ − y)s = 0 for all s 6= j

}

=
{
y′ ∈ [m]n : (y′ − y)s = 0 for all s 6= j, y′jr ∈ (m/k,m] for all r = 1, . . . , i

}

⊆ Ti

since j 6= j1, . . . , ji due to the assumption that j ∈ Bi+1.
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The second claim follows similarly. For the third claim note that

EZ

[
|linej(y) ∩ Sj

i |
]
=

∑

y′∈linej(y)∩T j
i

PZ [y ∈ Sj
i ]

= |linej(x)|(1 − 1/k)/k,

where we used the fact that |linej(y) ∩ T j
i | = m/k for every y ∈ Ti by (2) and |linej(y)| = m by (1). Since

m/k ≥ Cη−2 log η−1 for a constant C > 0 by assumption of the lemma, the claim follows by the Chernoff

bound (Theorem 5). The final claim follows by a union bound over all choices of i, j1, . . . , ji, j.
We now condition on the event Elarge−lines from Lemma 8, so that that |linej(x)∩Sj

i | 6∈ (1±η)|linej(x)|/k
for all i = 0, . . . , k − 1, j ∈ Bi−1 and all but 2η2|Ti| choices of x ∈ Ti.

Defining the edges induced by Ti ∪Si. We now define the edges of G = G(j1, . . . , jk) induced by Ti ∪Si
(note that these edges are a function of the prefix (j1, . . . , ji) only). The edge set is a union of a large number

of induced subgraphs of constant size. We will need

Definition 9 (Typical line) For every i = 0, . . . , k − 1, every (j1, . . . , ji) ∈ B1 × . . . × Bi, j ∈ Bi+1, for

z ∈ Ti we say that linej(z) is typical if |linej(z)∩Sj
i | ∈ (1±η)|linej(z)|(1−1/k)/k = (1±η)(1−1/k)m/k

and atypical otherwise.

For every y ∈ Ti, if linej(y) is typical, let l̃inej(y) be an arbitrary subset of linej(y) ∩ Sj
i of size (1 −

η)|linej(y)|(1 − 1/k)/k = (1 − η)(1 − 1/k) · m/k, and let l̃inej(y) := ∅ otherwise. We now define the

edge set of Ei. For every j ∈ Bi+1, every y ∈ Ti include a complete bipartite graph between ˜linej(y) and

linej(y) ∩ (Ti \ T j
i ), i.e.

Ei =
⋃

j∈Bi+1

Ej
i , where Ej

i =
⋃

y∈Ti

˜linej(y)× (linej(y) ∩ (Ti \ T j
i )). (3)

Note that for every a ∈ linej(y) ∩ (Ti \ T j
i ) and b ∈ ˜linej(y) we have (a − b)q = 0 for all q 6= j,

aj ∈ [1,m/k] and bj ∈ (m/k,m]. We now prove that for every j there exists a matching of (most of) Si to

Ti \ T j
i .

First note that it follows immediately that there exists a matching of at least a (1 − 1/k − O(η + η2k))
fraction of Si to Ti \ T j

i . Indeed, for every y ∈ Ti \ T j
i such that linej(y) is typical as per Definition 9 one

can match ˜linej(y), which constitutes a (1− η)(1− 1/k) fraction of linej(y), to linej(y)∩ (Ti \ T j
i ) through

the edges of the complete bipartite graph ˜linej(y) × (linej(y) ∩ (Ti \ T j
i )). At the same time the number

of y’s that belong to atypical lines is at most 2η2|Ti| = O(η2k)|Si| by conditioning on Elarge−lines and the

high probability event Eset−sizes from Lemma 6. While this would have sufficed for proving a 1− 1/e lower

bound, we would like to get a lower bound of 1 − (1 − 1/k)k for every k ≥ 2. For that we need the slightly

harder

Lemma 10 For every η ∈ (0, 1/2), if C > 0 is a sufficiently large constant, then for m ≥ Cη−2k log η−1 a

multiple of k, conditioned on Elarge−lines (defined in Lemma 8) and Eset−sizes (defined in Lemma 6) for every

i = 0, . . . , k − 1, every (j1, . . . , ji) ∈ B1 × . . . × Bi for each j ∈ Bi+1 there exists a matching of at least

(1−O(η + η2k))|Si| −N−Ω(η2/m2) nodes in Si to Ti \ T j
i for sufficiently large N .

Proof: Let C > 0 be sufficiently large as prescribed by Lemma 8. We prove the existence of the required

matching by exhibiting a fractional matching of appropriate size, which implies the result by the integrality

of the bipartite matching polytope. The construction proceeds over three steps.

6



Step 1 For every x ∈ Si such that linej(x) is typical put fractional mass k/m on every edge in ˜linej(x) ×
(linej(x) ∩ (Ti \ T j

i )). Since |linej(x) ∩ (Ti \ T j
i )| = m/k by Lemma 8, (2), this places a unit of mass on

the neighborhood of every vertex in ˜linej(x). Since | ˜linej(x)| = (1 − η)(1 − 1/k) ·m/k by definition, this

places fractional mass (1 − η)(1 − 1/k) on every y ∈ linej(x) ∩ (Ti \ T j
i ), leaving at least 1/k capacity on

each such y. We assign more fractional mass to use the remaining 1/k mass up to an O(η) term in step 2.

Step 2 For every x ∈ Si \ Sj
i put fractional mass

ǫ :=
1

(m/k) · (1 + η)(1 − 1/k)(|Bj | − 1)
(4)

on every edge connecting x to y ∈ Ti. Note that these edges correspond to coordinates j′ ∈ Bi+1 \ {j}. In

particular, if (x, y) is an edge corresponding to coordinate j′, then we have yq = xq for all q 6= j′, and in

particular it must be that y ∈ Ti \ T j
i .

Step 3 Let degj(x) denote the number of j′ ∈ Bi+1 \ {j} such that x ∈ T j′

i , and let degj(y) denote the

number of j′ ∈ Bi+1 \ {j} such that y ∈ Ti \ T j
i . We now remove all fractional mass assigned to vertices

x ∈ Si with degj(x) 6∈ (1±η) 1k (|Bi+1|−1) and vertices y ∈ Ti with degj(z) 6∈ (1±η)(1−1/k)(|Bi+1 |−1).
We refer to such nodes as atypical.

We now prove upper and lower bounds on the fractional mass assigned by this rule to every x ∈ Sj
i , y ∈

Ti \ T j
i . This establishes feasibility of the fractional solution and lower bounds its value respectively.

Upper bounding load (feasibility). For every j′ ∈ Bi+1 \ {j} every vertex x is either connected to exactly

|linej(x)∩ (Ti \T j
i )| = m/k nodes in Ti \T j

i with edges in Ej′

i or zero nodes (when x belongs to an atypical

line in direction j′). In the former case coordinate j′ contributes exactly ǫ · (m/k) fractional mass (where ǫ is

defined in (4)), and in the latter it contributes 0. We now get that the total mass contributed to x by directions

j′ 6= j is no larger than degj(x) · (m/k) · ǫ = degj(x) · (m/k) · 1
(1+η)(m/k)·(1−1/k)(|Bj |−1) . By Lemma 7 for

all but N1−Ω(η2/m2) of x ∈ Si one has

degj(z) ∈ (1± η)(1 − 1/k)(|Bi+1| − 1). (5)

We call such x typical. We thus get that the total mass assigned to edges incident on typical x ∈ Si \ Sj
i is

upper bounded by (1 + η)(1 − 1/k)(|Bi+1| − 1) · (m/k) · 1
(m/k)(1+η)·(1−1/k)(|Bj |−1) ≤ 1, and the fractional

assignment is feasible for all but N1−Ω(η2/m) nodes (i.e. for all typical nodes as per definition above).

Similarly, get by Lemma 7 for all but N1−Ω(η2/m2) of y ∈ Ti \ T j
i one has

degj(y) ∈ (1± η)1
k
(|Bi+1| − 1). (6)

Now note that |l̃inej(x)| = (1 − η)m(1 − 1/k)/k for every x such that the corresponding line is typical.

The degree in Ej
i of a vertex y ∈ Ti \ T j

i such that linej′(y) is thus exactly (1 − η)m(1 − 1/k)/k if the

corresponding line is typical, and is zero otherwise. The amount of mass assigned to y is thus degj(y) · ((1−
η)m(1 − 1/k)/k) · 1

(1+η)(m/k)·(1−1/k)(|Bj |−1) ≤ (1 − η)/k ≤ 1/k. Thus, together with the amount of mass

assigned in Step 1 to vertices y ∈ Ti \ T j
i , our assignment is feasible for all but N1−Ω(η2/m) nodes (i.e. for

all typical nodes as per definition above).

Lower bounding fractional matching size. In Step 1 we assigned (1 − η)(1 − 1/k) to every node in

y ∈ Ti \T j
i that belongs to a typical line in direction j. The number of such nodes is at least (1−O(η2k))|Si|

by Lemma 8, (3) together with Lemma 6, since we condition on Elarge−lines and Eset−sizes. In Step 2 we
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assigned ǫ := 1
(m/k)·(1+η)(1−1/k)(|Bj |−1) mass to every edge from x ∈ Si \ Sj

i to y ∈ Ti \ T j
i along some

direction j′ ∈ Bi+1 \ {j} if the corresponding line is typical. Thus, for every j′ we assigned ǫ · (m/k) mass

to every x that belonged to a typical line in direction j′ (all but O(η2k)|Si| such x for every direction j′ by

conditioning on Elarge−lines). Altogether x ∈ Si \ Sj
i thus contributed at least

∑

j′∈Bi+1\{j}

∑

x∈Si\Sj
i :x typical and

linej′ (x) typical

ǫ · (m/k)

≥
∑

j′∈Bi+1\{j}


−ǫ · (m/k) · η2|Ti|+

∑

x∈Si\Sj
i :x typical

ǫ · (m/k)




= −η2ǫ(m/k) · |Bi+1| · |Ti|+
∑

x∈Si\Sj
i :x typical

ǫ · (m/k) · degj(x)

= −O(η2)|Ti|+
∑

x∈Si\Sj
i :x typical

ǫ · (m/k) · degj(x),

where we used the fact that, conditioned on Elarge−lines, by Lemma 8, (3) for every i and every j ∈ Bi+1 all

but η2|Ti| belong to typical lines in direction j, as well as the definition of ǫ in (4). We now lower bound the

second term:

∑

x∈Si\Sj
i :x typical

ǫ · (m/k) · degj(x) ≥
∑

x∈Si\Sj
i :x typical

ǫ · (m/k)(1 − η)(1 − 1/k)(|Bi+1| − 1)

≥
∑

x∈Si\Sj
i :x typical

(1−O(η))

≥ (1−O(η))|Si \ Sj
i | −N−Ω(η2/m2),

where the first transition is by definition of typical x, and the second is by Lemma 7. Putting the bounds above

together shows that we constructed a fractional matching of size at least (1−O(η+ η2k))|Si|−N−Ω(η2/m2),

as required.

2.2 Hard input distribution and its analysis

Hard input distribution. First select values of random variables {Zx}x∈[m]n so that Eset−sizes and Elarge−lines

occur (we will verify that this is feasible later in the proof of Theorem 1, where we set parameters). The input

graph is generated as follows. First for every i = 0, . . . , k−1 let ji be uniformly random in Bi. Then for each

i = 0, . . . , k − 1 the edges of the graph induced by Si ∪ Ti, namely Ei (defined in (3)) arrive in the stream

in an arbitrary order. Finally, a perfect matching of Tk to a fresh set Sk of vertices on the S side arrives. We

denote this distribution over input graphs by D. In this section we are assuming a stylized model, where after

every stage the algorithm must select s = o(N logN) edges to keep in memory, and at the end of the stream

must output a matching in the subgraph that it maintained. We show in Theorem 1 that no such algorithm

can achieve a better than 1 − 1/e approximation to maximum matching. More specifically, we show that

no algorithm can achieve a significantly better than factor 1 − (1 − 1/k)k approximation on a k-stage input

instance for every constant k ≥ 2.
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Intuition for the construction and lower bound. We will show in that in order to have performance better

than 1− (1− 1/k)k + δ on our instance the algorithm needs to store at least Ω(δN/k) edges from at least one

of the sets E
ji+1

i (see (3)), for some i = 0, . . . , k − 1. However, since at each step ji+1 is uniformly random

in Bi+1 this is impossible if the algorithm can only store s = o(N logN) edges (i.e. any sublinear fraction of

the total number of edges in the graph).

The analysis relies on the several auxiliary lemmas. First, we show that the input graph contains a large

matching:

Lemma 11 For every η ∈ (0, 1/2), if C > 0 is a sufficiently large constant, then for m ≥ Cη−2k log η−1

a multiple of k, conditioned on Elarge−lines (defined in Lemma 8) and Eset−sizes (defined in Lemma 6), every

(j1, . . . , jk) ∈ B1 × . . . × Bk the graph G = G(j1, . . . , jk) contains a matching of size at least (1− O(η +
η2k))|S| if N is sufficiently large.

Proof: LetC > 0 be sufficiently large as dictated by Lemma 10. Now by Lemma 10 for every i = 0, . . . , k−1
match at least (1−O(η+ η2k))|Si| −N−Ω(η2/m2)|T | of Si to Ti \T j

i . Then match Sk to Tk. For every fixed

k, η,m, if N is sufficiently large (i.e. if n = logmN is sufficiently large), one has N−Ω(η2/m2) < η/k and is

thus absorbed in the O(η) error term.

The following lemma is the source of hardness of our input instance:

Lemma 12 For every k ≥ 2, every η ∈ (0, 1/2), every integer m a multiple of k, every (j1, . . . , jk) ∈
B1 × . . .×Bk, for every i = 0, . . . , k − 1 for every edge (x, y), x ∈ S∗

i either y ∈ Tk or (x, y) ∈ Eji+1

i .

Proof: Consider a edge (x, y) with x ∈ S∗
i that is not inE

ji+1

i . We now show that y ∈ Tk, proving the lemma.

Let j 6= ji+1 ∈ Bi+1 be such that (x, y) ∈ Ej
i – such a j exists by definition of the edge set Ei (recall (3)).

This in particular means that jr 6= j for all r = 1, . . . , k, since j ∈ Bi+1 and the blocks Br, r = 1, . . . , k are

disjoint. By definition of Ej
i we have y ∈ Ti \ T j

i and x ∈ Sj
i . Furthermore, we have (x − y)s = 0 for all

s 6= j. We thus have xji+1
= yji+1

for all i = 0, . . . , k − 1. But since xji+1
> m

k for all i = 0, . . . , k − 1
(by definition of S∗

i in (2) and assumption that x ∈ S∗
i ), this implies yji+1

> m
k for all i = 0, . . . , k − 1, so

y ∈ Tk (by definition of Tk, see (1)).

Lemma 13 For every k ≥ 2, η ∈ (0, 1/2), if m is an integer multiple of k such that m ≥ Cη−2k log η−1

for a sufficiently large constant C > 0, and if the input graph G = G(j1, . . . , jr) is selected according to

the input distribution D defined above, the following conditions hold. If the streaming algorithm, after being

presented with edges revealed in the i-th stage for i = 0, . . . , k − 1, must store a number of edges after each

phase, with the overall set of edges remembered over all stages denoted by E′, then any matching MALG

contained in E′ satisfies

|MALG| ≤
(
1− (1− 1/k)k

)
|T |+

k−1∑

i=0

|Eji+1

i ∩ E′|+O(η)|T |.

Proof: Let the constant C > 0 be sufficiently large as dictated by Lemmas 8 and 10. We consider the standard

reduction of bipartite matching to max-flow (i.e. connect source s to S, sink t to T ) and exhibit a cut in the

graph (S ∪ {s}, T ∪ {t}, E′) of value at most
(
1− (1− 1/k)k

)
|T | +∑k−1

i=0 |E
ji+1

i ∩ E′| + O(η)|T |. By

max-flow/min-cut theorem this gives the result.

We now exhibit a cut in this graph and upper bound its size. The source side of the cut is {s} ∪Sk ∪ Tk ∪⋃k−1
i=0 S

∗
i . By Lemma 12 edges incident on S∗

i , i = 0, . . . , k− 1 either belong to the matching M
ji+1

i or go to
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Tk, so edges incident on S∗
i , i = 0, . . . , k − 1 contribute at most

∑k−1
i=0 |E

ji+1

i ∩E′| to the cut value. We thus

have that the value of the cut is bounded by

|Tk|+
k−1∑

i=0

|Si \ S∗
i |+

k−1∑

i=0

|Eji+1

i ∩E′|. (7)

It remains to bound the size of Tk, as well as the sizes of Si \ S∗
i . We condition on the event Eset−sizes

and Lemma 6. Conditioned on this event we have |Tk| = (1− 1/k)k|T | and

|S∗
i | = (1± η)|Tk|/k = (1 +O(η))(1 − 1/k)k/k.

Similarly, we have by Lemma 6, (1) that |Ti| = (1 − 1/k)i|T |, and thus by Lemma 6, (2) that |Si| =
(1±O(η))(1 − 1/k)i|T |/k. Using these bounds we get

k−1∑

i=0

|Si \ S∗
i | =

k−1∑

i=0

|Si| −
k−1∑

i=0

|S∗
i |

= (1±O(η))

k−1∑

i=0

(1− 1/k)i|T |/k − (1±O(η))(1 − 1/k)k|T |

= (1±O(η))(1 − (1− 1/k)k)|T | − (1±O(η))(1 − 1/k)k |T | (by summing the geometric series)

= (1±O(η))(1 − 2(1− 1/k)k)|T |

Putting the bounds above together with (7), we thus have that the size of the cut is bounded by

|Tk|+
k−1∑

i=0

|Si \ S∗
i |+

k−1∑

i=0

|Eji+1

i ∩E′|

= (1− 1/k)k|T |+ (1±O(η))(1 − 2(1 − 1/k)k)|T |+
k−1∑

i=0

|Eji+1

i ∩ E′|

= (1±O(η))(1 − (1− 1/k)k)|T |+
k−1∑

i=0

|Eji+1

i ∩ E′|

=
(
1− (1− 1/k)k

)
|T |+

k−1∑

i=0

|Eji+1

i ∩ E′|+O(η)|T |

as required.

We now prove

Theorem 14 For every k ≥ 2, for any η ∈ (0, 1/k3), if m ≥ Cη−2k log η−1 for a sufficiently large absolute

constant C > 0 is a multiple of k, then if the graph G = G(j1, . . . , jk) is selected according to the input

distribution D defined above, and the algorithm, after being presented with edges revealed in the i-th stage,

stores s = o(logN) edges, the following conditions hold. If MALG is the maximum matching in the set of

edges E′ that the algorithm stored over all the stages, one has

|MALG| ≤
(
1− (1− 1/k)k

)
|T |+O(η)|T |

with probability at least 99/100.
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Proof: Denote the set of edges that the algorithm commits to after seeing the subgraph Si × Ti by Ẽi. By

Lemma 13 the size of the matching that the algorithm outputs at the end is upper bounded by

(1− 1/k)k|T |+
k−1∑

i=0

|Ej
i ∩ Ẽi|.

We will show that with high probability
∑k−1

i=0 |E
j
i ∩ Ẽi| ≤

∑k−1
i=0 s/|Bi+1| = O(k2 · s/n), where s is the

number of edges that the algorithm stores at every step. Recall that for each i = 0, . . . , k − 1, conditioned on

(j1, . . . , ji), the special index ji+1 is chosen uniformly at random in Bi+1, implying that

Eji+1

[∣∣∣Eji+1

i ∩ Ẽi

∣∣∣
∣∣∣ j1, . . . , ji

]
=

1

|Bi+1|
∑

j∈Bi+1

|Ej
i ∩ Ẽi| =

|Ẽi|
|Bi+1|

= s/|Bi+1|.

Summing over all i = 0, . . . , k − 1, we get

E

[
k−1∑

i=0

|Ej
i ∩ Ẽi|

]
=

k−1∑

i=0

s/|Bi+1| = O(k2 · s/n) = o(k2|T |) = o(|T |),

since s = o(logN) by assumption of the theorem and logN = Θ(n) (as m is a constant). The result now

follows by Markov’s inequality.

Theorem 15 For every k ≥ 2, every δ ∈ (0, 1), there exists an input distribution D on bipartite graphs such

that any streaming algorithm that stores s = o(N logN) edges achieves an approximation ratio of at most

1− (1− 1/k)k + δ.

Proof: Consider the distribution D with η = cδ/k3 for a sufficiently small constant c > 0 and m ≥
Cη−2k log η−1 a multiple of k for the constant C > 0 from Lemma 8. Then by Theorem 14 one has

|MALG| ≤
(
1− (1− 1/k)k

)
|T |+O(η)|T | ≤

(
1− (1− 1/k)k

)
|T |+(δ/2)|T | =

(
1− (1− 1/k)k + δ/2

)
N

with probability at least 99/100. At the same time by Lemma 11, conditioned on conditioned on Elarge−lines

(defined in Lemma 8) and Eset−sizes (defined in Lemma 6), every (j1, . . . , jk) ∈ B1 × . . . × Bk the graph

G = G(j1, . . . , jk) contains a matching of size at least (1−O(η+η2k))|S| ≥ (1−δ/10)N ifN is sufficiently

large. Thus, the approximation ratio achieved by the algorithm is at most

1− (1− 1/k)k + δ/2

1− δ/10 ≤ 1− (1− 1/k)k + δ,

as required.

It remains to note that by Lemma 8 the event Elarge−lines occurs with probability at least 1−k(logN)ke−Ω(ηN/k) ≥
1− o(1) over the choice of Zx’s since k and η are independent of N by our setting of parameters. Similarly,

by Lemma 6 the event Eset−sizes occurs with probability at least 1 − k(logN)ke−Ω(ηN/k) ≥ 1 − o(1).
Thus, the upper bound on the approximation ratio achieve by the algorithm holds with probability at least

99/100 − o(1) ≥ 98/100, as required.
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3 Single pass streaming lower bound

In the rest of the section we define a distribution on input instances for our problem of approximating maxi-

mum matchings in a single pass in the streaming model. Our construction follows its simple version presented

in Section 2. A major difference is that we replace coordinate directions with an exponential size family of

nearly orthogonal vectors, thereby achieving a lower bound of n1+Ω(1/ log logn) on the space complexity of

obtaining a better than 1 − 1/e approximation in a single pass. This approach is inspired by techniques for

constructing Ruzsa-Szemerédi graphs pioneered in [FLN+02] and extensions developed in [GKK12].

3.1 Construction of host graphs G(u1, . . . ,uk)

We first introduce notation. Each graph in our family of host graphs will be indexed by a k-tuple of vectors

(u1, . . . ,uk) ∈ F1 × . . . × Fk, where Fj , j = 1, . . . , k are families of vectors in {0, 1}m. We choose Fj so

that vectors in
⋃k

j=1Fj =: F are of equal Hamming weight and nearly orthogonal. Specifically, the following

lemma guarantees the existence of a large family F such that for every u,v ∈ F it holds that |u| = |v| = w
and (u,v) ≤ ǫw, where w = Θ(ǫ2m). Here for a vector u ∈ {0, 1}m we write |u| to denote the Hamming

weight of u. We assume from now on that |F1| = |F2| = . . . = |Fk| = d for a parameter d. The lemma

below shows that we can have d = 2Ω(ǫ2m). The specific form of the dependence of the exponent on ǫ will

not be important for the qualitative nature of our results, however, as we will ultimately set ǫ to be a small

constant.

We will use the following standard lower bound on the size of such families:

Lemma 16 For any ǫ ∈ (0, 1), any integers m ≥ 1 and w = (ǫ/2)m, there exists a collection Fm,w,ǫ ⊂
{0, 1}m of vectors of Hamming weight w with log |Fm,w,ǫ| = Ω(ǫ2m) such that for all u 6= u

′ ∈ Fw,ǫ,

(u,u′) < ǫw.

Proof: The proof is via the probabilistic method. Partition [m] into w subsets I1, . . . , Iw, with |Is| = m/w
for s = 1, . . . , w. We pick u1, . . . ,uN independently as follows. For every j = 1, . . . , N , the vector uj

includes exactly one random element of Is for each s = 1, . . . , w. This ensures that the Hamming weight of

each uj is exactly w.

We now show that the vectors have small intersection size with high probability. Fix i 6= j ∈ [N ]. Imagine

ui being fixed and picking the w elements of uj one by one. Let Xs denote the indicator random variable

for the event that the sth element of uj (picked from Is) is also in Si. Then (ui,uj) =
∑w

s=1Xk, and we

set µ := E[(ui,uj)]. Note that µ = (w/m) · w, since for every s = 1, . . . , w the vector ui has exactly one

nonzero coordinate in Is, and the probability that uj chooses the same coordinate is 1/|Is| = w/m. We have

P[(ui,uj) ≥ ǫw] = P[
∑w

s=1Xs ≥ 2µ] The random variables Xs are independent and thus the Chernoff

bound yields

P[(ui,uj) ≥ 2µ) ≤
(e
4

)µ
≤ e−Ω((w/m)w) ≤ e−cǫ2m

for a constant c > 0. Setting N = 2(ln2 e)cǫ2m/2 so that
(N
2

)
< N2 = 2(ln2 e)cǫ2m = ecǫ

2m, by a union bound

with positive probability |ui ∩ uj| < ǫw for all i 6= j, simultaneously, as desired. Note for this choice of N ,

we have log |Fm,w,ǫ| = logN = Θ(ǫ2m).
We also associate with each u ∈ Fj , j = 1, . . . , k a random variable Uu that is uniformly distributed over

the integers

{0, 1, . . . , k/θ − 1} ·W · (θ/k), (8)

where θ ∈ (0, 1) is a parameter that we will set to a small constant times 1/poly(k), and W is a parameter

that will later set to poly(k) · w (where w is the Hamming weight of the vectors in the collection F). The

variables Uu and Uv are independent for u 6= v.
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As before, the sides of the bipartition of the graph G(u1, . . . ,uk) that we need to construct are denoted

by T and S = S0∪ . . .∪Sk, where S0∪S1∪ . . .∪Sk is a partition of S. We use the notation [a] = {1, . . . , a}
for integer a ≥ 1. In our construction the T = T 0 side of the graph is identified with a hypercube [m4]m for

a value of m to be chosen later, and each set Si, i = 0, . . . , k − 1 is identified with a subsampled hypercube

[m4]m. The vertices of the last set Sk do not have any special structure. Vertices x ∈ T or y ∈ Si will often be

treated as points x, y ∈ [m4]m. For x ∈ T and u ∈ F we use the dot product notation (x,u) =
∑m

i=1 xi ·ui ∈
Z. For an interval [a, b] and a number W we will write [a, b] ·W to denote the set of integers belonging to

the interval [a ·W, b ·W ]. Finally, for an integer i and an integer W we will write i mod W to denote the

residue of i modulo W that belongs to [0,W − 1].

3.1.1 Defining the vertex set of the graph G(u1, . . . ,uk)

We will use

Definition 17 (Ground sets X,Y ) Let X∗ = Y = [m4]m for some integer m > 0. Let X be a random

subset of X∗ where each point of X∗ appears independently with probability 1/k.

We will refer to vertices in X and Y as points in [m4]m. The host graph G is generated by first selecting a

k-tuple (u1, . . . ,uk) ∈ F1× . . .×Fk, and then defining the vertex and edge set as we describe below. Before

proceeding with the construction, we list relevant parameters here.

Parameters of the construction

• k – the number of phases in the hard input distribution;

• w — Hamming weight of binary vectors in F ;

• ǫ – upper bound on the maximum dot product of any pair of distinct vectors from F , normalized by

their Hamming weight w;

• η – small constant governing separation of red and blue vertices – see (9) and (10).

Sets of red, white and blue vertices R,W,B. Consider fixed w ∈ {0, 1}m, and let

RY (w) = {y ∈ Y : ((y,w) + U(w)) mod W ∈ [0, 1/k) ·W}
(red vertices with respect to w)

W Y (w) = {y ∈ Y : ((y,w) + U(w)) mod W ∈ ([1/k, 1/k + η) ∪ [1− η, 1)) ·W}
(white vertices with respect to w)

BY (w) = {y ∈ Y : ((y,w) + U(w)) mod W ∈ [1/k + η, 1− η) ·W}
(blue vertices with respect to w)

(9)

It is convenient to also define

RX∗

(w) = {x ∈ X∗ : ((x,w) + U(w)) mod W ∈ [0, 1/k) ·W}
WX∗

(w) = {x ∈ X∗ : ((x,w) + U(w)) mod W ∈ ([1/k, 1/k + η) ∪ [1− η, 1)) ·W}
BX∗

(w) = {x ∈ X∗ : ((x,w) + U(w)) mod W ∈ [1/k + η, 1 − η) ·W},
(10)
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as well as let

RX(w) = RX∗

(w) ∩X, WX(w) =WX∗

(w) ∩X, BX(w) = BX∗

(w) ∩X. (11)

The intuition for these sets is simple: ideally, we would like to partition vertices y ∈ Ti into two classes,

depending on whether their dot product with w is in [0, 1/k) ·W (red points) or [1/k, 1) ·W (blue points; we

ignore the shift U(w) for this intuitive discussion), and then match points in one color class in X to points

in the other color class in Y . This would work fine if the set F of vectors that we use contained orthogonal

vectors only, as in our toy construction in Section 2. Since the family of vectors F that we use consists of

vectors with small (constant) dot products, we need a ‘buffer’ between the two classes above, provided by the

set of white vertices W Y .

Nested sequence of sets Ti and sets Si. For all i = 0, . . . , k let

Ti = {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]}
Si = {x ∈ X : ((x,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]}, (12)

so that T0 = Y and S0 = X. For every i = 0, . . . , k − 1 and w ∈ Fi+1 we let

Tw

i = {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]

and

((y,w) + U(w)) mod W ∈ [1/k, 1) ·W}
Sw

i = {x ∈ X : ((x,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]

and

((x,w) + U(w)) mod W ∈ [1/k, 1) ·W}

(13)

Also, let

S∗
i = {x ∈ Si : ((x,uj) + U(uj)) mod W ∈ [1/k, 1) ·W,

for all j ∈ [1 : k]}. (14)

Note that the sets S∗
i are obtained from Si by adding extra constraints on dot products with vectors uj , namely

for j = i + 1, . . . , k (this is because all vertices in Si already satisfy the constraints above for j = 1 : i by

definition of Si).

Vertex set of G(u1, . . . ,uk). The graph G(u1, . . . ,uk) whose edges we define shortly will be a bipartite

graph with the sides of the bipartition given by T = T0 and S = S0∪. . .∪Sk, where T0 and Si, i = 0, 1, . . . , k
are as defined above. Note that the union of Si’s in the definition of S is understood as a disjoint union. In

other words, vertices in both S and T are naturally labelled with points on the hypercube in [m4]m. These

labels are distinct for vertices in T , but not for vertices in S. However, such labels are distinct for vertices in

Si for every i = 0, 1, . . . , k. We denote the number of vertices on the Q side of the bipartition, i.e., in T , by

n. We will have |S| = O(|T |), so that the total number of vertices in our instance is O(n).

Estimates on the size of Ti, Si, T
w

i , S
w

i , R,B,W . We will need the following lemma, whose proof is given

in Appendix A

Lemma 18 For every m ≥ 2, integer W ≥ 1 and δ′ ∈ (0, 1) such that 1/δ′ is an integer, if Y = [m4]m and

the set S is defined by

S = {y ∈ Y : (y,u) + ∆u mod W ∈ [au, bu) ·W, for all u ∈ U},
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where U is a collection of binary vectors of fixed length w and au, bu ∈ [0, 1] are constant integer multiples

of 1/L for an integer L, the following conditions hold if W is an integer multiple of w · lcm(L, 1/δ′), ∆u/W
are multiples of 1/L and m is sufficiently large.

If maxu∈U ,v∈U
u6=v

(u,v)/|v| ≤ δ′, then

∣∣∣∣∣|S| − |Y | ·
∏

u∈U
(bu − au)

∣∣∣∣∣ ≤ |U|
2(6Lδ′ + 4/m) · |Y |.

We now apply Lemma 18 to bound the size of various relevant subsets of Y andX. We gather the resulting

bound in the following

Lemma 19 There exists an event E overX that occurs with probability at least 99/100 such that the following

bounds hold conditioned on E .

For every ǫ ∈ (0, 1), every integer k ≥ 2, every choice of shifts U(u) ∈ F , every (u1, . . . ,uk) ∈
F1 × F2 × . . . × Fk, if W (see (12) and (14)) is an integer multiple of w · k/(ǫ · θ) (see (8)), then for

sufficiently large integer m

(1) |Ti| = (1− 1/k)i|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k};

(2) |Si| = 1
k ((1− 1/k)i|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k};

(3) |S∗
i | = 1

k (1− 1/k)k|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y |;

(4) |Tw
i | = (1− 1/k)i+1|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k − 1} and w ∈ Fi+1;

(5) |Sw
i | = 1

k (1− 1/k)i+1|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k− 1} and w ∈ Fi+1.

Proof: We fix the values of the shifts U(u),u ∈ F as well as the sequence (u1, . . . ,uk) ∈ F1×F2×. . .×Fk,

and take a union bound over such fixings later (this is important for establishing the bounds on various subsets

of S, as those depend on the random choice of X; see (12), (13) and (14)). By (12) we have

Ti = {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]}
Si = {x ∈ X : ((x,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]}.

We start with Ti, where we apply Lemma 18 with U = {u1, . . . ,ui}. We thus have au = {1/k +
U(u)/W}, bu = {1 + U(u)/W} for all u ∈ U (where {·} stands for the fractional part of the argument).

Since U(w) are integer multiples of θW/k by definition (see (8)), we get that setting L = k/θ ensures

that au, bu are multiples of 1/L. Recall that vectors u1, . . . ,uk ∈ {0, 1}m have Hamming weight w and

maxs 6=t(us,ut)/w ≤ ǫ by assumption of the lemma. Since further W is an integer multiple of w · k/(ǫ · θ),
we get that indeed W is an integer multiple of w · lcm(L, 1/ǫ), and hence the preconditions of Lemma 18

are satisfied. We now get by Lemma 18, using the fact that
∏

u∈U (bu − au) = (1 − 1/k)i by our setting of

parameters, that

∣∣|Ti| − (1− 1/k)i|Y |
∣∣ ≤ |U|2(6Lǫ+ 4/m) · |Y |
≤ k2(6(k/θ)ǫ + 4/m) · |Y |
= O(k3ǫ/θ) · |Y |,

where in the last step we used the assumption of our lemma that m if sufficiently large as a function of k and

ǫ. This proves (1). The proof of (4) is similar, with U = {u1, . . . ,ui,w}.
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Similarly, since every element of X∗ = Y appears in X independently with probability 1/k (see Defini-

tion 17), an application of Lemma 18 as above shows that

EX [|Si|] =
1

k
((1− 1/k)i|Y | ±O(k3ǫ/θ) · |Y |).

We thus also get by an application of Chernoff bounds (Theorem 5) we get that for every i = 0, . . . , k

P [||Si| − E[|Si|]| > ǫ · |Y |] < 2e−ǫ2|Y |/(3k). (15)

The bound above is for a fixed choice of the shifts U(u),u ∈ F . The number of such choices is bounded by

(m5)2
m ≤ e|Y |1/2 when m is larger than a constant. The number of choice of (u1, . . . ,uk) ∈ F1×F2× . . .×

Fk is bounded by 2k2
m ≤ e|Y |1/2 as well, and therefore we have ||Si| − E[|Si|]| ≤ ǫ · |Y | for every choice of

shifts with probability at least 1− 2e−ǫ2|Y |/(6k). Denote the success event by Ei. Conditioned on
⋂k−1

i=0 Ei one

has
∣∣|Si| − 1

k ((1 − 1/k)i|Y |
∣∣ = O(k2ǫ/θ) · |Y |, proving (2).

Similarly, since every element of X∗ = Y appears in X independently with probability 1/k (see Defini-

tion 17), an application of Lemma 18 as above shows that for every w ∈ Fi+1

EX [|Sw

i |] =
1

k
((1− 1/k)i+1|Y | ±O(k3ǫ/θ) · |Y |).

We thus also get by an application of Chernoff bounds (Theorem 5) we get that for every i = 0, . . . , k − 1
and w ∈ Fj+1

P [||Sw

i | − E[|Sw

i |]| > ǫ · |Y |] < 2e−ǫ2|Y |/(3k). (16)

Similarly to the above, we take a union bound over all fixings of shifts U(u),u ∈ F and choices of

(u1,u2, . . . ,uk) ∈ F1×F2×. . .×Fk, getting an upper bound of 2e−ǫ2|Y |/(6k) on the probability of the failure

event. Denote the success event by Ei,w. Conditioned on
⋂k−1

i=0

⋂
w∈Fi+1

Ei,w one has
∣∣|Sw

i | − 1
k ((1− 1/k)i+1|Y |

∣∣ =
O(k3ǫ/θ) · |Y |, proving (5).

Finally, recall that by (14) one has for every i ∈ 0, 1, . . . , k − 1

S∗
i = {x ∈ Si : ((x,ul) + U(ul)) mod W ∈ [1/k, 1) ·W, for all l ∈ [1 : k]}
= {x ∈ [m4]m ∩X : ((x,ul) + U(ul)) mod W ∈ [1/k, 1) ·W, for all l ∈ [1 : k]}
= Tk ∩X.

We now have by (1) that

∣∣∣|Tk| − (1− 1/k)k|Y |
∣∣∣ = O(k3ǫ/θ) · |Y |.

We thus get, since X contains every element of [m4]m independently with probability 1/k by Defini-

tion 17, that EX [|S∗
i |] = |T k|/k, and thus by Chernoff bounds (Theorem 5)

P [||S∗
i | − E[|S∗

i |]| > ǫ · |Y |] < 2e−ǫ2|Y |/(3k). (17)

Similarly to the above, we take a union bound over all fixings of shifts U(u),u ∈ F and choices of

(u1,u2, . . . ,uk) ∈ F1×F2× . . .×Fk, getting an upper bound of 2e−ǫ2|Y |/(6k) on the probability of the fail-

ure event. Denote the success event by Ei,∗. Conditioned on
⋂k−1

i=0 Ei,∗ one has
∣∣|S∗

i | − 1
k ((1− 1/k)∗|Y |

∣∣ =
O(k3ǫ/θ) · |Y |, as required.
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We now let E =
(⋂k

i=1 Ei
)
∩
(⋂k

i=1 Ei,∗
)
∩
(⋂k−1

i=0

⋂
w∈Fi+1

Ei,w
)

. Using a union bound together

with (15), (16) and (17) we get

P[E ] ≥ 1−
k−1∑

i=0

P[Ēi]−
k−1∑

i=0

P[Ēi,∗]−
k−1∑

i=0

∑

w∈Fi+1

P[Ēi,w]

≥ 1− 2k2m2e−ǫ2|Y |/(6k)

≥ 1− 2k2m2e−ǫ2m4m/(6k)

≥ 99/100

as long as m is sufficiently large as a function of ǫ and k.

3.1.2 Defining the edge set of the graph G(u1, . . . ,uk)

First, the only edges incident on vertices in Sk are the edges of a perfect matching between Sk and T k. In the

rest of the section we define edges incident on Si, i = 0, . . . , k− 1. The following definition will be useful in

the analysis. Let Bad ⊆ [m4]m be defined by

Bad := {y ∈ [m4]m : ∃i s.t. yi < m2 or yi > m4 −m2}. (18)

Note that |Bad| ≤ 2m3/m4 = o(1) by a union bound.

For each i = 0, . . . , k− 1 we will have ΓG(Si) ⊆ Ti (see (12) for the definitions of Si and Ti). The edges

incident to Si can be partitioned into an induced union of nearly regular constant degree subgraphs. Each such

subgraph is indexed by a vector w ∈ Fi+1, and is denoted by Hw

i . We now give the construction of these

subgraphs.

The graph Hw

i is a disjoint union of constant size complete bipartite graphs, where each such constant

size graph corresponds to a set of points on the integer lattice that lie on a short line segment in direction w

(recall that w ∈ {0, 1}m). In what follows we first define the relevant lines (Sets LY and LX), and then define

the edges of Hw
i .

Defining sets of lines LY and LX . For an arbitrary y ∈ RY let

ℓ(y) :=

⌊
(y,w) + U(w)

W

⌋
,

and define

lineY (y,w) :=
{
y′ ∈ RY : y′ = y + λ ·w such that ℓ(y′) = ℓ(y)

}
. (19)

Similarly, for x ∈ BX∗
let

lineX
∗

(x,w) :=
{
x′ ∈ BX∗

: x′ = x+ λ ·w such that ℓ(x′) = ℓ(x)
}
.

and for x ∈ BX let

lineX(x,w) :=
{
x′ ∈ BX : x′ = x+ λ ·w such that ℓ(x′) = ℓ(x)

}
. (20)

Note that for every fixed w and every pair x1, x2 ∈ X\Bad one has either lineX
∗

(x1,w) = lineX
∗

(x2,w)
or lineX

∗

(x1,w) ∩ lineX
∗

(x2,w) = ∅. Analogous properties hold for lineX and lineY . Let

LX(w) =
⋃

x∈X\Bad

lineX(x,w) and LY (w) =
⋃

y∈Y \Bad

lineY (y,w).
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Note that for every y ∈ Y \ Bad and every w there exists a unique line LX ∈ LX(w) such that for

every x ∈ LX and y ∈ line(y,w) =: LY one has x − y = λw for some integer λ and ℓ(x) = ℓ(y).
We call LX the pair of LY . We denote the function mapping y-lines to their corresponding pair x-lines by

πw : LY (w)→ LX(w). Let LX∗
(w) and π∗w be defined analogously.

We now give bounds on the size of lines. We start with

Claim 20 (Size of lineY (y,w)) If m ≥ W/|w| and W/|w| is an integer multiple of k, then for all y ∈
RY \ Bad, w ∈ ⋃k

i=1 Fi one has |lineY (y,w)| =W/(k|w|).

Proof: First note that for every integer λ, w ∈ ⋃k
i=1Fi and every y ∈ Y one has, letting y′ = y + λw,

(y′,w) + U(w) = ((y + λ ·w,w) + U(w)) = ((y,w) + U(w)) + λ|w|.

Note that every λ that results in ℓ(y + λw) = ℓ(y) satisfies |λ| ≤ W/|w|, and thus by our assumption

y ∈ Y \ Bad we have y + λw ∈ Y since m ≥W/|w| by assumption of the claim.

Recall that y′ ∈ lineY (y,w) amounts to two conditions: y′ ∈ RY and ℓ(y′) = ℓ(y), where the former

constraint is

((y′,w) + U(w)) (mod W ) ∈ [0, 1/k) ·W. (21)

Letting z :=
⌊
((y,w)+U(w)) mod W

|w|

⌋
, we note that the set of values of λ results in (21) being satisfied at the same

time as ℓ(y′) = ℓ(y) is exactly {−z,−z + 1, . . . ,−z +W/(k|w|) − 1}. We thus have that |lineY (y,w)| =
W/(k|w|) for all y ∈ Y \ Bad, as required.

We have

Claim 21 (Size of lineX(x,w)) For every ǫ ∈ (0, 1), every η ∈ (0, 1/10) such that 1/η is an integer, if

m ≥ W/|w| is sufficiently large and W/|w| is an integer multiple of lcm(k, 1/η), W/|w| ≥ 48k2 ln(1/η)
ǫ2

, the

following conditions hold.

With probability at least 99/100 over the choice of X ⊆ X∗ for every setting of U(w),w ∈ ⋃k
i=1 Fi, for

all but 2η2|Y | points x ∈ BX\Bad, every w ∈ ⋃k
i=1 Fi one has |lineX(x,w)| ≥ 1

k (1−1/k)(1−4η−ǫ)W/|w|
for sufficiently large m as a function of η, k,W/|w| and ǫ.

Proof: For every integer λ and every x ∈ X∗ \ Bad one has

((x+ λ ·w,w) + U(w)) = ((x,w) + U(w)) + λ|w|.

Letting z :=
⌊
((y,w)+U(w)) mod W

|w|

⌋
, we note that the set of values of λ results in the equation above being

satisfied at the same time as ℓ(y′) = ℓ(y) is exactly {−z + W
|w|
(
1
k + η

)
, . . . ,−z + W

|w|(1− η)− 1}. We thus

get that the set of values of λ that result in x′ = x+ λ ·w ∈ lineX
∗

(x,w) has size (1− 1/k − 2η)W/|w|, as

required.

Note that every λ that results in ℓ(x + λw) = ℓ(x) satisfies |λ| ≤ W/|w|, and thus by our assumption

x ∈ X∗ \ Bad we have x′ + λw ∈ X∗ since m ≥ W/|w| by assumption of the claim. In order to establish

the claim, it suffices to analyze the sampling process involved in constructing X from X∗.

Since for every LX∗
the set LX is a random subsampling of LX∗

, where each element of X∗ is included

in X independently with probability 1/k, we have E
[
|LX |

]
= 1

k |LX∗ | = 1
k (1− 1/k − 2η)W/|w| for every

y ∈ Y \ Bad. Since X is obtained from X∗ by independent sampling at rate 1/k, we get by the Chernoff

bound (Theorem 5)

P

[
|LX | 6∈ (1± ǫ)1

k
(1− 1/k − 2η) |LX∗ |

]
≤ 2e−ǫ2|LX∗ |/(12k),
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where we used the fact that 1 − 1/k − 2η ≥ 1 − 1/2 − 1/5 ≤ 1/4, since η < 1/10 by assumption of the

claim. Since

(1− ǫ) (1− 1/k − 2η) − (1− ǫ− 4η)(1 − 1/k) = (1− ǫ)(1 − 1/k) − (1− ǫ)2η
− (1− ǫ)(1− 1/k) + 4η(1 − 1/k)

= 2η(−1 + ǫ+ 2(1− 1/k))

≥ 2ηǫ ≥ 0 (since k ≥ 2),

we in particular have

P

[
|LX | < (1− ǫ− 4η)

1

k
(1− 1/k) |LX∗ |

]
≤ 2e−ǫ2|LX∗ |/(12k). (22)

Now as long as |LX∗ | > 48k ln(1/η)/ǫ2, we have that the rhs above is upper bounded by η2. Since

|LX∗ | =W/(k|w|) by Claim 20, this follows since W ≥ 48k2 ln(1/η)
ǫ2

· |w| by assumption of the claim.

Finally, note that for every w we just showed that a single line LX deviates from expectation with proba-

bility at most η2. Since distinct lines do not overlap, an application of Chernoff bounds shows that for every

w the probability that the number of lines LX ∈ LX(w) that deviate from expectation is at most 2η2|LX(w)|
with probability at least

1− 2e−Ω(η2|LX∗ |) = 1− 2e−Ω(η2m4m/(W/|w|)).

A union bound over at most 2m vectors w ∈ F and at most (m5)2
m

choices for the shifts U(w),w ∈ F ,
yields failure probability at most 2 · 2m · (m5)2

m · e−Ω(η2m4m/(kW/|w|)) < 1/100 as long as m is sufficiently

large as a function of η, k and W/|w|.

Defining bipartite cliques induced by LY ∪ π∗(LY ). We start with

Definition 22 (Typical lines) For w ∈ ⋃k
i=1Fi and LY ∈ LY (w) we say that LY and its pair πw(L

Y ) are

typical if |πw(LY )| ≥ 1
k (1− 1/k)(1 − 4η − ǫ)W/|w|.

IfLY is typical as per Definition 22, let L̃Y denote an arbitrary subset ofLY of cardinality (1−4η−ǫ)|LY |.
Similarly, let L̃X denote an arbitrary subset of πw(L

Y ) of cardinality (1−4η−ǫ)(1−1/k)|LY |. Our parameter

setting will ensure that |LY | = W/(k|w|) is an integer multiple of lcm(1/η, 1/ǫ, k), so this is feasible. For

convenience let L̃X = L̃Y = ∅ for lines that are not typical. We thus have |L̃X | = (1− 1/k)|L̃Y |. Now let

Ẽ(LY ) := L̃Y × L̃X . (23)

Note that for a typical line LY ∈ LY (w) the degree of a vertex y ∈ LY in Ẽ(LY ) is either zero or

(1− 4η − ǫ)(1− 1/k)|LY | = (1− 4η − ǫ)(1− 1/k) · W
|w| =: (1− 1/k)γ, where we let

γ := (1− 4η − ǫ)W|w| , (24)

and the degree of a vertex x ∈ π(LY ) is either zero or (1 − 4η − ǫ)|LY | = (1 − 4η − ǫ) W
|w| = γ. Also note

that all edges in the graph that we just defined are of the form (c, d), where

c = d+ λ ·w, |λ| ≤ W

|w| . (25)
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Defining the edges of Hw

i ,w ∈ Fi+1. Let

Ẽw

i :=
⋃

y∈Ti\Tw

i

Ẽ(lineY (y,w)),

where Ẽ(lineY (y,w)) is defined in (23), Ti is defined in (12) and Tw

i is defined in (13). Note that since our

vectors are only nearly orthogonal, for a y ∈ Ti we do not necessarily have lineY (y,w) ⊆ Ti. We now let

Ew

i := Ẽw

i ∩ (Ti × Si). (26)

3.1.3 Induced property of subgraphs Hw

i

We now show that the graphs Hw
i constructed above are induced for each i and w ∈ Fi. The argument is

similar to [FLN+02, GKK12].

Claim 23 For every η ∈ (0, 1), integer k ≥ 2, if ǫ ∈ (0, 1) is smaller than η, then for every i = 0, . . . , k − 1,

the edge set Ew
i (defined in (26)) is an induced union of subgraphs Hw

i .

Proof: Recall that Fi+1 was chosen as a family of binary vectors of fixed weight with small intersections,

namely for every w,w′ ∈ Fi+1,w 6= w
′ one has

(w,w′) ≤ ǫ|w|. (27)

Suppose that an edge (c, d) ∈ E(Hw
i ), c ∈ X, d ∈ Y is induced by Hw

′

i for w
′ 6= w. Since edges of

Hw
′

i connect red points in Y with respect to w
′ to blue points in X with respect to w

′ (see (19), (20) and

the definition of edges in Hw
i in (23) and (26); see also (19) and (20)), it must be that d ∈ RY (w′) and

c ∈ BX(w′), so

|(c− d,w′)| ≥ η ·W. (28)

However, by (27) together with (25) one has

|(c − d,w′)| = |λ| · (w,w′) ≤ W

|w|(w,w
′) ≤ W

|w|ǫ|w| = ǫW < ηW,

since ǫ < η by assumption of the claim. This yields a contradiction with (28), and hence Hw
i are induced.

3.1.4 Existence of a large matching in the host graph

We now show that with high probability over the choice of the random shifts U(v),v ∈ ⋃k
i=1 Fi, for any

i = 0, . . . , k − 1 any collection u1, . . . ,ui−1,us ∈ Fs, s = 1, . . . , i − 1 and w ∈ Fi+1 there exists a

matching of 1−O(k3ǫ/η) fraction of Si to Ti \ Tw
i . Formally we prove

Claim 24 For every integer k ≥ 2, sufficiently small η ∈ (0, 1) such that 1/η is an integer, ǫ ∈ (0, c · η2/k6)
for a sufficiently small constant c > 0 such that 1/ǫ1/2 is an integer, if θ = η (see (8)) and W/w is an integer

multiple of k/(ǫ · θ), the following conditions hold for sufficiently large m.

There exists an event Ebalanced−degrees that occurs with probability at least 99/100 over the choice of

random shifts U(v),v ∈ ⋃k
j=1Fj , for every i = 0, . . . , k− 1, every collection u1, . . . ,us ∈ Fs, s = 1, . . . , i

and every w ∈ Fi+1 such that conditioned on Ebalanced−degrees and the event E from Lemma 19 there exists a

matching of 1−O(k3ǫ1/2/η) fraction of Si to Ti \ Tw
i .

20



Proof: We will do this by exhibiting a fractional matching of appropriate size. Recall that a fractional match-

ing is an assignment of non-negative weights ze to edges e of the graph such that for every vertex v of the

graph one has
∑

e∈δ(v) ze ≤ 1. We now exhibit a fractional matching in the graph in three steps.

First, for every typical line LY ∈ LY (w) that touches Ti \Tw
i we assign weights to every edge of Ẽ(LY )

in such a way that every vertex in LY that has nonzero degree in Ẽ(LY ) receives 1−1/k fractional mass, and

every vertex in π(LY ) that has a nonzero degree receives mass 1. Then we assign fractional mass uniformly

to edges incident on vertices in Si \ Sw

i to ensure that these vertices contribute the missing 1/k fraction of

mass to vertices in LY , up to a small error term that is independent of k, the number of rounds in the game,

and can be made arbitrarily small by choosing the maximum dot product ǫ between vectors in
⋃k

j=1Fj small,

and making the ‘buffer’ between red and blue vertices appropriately small (this mass is assigned to edges in

lines LY ∈ LY (v) for v ∈ Fi+1 \ {w}). This ensures that the matching supported by the lines that touch

Ti \ Tw
i is about the size of Si. The only problem is that this matching uses edges outside of Ti \ Tw

i and Si.
We then show that pruning to edges contained in (Ti \ Tw

i ) × Si only affects matching size by a small error

term, completing the proof.

Step 1: weights on edges of Hw

i . Recalling that for a typical line LY ∈ LY (w) the degree of every vertex

in LY is either zero or (1 − 1/k)γ (where γ is defined in (24)), we put weight 1/γ on every edge of Ẽ(LY ).
This way every vertex of nonzero degree in LY gets fractional mass 1 − 1/k, and every vertex of nonzero

degree in π(LY ) gets fractional mass 1.

Step 2: weights on edges of Hv

i for v 6= w. We start by showing that for a fixed v and for every y ∈ Y
one has that PU(v)[y ∈ RY (v)] is very close to 1

k . Indeed, recall that U(v) is uniformly random over the set

{0, . . . , k/θ − 1} ·W · (θ/k),

where θ ∈ (0, 1) is a parameter that by assumptions of the lemma is equal to η (see (8)). Using the definition

of RY (v) (see (9)) we can now bound

PU(v)[y ∈ RY (v)] = PU(v)[((y,v) + U(v)) mod W ∈ [0, 1/k) ·W ].

Writing (y,v) =
⌊

(y,v)
W ·(θ/k)

⌋
·W · (θ/k) + ((y,v) mod (W · (θ/k))) and recalling that U(v) is uniformly

random in {0, . . . , k/θ − 1} ·W · (θ/k) by definition as well as that 1/θ is an integer, we get that

PU(v)[((y,v) + U(v)) mod W ∈ [0, 1/k) ·W ] = (1/θ)/(k/θ) = 1/k,

as required. A similar argument shows that for every x ∈ Si one has PU(v)[x ∈ BX∗
(v)] = 1 − 1/k − 2η.

Indeed, this is because

PU(v)[((x,v) + U(v)) mod W ∈ [1/k + η, 1− η) ·W ] = (k/θ)(1 − 1/k − 2η)/(k/θ) = 1− 1/k − 2η,

where we used the assumption that θ = η.

Next note that each vertex y ∈ RY (w) \ Bad has degree (1 − 1/k)γ or 0 in Hv

i , and for every v the

fraction of vertices that have degree 0 in Hv
i is at most 2η2|Y | by Claim 21. Furthermore, since the random

shifts U(v) are independent for distinct v, we obtain using Chernoff bounds (Theorem 5) for δ ∈ (0, 1) that

for every w ∈ Fi+1 and every y ∈ Ti \ Tw
i

P{U(v)}
v∈Fi+1,v 6=w


 ∑

v∈Fi+1,v 6=w

I[y ∈ RY (v)] 6∈ (1± δ)d/k


 ≤ 2e−δ2d/(3k).
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Similarly we have for every w ∈ Fi+1 and x ∈ Si \ Sw

i and δ ≥ 4η

P{U(v)}
v∈Fi+1,v 6=w


 ∑

v∈Fi+1,v 6=w

I[x ∈ BX(v)] 6∈ (1± δ)d(1 − 1/k)


 ≤ 2e−δ2d/24.

Let Ebalanced−degrees denote the event that for every every collection u1, . . . ,ui−1,us ∈ Fs, s = 1, . . . , i−
1, every w ∈ Fi+1, every y ∈ Ti one has

∑
v∈Fi+1,v 6=w

I[y ∈ RY (v)] ∈ (1±δ)d/k (i.e. y is a red vertex with

respect to about the expected number of vectors v) and
∑

v∈Fi+1,v 6=w
I[x ∈ BX(v)] 6∈ (1 ± δ)d(1 − 1/k)

(i.e. x is a blue vertex with respect to about the expected number of vectors v). Since there are only O(m4m)
vertices in Y and X, and |⋃i Fi| ≤ 2m, and d = 2Ω(m), for any constant k, η, δ and sufficiently large m a

union bound shows that Ebalanced−degrees occurs with probability at least 99/100.

The assignment of fractional weights on edges incident to vertices in Si \Sw
i is as follows: we put weight

1
(1−1/k)γ·(1+δ)d on each edge of Ẽ(LY ) for LY ∈ LY (v) that is incident on y ∈ Ti \ Tw

i . We now verify

feasibility of this solution in the presence of weights assigned in step 1, and then compute the size of the

matching.

To verify feasibility, note that, conditioned on Ebalanced−degrees, the contribution of this assignment to any

vertex in Si \ Si(w) is at most

1

(1− 1/k)γ · (1 + δ)d
· (1 + δ)d(1 − 1/k) · γ = 1,

where we used the fact that the degree of a vertex in Si \Sw
i in a subgraph induced by a typical line is at most

γ. Contribution to any vertex in Ti \ Tw

i is at most

1

(1− 1/k)γ · (1 + δ)d
· (1 + δ)d/k · (1− 1/k)γ = 1/k,

where we used the fact that the degree of a vertex in Ti \Tw
i in a subgraph induced by a typical line is at most

(1− 1/k)γ. Thus, the total mass assigned to vertices in Ti \ Tw

i as well as Si \ Sw

i is upper bounded by 1.

To lower bound the value of the fractional solution, first note that by Claim 21 with high probability over

the choice of X for every w at most 2η2|Y | points belong to atypical lines (see Definition 22), which corre-

sponds to a loss of at most 2η2|Y | in matching size. Now recall that a line is called typical (see Definition 22)

if |πw(LY )| ≥ (1 − 1/k − 4η − ǫ)W/|w|. Thus, at most a 4η + ǫ fraction of mass assigned is lost due to

this. Since this applies to every v ∈ Fi+1,v 6= w, as well, we get that the constructed fractional matching is

feasible, and its size is at least (1−O(δ + ǫ))|Si| −O(η2)|Y | = (1−O(ηk))|Si|, where we set δ = 4η and

used the fact that conditioned on the event E from Lemma 19 one has |Si| = Ω(1/k)|Y |.

Step 3: bounding effect of truncation of Ẽw
i to Ew

i In steps 1 and 2 we showed that the mass we assigned

to Ẽw
i corresponds to a feasible matching of size at least (1−O(ηk))|Si|. We now show that truncating Ẽw

i

to Ew
i (see (26)) does not lead to a significant loss in matching size. Recall that by (12)

Ti = {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]}
Si = {x ∈ X : ((x,uj) + U(uj)) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]}

For every y ∈ Ti one has by (12) that ((y,uj)+U(uj)) mod W ∈ [1/k, 1) ·W for all j = 1, . . . , i, and

hence for every λ ∈ (0,W/|w|] and every j = 1, . . . , i

|(y + λw,uj)− (y,uj)| ≤ λ(w,uj) ≤ ǫλ|w| ≤ ǫW
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by choice of the family F1, . . . ,Fk . We thus get that y + λw belongs to the set

T̂i := {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([0, ǫ) ∪ [1/k − ǫ, 1)) ·W, for all j ∈ [1 : i]},

i.e. the result of relaxing the constraints that define Ti by a ǫ in every direction. At the same time

T̂i \ Ti ⊆
i⋃

j=1

{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([0, ǫ) ∪ [1/k − ǫ, 1/k)) ·W}

⊆
i⋃

j=1

{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([0, ǫ1/2) ∪ [1/k − ǫ1/2, 1/k)) ·W}

and thus

|T̂i \ Ti| ≤
i∑

j=1

|{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([0, ǫ1/2) ∪ [1/k − ǫ1/2, 1/k)) ·W}|

≤ 2k(6(k/θ) · ǫ1/2 + 4/m)|Y | (by Lemma 18)

To obtain the last bound, we applied Lemma 18 for each j = 1, . . . , i with U = {uj}, δ′ = ǫ and L =
(k/θ) ·ǫ−1/2. Now recalling that by (26) one has Ew

i := Ẽw

i ∩(Ti×Si) and that Si is obtained by intersecting

Ti with X, we get that the edges pruned from Ẽw

i by restricting to Ti × Si as above are incident on as set of

vertices of size at most

2|T̂i \ Ti| ≤ 4k(6(k/θ) · ǫ1/2 + 4/m)|Y |. (29)

Since every vertex received at most 1 unit of fractional mass, the size of the matching supported by Ew

i is thus

at least the size of the matching supported by Ẽw

i minus 2k · (6(k/θ) · ǫ1/2 +4/m)|Y | = O(k2ǫ1/2/η)|Y | =
O(k3ǫ1/2/θ)|Si| giving the result. In the last transition we used the fact that |Si| = Ω(|Y |/k) when ǫ <
c · θ2/k6 for a sufficiently small constant c > 0 (by Lemma 19), as well as the assumption that θ = η.

3.1.5 Existence of a sparse directed cut

Define

Z := {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([1/k − ǫ, 1/k) ∪ [0, ǫ)) ·W for some j ∈ [1 : k]}. (30)

We prove

Claim 25 For every integer k ≥ 2, ǫ ∈ (0, 1) such that 1/ǫ1/2 is an integer, if W/w is an integer multiple of

k/(ǫ · θ), the following conditions hold for sufficiently large m.

For every i = 0, 1, . . . , k − 1 the subgraph H∗ induced by (Ti \ (Tk ∪ Z)) ∪ S∗
i only contains the edges

of E
ui+1

i . In addition, one has |Z| ≤ 2k2(6ǫ1/2/θ + 4/m)|Y |.

Proof: Recall that the sets S∗
i are defined in (14). First note that if an edge (c, d), c ∈ P, d ∈ Q belongs to

H∗, then c ∈ S∗
i and d ∈ T i, so (c, d) necessarily belongs to some graph Hw

i , where w ∈ Fi+1. Then we

have by (25) that

d− c = λ ·w, where |λ| ≤W/|w|.
Thus, we have for all j = 1, . . . , k using the orthogonality condition (27)

|(c− d,uj)| ≤
W

|w| |(w,uj)| ≤ ǫW. (31)
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Now recall that c ∈ S∗
i by assumption, so by (12) and (14)

(c,uj) + U(uj) mod W ∈ [1/k, 1) ·W,∀j = 1, . . . , k.

Thus, by (31) one has

(d,uj) + U(uj) mod W ∈ ([1/k − ǫ, 1] ∪ [0, ǫ)) ·W, for all j = 1, . . . , k,

i.e. d ∈ Z ∪T k. Thus, the subgraph H∗ contains only edges of E
ui+1

i for every i = 0, . . . , k− 1, as required.

It remains to bound the size of Z . We first note that

Z = {y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([1/k − ǫ, 1/k) ∪ [0, ǫ)) ·W for some j ∈ [1 : k]}

⊆
k⋃

j=1

{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([1/k − ǫ, 1/k) ∪ [0, ǫ)) ·W}

⊆
k⋃

j=1

{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([1/k − ǫ1/2, 1/k) ∪ [0, ǫ1/2)) ·W}.

(32)

For each j = 1, . . . , k we now use Lemma 18 with U = {uj}, auj =
1
k − ǫ, buj =

1
k , and then again with

auj = 0, buj = ǫ. In both cases we set L = (k/θ) · 1/ǫ1/2. We thus get

|{y ∈ Y : ((y,uj) + U(uj)) mod W ∈ ([1/k − ǫ1/2, 1/k) ∪ [0, ǫ1/2)) ·W}|
≤ 2(6Lǫ+ 4/m) · |Y |
≤ 2(6kǫ1/2/θ + 4/m) · |Y |.

Using this together with (32) yields |Z| ≤ 2k2(6ǫ1/2 + 4/m)|Y |, as required.

3.2 Distribution over inputs

We now formally define our hard input distribution. The input graph G′ is generated as follows. First sample

X ⊆ {0, 1}m as in Definition 17, then for every w ∈ ⋃k
j=1Fj sample the shift U(w) independently as per (8).

Finally, sample us ∈ Fs, s = 1, . . . , k independently and uniformly at random, and let G := G(u1, . . . ,uk)
denote the host graph as constructed in Section 3.1. For every v ∈ Fi+1 and y ∈ Ti \ T v

i let bvy ∈ {0, 1}
denote a Bernoulli random variable with expectation 1 − ξ for a small ξ ∈ (0, 1) that we will set later. The

variables bvy are independent conditioned on

∑

y∈Ti\Tv

i

bvy = ⌈(1− ξ)|Ti \ T v

i |⌉

for every v ∈ Fi+1. In other words, bv encodes a uniformly random subset of Ti\T v

i of size ⌈(1−ξ)Ti \T v

i ⌉.
For every i = 0, . . . , k − 1 let Bi := {bvy }v∈Fi+1,y∈Ti\Tv

i
.

Definition 26 (Subsampling of the host graph) For i = 0, . . . , k − 1 let the graph G′(u1:i;B0:i) be formed

by including, for every v ∈ Fi+1 and y ∈ Ti \ T v

i all edges incident on y in Hv

i if bvy = 1 and none of these

edges otherwise. For i = k, let G′(u1:k;B0:k−1) contain all edges incident on Sk. Let

G′ :=

(
k−1⋃

i=0

G′(u1:i;B0:i)

)
∪G′(u1:k;B0:k−1).
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The stream consists of k + 1 phases: for each i = 0, . . . , k the vertices and edges of G′(u1:i, B0:i) incident

on Si arrive in phase i in an arbitrary order.

We start with the following claim

Claim 27 For every ξ ∈ (0, 1), every integer k ≥ 2, sufficiently small η ∈ (0, 1) such that 1/η is an integer,

ǫ ∈ (0, c · η2/k6) for a sufficiently small constant c > 0 such that 1/ǫ1/2 is an integer, if θ = η (see (8)) and

W/w is an integer multiple of k/(ǫ · θ), the following conditions hold for sufficiently large m.

There exists an event Elarge−matching that occurs with probability at least 97/100 over the choice of

random shifts U(v),v ∈ ⋃k
j=1Fj and choice of

⋃k−1
i=0 {bvy }v∈Fi+1,y∈Ti\Tv

i
, the graph G′ contains a matching

of size at least (1−O(ξ + k4ǫ1/2/η))|Y |.
Proof: By Claim 24 there exists an event Ebalanced−degrees that depends only on the choice of X and the shifts

U(w),w ∈ ⋃k
j=1Fj such that conditioned on Ebalanced−degrees and event E from Lemma 19 by Claim 24

for every i = 0, . . . , k − 1 and u1, . . . ,us ∈ Fs, s = 1, . . . , i and w ∈ Fi+1 there exists a matching Mi

of 1 − O(k3ǫ1/2/η) fraction of Si to Ti \ Tui+1

i . Furthermore, the set Sk can be perfectly matched to Tk by

definition. Let M be a union of these matchings. Note that conditioned on Ebalanced−degrees the matching M
satisfies

|M | ≥ (1−O(ξ + k3ǫ1/2/η))|S| + |Tk|

≥ (1−O(ξ + k3ǫ1/2/η))

k−1∑

i=0

|Si|+ |Tk|

≥ (1−O(ξ + k3ǫ1/2/η))

k−1∑

i=0

(1− 1/k)i|Y |/k + |Tk| −O(k4ǫ/θ)|Y |

≥ (1−O(ξ + k3ǫ1/2/η))(1 − (1− 1/k)k)|Y |+ (1− 1/k)k|Y | −O(k4ǫ/θ)

≥ (1−O(ξ + k4ǫ1/2/η))|Y |,
where we used Lemma 19, (2), in the third transition and Lemma 19, (1), in the forth transition.

Now recall thatG′ contains every edge ofM with probability at least 1−ξ, and these events are negatively

associated for different edges, since for every (y, x) ∈M∩Hui+1 one has (y, x) ∈ G′ if and only if b
ui+1
y = 1,

and b
ui+1
y are negatively associated for different y by construction. We thus get by an application of Chernoff

bounds that

P[|M ∩G′| < (1− 2ξ)|M |] < e−Ω(ξ2|M |) < e−Ω(ξ2m4m).

We now define the event Elarge−matching to be the intersection of Ebalanced−degrees with the success events for

i = 0, . . . , k − 1 above, getting that P[Elarge−matching] ≥ 1− 97/100 by a union bound.

3.3 Bounding performance of a small space algorithm

By Yao’s minimax principle it is sufficient to upper bound the performance of a deterministic small space

algorithm that succeeds with probability at least 1/2. To do that, we bound the size of the matching that a

small space algorithm can output at the end of the stream. Let MALG denote the matching that the algorithm

outputs. We first upper bound the approximation ratio that the algorithm obtains in terms of the number of

edges in E(H
ui+1

i ) ∩MALG, for i = 0, 1, . . . , k − 1.

Lemma 28 For every integer k ≥ 2, ǫ ∈ (0, 1) such that 1/ǫ1/2 is an integer, if W/w is an integer multiple

of k/(ǫ · θ) (see (8)), the following conditions hold for sufficiently large m.

If the graph G′ is generated as per Definition 26, and MALG is any matching in G′, then |MALG| ≤
(1− 1/k)k|Y |+∑k−1

i=0 |E(H
ui+1

i ) ∩MALG|+O(k3ǫ1/2/θ) · |Y |.
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Proof: Consider the cut (A,B), where A = (T \ (Tk ∪ Z))∪
⋃k−1

i=0 (Si\S∗
i ) and B = Tk∪Sk∪

⋃k−1
i=0 S

∗
i ∪Z .

Recall that the sets Ti, Si are defined in (12), Sj
i is defined in (14) and Z is defined in (30).

By the maxflow/mincut theorem, the size of the matching output by the algorithm is bounded by |A ∩
S|+ |B ∩ T |+ |((A ∩ T )× (B ∩ S)) ∩MALG|.

By Claim 25 the subgraph MALG ∩ (Ti ×Si) induced by (Ti \ (Tk ∪Z))∪S∗
i only contains the edges of

H
ui+1

i for every i = 0, . . . , k − 1. Thus,

|((A ∩ T )× (B ∩ S)) ∩MALG| ≤
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|

and we get

|MALG| ≤
∣∣∣∣∣

k−1⋃

i=0

(Si \ S∗
i )

∣∣∣∣∣+ |Tk|+ |Z|+
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|

=

∣∣∣∣∣

k−1⋃

i=0

Si

∣∣∣∣∣+ |Tk| −
∣∣∣∣∣

k−1⋃

i=0

S∗
i

∣∣∣∣∣+ |Z|+
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|
(33)

Furthermore, again by Claim 25 one has |Z| ≤ 2k2(6ǫ1/2/θ + 4/m)|Y |. By Lemma 19, (1) one has

|Ti| = (1− 1/k)i|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k}. By Lemma 19, (2) one has

|Si| = 1
k ((1− 1/k)i|Y |+∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k} and by Lemma 19, (3) one

has |S∗
i | = 1

k (1 − 1/k)k|Y | + ∆i, |∆i| = O(k3ǫ/θ) · |Y | for every i ∈ {0, 1, 2, . . . , k}. Substituting these

bounds into (33), we get

|MALG| ≤
k−1∑

i=0

1

k
(1− 1/k)i|Y | −

k−1∑

i=0

1

k
(1− 1/k)k |Y |

+ (1− 1/k)k · |Y |+
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|+O(k3ǫ1/2/θ) · |Y |.

We now use the fact that
∑k−1

i=0
1
k (1− 1/k)i|Y | = (1− (1− 1/k)k)|Y | in the upper bound above to get

|MALG| ≤ (1− (1− 1/k)k)|Y |+
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|+O(k3ǫ1/2/θ) · |Y |,

as required.

We will use

Lemma 29 (Data Processing Inequality) For any random variables (X,Y,Z) such that X → Y → Z forms

a Markov chain, we have I(X;Z) ≤ I(X;Y ).

Lemma 30 For every integer k ≥ 2, if ǫ < η, the following conditions hold for sufficiently large m.

Let MALG denote the subset of edges of G′ output by a space s streaming algorithm after a single pass

over the edges of G′ presented in the order defined above. If

∣∣∣∣∣MALG ∩
k−1⋃

i=0

E(H
ui+1

i )

∣∣∣∣∣ > cn

with probability more than 1/2 over the randomness used to generate the graph G′, then s = Ωc,k(nd).
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Proof: Recall that we define MALG to be the empty set if the matching output by ALG contains edges that

are not in G, and that

P

[∣∣∣∣∣MALG ∩
k−1⋃

i=0

E(H
ui+1

i )

∣∣∣∣∣ > cn

]
> 1/2, (34)

where the probability is over the choice of u1:k (the vectors defining the host graphG) and B0:k−1 (the random

variables used to subsample the host graph G to generate G′), subsampling X and the shifts {U(w)}. Define,

for v ∈ Fi+1,

Mv

ALG =MALG ∩ E(Hv

i ).

Note that Mv

ALG depends on i, since v uniquely determines i (since it belongs to Fi+1 and no other Fj , j =
0, 1, . . . , k − 1). Also define

Emany−edges(i) := {|Mv

ALG| > cn/(6k)} .

We have, using (34), that there exists an index 0 ≤ i ≤ k − 1 such that

Pu1:k,B0:k−1,X,{U(w)}[Emany−edges(i)] ≥ 1/(6k).

Fix one such index i in what follows. We have by an averaging argument applied to (34) (using Claim 23

to conclude that the edge sets of Hw
i are disjoint for distinct w ∈ Fi+1) that there exists a fixing F =

(u1:i, B0:i−1,X, {U(w)}) of u1:i,B0:i−1,X, {U(w)} such that

Pui+1:k−1,Bi:k−1
[Emany−edges(t)|F ] ≥ 1/(6k).

For every v ∈ Fi+1 define

Emany−edges(i,v) := Emany−edges(i) ∧ {ui+1 = v}.

We have

1/(6k) ≤Pui+1:k−1,Bi:k−1
[Emany−edges(i)|F ] ≤ Eui+1

[Pui+2:k,Bi:k−1
[Emany−edges(i)|F ]]

=
1

|Fi+1|
∑

v∈Fi+1

Pui+2:k,Bi:k−1
[Emany−edges(i,v)|F ]. (35)

Let Π denote the state of the algorithm after processing




i−1⋃

j=0

G′(u1:j;B0:j)


 ∪G′(u1:i;B0:i−1,Bi),

where G′(u1:j ;B0:j) is given by Definition 26. We now lower bound I(Π;Bi) (which then gives a lower

bound on the entropy of Π, and therefore on the space s). First note that

Bi = {bvi }v∈Fi+1
→ Π→MALG

forms a Markov chain, and thus by the data processing inequality (Lemma 29) we have

I(Π;Bi) ≥ I(MALG;Bi). (36)

It thus suffices to lower bound I(MALG;Bi) = H(Bi) −H(Bi|MALG). We upper bound the second term.

First let E denote the indicator random variable of Emany−edges(i) conditioned on {u1:i = u1:i and B0:i−1 =
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B0:i−1} (note that by choice of the index iwe have Eui+1:k−1,Bi:k−1
[E] ≥ 1/(6k). Further, for every v ∈ Fi+1

let Ev denote the indicator random variable of Emany−edges(i,v) conditioned on {u1:i = u1:i,B0:i−1 =
B0:i−1}. Note that by (35) we have

Ev∼UNIF (Fi+1)[E
v] ≥ 1/(6k). (37)

H(Bi|Π) ≤
∑

v∈Fi+1

H(bv|Π) (by subadditivity of entropy)

≤
∑

v∈Fi+1

H(bv, Ev|Π)

=
∑

v∈Fi+1

(H(Ev) +H(bv|Π, Ev))

≤
∑

v∈Fi+1

(1 +H(bv|Π, Ev)) (since Ev ∈ {0, 1})

= d+
∑

v∈Fi+1

H(bv|Π, Ev = 1) · P[Ev = 1] +
∑

v∈Fi+1

H(bv|Π, Ev = 0) · P[Ev = 0]

(38)

We now bound the terms on the rhs. First, since for every v one has that bv has a fixed number of nonzeros

in uniformly random positions by definition,

H(bv|Π, Ev = 0) ≤ H(bv). (39)

We now bound the second sum on the last line of (38). First recall that if Ev = 1, then |Mv

ALG| >
cn/(6k), and Mv

ALG is a subset of the edges of G′(u1:i−1,v;B1:i). Let b := Bi. Recall that for every vertex

y ∈ Ti \ T v
i we include edges incident on it in Hv

i if bvy = 1 and do not otherwise. We thus have, for every

y ∈ Ti \ T v
i such that δ(y) ∩Mv

ALG 6= ∅ that bvy = 1. Define for v ∈ Fi+1

γv :=
|(Ti \ T v

i ) ∩Mv

ALG|
|Ti \ T v

i |
,

and note that whenever |Mv

ALG| > cn/(6k), we get using Lemma 19, (1) and (4), as well as the fact that

ǫ < 1/10 by our choice of parameters (since ǫ ≤ (c/k)C for a sufficiently large constant C ≥ 1),

γv =
cn/(6k)

|Ti \ T v

i |
≥ c/30. (40)

We may assume that γv ≤ 1/3 (remove some edges from Mv

ALG otherwise). We have

H(bv|Mv

ALG, E
v = 1) ≤ log2

( |Ti \ T v
i | − |Mv

ALG|
⌈(1− ξ)|Ti \ T v

i |⌉ − |Mv

ALG|

)

≤ log2

(
(1− γv)|Ti \ T v

i |
(1− ξ − γv)|Ti \ T v

i |

)
,

(41)

where we used the assumption that γv ≤ 1/3 and the fact that ξ < 1/3 by our setting of parameters. We thus

get

H(bv|Mv

ALG, E
v = 1) ≤ (1− γv)|Ti \ T v

i |H2

(
1− ξ

1− γv
)
,
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since

log2

(
(1− γv)|Ti \ T v

i |
(1− ξ − γv)|Ti \ T v

i |

)
= log2

(
(1− γv)|Ti \ T v

i |
(1− ξ

1−γv
)(1− γv)|Ti \ T v

i |

)

≤ (1− γv)|Ti \ T v

i |H2

(
1− ξ

1− γv
)
,

where the last transition is by subadditivity of entropy. At this point we also note that

(1− γv)H2

(
1− ξ

1− γv
)

= ξ log2(1/ξ) + ξ ln 2− ξ log 1

1− γv +O(ξ2)

≤ H2(1− ξ)− ξ log
1

1− γv +O(ξ2)

≤ H2(1− ξ)− Ω(ξ · c) +O(ξ2) (by (40) and Claim 31).

since H2(1 − ξ) = ξ log2(1/ξ) + ξ ln 2 + O(ξ2) and ξ is smaller than a constant. Putting the above bounds

together, and noting that by subadditivity of entropy

H(bv) ≤ |Ti \ T v

i |H2 (1− ξ) = |Ti \ T v

i | · (ξ log2(1/ξ) + ξ ln 2 +O(ξ2)),

we get, since ξ is smaller than c by a large constant factor by our choice of ξ, that

H(bv|MALG, E
v = 1) ≤ H(bv)− Ω(c · ξ) · |Ti \ T v

i |
≤ H(bv)− Ω(c · ξ/k) · |T |

Using this upper bound in (38), we get

H(Bi|Π) ≤ d+
∑

v∈Fi+1

H(bv|Π, Ev = 1) · P[Ev] +
∑

v∈Fi+1

H(bv) · (1− P[Ev])

≤ d+
∑

v∈Fi+1

(H(bv)− Ω(c · ξ/k) · |T |) · P[Ev] +
∑

v∈Fi+1

H(bv) · (1− P[Ev])

≤ d+
∑

v∈Fi+1

H(bv)− Ω(c · ξ/k) · |T | ·
∑

v∈Fi+1

P[Ev]

= H(Bi)− Ω(c · ξ/k) · |T | · |Fi+1| · Ev∼UNIF (Fi+1)[E
v] + d

≤ H(Bi)− Ω(c · ξ/k2) · |T | · |Fi+1|+ d (by (37))

≤ H(Bi)− Ω(c · ξ/k2) · |T | · |Fi+1|
≤ H(Bi)− Ωk(c) · dn.

Using this bound in (36), we get I(Bi : Π) ≥ Ωk(c) · dn, and therefore

s ≥ H(Π) ≥ I(Bi; Π) ≥ Ωc,k(nd),

as required.

Claim 31 For every ξ > 0 the function (1− γ)H2(1− ξ
1−γ ) is decreasing in γ for all γ ∈ (0, 1− ξ).
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Proof: We have

(1− γ)H2

(
1− ξ

1− γ

)
=

1

ln 2
· (1− γ)

[(
1− ξ

1− γ

)
ln

1

1− ξ
1−γ

+
ξ

1− γ ln
1− γ
ξ

]

=
1

ln 2
·
[
(1− γ − ξ) ln 1− γ

1− γ − ξ + ξ ln
1− γ
ξ

]

=
1

ln 2
·
[
(1− γ − ξ) ln

(
1 +

ξ

1− γ − ξ

)
+ ξ ln

1− γ
ξ

]

Since ξ ln 1−γ
ξ is decreasing in γ ∈ (0, 1), it suffices to show that (1−γ−ξ) ln

(
1 + ξ

1−γ−ξ

)
is decreasing

in γ for γ ∈ (0, 1 − ξ). Letting x = 1 − γ − ξ, it suffices to show that x ln(1 + ξ
x) is increasing in x for

x ∈ (0, 1 − ξ). Rescaling x by ξ, it suffices to show that x ln(1 + 1
x) is increasing in x for all x > 0. The

derivative with respect to x is ln(1+ 1
x)− 1

x+1 , which approaches 0 as x→∞. The derivative of this function

is − 1
x(x+1)2

, which is negative for all x > 0, and thus ln(1 + 1
x)− 1

x+1 > 0 for all x > 0.

We can now give

Proof of Theorem 1: Since ALG provides a better than (1−1/e+ c)-approximation for some constant c > 0
by assumption, there exists integer k such that 1 − (1 − 1/k)k + c/2 ≤ 1 − 1/e + c (we assume that 2/c is

an integer, which can be ensured by reducing c by at most a factor of 2).

Setting parameters. Let G′ be generated as per Definition 26 with parameters selected as follows. First let

ξ = η = (c/k)A for a sufficiently large integer A > 1 (recall that ξ is the rate at which we subsample edges of

G to obtain G′). Then let ǫ = (η/k)2B for a sufficiently large integer B > 1 (note that 1/ǫ1/2 is an integer).

Finally let m be an integer multiple of 1/ǫ, let w = ǫm and let W = w · k/(ǫ · θ), where θ = η.

We have by Claim 27 that the graph G′ (as per Definition 26) contains matching of size at least (1−O(ξ+
k3ǫ/η))|S| with probability at least 97/100. We also note that

|S| =
k−1∑

i=0

|Si|+ |S| =
k−1∑

i=0

(1− 1/k)i|Y |/k + (1− 1/k)k|Y | ±O(k4ǫ/θ)|Y |

= (1±O(k4ǫ/θ))|Y |
= (1± c/100)|Y |

by Lemma 19, (1) and (2), since O(k4ǫ/θ) = O(k4ǫ/η) < c/100 when A and B above are larger than an

absolute constant (as we verify below in (43)). Thus, the algorithm must output a matching of size at least

(1− (1− 1/k)k + c/2)(1 − c/100)2|Y | ≥ (1− (1− 1/k)k + c/4)|Y | (42)

with probability at least 1/2. The inequality above uses the fact that

O(ξ + k4ǫ/η) = O((c/k)A + k4(η/k)2B/η)

= O((c/k)A + (η/k)2B−4)

= O((c/k)A + (c/k)2B−4)

< c/100

(43)

as long as A and B are larger than an absolute constant.
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Now let MALG be the matching output by a single pass streaming algorithm ALG on the graph G′ pre-

sented in the order prescribed by our input distribution. For convenience we define MALG to be the empty set

if ALG outputs an edge that was not in G′. By Lemma 28 we have

|MALG| ≤ (1− 1/k)k|Y |+
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG|+O(k3ǫ1/2/θ)|Y |. (44)

Using this together with (44), as well as the fact that O(k3ǫ1/2/θ) < c/100 as long as A and B above are

larger than an absolute constant, we get

P

[
k−1∑

i=0

|E(H
ui+1

i ) ∩MALG| > (c/8) · n
]
> 1/2

by assumption of the theorem. We now have by Lemma 30 that the space complexity s of the algorithm

satisfies s = Ωc,k(nd). Since n = m4m and d = 2Ω(ǫ2m) = 2Ω(m) for any fixed ǫ by Lemma 16, we get that

nd = n1+Ω(1/ log logn), as required.

4 Multipass approximation for matchings

In this section we present our algorithm for approximating matchings in multiple passes in the vertex arrival

setting, proving Theorem 3.

4.1 The algorithm

Let G = (P,Q,E) denote a bipartite graph. We assume that vertices in P arrive in the stream together with

all their edges. At each step the algorithm maintains a fractional matching {fe}e∈E , where the capacity of

each vertex in Q is infinite and the capacity of each vertex u ∈ P is equal to the number of times it has

appeared in so far (i.e. always between 1 and k). The capacity of an edge e = (u, v), u ∈ P, v ∈ Q is equal

to the capacity of u. For a vertex u ∈ P we write δ(u) to denote the set of neighbors of u in G.

The fractional matching fe is initialized at zero, and upon arrival of a vertex u ∈ P the algorithm con-

tinuously assigns a single unit of water to its least loaded neighbors. At the end of the k passes we obtain a

bona-fide matching by reducing the load of vertices on the Q side that were assigned more than k units of

fractional mass down to k units (simply reduce the load on neighboring edges). Scaling the resulting allo-

cation by 1/k gives a feasible fractional matching, which can then be rounded to an integral matching using

standard techniques in nearly linear time in the support size of the matching. The algorithm for processing a

vertex u ∈ P upon arrival is summarized in Algorithm 1 below.

Algorithm 1: PROCESSVERTEX(G, u, δ(u))

1: WATERFILLING(G′ , u, δ(u)) ⊲ Assign one unit of water to least loaded neighbors

2: REMOVECYCLES(G′ , f ).

The function WATERFILLING(G′ , u, δ(u)) increases the load of the least loaded neighbors of u simultane-

ously (with other neighbors joining if the load reaches their level) until one unit of water in total is dispensed

out of u. Here the support of the fractional matching {fe}e∈E maintained by the algorithm is denoted by G′.
The function REMOVECYCLES(G′ , f ) reroutes flow among cycles that could have emerged in the process,

ensuring that the flow is supported on at most |P |+ |Q| − 1 edges.
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Efficient implementation. First note that WATERFILLING(G′ , u, δ(u)) can be implemented to run in time

O(|δ(u)| log n). Indeed, we need to find θ such that

∑

e=(u,v)∈δ(u)
max{θ − cv , 0} = 1,

where cv is the load of v ∈ Q in the current fractional allocation. The function on the lhs is non-decreasing

for all θ ≥ mine=(u,v)∈δ(u) cv, so the root can be found to within polynomial precision in O(log n) time using

binary search.

Similarly, the function REMOVECYCLES can be implemented to run in nearly linear time at the expense

of a loss of an O(log n) factor in space complexity. To achieve this we first buffer incoming vertices until

the number of edges received is Θ(n) and only perform cycle removal after such a batch has been received.

Let f : E → R denote the allocation corresponding to one such batch. Write f =
∑O(logn)

i=0 2−ifi, where

fi : E → {0, 1} encode the sets of edges whose i-th bit in the allocation f is set to 1. Denote the corresponding

edge sets by Ei ⊆ E, i = 0, 1, . . . , O(log n). Now for every Ei run DFS to find cycles, and note that every

time a cycle in Ei is found, we zero out half of the edges on the cycle while rerouting flow in fi. Thus, the

amount of work on Ei is indeed linear in its size, resulting in a nearly linear runtime bound overall.

We now turn to analyzing the approximation ratio. We first give a sketch of the proof under additional

assumptions on the graph G, and then proceed to give the relevant definitions and the complete argument.

4.2 Analysis in a simple case (when G has a perfect matching)

In this section we assume that G = (P,Q,E) has a perfect matching M in order to illustrate the main idea

behind our analysis.

We start with

Definition 32 (Level sets bk) For each k ≥ 1 and all x ≥ 0 denote by bk(x) the number of vertices in Q that

have load at least x after k passes in Algorithm 1.

Note that bk(x) is non-increasing in x and bk(x)− bk−1(x) ≥ 0 for all x. Furthermore, we have

bk(0) = |M | and

∫ ∞

0
bk(x)dx = k|M |. (45)

The first equality holds since G is assumed to contain a perfect matching, and the second holds since every

vertex u ∈ P contributed 1 unit of water, amounting to |M | = |P | amount of water overall, and (45) calculates

the sum of loads on all v ∈ Q. Furthermore, note that the size of the matching constructed by the algorithm

after k passes is exactly equal to

1

k

∫ k

0
bk(x)dx, (46)

since every vertex v ∈ Q with load x contributes 1
k · min{k, x} to the matching. Hence the approximation

ratio after k passes is at least

1− 1

|M | ·
1

k

∫ ∞

k
bk(x)dx, (47)

where we used (45) to convert (46) into (47). Thus, it is sufficient to lower bound
∫ k
0 b

k(x)dx in order to

analyze the approximation ratio, and we turn to bounding this quantity.

First consider the case k = 1. For each such vertex u consider its match M(u). Since u ended up at level

at least x after the first pass, its match M(u) must be at level at least x after the first pass as well, as levels are
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non-decreasing. Hence, we have

b1(x) = |{u ∈ P : u is at level ≥ x after first pass}|
≥ |{u ∈ P : u allocated some water at level ≥ x during first pass}|

≥
∫ ∞

x
b1(s)ds

(48)

for all x ≥ 0. This, however, together with (45) can be shown to imply that
∫∞
x b1(s)ds ≤ |M | · e−x for all

x. We thus get using (47) that the approximation ratio after one pass is at least 1− 1/e.
Now suppose that k > 1 and consider vertices v ∈ Q that are at level at least x after k-th pass, but were

at a lower level after (k − 1)-th pass. There are exactly bk(x) − bk−1(x) such vertices. Since these vertices

u were at level at least x after k-th pass, their matches M(u) must have also been at level at least x after the

k-th pass, implying similarly to the above that

bk(x) ≥
∫ ∞

x
(bk(s)− bk−1(s))ds (49)

for all x ≥ 0. The above equation implies that for all k ≥ 1

∫ ∞

x
bk(s)ds ≤ |M | ·

∫ ∞

x
F k(s)ds, (50)

where 1−F k(x) is the cdf of the Gamma distribution with scale 1 and shape k, i.e. F k(x) =
∫∞
x e−ssk−1/(k−

1)!ds. Using this in (47) yields the desired bound on the approximation ratio, i.e. 1− e−kkk−1/k!.

4.3 Analysis in a general case

The proof sketch we gave in the previous subsection works under the assumption that G has a perfect match-

ing. The general case is more involved. While the analysis above proceeds by showing that not too much

mass will be in the tail
∫∞
k bk(x)dx, here we find it more convenient to show that substantial mass will be

in the head of the distribution, i.e. bound
∫ k
0 b

k(x)dx from below. We extend the argument using a careful

reweighting of vertices and scaling of levels guided by the structure of the canonical decomposition of G
introduced in [GKK12], which we now define.

Let G = (P,Q,E) denote a bipartite graph. For a set S ⊆ P we denote the set of neighbors of S by

Γ(S). For a number α > 0 the graph G is said to have vertex expansion at least α if |Γ(S)| ≥ α|S| for all

S ⊆ P . The canonical decomposition of G is defined as follows:

Definition 33 (Canonical decomposition) Let G = (P,Q,E) denote a bipartite graph. A partition of Q =⋃
j∈I Tj , Tj ∩ Ti = ∅, j 6= i and P =

⋃
j∈I Sj , Sj ∩ Si = ∅, j 6= i together with numbers αj > 0, where

αj ≤ 1 for j ≤ 0 and αj > 1 for j > 0 is called a canonical partition if

1. for all i one has Γ
(⋃

j∈I,j≤i Sj

)
⊆ ⋃j∈I,j≤i Tj;

2. |Γ(S) ∩ Tj | ≥ αj |S| for all S ⊆ Sj for all j ∈ I;

3. |Tj |/|Sj | = αj , for all j ∈ I .

Here I ⊂ Z is a set of indices.

See Fig. 1 for an illustration.
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S2

T2

α2 =
|T2|
|S2|

S1

T1

α1 =
|T1|
|S1|

S0

T0

α0 =
|T0|
|S0|

S−1

T−1

α−1 =
|T−1|
|S−1|

S−2

T−2

α−2 =
|T−2|
|S−2|

Figure 1: Canonical decomposition of a bipartite graph. Note that edges from Si only go to Tj with j ≤ i
(property (1)).

Vertex capacities and canonical matching. First, define vertex capacities as follows. For u ∈ P let j be

such that u ∈ Sj(see Fig. 1), and let c(u) := min{1, αj} . Similarly, for v ∈ Q let j be such that v ∈ Tj (see

Fig. 1) and let c(v) := min{1, 1/αj}. We will also use

Claim 34 (Monotonicity of capacities) For every i ≤ j and every v ∈ Ti, w ∈ Tj one has c(v) ≥ c(w).
Similarly, for every i ≤ j and every v ∈ Si, w ∈ Sj one has c(v) ≤ c(w).

Proof: Follows by monotonicity of αj’s.

Definition 35 (Canonical matching) Let M : E → [0, 1] be a (possibly fractional) matching in G such that∑
e∈δ(u) xe = c(u) for all u ∈ P =

⋃
j Sj and

∑
e∈δ(v) xe = c(v) for all v ∈ Q =

⋃
j Tj .

Such a matching exists by properties (2) and (3) of the canonical decomposition. Furthermore, any such M
is a maximum matching in G, since |M | = |C|, where C =

(
∪j:αj≥1Sj

)⋃(∪j:αj<1Tj
)

forms a vertex

cover in G by property (1) of the canonical decomposition. For every integer j = 1, . . . , k and e ∈ E we

let M̃ j
e ∈ [0, 1] denote the load assigned by our algorithm in the j-th pass to edge e. Note that M̃ does not

necessarily form a matching, but for every u ∈ P and every j one has
∑

e=δ(u) M̃
j(e) = 1, since every vertex

on the P side dispenses one unit of water in every pass. We note that

Claim 36 For every graph G, if (Sj, Tj) is the canonical decomposition (as per Definition 33), M a canon-

ical matching in G (as per Definition 35), and vertex capacities as defined above, then
∑

u∈P c(u) =∑
v∈Q c(v) = |M |.

Shadow allocation and density function φkv(x). We will use the concept of a shadow allocation, in which

whenever a units of water are added to a vertex v ∈ Q in the original allocation, a/c(v) units of water are

added to v in the shadow allocation. Now whenever water from a vertex u ∈ P is added to vertex v ∈ Q at

level x during the j-th pass in the shadow allocation, we let φjv(x) := c(u), where φ is the density function.

The following claim is crucial for our analysis:

Claim 37 For every graph G, if M is a maximum matching in G, vertex capacities c and density function φ
are defined as above, one has

∑
v∈Q c(v)

∫∞
0 φjv(x)dx = |M | for all j = 1, . . . , k.
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Proof:

∑

v∈Q
c(v)

∫ ∞

0
φjv(x)dx =

∑

v∈Q
c(v)

∑

e=(u,v)∈δ(v)
c(u) · M̃ j(e)/c(v)

=
∑

v∈Q

∑

e=(u,v)∈δ(v)
c(u) · M̃ j(e)

=
∑

u∈P
c(u)

∑

e=(u,v)∈δ(v)
M̃ j(e)

=
∑

u∈P
c(u)

= |M |,

where the first equality is by definition of the shadow allocation, the fourth is by definition of M̃ j and the last

is by Claim 36.

Load of a vertex and level of an edge. The core of our analysis will consist of bounding the distribution

of water levels among vertices in Q in the shadow allocation, showing that there cannot be too many highly

overloaded vertices. For a vertex v ∈ Q let lk(v) denote the load of v in the shadow allocation after the k-th

pass. For an edge e = (u, v) let lk(e) denote the load of v in the shadow allocation after u is processed in the

k-th pass. The key property of lk(e) that we need is given by

Lemma 38 For every k ≥ 1, every e = (u, v) such that M̃k(e) > 0 and f = (u,w) such that M(f) > 0 one

has lk(f) ≥ lk(e).

Proof: Denote the load of v in the original (as opposed to shadow) allocation after u is processed during

the k-th pass by x, and denote the load of w in the original (as opposed to shadow) allocation after u is

processed during the k-th pass by y. We have y ≥ x by the definition of the waterfilling algorithm. Also

note that lk(e) = x/c(v) and lk(f) = y/c(w) by definition of the shadow allocation. By the properties of the

canonical decomposition one has v ∈ Ti, w ∈ Tj for some i ≤ j, and hence c(v) ≥ c(w) by Claim 34. We

therefore have

lk(f) = y/c(w) ≥ y/c(v) ≥ x/c(v) = lk(e),

as required.

Reweighted level set sizes bk. For every x ≥ 0, integer k ≥ 1 we let bk(x) denote the (weighted) number

of vertices with load at least x in the shadow allocation, defined as follows:

bk(x) =
∑

v∈Q
c(v) · 1lk(v)≥x.

Note that bk(0) =
∑

v∈Q c(v) = |M | for every k. We have

Lemma 39 Algorithm 1 constructs a matching of size at least 1
k

∫ k
0 b

k(x)dx.
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Proof: For a vertex v ∈ Q let lkorg(v) denote the water level of at v in the original allocation after k passes.

Then v contributes 1
k min{k, lorg(v)} to the matching. At the same time lk(v) = lkorg(v)/c(v), so

1

k

∫ k

0
bk(x)dx =

1

k

∫ k

0

∑

v∈Q
c(v) · 1lk(v)≥xdx

=
1

k

∑

v∈Q
c(v) ·min{k, lk(v)}

=
1

k

∑

v∈Q
c(v) ·min{k, lkorg(v)/c(v)}

=
1

k

∑

v∈Q
min{c(v) · k, lkorg(v)}

≤
∑

v∈Q

1

k
min{k, lkorg(v)},

where we used the fact that c(v) ≤ 1 for all v in the last step. This completes the proof of the lemma.

Bounding the evolution of bk(x). In what follows we derive bounds on the reweighted level set sizes bk(x),

which then allow us to lower bound 1
k

∫ k
0 b

k(x)dx. We start with

Lemma 40 One has for all x ≥ 0 and all k ≥ 1

bk(x) ≥
∫ ∞

x

∑

v∈Q
c(v)φkv(s)ds.

Proof: First note that
∫ ∞

x

∑

v∈Q
c(v) · φkv(s)ds =

∑

v∈Q
c(v) ·

∑

e=(u,v)∈δ(v)
lk(e)≥x

c(u) · M̃k(e)/c(v)

=
∑

v∈Q

∑

e=(u,v)∈δ(v)
lk(e)≥x

c(u) · M̃k(e)

=
∑

u∈P
c(u)

∑

e=(u,v)∈δ(u)
lk(e)≥x

M̃k(e)

(51)

by definition of the shadow allocation and density function φ. Recall that for an edge e = (u, v) we let lk(e)
denote the load of vertex v right after u arrives in the k-th pass. At the same time,

bk(x) =
∑

v∈Q
c(v) · 1lk(v)≥x

=
∑

v∈Q
lk(v)≥x

∑

e=(u,v)∈E
M(e) (since

∑

e=(u,v)∈E
M(e) = c(v) for every v)

≥
∑

u∈P

∑

e=(u,v)∈E
lk(e)≥x

M(e).

(52)
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Now recall that by Lemma 38 for every u ∈ P if u dispensed some water at level at least x in the shadow

allocation during the k-th pass, i.e. if

∑

e=(u,v)∈δ(u):lk(e)≥x

M̃k(e) > 0,

then its canonical matches, namely vertices v such that M(u,v) > 0, were at level at least x in the shadow

allocation after u was processed during k-th pass. In particular, in that case we have

∑

e=(u,v)∈E:lk(e)≥x

M(e) = c(u).

Since
∑

e=(u,v)∈δ(u):lk(e)≥x M̃
k(e) ≤ 1 always, we thus get for every u ∈ P

c(u)
∑

e=(u,v)∈δ(u):lk(e)≥x

M̃k(e) ≤
∑

e=(u,v)∈E:lk(v)≥x

M(e).

Indeed, if the sum on the lhs is positive, then the sum on the rhs equals c(u) (which suffices since the lhs

is bounded by c(u)), and if the sum in the lhs is zero, then the inequality holds trivially since the rhs is

nonnegative. Summing over u ∈ P , we get

∑

u∈P
c(u)

∑

e=(u,v)∈δ(u):lk(e)≥x

M̃k(e) ≤
∑

u∈P

∑

e=(u,v)∈E:lk(e)≥x

M(e).

This, together with (51) and (52) yields bk(x) ≥
∫∞
x

∑
v∈Q c(v) · φkv(s)ds, as required.

We now get, letting b0 ≡ 0 for convenience,

Lemma 41 For all x ≥ 0 and all k ≥ 1 one has |M | − bk(x) ≤
∫ x
0 (b

k(s)− bk−1(s))ds.

Proof: By Lemma 40 we have bk(x) ≥
∫∞
x

∑
v∈Q c(v)φ

k
v(s)ds. Putting this together with Claim 37 we get

|M | − bk(x) ≤
∫ x
0

∑
v∈Q c(v)φ

k
v(s)ds for all x ≥ 0 and k ≥ 1. To complete the proof, we note that, since

φkv(s) ≤ 1 for all v, k, s,

∫ x

0

∑

v∈Q
c(v)φkv (s)ds ≤

∫ x

0

∑

v∈Q
c(v) · 1[v is allocated water at level s in pass k]ds

=

∫ x

0

∑

v∈Q
c(v) · (1lk(v)≥s − 1lk−1(v)<s)ds

=

∫ x

0
(bk(s)− bk−1(s))ds

for all k ≥ 1 and x ≥ 0, where we let b0 ≡ 0 for convenience.

We now prove lower bounds on bk(x). Recall that for integer k ≥ 1

F k(x) =

∫ ∞

x
e−ssk−1/(k − 1)!ds =

k−1∑

i=0

e−xxi/i!, (53)

so that 1 − F k(x) is the cdf of the Gamma distribution with scale 1 and shape k. We now prove our main

lower bound on bk:
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Lemma 42 For every k ≥ 1 for all x ≥ 0 one has
∫ x
0 b

k(s)ds ≥ |M | ·
∫ x
0 F

k(s)ds.

Proof: We prove the claim of the lemma by induction on k.

Base: k = 1 Recall that by Lemma 41 one has

|M | − b1(x) ≤
∫ x

0
b1(s)ds. (54)

Letting f(x) =
∫ x
0 b

1(s)ds, we get by rearranging (54) and noting that f ′(x) = b1(x) that f ′(x) ≥
|M | − f(x) for all x ≥ 0. We also have f(0) = 0. Thus, we have f(x) ≥ |M | · (1 − e−x) =
|M | ·

∫ x
0 F

1(s)ds, as required.

Inductive step: k − 1→ k We need to prove that

∫ x

0
bk(s)ds ≥ |M | ·

∫ x

0
F k(s)ds. (55)

Using Lemma 41 and the inductive hypothesis, we get for all x ≥ 0

bk(x) ≥ |M | −
∫ x

0
(bk(s)− bk−1(s))ds

= |M | −
∫ x

0
bk(s)ds +

∫ x

0
bk−1(s)ds

≥ |M | −
∫ x

0
bk(s)ds + |M | ·

∫ x

0
F k−1(s)ds. (by the inductive hypothesis)

(56)

Let f(x) =
∫ x
0 b

k(s)ds (note that f(0) = 0). We have from (56) that

f ′(x) ≥ |M | − f(x) + |M | ·
∫ x

0
F k−1(s)ds.

Thus, for all x ≥ 0 one has f(x) ≥ g(x), where g(x) is given by the solution of

g′(x) = |M | − g(x) + |M | ·
∫ x

0
F k−1(s)ds,

which we now solve. The latter implication holds by Claim 50 applied to |M | − f(x). Note that since

g(0) = 0, we have by the above that g′(0) = |M |. Thus, h(x) = g′(x) satisfies

h′(x) = −h(x) + |M | · F k−1(x), h(0) = |M |. (57)

The solution to (57) is given by

h(x) = |M | · e−x

(∫ x

0
esF k−1(s)ds + 1

)
. (58)

Calculating the integral in (58) using the expression for F k−1(s) given by (53) yields

∫ x

0
esF k−1(s)ds =

∫ x

0
es
∫ ∞

s

1

(k − 2)!
zk−2e−zdzds =

∫ x

0

k−2∑

j=0

1

j!
sjds =

k−1∑

j=1

1

j!
xj , (59)
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and hence

h(x) = |M | · e−x

(∫ x

0
esF k−1(s)ds+ 1

)
= |M | · e−x




k−1∑

j=1

1

j!
xj + 1


 = |M | · F k(x)

by (53). We thus get g(x) =
∫ x
0 h(s)ds = |M | ·

∫ x
0 F

k(s)ds, and therefore
∫ x
0 b

k(s)ds ≥ f(x) ≥
|M | ·

∫ x
0 F

k(s)ds as required.

Given Lemma 42, we immediately obtain

Theorem 43 Algorithm 1 achieves a (1− e−k kk−1

(k−1)!)-approximation to maximum matchings in k passes over

the input stream.

Proof: By Lemma 39 together with Lemma 42 the approximation ratio is at least

1

|M | ·
1

k

∫ k

0
bk(x)dx ≥ 1

k

∫ k

0
F k(x)dx = 1− 1

k

∫ ∞

k
F k(x)dx.

We now recall (by (53)) that F k(x) =
∑k−1

j=0 e
−xxj/j!. Integrating by parts, we have

∫ ∞

k
e−xxj/j!dx = −e−xxj/j!

∣∣∞
k

+

∫ ∞

k
e−xxj−1/(j − 1)!dx,

and hence

1

k

∫ ∞

k
F k(x)dx =

1

k

∫ ∞

k

k−1∑

j=0

e−xxj/j!dx =
1

k

k−1∑

j=0

(k − j)e−kkj/j!.

Since

1

k

k−1∑

j=0

(k − j)e−kkj/j! =

k−1∑

j=0

e−kkj/j!−
k−1∑

j=1

e−kkj−1/(j − 1)! = e−kkk−1/(k − 1)!,

we thus get

1

|M | ·
1

k

∫ k

0
bk(x)dx ≥ 1− e−kkk−1/(k − 1)!,

as required.

Remark 44 We note that the approximation ratio satisfies e−kkk−1

(k−1)! = 1√
2πk

+O(k−3/2).

5 Gap-existence

In this section we show how our techniques yield an efficient algorithm for Gap-existence, thereby proving

Theorem 4.
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We now describe DISCRETIZEDWATERFILLING, which is a version of Algorithm 1. We will explicitly

maintain a subset I∗ ⊂ I of size O(|A|/ǫ) while relying on an oracle NEWNEIGHBOR(a, I∗) that, given any

set I∗ ⊆ I , outputs any node i ∈ I \I∗ that a is connected to or ∅ if all neighbors of a are in I∗. The difference

Algorithm 2: DISCRETIZEDWATERFILLING(G, a, ǫ, k)

1: I∗ ← ∅ ⊲N(a) ⊆ I stands for the vertex neighborhood of a ∈ A
2: while ≤ 1 unit of water allocated do

3: while ∃ i ∈ N(a) ∩ I∗ with level < (ǫ/4)k and ≤ 1 unit of water has been allocated do

4: Allocate water to i until it is at level (ǫ/4)k
5: if one unit of water has been allocated from a then

6: return

7: end if

8: i← NEWNEIGHBOR(a, I∗) ⊲NEWNEIGHBOR(a, I∗) returns ∅ if all neighbors of a are in I∗

9: if i 6= ∅ then

10: I∗ ← I∗ ∪ {i}
11: else

12: break from both loops

13: end if

14: end while

15: end while

16: Perform water filling on neighbors in I∗.

First we prove

Lemma 45 The space used by Algorithm 2 is O(|A|/ǫ).

Proof: Call a vertex saturated if the amount of water in it is at least ǫk. The number of saturated vertices is

O(|A|/ǫ) since there are k|A| units of water in the system, and each saturated vertex accounts for at least ǫk.

We say that an unsaturated vertex i belongs to a ∈ A if i was added to I∗ when NEWNEIGHBOR was called

from a. Note that for each a ∈ A only one i ∈ I belongs to a. Thus, this amounts to at most |A| additional

vertices.

Our algorithm for Gap-Existence is as follows:

Algorithm 3: GAPEXISTENCE(G, ǫ)

1: Run DISCRETIZEDWATERFILLING(G) with k = O(log(
∑

a∈ABa/ǫ)/ǫ
2).

2: Output YES if at most ǫ/2 water is allocated above level k/(1 − ǫ/2), and NO otherwise.

We now assume that we are in the YES case, i.e. there exists a matching with budgets Ba, and prove that

the algorithm will find a matching with budgets ⌊(1− ǫ)Ba⌋.
We recall definitions of levels and level set sizes below.

Definition 46 Define lk(i) to be the level of water at vertex i after the k-th pass (here we refer to the level

of water in the actual allocation constructed by waterfilling, not the shadow allocation used for analysis

purposes in Section 4.3).

Definition 47 (Level set sizes) For each k ≥ 1 and all x ≥ 0 denote by bk(x) the number of vertices in I
that have load at least x after k passes, i.e. the number of vertices i ∈ I with lk(i) ≥ x.

Note that bk(x) is non-increasing in x and bk(x)− bk−1(x) ≥ 0 for all x, and
∫∞
0 bk(x)dx = k|A|, since

every vertex dispenses one unit of water in every pass.
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We now note that the allocation constructed by DISCRETIZEDWATERFILLING can be used to obtain a

matching as follows: we first scale the allocation by a factor of 1 − ǫ/2, then take all water allocated below

level k. Dividing by 1/k gives a matching where every vertex in A is assigned at least

(1− ǫ/2) ·Ba −
1

k

∫ ∞

k/(1−ǫ/2)
bk(x)dx (60)

fractional mass. Thus, if the second term is bounded by ǫ/2, then the graph contains a matching with budgets

⌊(1− ǫ)Ba⌋, a ∈ A, i.e. if the algorithm outputs YES, it is correct. In what follows we show that in the YES

case, i.e. when the input graph admits a matching with budgets Ba, a ∈ A, the second term is indeed bounded

by ǫ/2.

For simplicity of notation we assume from now on that every a ∈ A is replaced with Ba unit demand

copies (and we use A to denote the set of those copies, abusing notation somewhat). We assume that we are

in the YES case, i.e. the original graph contains a matching with budgets Ba, and thus the new graph admits

a perfect matching of the A side – denote this matching by M . For every edge e of G, every k we let M̃k(e)
denote the amount of fractional mass allocated along edge e in the k-th pass. For an edge e = (a, i) we let

lk(e) denote the load of vertex i right after a arrives in the k-th pass, and let lk(i) denote the load of i after

the k-th pass.

Lemma 48 One has for all k ≥ 1 and x ≥ (ǫ/4) · k

bk(x) ≥
∫ ∞

x
(bk(s)− bk−1(s))ds. (61)

where b0 ≡ 0.

Proof: Intuitively, the lemma follows since if a vertex a ∈ A ended up allocating water at level at least x
during the k-th pass, its match must have been at level at least x when a arrived. Together with the fact that

levels are monotone increasing this gives the result. We now give the details.

First note that
∫ ∞

x

∑

i∈I
(bk(s)− bk−1(s))ds =

∑

i∈I

∑

e=(a,i)∈δ(i)
lk(e)≥x

M̃k(e)

=
∑

a∈A

∑

e=(a,i)∈δ(a)
lk(e)≥x

M̃k(e)
(62)

At the same time

bk(x) =
∑

i∈I
1lk(i)≥x

≥
∑

i∈I
lk(i)≥x

∑

e=(a,i)∈E
M(e) (since

∑

e=(a,i)∈E
M(e) ≤ 1 for every i ∈ I)

≥
∑

a∈A

∑

e=(a,i)∈E
lk(e)≥x

M(e).

(63)

Now note that if a ∈ A dispensed some water at level at least x during the k-th pass, i.e. if

∑

e=(a,i)∈δ(a):lk(e)≥x

M̃k(e) > 0,
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then vertices i such thatM(a,i) > 0 were at level at least x after awas processed during k-th pass. In particular,

in that case we have ∑

e=(a,i)∈E:lk(e)≥x

M(e) = 1.

Since
∑

e=(a,i)∈δ(a):lk(e)≥x M̃
k(e) ≤ 1 always, we thus get for every a ∈ A

∑

e=(a,i)∈δ(a):lk(e)≥x

M̃k(e) ≤
∑

e=(a,i)∈E:lk(i)≥x

M(e).

Indeed, if the sum on the lhs is positive, then the sum on the rhs equals 1 (which suffices since the lhs is

bounded by 1), and if the sum in the lhs is zero, then the inequality holds trivially since the rhs is nonnegative.

Summing over a ∈ A, we get

∑

a∈A

∑

e=(a,i)∈δ(a):lk(e)≥x

M̃k(e) ≤
∑

a∈A

∑

e=(a,i)∈E:lk(e)≥x

M(e).

This, together with (62) and (63) yields bk(x) ≥
∫∞
x

∑
i∈I(b

k(s)− bk−1(s))ds, as required.

We now get, letting ∆ = (ǫ/4) · k to simplify notation,

Lemma 49 For all k ≥ 1 and all x ≥ ∆, then

∫ ∞

x
bk(s)ds ≤ |A| ·

∫ ∞

x−∆
F k(s)ds. (64)

Proof: We prove the lemma by induction on k.

Base: k = 1 Recall that by Lemma 48 one has

b1(x) ≥
∫ ∞

x
b1(s)ds, (65)

for all x ≥ ∆. Let f(x) =
∫∞
x b1(s)ds, so that f(x) ≤ |A| for every x, and note that for x ≥ ∆

f ′(x) = −b1(x) ≤ −
∫ ∞

x
b1(s)ds = −f(x).

Let g(x) be a function such that g(∆) = |A| and g′(x) = −g(x) for all x ≥ ∆. Then we have

f(x) ≤ g(x) for all x ≥ ∆, and therefore for all x ≥ ∆

∫ ∞

x
b1(s)ds = f(x) ≤ g(x) = |A|e−x+∆ = |A| ·

∫ ∞

x−∆
e−sds = |A| ·

∫ ∞

x−∆
F 1(s)ds.

Inductive step: k − 1→ k We need to prove that

∫ ∞

x
bk(s)ds ≤ |A| ·

∫ ∞

x
F k(s)ds. (66)

Using Lemma 48 we get for all x ≥ ∆

bk(x) ≥
∫ ∞

x
(bk(s)− bk−1(s))ds =

∫ ∞

x
bk(s)ds − |A| ·

∫ ∞

x−∆
F k−1(x), (67)
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where we used the inductive hypothesis to upper bound
∫∞
x bk−1(s)ds with |A| ·

∫∞
x−∆ F

k−1(s)ds. We

thus have that the function f(x) =
∫∞
x bk(s)ds satisfies

f ′(x) ≤ −f(x) + |A| ·
∫ ∞

x−∆
F k−1(x), f(∆) ≤ k|A|,

where the last condition comes from the fact that every vertex in A dispenses one unit of water in every

pass overall, so the total amount of water dispensed at level x or above is bounded by k|A|.
Let g satisfy

g′(x) = −g(x) + |A| ·
∫ ∞

x−∆
F k−1(s)ds, g(∆) = k|A|, (68)

so that g(x) ≥ f(x) =
∫∞
x bk(s)ds for x ≥ ∆ (by Claim 50 below). Let h(x) = g′(x), so that

h′(x) = −h(x)− |A| · F k−1(x−∆) (69)

and h(∆) = g′(∆) = −g(∆) + |A| ·
∫∞
0 F k−1(s)ds = −k|A| + (k − 1)|A| = −|A|. The second

to last equality holds since
∫∞
0 F k−1(s)ds equals the expectation of the sum of k − 1 exponentially

distributed variables of unit scale, which is k − 1.

The solution to (69) is given by

h(x) = e−x+∆

(
−|A| ·

∫ x−∆

0
esF k−1(s)ds− |A|

)
. (70)

Calculating the integral in (70) yields
∫ x−∆

0
esF k−1(s)ds =

∫ x−∆

0
es
∫ ∞

s

1

(k − 2)!
zk−2e−zdzds

=

∫ x−∆

0

k−2∑

j=0

1

j!
sjds

=

k−1∑

j=1

1

j!
(x−∆)j ,

(71)

and hence

h(x) = e−x+∆


−|A| ·

k−1∑

j=1

1

j!
(x−∆)j − |A|




= e−x+∆


−|A| ·

k−1∑

j=0

1

j!
(x−∆)j




= −|A| · F k(x−∆)

by (53). Therefore

g(x) = g(∆) +

∫ x

∆
h(s)ds

= k|A|+
∫ x

∆
h(s)ds

= −
∫ ∞

x
h(s)ds

= |A| ·
∫ ∞

x−∆
F k(s−∆)ds,

43



and
∫∞
x bk(s)ds = f(x) ≤ g(x) = |A| ·

∫∞
x−∆ F

k(s−∆)ds, as required.

Claim 50 For every g : R→ R, if f : R→ R satisfies f ′(x) ≤ −f(x)+g(x), f(0) = a for some a = 0, then

f(x) ≤ h(x) for h : R→ R that satisfies h(x) = −h′(x) + g(x), h(0) = a and is pointwise non-decreasing

in a.

Proof: Let q(x) = exf(x), so that

q′(x) = exf(x) + exf ′(x) ≤ exf(x) + ex(−f(x) + g(x)) = exg(x).

Integrating from 0 to x, we get q(x) ≤ q(0) +
∫ x
0 e

sg(s)ds = f(0) +
∫ x
0 e

sg(s)ds. Letting h(x) :=
e−x(

∫ x
0 e

sg(s)ds + f(0)), we note that

f(x) = e−xq(x) ≤ e−x(f(0) +

∫ x

0
esg(s)ds) = h(x).

It remains to note that h′(x) = −h(x) + g(x) for all x ≥ 0, h(0) = f(0) = a, and h(x) is non-decreasing in

f(0) = a, as required.

We will need

Lemma 51 For all k ≥ 1 and δ ≥ 0

1

k

∫ ∞

k(1+δ)
F k(x)dx ≤ k · e−δk(1 + δ)k

Proof: Recalling that F k(x) =
∑k−1

j=0 e
−xxj/j! and using integration by parts

∫ ∞

k(1+δ)
e−xxj/j!dx = −e−xxj/j!

∣∣∞
k(1+δ)

+

∫ ∞

k(1+δ)
e−xxj−1/(j − 1)!dx,

we get

∫ ∞

k(1+δ)
F k(x)dx =

∫ ∞

k(1+δ)

k−1∑

j=0

e−xxj/j!dx

=
k−1∑

j=0

(k − j)e−k(1+δ)(k(1 + δ))j/j!

≤ e−δk(1 + δ)k · e−k
k−1∑

j=0

kj+1/j!

≤ e−δk(1 + δ)k · ke−k
∞∑

j=0

kj/j!

= k · e−δk(1 + δ)k.

(72)

We now use Lemma 49 to upper bound the second term in (60) by ǫ/2, as required. By Lemma 49 we

have
1

k

∫ ∞

k/(1−ǫ/2)
bk(x)dx ≤ |A| · F k(k/(1 − ǫ/2)− (ǫ/4)k). (73)
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Since

k/(1 − ǫ/2)− (ǫ/4)k = k · 1− ǫ/2 + ǫ/2

1− ǫ/2 − k · (ǫ/4)(1 − ǫ/2)
1− ǫ/2

= k

(
1 +

ǫ/2− (ǫ/4)(1 − ǫ/2)
1− ǫ/2

)

≥ k (1 + ǫ/4)

when ǫ is smaller than an absolute constant, we get, letting δ = ǫ/4 for convenience of notation, that by

Lemma 51

1

k

∫ ∞

k(1+δ)
bk(x)dx ≤ k · e−k(δ−ln(1+δ)) ≤ k · e−Ω(ǫ2k)

(74)

as long as δ = Θ(ǫ) is smaller than an absolute constant. Hence, letting k = C ln(1ǫ ·
∑

a∈ABa)/ǫ
2 for a

sufficiently large constant C > 0, we get by (60) that every advertizer is satisfied with budget at least

(1− ǫ/2) · Ba −
1

k

∫ ∞

k/(1−ǫ/2)
bk(x)dx ≥ α ·Ba −

(
∑

a∈A
Ba

)
· ke−Ω(ǫ2k)

≥ (1− ǫ/2) ·Ba − ǫ/2
≥ (1− ǫ) ·Ba.

This completes the proof of Theorem 4.
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A Proofs omitted from Section 3

Lemma 18 (Restated) For every m ≥ 2, integer W ≥ 1 and δ′ ∈ (0, 1) such that 1/δ′ is an integer, if

Y = [m4]m and the set S is defined by

S = {y ∈ Y : (y,u) + ∆u mod W ∈ [au, bu) ·W, for all u ∈ U},

where U is a collection of binary vectors of fixed length w and au, bu ∈ [0, 1] are constant integer multiples

of 1/L for an integer L, the following conditions hold if W is an integer multiple of w · lcm(L, 1/δ′), ∆u/W
are multiples of 1/L and m is sufficiently large.

If maxu∈U ,v∈U
u6=v

(u,v)/|v| ≤ δ′, then

∣∣∣∣∣|S| − |Y | ·
∏

u∈U
(bu − au)

∣∣∣∣∣ ≤ |U|
2(6Lδ′ + 4/m) · |Y |.

Before proving the lemma we introduce some definitions. Throughout this section we use the notation

Y = [m4]m for integer m. First define

Definition 52 (Bad vertices) We let B ⊆ Y denote the set of bad vertices, i.e. vertices with at least one

coordinate close to 0 or m4:

B := {x ∈ Y : ∃i ∈ [m] such that xi < m2 or xi > m4 −m2}.

We will use

Lemma 53 (The hypercube Y = [m4]
m

contains few bad vertices) For every integerm > 1, if Y = [m4]m,

then |B| ≤ (2/m)|Y |.

Proof: Follows directly by a union bound

|B| ≤
∑

i∈[m]

|{x ∈ Y : xi < m2 or xi > m4 −m2}| ≤ m · (2m2/m4) · |Y | ≤ (2/m)|Y |.

We will extensively use the notion of a discretization of the cube Y = [m4]m:

Definition 54 (Discretization with precision L) For every integer m,W,L > 1, δ ∈ (0, 1), every collection

U of binary vectors of length m, every q ∈ [L]U define

S(q) :=

{
y ∈ Y : (y,u) mod W ∈

[
qu − 1

L
,
qu
L

)
·W, for all u ∈ U

}
,

and

Intδ(S(q)) :=

{
y ∈ Y : (y,u) mod W ∈

[
qu − 1

L
+ δ,

qu
L
− δ
]
·W, for all u ∈ U

}
.
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We will also use

Definition 55 (Shifting map ψ) For every integer m,W,L > 1, every collection U of binary vectors of

weight w such that W/w is an integer, for every pair q, r ∈ [L]U let

ψr→q(y) := y +
∑

u∈U

W

L · w (q − r)u · u.

We will use

Lemma 56 For every δ ∈ (0, 1), integer m,W,L > 1, every collection U of binary vectors of weight w, if

Y = [m4]m, B ⊆ Y is the set of bad vertices (as per Definition 52), then the following conditions hold. If

|U| · (W/w) < m2, maxu∈U ,v∈U
u6=v

(u,v)/|v| ≤ δ′ for some δ′ ∈ (0, δ/|U|), then for every pair q, r ∈ [L]U we

have

ψr→q(Intδ(S(r)) \B) ⊆ S(q).

Proof: First note that for every y ∈ Intδ(S(r)) \B one has for every q ∈ [L]U

ψr→q(y) = y +
∑

u∈U
(q − r)u · u ·

W

L · w ∈ Y,

since
∥∥∥∥∥
∑

u∈U
(q − r)u · u ·

W

L · w

∥∥∥∥∥
∞

≤
∑

u∈U

∥∥∥∥(q − r)u · u ·
W

L · w

∥∥∥∥
∞

≤ |U| W
L · w ||q − r||∞||u||∞ ≤ |U| · (W/w) < m2.

To obtain the last inequality we used the assumption that u is a binary vector, and the assumption of the lemma

that |U|(W/w) < m2.

The rest of the proof proceeds in two steps. We first prove basic bounds on the dot product of ψr→q(y)
with vectors u ∈ U , and then put these bounds together to obtain the result of the lemma. We have for every

y ∈ Y and u ∈ U

(ψr→q(y),u) = (y,u) + (q − r)u · |u| ·
W

L · w (since u is a binary vector)

+
∑

v∈U ,v 6=u

(q − r)v · (v,u) ·
W

L · w

= (y,u) +
(q − r)u

L
·W (intended shift in direction of u)

+
∑

v∈U ,v 6=u

(q − r)v · (v,u) ·
W

L · w (small error term from near-orthogonality)

(75)

We now bound the error term (the last line) in the previous equation. We have, using the assumption that

maxu∈U ,v∈U
u6=v

(u,v)/|v| ≤ δ′ as well as the assumption that all vectors in U have the same Hamming weight
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w, that
∣∣∣∣∣∣

∑

v∈U ,v 6=u

(q − r)v(v,u) ·
W

L · w

∣∣∣∣∣∣
≤

∑

v∈U ,v 6=u

|(q − r)v| · δ′ · |u| ·
W

L · w

≤
∑

v∈U ,v 6=u

|(q − r)v| δ′
W

L

≤
∑

v∈U ,v 6=u

δ′W (since ||q − r||∞ ≤ L)

≤ |U|δ′W

(76)

Combining (75) and (76), we thus get

∣∣∣∣(ψr→q(y),u) − ((y,u) +
(q − r)u

L
·W )

∣∣∣∣ ≤ |U|δ′W. (77)

Equipped with the bound above, we now proceed to complete the proof of the lemma.

We now show that for every y ∈ Intδ(S(r))\B one has ψr→q(y) ∈ S(q). Indeed, for each y ∈ Intδ(S(r))
one has by definition of Intδ(S(q)) (Definition 54)

((y,u) +
(q − r)u

L
·W ) mod W ∈

([
ru − 1

L
+ δ,

ru
L
− δ
]
+

(q − r)u
L

·W
)

mod W

∈
[
qu − 1

L
+ δ,

qu
L
− δ
]

mod W

Combining the equation above with (77), we thus get for every y ∈ Y \B

(ψr→q(y),u) mod W ∈
[
qu − 1

L
,
qu
L

)
mod W

since δ′ < δ/|U| by assumption of the lemma. We have thus proved that for every q, r ∈ [L]U one has

ψr→q(Intδ(S(r)) \B) ⊆ S(q),

as required.

We will also use

Lemma 57 For integer m,w,W,L > 1 such that m2 > W/w, every vector u ∈ {0, 1}m of Hamming weight

w, if Y = [m4]m, B ⊆ Y is the set of bad vertices (as per Definition 52), then the following conditions hold.

If W/(L · w) is a positive integer, then for every I ⊆ [L] we have

∣∣∣∣
{
y ∈ Y : (y,u) mod W ∈

[
j − 1

L
,
j

L

]
·W, j ∈ I

}∣∣∣∣ ≤ (|I|/L+ 2/m)|Y |.

Proof: Consider a discretization of the cube (similarly to Definition 54) with U = {u}. Specifically, for

j ∈ [L] let

Zj :=

{
y ∈ Y : (y,u) mod W ∈

[
j − 1

L
,
j

L

]
·W

}

and

Z ′
j :=

{
y ∈ Y \B : (y,u) mod W ∈

[
j − 1

L
,
j

L

]
·W

}
.
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We also let zj := |Zj | and z′j := |Z ′
j | for every j ∈ [L].

To bound the size of Zj and Z ′
j , we use the shifting map ψ from Definition 55 with U = {u}, so that for

every i, j ∈ [L]

ψj→i(y) = y + (i− j) · u · W

L · |u| .

Note that for every y ∈ Y one has1

(ψj→i(y),u) = (y,u) + (i− j) · |u| · W

L · |u| = (y,u) +
i− j
L
·W,

and for every coordinate s ∈ [m]

(ψj→i(y))s =

(
y + (i− j) · u · W

L · |u|

)

s

= ys + (i− j) · us ·
W

L · |u| .

Since for every y ∈ Y \B and every coordinate s ∈ [m] we have ys ∈ [m2,m4 −m2], |i− j| ≤ L and u

is a binary vector, we get that

ys + (i− j) · us ·
W

L · |u| ∈ [m2 −W/|u|,m4 −m2 +W/|u|] ⊆ [m4]

since m2 > W/|u| by assumption of the lemma, as required. We thus conclude that for every i, j ∈ [L] one

has

ψj→i(Z(j) \B) ⊆ Z(i).
Since ψj→i is injective for all i, j ∈ [L], we therefore have that z′j = |Z ′

j | ≤ |Zi| = zi for all i, j ∈ [L].
We thus have, for any subset I ⊆ [L] of indices

∑

j∈I
zj ≤

∑

j∈I
z′j +

∑

j∈I
(zj − z′j)

≤ (|I|/L)
∑

j∈[L]
zj +

∑

j∈I
(zj − z′j) (since z′j ≤ zi for all i ∈ [L])

≤ (|I|/L)
∑

j∈[L]
zj + |B| (since Zj \ Z ′

j ⊆ B and Zj’s are disjoint)

≤ (|I|/L)
∑

j∈[L]
zj + (2/m)|Y | (by Claim 52)

as required.

Lemma 58 For every δ ∈ (0, 1) such that 1/δ is an integer, integer m,W,L > 1 such that W/(lcm(L, 1/δ) ·
w) is an integer, every vector u ∈ {0, 1}m of weight w, if Y = [m4]m, B ⊆ Y is the set of bad vertices (as

per Definition 52), then for every I ⊆ [L] we have

∑

q∈[L]U
|S(q) \ Intδ(S(q))| ≤ |U|(3δL + 2/m) · |Y |

1Note that here we prove stronger properties of the shifting map than those proved in Lemma 56, but only for the special case of

U containing a single element.
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Proof: One has using Definition 54

∑

q∈[L]U
|S(q) \ Intδ(S(q))|

≤|U|max
u∈U

{
y ∈ Y : (y,u) mod W ∈

[ q
L
− δ, q

L
+ δ
]
·W, for some q ∈ [L]

}
,

(78)

Let L′ be the least integer multiple of 1/δ and L. By Lemma 57 with parameter L′ (note that the precon-

ditions as satisfied since W/(lcm(L, 1/δ) · w) is an integer by assumption of the lemma) and

I :=

{
q′ ∈ [L′] :

q′

L′ ∈
[ q
L
− δ, q

L
+ δ
]

for some q ∈ [L]

}

=

{
q′ ∈ [L′] : q′ ∈

[
q · L

′

L
− δ · L′, q · L

′

L
+ δL′

]
for some q ∈ [L]

}
,

we get, using the fact that |I| ≤ (2δL′ + 1) · L, that

∣∣∣∣
{
y ∈ Y : (y,u) mod W ∈

[
j − 1

L′ ,
j

L′

]
·W, j ∈ I

}∣∣∣∣
≤ (|I|/L′ + 2/m)|Y |
≤ ((2δ + 1/L′)L+ 2/m)|Y |
≤ (3δL + 2/m)|Y | (since L′ ≥ 1/δ)

Putting this together with (78) yields the result.

Proof of Lemma 18: Consider a discretization of the cube with parameters L and δ ∈ (0, 1) (see Defini-

tion 54). We use δ = 2|U| · δ′. Let Au = au · L,Bu = bu · L,u ∈ U be integers such that au = Au/L, bu =
Bu/L. Recall that per Definition 54 we have

S(q) =

{
y ∈ Y : (y,u) mod W ∈

[
qu − 1

L
,
qu
L

)
·W, for all u ∈ U

}
,

and

Intδ(S(q)) =

{
y ∈ Y : (y,u) mod W ∈

[
qu − 1

L
+ δ,

qu
L
− δ
]
·W, for all u ∈ U

}
.

We let

J :=
{
q ∈ [L]U : ((qu/L) ·W +∆u) mod W ∈ [Au/L,Bu/L) ·W

}

=
{
q ∈ [L]U : ((qu/L+ ru/L) ·W ) mod W ∈ [Au/L,Bu/L) ·W

}
,

where ru := ∆u · L,u ∈ U , are integers by assumption of the lemma. Note that

S =
⋃

q∈J
S(q),

and hence, since S(q) ∩ S(q′) = ∅ for q 6= q′, we have

|S| =
∑

q∈J
|S(q)|.

Also note that |J | =∏
u∈U (Bu −Au) = L|U| ·∏

u∈U (bu − au).
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The proof proceeds in two steps. We first lower bound the size of S and then upper bound it. The

arguments are quite similar, and rely on technical lemmas derived in the rest of this section.

Lower bound. First, by Lemma 56 that for every q, r ∈ [L]U one has

ψq→r(Intδ(S(q)) \B) ⊆ S(r). (79)

Note that the preconditions of the lemma are satisfied since |U| · (W/w) < m2 (m is sufficiently large

as function of other parameters) and we set δ = 2|U| · δ′. Applying (79) for every q ∈ [L]U and r ∈ J and

noting that the mapping ψq→r is injective gives

|J | ·
∑

q∈[L]U
|Intδ(S(q)) \B| ≤ L|U|∑

q∈J
|S(q)|.

We thus get

∑

q∈J
|S(q)| ≥

(
∏

u∈U
(bu − au)

)
·
∑

q∈[L]U
|Intδ(S(q)) \B|

≥
(
∏

u∈U
(bu − au)

)
·
∑

q∈[L]U
(|S(q) \B| − |S(q) \ Intδ(S(q))|)

≥
(
∏

u∈U
(bu − au)

)
· (|Y | − |B| −

∑

q∈[L]U
|S(q) \ Intδ(S(q))|)

≥
(
∏

u∈U
(bu − au)

)
· |Y | − |U|(3δL + 4/m)|Y |. (by Lemma 58 and Lemma 53)

(80)

We used Lemma 58 and the fact that
∏

u∈U (bu − au) ≤ 1 since au, bu ∈ [0, 1] by assumption of the lemma

to go from line 3 to line 4, and Lemma 53 to go from line 4 to line 5.

Upper bound. At the same time we also get, using again that by Lemma 56 that for every q, r ∈ [L]U one

has

ψq→r(Intδ(S(q)) \B) ⊆ S(r),
that

|J | ·
∑

q∈[L]U
|S(q)| ≥ L|U|∑

q∈J
|Intδ(S(q)) \B|.

The above bound follows by noting that for every q ∈ J and r ∈ [L]U one has ψq→r(Intδ(S(q))\B) ⊆ S(r),
and the mapping ψq→r is injective. We thus get

∑

q∈J
|Intδ(S(q)) \B| ≤

(
∏

u∈U
(bu − au)

)
·
∑

q∈[L]U
|S(q)| =

(
∏

u∈U
(bu − au)

)
· |Y |. (81)

We also have by Lemma 58 (applied with δ′) and Lemma 53

∑

q∈J
|Intδ(S(q)) \B| ≥

∑

q∈J
|S(q)| −

∑

q∈[L]U
|S(q) \ Intδ(S(q))| − |B|

≥
∑

q∈J
|S(q)| − |U|(3δL + 4/m)|Y |.
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Substituting this into (81), we get

∑

q∈J
|S(q)| ≤

(
∏

u∈U
(bu − au)

)
· |Y |+ |U|(3δL + 4/m)|Y | (82)

Finally, putting (82) together with (80), we obtain the bound

∣∣∣∣∣|S| − |Y | ·
∏

u∈U
(bu − au)

∣∣∣∣∣ ≤ |U|(3δL + 4/m) · |Y |

≤ |U|2(6Lδ′ + 4/m) · |Y |

as required.
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