
ar
X

iv
:1

20
9.

56
08

v1
 [

cs
.D

S]
 2

5
Se

p
20

12

Faster Deterministic Fully-Dynamic Graph Connectivity

Christian Wulff-Nilsen ∗

Abstract

We give new deterministic bounds for fully-dynamic graph connectivity. Our data
structure supports updates (edge insertions/deletions) in O(log2 n/ log logn) amortized
time and connectivity queries in O(log n/ log logn) worst-case time, where n is the number
of vertices of the graph. This improves the deterministic data structures of Holm, de
Lichtenberg, and Thorup (STOC 1998, J.ACM 2001) and Thorup (STOC 2000) which
both have O(log2 n) amortized update time and O(log n/ log logn) worst-case query time.
Our model of computation is the same as that of Thorup, i.e., a pointer machine with
standard AC0 instructions.

∗Department of Computer Science, University of Copenhagen, koolooz@diku.dk,
http://www.diku.dk/˜ koolooz/.

1

http://arxiv.org/abs/1209.5608v1

1 Introduction

The dynamic graph connectivity problem is perhaps the most fundamental dynamic graph
problem and has received considerable attention from the algorithms community for decades.
The goal is to build an efficient data structure that supports one or more of the following
operations in a dynamic graph G:

• connected(u, v): determines whether vertices u and v are connected in G,

• insert(u, v): inserts edge (u, v) in G,

• delete(u, v): deletes edge (u, v) from G.

The fully-dynamic graph connectivity problem supports all three operations, whereas the
simpler decremental and incremental variants do not support insert and delete, respectively.
In the following, we refer to both insert and delete as update operations.

The first non-trivial data structure for fully-dynamic graph connectivity is due to Fred-
erickson [2] who showed how to support updates in O(

√
m) time and connectivity queries

in O(1) time, where m is the number of edges of the graph. Using a general sparsification
technique, Eppstein, Galil, Italiano, and Nissenzweig [1] improved update time to O(

√
n),

where n is the number of vertices. Both of these data structures are deterministic and the
time bounds are worst-case.

Henzinger and King [3] significantly improved update time to O(log3 n) with only a small
increase in query time to O(log n/ log log n). However, their bounds are randomized expected
and update time is amortized. Using a clever sampling technique, Henzinger and Thorup [4]
shaved off a factor of log n in the update time. A simple and elegant deterministic data
structure with the same bounds as in [4] was given by Holm, de Lichtenberg, and Thorup [5].
Its space requirement was later improved to linear by Thorup [10] who also gave a randomized
data structure with a faster update time of O(log n(log log n)3) and marginally slower query
time of O(log n/ log log log n).

A general cell-prove lower bound of Ω(log n) for fully-dynamic graph connectivity was
provided by Pătraşcu and Demaine [6]. Hence, the data structures above are near-optimal.

As shown by Tarjan [8], incremental connectivity is the union-find problem which can be
solved in O(α(m,n)) time over m updates. Thorup [9] gave an O(log n) bound for decremental
connectivity if the initial graph has Ω(n log5 n) edges. He also gave an O(1) bound if the initial
graph is dense.

Our contribution is a deterministic data structure that improves the update time of the
deterministic data structures in [5, 10] by a factor of log log n. We use several ingredients of
Thorup [10], including his structural forest (which we refer to as a cluster forest) as well as
lazy local trees and shortcuts both of which we modify to suit our needs. We also introduce
an additional system of shortcuts that allows us to more quickly walk up trees of the cluster
forest. Together, these changes and additions give an order log log n speed-up in the update
time.

Table 1 summarizes the results for fully-dynamic graph connectivity.
Our paper is organized as follows. In Section 2, we introduce basic definitions and notation.

Section 3 gives a simple data structure with O(log2 n) update time and O(log n) query time. It
is essentially the deterministic data structure of Thorup [10] but a slightly more minimalistic
variant that does not need to maintain spanning trees of connected components. In Section 4,

2

Update time Query time Type Reference

O(
√
m) O(1) deterministic; worst-case time [2]

O(
√
n) O(1) deterministic; worst-case time [1]

O(log3 n) O(log n/ log log n) randomized; amortized update time [3]

O(log2 n) O(log n/ log log n) randomized; amortized update time [4]

O(log2 n) O(log n/ log log n) deterministic; amortized update time [5, 10]

O(log n(log log n)3) O(log n/ log log log n) randomized; amortized update time [10]

O(log2 n/ log log n) O(log n/ log log n) deterministic; amortized update time This paper

Table 1: Performance of data structures for fully-dynamic graph connectivity.

we add two systems of shortcuts to our data structure that together improve both update
and query time by a factor of log log n. The simplification given in Section 3 is not important
in order to get our improvement in Section 4; indeed, our result can easily be extended to
maintain a spanning forest. However, we believe that our approach gives a slightly cleaner
analysis and it should give a small improvement in practice. For instance, Thorup’s data
structure needs to maintain two types of bitmaps for edges, one for tree edges and one for
non-tree edges whereas our data structure only needs to maintain one type; see Section 3.5
for details. Finally, we give some concluding remarks in Section 5.

2 Preliminaries

Let log denote the base 2 logarithm. We assume the same model of computation as in [10],
i.e., a pointer machine with words (bitmaps) containing at least ⌊log n⌋ + 1 bits and with
the following standard AC0 instructions: addition, subtraction, bitwise ’and’, ’or’, and ’not’,
and bit shifts. Our data structure also needs to perform division x/y and multiplication xy
which are not AC0 instructions. To handle this, we assume that y is a power of 2 so that a
bit shift operation can be used instead; we can always round y to the nearest such value and
the constant multiplicative error introduced will not affect correctness or running time. For
a bitmap m, we denote by m[i] the ith bit of m, i ≥ 0.

We let G denote the input graph and it is assumed to contain no edges initially. To distin-
guish between vertices of G and other vertices (such as those in trees of our data structure),
we refer to the latter as nodes. For a path P and nodes a, b ∈ P , P [a, b] is the subpath of P
between a and b. We abbreviate balanced binary search tree as BBST and depth-first search
as DFS.

3 A Simple Data Structure

We first give a simplified version of our data structure which is no better than the deterministic
data structures in [5] and [10]. In fact, it has a slower query time of O(log n). In Section 4,
we shall speed up both query and update time by a factor of log log n.

3

3.1 The cluster forest

As in [10], we assign to each edge e of G a level ℓ(e) between 0 and ℓmax = ⌊log n⌋ and for
0 ≤ i ≤ lmax, we denote by Gi the subgraph of G induced by edges e with ℓ(e) ≥ i. We refer
to the connected components of Gi as level i clusters or just clusters. The following invariant
will be maintained by our data structure:

Invariant: For each i, any level i cluster spans at most ⌊n/2i⌋ vertices.
The cluster forest of G is a forest C of rooted trees where each node u corresponds to a

cluster C(u). The level ℓ(u) of u is its depth in C (between 0 and ℓmax) and a level i node
corresponds to a level i cluster. In particular, roots of C correspond to level 0 clusters and
hence to the connected components of G0 = G. By the invariant, each leaf of C corresponds
to a vertex of G; we often identify the two and our data structure keeps bidirected pointers
between them. A node u at a level i < ℓmax has as children the level (i+1) nodes v such that
C(v) ⊆ C(u).

Our data structure will maintain, for each node u of C, an integer n(u) denoting the
number of leaves in the subtree of C rooted at u. In other words, n(u) is the number of
vertices of G spanned by C(u). This completes the description of the cluster forest.

Given C, we can determine whether two vertices u and v are connected in G in O(log n)
time as follows. Traverse paths from u and v to roots ru and rv of trees of C containing u and
v, respectively. Then u and v are connected iff ru = rv.

3.2 Handling insertions

We need to maintain C as G changes. First we describe how to update C after an operation
insert(u, v). We initialize ℓ(u, v) ← 0. Letting ru and rv be defined as above, if ru = rv,
no update of C is required since u and v were already connected in G = G0. If ru 6= rv, we
update C by merging ru and rv into ru, meaning that ru inherits the children of rv, n(ru) is
increased by n(rv), and rv is deleted. This update corresponds to merging C(ru) and C(rv).
Thus C is correctly updated and the invariant still holds.

3.3 Handling deletions

Now consider the update delete(u, v). Let i = ℓ(u, v) and let Cu and Cv be the level
(i + 1) clusters containing u and v, respectively. Assume that Cu 6= Cv since otherwise, the
connectivity in Gi is not affected (there is a uv-path in Gi+1 ⊂ Gi connecting u and v). Let
Mi be the multigraph with level (i + 1) clusters as vertices and with level i-edges of G as
edges (so an edge of Mi connects two vertices if that edge connects the corresponding level
(i + 1) clusters in Gi). Our algorithm will not actually keep Mi but it will help to simplify
the description in this subsection.

We now execute two standard search procedures (say, DFS) in Mi, one, Pu, starting from
vertex Cu and another, Pv, starting from Cv. The two procedures are executed in “parallel”
by alternating between the two, i.e., one unit of time is spent on Pu, then one unit on Pv ,
then one unit on Pu, and so on. We terminate both procedures as soon as we are in one of
the following two cases (which must happen at some point):

1. a vertex of Mi is explored by both procedures,

2. one of the procedures has no more edges to explore and we are not in case 1.

4

In the following, we show how to deal with these two cases.

Case 1: Let Cuv be the vertex (level (i + 1) cluster) of Mi explored by both procedures.
Assume w.l.o.g. that Pv was the last to explore Cuv. Let Cu be the set of level (i+1) clusters
explored by Pu and let Cv be the set of level (i+1) clusters explored by Pv, excluding Cuv. If we
let nu =

∑
C∈Cu

n(C) and nv =
∑

C∈Cv
n(C) then since Cu∩Cv = ∅, we have nu+nv ≤ ⌊n/2i⌋

by our invariant and thus min{nu, nv} ≤ ⌊n/2i+1⌋.
Assume first that nu ≤ nv. Then we can increase the level of every edge explored by

Pu from i to i + 1 without violating the invariant. To see this, note that the level updates
correspond to merging clusters of Cu into one level (i + 1) cluster spanning nu ≤ ⌊n/2i+1⌋
vertices. The idea is that the search performed by Pu is paid for by these level increases. As
Pv spent the same amount of time as Pu (up to an additive O(1) term), the level increases
also pay for the search by Pv.

We need to update cluster forest C accordingly. When increasing the level of an edge e
from i to i+ 1, we identify the level (i+ 1)-ancestors a and b of the endpoints of e. Clusters
C(a) and C(b) need to be merged and we do this by merging a and b into b and updating
n(a)← n(a)+n(b). As we will see later, this update can also be paid for by the level increase
of e. Note that the procedures have found a replacement path in Gi for deleted edge (u, v)
so no further updates are required in C, and we terminate.

We assumed above that nu ≤ nv. We do exactly the same for clusters in Cv when nv ≤ nu

except that we do not increase the level of the last edge explored by Pv as it connects to a
cluster in Cu. If this was the only edge explored, there are no edges to pay for it but in this
case we have found a replacement path for edge (u, v) and the delete(u, v)-operation can
pay.

Case 2: Now assume that one of the procedures, say Pu, explores all edges in the connected
component of Mi containing Cu and that we are not in case 1. Let us assume that nu ≤
⌊n/2i+1⌋; if not, we fully explore the connected component of Mi containing Cv and update
nv which will be at most ⌊n/2i+1⌋ by our invariant; the description below then applies if we
swap the roles of u and v.

We can conclude that no replacement path for (u, v) exists in Gi. All edges explored by
Pu have their level increased to i+1 and we update C accordingly by merging all level (i+1)
nodes explored by Pu into one, w, and setting n(w) to the sum of n(w′) for nodes w′ explored
by Pu. These level increases pay for the two searches. Since Cu and the component of Mi

containing Cv are no longer connected in Gi, we further update C as follows: let p be the
parent of w in C. We remove w as a child of p, decrease n(p) by n(w), add w as a child of a
new level i node p′, set n(p′) = n(w), and add p′ as a child of the parent of p. This correctly
updates C and the invariant is maintained.

If i > 0, it may still be possible to reconnect u and v in Gj for some j < i. We thus
execute the above algorithm recursively with i← i− 1, Cu ← C(p′), and Cv ← C(p). Should
we end up in case 2 with i = 0, no replacement path in G between u and v could be found.
Then p′ becomes a new root of C and we terminate.

3.4 Local trees

We now extend our data structure to allow the search procedures to explore edges and vertices
of multigraph Mi in a more efficient way.

5

First we shall convert C into a forest of binary trees by adding local trees as in [10]. Let u
be a non-leaf node of C. We form a binary tree L(u) with u as root and with the children of
u as leaves as follows. First assign a rank rank(v)← ⌊log n(v)⌋ to each child v of u. Initially,
each such v is regarded as a tree consisting just of v. While there are trees T and T ′ whose
roots r and r′ have the same rank, we pair them by attaching r and r′ to a new root r′′ with
rank(r′′) ← rank(r) + 1. We end up with at most log n trees T1, . . . , Tk, called rank trees,
whose roots r1, . . . , rk have pairwise distinct ranks: rank(r1) > rank(r2) > · · · > rank(rk).
We connect the rank trees into a single local tree L(u) rooted at u by adding a rank path
v1v2 . . . vk−1 down from v1 = u and connecting ri as a child to vi for i = 1, . . . , k − 1 and rk
as a child to vk−1. We define rank(u)← ⌊log n(u)⌋.

The edges in C from u to its children are replaced by local tree L(u); let CL be C after all
local trees have been added. As shown by Thorup, for a child v of a node u in C, the depth of
v in L(u) is at most log(n(u)/n(v))+1. Since any leaf of C has depth at most ℓmax = ⌊log n⌋,
a telescoping sums argument implies that any leaf of CL has depth O(log n).

Refer to nodes of CL that are also nodes of C as C-nodes. Our data structure will maintain
CL as well as n(u) for each C-node u and rank(v) for each node v ∈ CL.

3.5 Searching for edges

We shall use CL to search for edges in Mi. To facilitate this, we associate a bitmap edge(u)
with each node u of CL where edge(u)[i] = 1 iff a level i-edge is incident to a leaf of the subtree
of CL rooted at u.1

We can use these bitmaps to search for the edges of Mi. Consider one of the search
procedures, say Pu, described above. At any point in the search, a set of vertices of Mi have
been explored and these correspond to level (i + 1) nodes in CL that we mark as explored.
With the bitmaps, we identify unexplored descendant leaves of marked nodes in CL that are
incident to level i-edges and hence to edges of Mi that should be explored by Pu. At each
leaf, we have all incident edges grouped according to their level. A BBST is kept which allows
us to get down to a particular group in O(log ℓmax) = O(log log n) time. When a level i-edge
(a, b) is explored in the direction from a to b, we determine the endpoint in Mi corresponding
to b by moving up from leaf b to the ancestor level (i+ 1) node in CL. Finally, we mark this
level (i + 1) node as explored. Since CL has O(log n) height, we can execute Pu in O(log n)
time per edge explored.

3.6 Maintaining CL
We now describe how to maintain CL as C is updated. Let us consider the update in C of
merging nodes u and v into u. In CL, this is done by first removing the rank paths in L(u)
and L(v), leaving at most log n rank trees of distinct ranks for each of the nodes u and v. We
may assume that rank trees are kept in two lists sorted by the ranks of their roots and we
merge the two lists into one and start pairing up trees whose roots have the same rank, in
the same way as above. We connect their roots with a new rank path, thereby creating the
new L(u) and we identify its root with u. Total time for a merge is O(log n).

We also need to update CL when a child b in C is added to or removed from a node a (we
need this when failing to find a replacement path at some level). If b is to be added, we can

1Thorup’s data structure needs two bitmaps in order to distinguish between tree edges and non-tree edges
whereas we only need one; edge(u) can be regarded as the bitwise ’or’ of his two bitmaps.

6

regard it as a trivial rank tree that should be added to L(a). This can be done in O(log n)
time using the same approach as for merging. If b is to be removed, we first remove the rank
path of L(a) and identify the rank tree Tb containing b. We delete the path from b to the root
of Tb, thereby partitioning this rank tree into O(log n) smaller rank trees, sorted by ranks.
We pair up rank trees as described above and add a new rank path to form the updated L(a).
All of this can be done in O(log n) time.

3.7 Maintaining bitmaps

Finally, we need to update integers n(u) for C-nodes u as well as the edge-bitmaps. The former
is done exactly as in Sections 3.2 and 3.3 so let us focus on the bitmaps. If a level i-edge e
is removed, we do the following for each of its endpoints a. In the leaf a of CL, we check in
O(log log n) time if e was the only level i-edge incident to a. If so, we set edge(a)[i]← 0 and
we move up CL, updating the bitmap of the current node as the bitwise ’or’ of its children.
Since CL has O(log n) height, only O(log n) bitmaps need to be updated. Similarly, if e is
added, we set edge(a)[i]← 1 and update bitmaps for ancestors in the same way. For nodes of
CL whose children change, we also update their bitmaps bottom up by taking the bitwise ’or’
of their children. Only O(log n) nodes are affected in CL after an update in C so total time is
O(log n).

This completes the description of the first version of our data structure. Correctness
follows since the data structure is a simple variation of that of Thorup where spanning trees
of clusters are not kept; rather, our search procedures certify that a spanning tree exists for an
explored component and this suffices to maintain the cluster forest. From the analysis above,
our data structure handles updates in O(log2 n) amortized time and queries in O(log n) time.
In the next section, we speed up both bounds by a factor of log log n.

4 An Improved Data Structure

In this section, we give our improved data structure. Before going into details, let us highlight
the main differences between this structure and that of the previous section. One ingredient is
to add shortcuts to CL. Each shortcut skips O(log log n) nodes and this will allow our search
procedures to walk up trees of CL in O(log n/ log log n) time per traversal when identifying
visited nodes of a multigraph Mi. Adding these shortcuts essentially corresponds to turning
the forest CL of binary trees into one consisting of trees with a branching factor of order
log n, and reducing the height of the trees to order log n/ log log n. Furthermore, we will
modify CL by using lazy local trees similar to those of Thorup [10] instead of the local trees
presented in the previous section. This is done to maintain CL more efficiently during changes.
Unfortunately, Thorup’s lazy local trees increase the height of CL to O(log n log log n) so our
shortcuts will not give any speed-up over the data structure in the previous section. Instead,
we shall use a slightly more complicated type of lazy local tree which has the properties we
need while keeping the height of CL bounded by O(log n). The idea is to partition the children
of each node of C into so called heavy children and light children and construct the lazy local
tree only for the light children and the local tree of the previous section for the heavy children.
Balancing this in the right way will ensure a logarithmic depth of trees while still getting the
speed-up from lazy local trees. Finally, we will need another system of shortcuts for quickly
identifying edges to be explored by the search procedures; Thorup uses a similar system but
it does not fit into our framework as our lazy local trees are different from his. As shown in

7

top tree

Th(u) Tl(u)u

Figure 1: Lazy local tree L(u). Rank trees are black, top and bottom trees are white, the
buffer tree is grey, nodes of L(u) ∩ C are white, and nodes of L(u) \ C are grey.

Lemma 6 in Section 4.7, with these shortcuts, the search procedures can visit edges in only
O(log n/ log log n) time per edge plus an additive O(log n) if we are in case 1 in Section 3.3;
note that the latter can be paid for by the delete operation since a replacement path for the
deleted edge has been found. In Section 4.6, we define these shortcuts and in Section 4.7, we
give an algorithm that uses these shortcuts to explore level i-edges; we refer to it as a level
i-iterator or just iterator.

4.1 Lazy local trees

Thorup [10] introduced lazy local trees and showed how they can be maintained more effi-
ciently than the local trees in Section 3.4. Let u be a non-leaf node of C and let L be the
set of children of u. To form the lazy local tree of u, L is divided into groups each of size at
most 2(log n)α, where α is a constant that we may pick as large as we like. The nodes in each
group are kept in a BBST ordered by n(v)-values. One of these trees is the buffer tree while
the others are the bottom trees. The root of a bottom tree has rank equal to the maximum
rank of its leaves. These bottom trees are paired up to form at most log n rank trees, as
described in Section 3.4. The roots of the rank trees together with the root of the buffer tree
are leaves of a BBST called the top tree where leaves are ordered according to rank (and the
root of the buffer tree is regarded as, say, the smallest element). Together, these trees form
the lazy local tree of u which is rooted at the root of the top tree. Note that bottom, buffer,
and top trees have polylogarithmic size only. It is ensured by the data structure of Thorup
that for each bottom tree B, new leaves are never added to B and ranks of leaves in B are
not changed. This will also hold for our data structure.

We shall use these lazy local trees to improve update time to O(log2 n/ log log n). However,
it is easy to see that due to the BBSTs in lazy local trees, if we form CL with these trees,
the depth of CL becomes O(log n log log n). If we use the same approach as in the previous
section, we thus increase query and update time by a factor of log log n. Adding shortcuts to
CL will avoid this slowdown but this gives a data structure with the same bounds as in the
previous section.

To handle this, we introduce a new type of lazy local trees. Let u be a non-leaf node of
C. A child v of u in C is said to be heavy if n(v) ≥ n(u)/ logǫ n and otherwise it is light ; here
ǫ > 0 is a constant that we may pick as small as we like.

Our lazy local tree L(u) of u is illustrated in Figure 1. It is rooted at u and has two
children. One child is the root of a tree Th(u) having the heavy children of u as leaves and
the other child is the root of a tree Tl(u) having the light children of u as leaves (to simplify

8

the description, we assume that u has both light and heavy children; if there were no light
(resp. heavy) children, we would simply identify L(u) with Th(u) (resp. Tl(u))). We call Th(u)
the heavy tree (of u) and it is defined as the local tree from the previous section over the heavy
children of u; note that its size is asymptotically bounded by the number of heavy children
of u which is at most logǫ n. The tree Tl(u) is called the light tree (of u) and it is Thorup’s
lazy local tree for the set of light children of u.

The following lemma shows that when CL is formed from C by inserting these lazy local
trees, the height of trees in CL is only a constant factor larger than that in Section 3.

Lemma 1. The height of CL (with lazy local trees) is O(log n).

Proof. Let u be a non-leaf node in C and let v be one of its children, also in C. If v is a
heavy child of u then v ∈ Th(u) so its depth in L(u) is at most log(n(u)/n(v)) + 1. Now
assume that v is a light child of u. Then v belongs to either a bottom tree or the buffer tree
of L(u). In the latter case, the depth of v in L(u) is O(log log n). In the former case, let B
be the bottom tree containing v and let w be a leaf of B maximizing n(w). By definition,
the root of B has rank rank(w). Hence the depth of v in L(u) is at most log(n(u)/n(w)) +
O(log log n) ≤ log(n(u)/n(v))+O(log log n). This is O(log(n(u)/n(v))) as n(v) < n(u)/ logǫ n
implies log log n = O(log(n(u)/n(v))).

It follows that in both cases, v has depth O(1 + log(n(u)/n(v))) in L(u). The height of C
is at most log n so by a telescoping sums argument, CL has height O(log n), as desired.

4.2 Maintaining lazy local trees

Now, let us describe how to maintain lazy local trees of CL corresponding to changes in C. For
technical reasons, we assign ranks to rank path nodes in heavy trees by rank(vi) = rank(ri)
for i = 1, . . . , k− 1, where vi and ri are defined as in Section 3.4. In the following, rank nodes
are nodes that are assigned a rank. Note that every node of CL is a rank node except non-leaf
nodes of a buffer or top tree and nodes of a bottom tree B that are neither leaves nor the
root of B.

4.2.1 Merging

We need to maintain lazy local trees when merging C-nodes and when adding and removing
children from C-nodes. We start with merging. Consider two C-nodes u and v that are to be
merged into u. Denote by u′ the updated u after the merge. Note that every heavy child of
u′ must be a heavy child of either u or v. Hence, we can form Th(u

′) by traversing every leaf
w of Th(u) and Th(v) and adding it as a leaf of Th(u

′) iff n(w) ≥ n(u′)/ logǫ n. Total time for
this is O(|Th(u)|+ |Th(v)|) = O(logǫ n).

Forming Tl(u
′) is done as in [10]. The two buffer trees are merged in time bounded by the

smaller of the two trees. If the number of leaves of the merged buffer tree exceeds logα n, it
is turned into a bottom tree for u′, leaving an empty buffer tree. The root of the new bottom
tree is paired up with other rank nodes, if needed. We can pay for all buffer tree merges by
giving a node (log log n)2 credits when it switches from not belonging to belonging to a buffer
tree: every time it is moved to another buffer tree, we spend O(log log n) time for the node
and the size of the buffer tree containing the node grows by a factor of at least 2; hence the
node is moved at most O(log log n) times before either being deleted or being moved to a
bottom tree.

9

We propose a different approach for merging top trees than that of Thorup; we feel ours
is simpler as it avoids keeping a special bitmap associated with each top tree node. Assume
w.l.o.g. that the top tree T (u) in Tl(u) is no bigger than the top tree T (v) in Tl(v). For each
leaf of T (u) we binary search for a leaf with the same rank in T (v) in O(log log n) time. While
there are roots with equal ranks, we pair them up as before, finally obtaining the top tree for
Tl(w). The time for this is O(|T (u)| log log n) plus time bounded by the number of new rank
nodes created. Below we will show how the creation of rank nodes are paid for when they
are deleted. With an amortized analysis similar to that above for buffer trees, we can pay
for all top tree updates if we assign (log log n)2 credits to a node when it switches from not
appearing to appearing as a leaf in a top tree, and if we borrow (log log n)2 credits whenever
we delete a leaf of a top tree (thereby borrowing from a new rank node) and distribute these
borrowed credits evenly among the remaining leaves.

Since n(u′) = n(u) + n(v), we may have some leaves w ∈ Th(u) ∪ Th(v) with n(w) <
n(u′)/ logǫ n and hence w should belong to Tl(u

′). All such nodes are added to the buffer
tree; as before, this tree is turned into a bottom tree if it gets more than logα n leaves.
Total time for this is O(logǫ n log log n) (plus time bounded by the number of new rank nodes
created) since at most 2 logǫ n nodes need to be moved from Th(u) ∪ Th(v).

Finally, let p be the parent of u and v in C; below we will add shortcuts that allow us
to identify p from u (equivalently from v) in O(log n/ log log n) time (Lemma 3). We remove
u and v as leaves of L(p) and then we add u′ as a leaf of Th(p) if n(u′) ≥ n(p)/ logǫ n and
otherwise we add u′ as leaf of the buffer tree in Tl(p). This takes O(log log n) time since both
the buffer tree and Th(p) have poly-logarithmic size and their roots have depth O(log log n)
in L(p).

4.3 Removing a child

Consider removing a C-node child v of a C-node u and adding it as a child of a new C-node w
which is added as a child of the parent C-node p of u. We first focus on removing v and we
let u′ denote u after this update.

Assume first that v ∈ Th(u). After removing v from Th(u), we have n(u′) = n(u) − n(v)
and hence some nodes may need to be moved from Tl(u) to Th(u) in order to form L(u′).
Identifying such nodes in the buffer tree of Tl(u) can be done in O(log log n) time per node.
Now suppose w is a leaf of a bottom tree B that needs to be moved to Th(u). Let b be
the root of B and let a be the leaf of the top tree of Tl(u) having b as descendant. Since
rank(b) ≥ rank(w) ≥ ⌊log(n(u′)/ logǫ n)⌋ > ⌊rank(a)− ǫ log log n⌋ and since ranks are strictly
decreasing on the path from a to b, b has depth at most ⌈ǫ log log n⌉ in the subtree of Tl(u)
rooted at a. A DFS from a identifies all bottom tree roots with at most this depth in O(logǫ n)
time; let La be the set of leaves in these bottom trees that need to be moved to Th(u). Using
binary search in the O(logǫ n) bottom trees, we identify La and move it to Th(u) in time
O((logǫ n + |La|) log log n). Since all rank leaves of the top tree of Tl(u) have distinct ranks,
there are only O(log log n) choices for a. Also, the maximum number of leaves to be moved
is bounded by the number of leaves of Th(u

′) which is at most logǫ n. Total time is thus
O(logǫ n(log log n)2).

We may also need to move u in L(p). If u belongs to a bottom tree in Tl(p), we move it
to the buffer tree as we do not allow ranks of leaves in bottom trees to change. We also move
u to the buffer tree if u ∈ Th(p) and n(u′) < n(p)/ logǫ n. As we saw for merge, the time for
this is O(log n/ log log n).

10

As in [10], we need to do more global updates whenever removing a leaf from a bottom
tree B of Tl(u) reduces the maximum rank of leaves in B and hence the rank of the root b of
B. We use a similar approach and amortized analysis as Thorup here: first, delete all rank
nodes from b to the ancestor leaf a of the top tree of Tl(u). Then pair nodes of equal rank as
before. For the amortized analysis, we can assume that the graph G ends with no edges so
all rank nodes end up being deleted and we can amortize creation of rank nodes in Tl(u) over
deletion of rank nodes in Tl(u). A rank node is only deleted when a bottom tree root has its
rank reduced. Since a rank is at most log n, a particular bottom tree can have its root rank
reduced at most log n times (nodes are never added to a bottom tree and ranks of bottom tree
leaves do not change) so in total it gives rise to at most log2 n rank node deletions for that
bottom tree. But since a bottom tree starts out with (log n)α leaves that will all be deleted
eventually, we can amortize each rank node deletion over (log n)α−2 deletions of bottom tree
leaves. When removing child v, we delete at most logǫ n leaves from bottom trees of Tl(u) in
order to form L(u′) so we can amortize each rank node deletion over (log n)α−2−ǫ deletions
of children in C. Hence if we pick constant α ≥ 2 + ǫ, we can afford to pay for rank node
deletions and also to pay for the (log log n)2 credits that may have been borrowed from a rank
node during a merge.

It remains to consider the case v ∈ Tl(u). Above we showed how to efficiently remove up
to order logǫ n leaves from Tl(u) so clearly the single leaf v can also be removed efficiently.
We then move additional leaves from Tl(u) to Th(u) and move u to Th(p) or to the buffer tree
of Tl(p), as above.

4.4 Adding a child

Now consider adding v as a child of w and w as a child of p. The former is trivial as w has
no children before adding v. If n(v) ≥ n(p)/ logǫ n, we add w to Th(p) and otherwise we add
it to the buffer tree of Tl(p). Given p, total time for this is O(log log n).

4.5 Shortcutting

In order to get our log log n speed-up for updates and queries, we need to be able to traverse
CL faster. Thorup [10] introduced a system of shortcuts for quickly identifying certain edges
incident to clusters. This will not suffice in our approach since for our search procedures, we
also need to move quickly from a leaf of CL to its ancestor level i node in order to identify the
associated level i cluster, for some i. We therefore introduce a different system of shortcuts in
the following. To avoid skipping past a level i node with these shortcuts, our data structure
associates, for each node of a heavy tree Th(u), the level ℓ(u) of u. We can easily extend the
data structure for lazy local trees to maintain these values within the same time bound since
Th(u) has only size O(logǫ n).

Let us color each node of CL either white or black. For the coloring below, we define a
black-induced child of a node u ∈ CL to be a black descendant v of u such that all interior
nodes on the path from u to v in CL are white. If u is black, we add a shortcut between u and
each of its black-induced children. The shortcut is directed to u, allowing us to move quickly
up in CL. The black-induced parent of a node is defined similarly. Note that the shortcuts
(with directions reversed) form a forest of rooted trees over the black nodes.

Now, let us define the coloring of nodes of CL. The following nodes are colored black:

1. every C-node u with ℓ(u) = i⌊ǫ log log n⌋ for some integer i,

11

2. every rank node u having a parent rank node v in CL such that rank(u) ≤ i⌊ǫ log log n⌋ <
rank(v) for some integer i,

3. every leaf of CL and of every buffer, bottom, and top tree, and

4. every node of a buffer, bottom, and top tree whose depth in that tree is divisible by
⌊ǫ log log n⌋ (in particular, every root of such a tree is black).

A black node is of type 1, 2, 3, and/or 4, depending on these four cases. All other nodes
are colored white. For performance reasons, we shall only maintain edge-bitmaps for black
nodes. Lemma 3 below shows that these shortcuts give a log log n speed-up when moving up
a tree of CL. We first need the following result.

Lemma 2. Ranks are non-decreasing along any simple leaf-to-root path in CL. Between any
two consecutive C-nodes on such a path, there are at most two pairs of nodes of equal rank.

Proof. The first part of the lemma will follow if we can show that ranks are non-decreasing
along any simple leaf-to-u path P in a lazy local tree L(u). This is clearly the case for leaves
in Th(u). A leaf v in Tl(u) either belongs to a bottom or buffer tree T . Assume the former
since otherwise, u and v are the only rank nodes on the v-to-u path P and since both are
C-nodes, rank(u) ≥ rank(v).

Only the first node v and last node r of subpath P [v, r] = T ∩ P are rank nodes. Since r
is the root of T , it has maximum rank among leaves in T so rank(v) ≤ rank(r). Let l be the
leaf of the top tree of L(u) belonging to P . All nodes on P [r, l] belong to a rank tree so ranks
are increasing along this subpath. For the subpath P [l, u], only l and u are rank nodes. Let L
be the set of leaves of Tl(u) formed by picking one of maximum rank from each bottom tree
descending from l. Then rank(l) ≤ ⌊log(∑u′∈L n(u′))⌋ ≤ ⌊log n(u)⌋ = rank(u). This shows
the first part of the lemma.

For the second part, let u and v be C-nodes where v is a child of u. Assume first that v is
a leaf of Th(u). Ranks are strictly increasing on the path from v to the root r of the rank tree
containing v. Ranks are also strictly increasing along the rank path in Th(u). Hence, there
are at most two pairs of equal rank nodes in CL between u and v, namely r and its parent and
the root of Th(u) and u. Now consider the case where v is a leaf of Tl(u) and again assume it
belongs to a bottom tree B. Let r be the root of B and let l be the leaf of the top tree which
is an ancestor of v. Then again, since ranks are strictly increasing along any leaf-to-root path
in a rank tree, there can be at most two equal-rank pairs between u and v, namely (v, r) and
(l, u). This completes the proof.

Lemma 3. Given CL with shortcuts, given a level i, and given a C-node of CL with an ancestor
level i node, we can identify this ancestor in O(log n/ log log n) time.

Proof. Let v be the given node. To identify the ancestor level i node u of v, we start by
traversing the v-to-root path of the tree in CL containing v and we stop if we reach u or a
black node. Since v is a C-node and since light trees have black leaves, all nodes visited are
rank nodes. Lemma 2 then implies that we visit at most O(log log n) nodes before stopping.
Hence, the traversal takes O(log log n) time. Assume that we reach a black node b1 as we are
done if we reach u.

From b1 we traverse shortcuts until we get to the lowest-depth black node b2 having u as
ancestor. Finally we traverse the b2-to-root path in CL until we reach u. The latter takes
O(log log n) time by an argument similar to the above.

12

Next we show that there are O(log n/ log log n) shortcuts between b1 and b2. Since C has
logarithmic height, there are only O(log n/ log log n) shortcut endpoints of type 1. Lemma 2
implies the same bound for shortcut endpoints of type 2. If a shortcut ends at a type 3
node b which is a leaf of a buffer or bottom tree, it means that we enter a light tree Tl(w).
We encounter only one additional type 3 node in Tl(w), namely a leaf of a top tree. Since
n(w) > n(b) logǫ n we have rank(w) > rank(b)+ ⌊ǫ log log n⌋ and since a rank is at most log n,
Lemma 2 implies that we encounter no more than O(log n/ log log n) type 3 nodes between
b1 and b2. Finally, this bound on the number of type 3 nodes and Lemma 1 give the same
asymptotic bound on the number of type 4 nodes.

What remains is to describe how to avoid jumping past u when traversing the shortcuts.
Let (b2, b3) be the shortcut that jumps past u, if any. Since leaves of light trees are black,
b3 must belong to some heavy tree Th(wb3). If b2 belongs to a light tree, it must belong to
the root of the top tree in Tl(u) since that root is black. We can avoid this case as follows:
whenever we reach the root of a top tree, its parent is a C-node and we compare its level with
i to determine whether we should continue with the shortcuts.

Now, consider the case where b2 belongs to a heavy tree Th(wb2). Recalling that for every
node of a heavy tree Th(w) we keep the level ℓ(w) of w, we can check that ℓ(wb2) ≤ i < ℓ(wb3)
to detect that a is the last node that we should visit with shortcuts. This completes the
proof.

4.6 Induced shortcuts

Lemma 3 allows us to speed up part of our search procedure, namely identifying the endpoints
(level (i+1) clusters) of an edge in a multigraph Mi from the endpoints of the corresponding
edge in G; we can do this in O(log n/ log log n) time per endpoint. We also need a faster
iterator for level i-edges incident to explored level (i + 1) clusters. We focus on this in the
following.

Define an i-induced forest Fi as in [10]: its i-induced leaves are the leaves of CL with an
incident level i-edge. Its i-induced roots are the level (i + 1) nodes of CL having descendant
i-induced leaves. Its i-induced branch nodes are the nodes of CL with both children have
descending i-induced leaves. The i-induced parent of an i-induced node is its nearest i-
induced ancestor. This defines Fi.

A straightforward level i-iterator performs a DFS in a tree of Fi. However, maintaining
the edges of Fi will be too expensive. Instead, we introduce a new system of shortcuts
in CL that will allow the DFS to move between any two incident i-induced nodes of Fi

in O(log n/ log log n) time. Since a tree of Fi is binary, the number of branch nodes of T is
bounded by the number of leaves of T , so this will give a level i-iterator with O(log n/ log log n)
amortized time per level i-edge. In the following, we define the new shortcuts. Refer to the
following types of nodes of CL as special :

1. every C-node u with ℓ(u) = i⌊log log n⌋⌊ǫ log log n⌋ for some integer i,

2. every leaf of CL, and

3. every rank node u of a light tree with rank(u) = i⌊log log n⌋⌊ǫ log log n⌋ for some integer
i.

Note that every special node is black. Also note that we defined type 3 special nodes using
equality rather than inequality as for type 2 black nodes. This suffices since ranks increase

13

by 1 as we move up rank nodes of a light tree; this is not the case in heavy trees where ranks
can increase by larger values along a rank path. For a special node u, define a special child
of u to be a descendant special node v such that all nodes between u and v are not special.
Special parents are defined similarly. For any level i, if there is a unique special child v of u for
which edge(v)[i] = 1, we add a shortcut (bidirected pointer) between u and v. To distinguish
these shortcuts from those of Section 4.5, we refer to the former as i-induced shortcuts or just
induced shortcuts and the latter as standard i-shortcuts or just standard shortcuts. Observe
that for all i-induced shortcuts (a, b), where b is a special child of a, there is an edge in Fi

from a or an ancestor of a to b or a descendant of b. For each special node u, we keep a BBST
with a leaf for each i containing the i-induced shortcuts to a special child and/or parent (if
they exist).

4.7 Faster iterator

Now let us present the level i-iterator. It starts at the root v of a tree in Fi, i.e., v is a level
(i + 1) node of CL. It performs a DFS of the subtree of CL rooted at v with the following
modification: if it visits a black node w for which edge(w)[i] = 0, it backtracks; if it visits
a special node w′ with an i-induced shortcut to a special child, it visits this special child
instead of the children of w′ in CL. When it reaches a leaf l of CL, it identifies the group of
incident level i-edges with a binary search in the BBST associated with l and then iterates
over these edges. This completes the description of the level i-iterator. Lemma 6 below shows
the performance of the level i-iterator. To prove it, we need two additional lemmas.

Lemma 4. Any node of CL has only O((log n)3ǫ) black-induced children.

Proof. Let u be a node of CL. If u is a non-leaf node of a bottom, buffer, or top tree, the
lemma follows from the definition of type 3 and 4 black nodes. Otherwise, u is a rank node.
For any black-induced child v of u, Lemma 2 and the definition of type 1 and 2 black nodes
imply that v has depth at most 3ǫ log log n in the subtree of CL rooted at u. As CL is binary,
the lemma follows.

Lemma 5. For any i-induced shortcut (a, b), the simple a-to-b path in CL has length O((log log n)4).

Proof. Let P be the simple a-to-b path in CL. Clearly, P contains only O((log log n)2) C-
nodes. Let P ′ be a subpath of P containing no C-nodes. Then P ′ is either contained in a
heavy or a light tree. In the former case, |P ′| = O(log log n). In the latter case, we encounter
at most O(log log n) nodes of buffer, bottom, and top trees on P ′. Since consecutive rank
nodes of P ′ differ in rank by exactly 1 (as they all belong to a light tree and hence to a rank
tree), we encounter at most O((log log n)2) rank nodes on P ′ so |P ′| = O((log log n)2).

Lemma 6. The level i-iterator above traverses a tree in Fi with k leaves in O(k log n/ log log n)
time. The time to visit the first k′ leaves is O(k′ log n/ log log n+ log n).

Proof. Correctness follows easily from the definition of edge-bitmaps, i-induced shortcuts,
and BBSTs associated with leaves of CL so let us focus on the time bound to traverse a
k-leaf tree T in Fi. Let TL be the tree in CL obtained by replacing each edge (a, b) ∈ T with
the corresponding simple path P in CL between a and b. By Lemmas 1 and 2, there can
only be O(log n/(log log n)2) special nodes on such a path P . Hence, since T has no degree
2-vertices, the total number of special nodes and hence i-induced shortcuts traversed by the

14

level i-iterator in TL is O(k log n/(log log n)2). For each special node visited, O(log log n) time
is spent on binary search to find the next i-induced shortcut, if it exists. Hence, the total time
spent on visiting special nodes and traversing i-induced shortcuts is O(k log n/ log log n).

We will now show that the number of additional nodes visited by the DFS isO(k(log n)3ǫ(log log n)4).
Since only constant time is spent for each such node, this will show the first part of the lemma.
First we bound the number of visited nodes of TL which are not special. Let (a, b) and P be as
above. If we traverse P from a then it follows from Lemma 5 that after at most O((log log n)4)
nodes, we will reach either b or a special node a′. Similarly, if we traverse P from b then after
at most O((log log n)4) nodes, we will reach either a or a special node b′. If a′ and b′ exist then
all nodes visited by the DFS on P [a′, b′] are special nodes connected by i-induced shortcuts.
Summing over all such paths P , it follows that the total number of nodes visited on TL which
are not special is O(k(log log n)4).

Finally, let us bound the number of nodes of CL visited by the DFS which are not on TL.
Consider a visited node u ∈ TL and let v /∈ TL be a visited node such that u is the nearest
ancestor of v belonging to TL. Note that there is no i-induced shortcut from u to a special
child since then the DFS would have traversed this shortcut instead of the children of u in CL.
In particular, there are only O(k(log log n)4) choices for u. Furthermore, all interior nodes on
the simple path from u to v in CL are white since any black node w would have edge(w)[i] = 0
(as w /∈ TL), meaning that the DFS would have backtracked before reaching v. By Lemma 4,
there are only O((log n)3ǫ) choices for v for each u. Hence, the total number of nodes visited
which are not on TL is O(k(log n)3ǫ(log log n)4). This shows the first part of the lemma.

For the second part, consider a partially grown DFS tree T ′ which has visited k′ leaves.
For every node of T ′ having two children, at least one of the two subtrees rooted at the
children is fully explored. Hence, T ′ consists of a path P from the root of T to a leaf of T
with fully explored subtrees attached to P . The same argument as above shows that the total
time to explore these subtrees is O(k′ log n/ log log n). By Lemma 1, it takes O(log n) time to
explore P (the number of special nodes on P is O(log n/(log log n)2) so we only spend a total
of O(log n/ log log n) time on binary searches for these nodes).

It follows from Lemma 6 that the level i-iterator spends O(log n/ log log n) amortized time
per edge visited plus additional O(log n) time if a replacement path was found (if such a path
is not found, an entire tree in Fi is traversed). The O(log n/ log log n) amortized time per
edge is paid for by the increase in the level of the edge and the O(log n) time is paid for by
the deletion of an edge in G since at most one replacement path is found for such an edge.

It remains to describe how colors, shortcuts (standard and induced) and edge-bitmaps are
maintained when C (and hence CL) is updated and when edges of G are added/removed or
change level. First we deal with changes to C. The following lemma will prove useful.

Lemma 7. Given edge-bitmaps of black nodes and given a special node u, we can find the
induced shortcuts between u and its special parent (if any) in O(log n) time. For any i, we
can find the i-induced shortcut from u to a special child or determine that no such shortcut
exists in O((log n)3ǫ(log log n)4) time.

Proof. We first walk up CL from u to identify its special parent p. By Lemma 5, this takes
O((log log n)4) time. Then we perform a DFS in the subtree of CL rooted at p and backtrack
if we encounter u or a black node which is not an ancestor of u. If any such black node is
encountered for which the ith bit of its edge-bitmap is 1 then we know that there should
not be an i-induced shortcut between u and p. Otherwise there should be iff edge(u)[i] = 1.

15

Let m be the bitmap obtained by taking the bitwise ’or’ of the edge-bitmaps of visited black
nodes not on the u-to-p path. By Lemmas 4 and 5, finding m takes O((log n)3ǫ(log log n)4)
time. Now, there is an i-induced shortcut between u and p iff m[i] = 0 and edge(u)[i] = 1.
Hence, all induced shortcuts between u and p can be found in O(log n) time.

To find the i-induced shortcut (if any) to a special child of u, we make a DFS from u
which backtracks when reaching a black node. Suppose exactly one visited black node w has
edge(w)[i] = 1 (otherwise, there is no i-induced shortcut). If w is special, we have identified
the i-induced shortcut (w, u). Otherwise, we recurse on w. As above, total time for this is
O((log n)3ǫ(log log n)4).

4.8 Structural changes

Let us now describe how shortcuts and edge-bitmaps are maintained after structural changes
to CL. It follows from Lemma 4 that for each update to CL, we can update colors, standard
shortcuts and edge-bitmaps in O((log n)3ǫ) time. From the results in Section 4.2, this will
not affect the overall time bound (if we pick constant α sufficiently large). In the following,
we thus only consider updating induced shortcuts.

We shall restrict our attention to structural changes caused by a delete-operation as
insert corresponds to merging two clusters (or none), a type of update that needs to be
supported during a delete.

Recall that after a delete-operation, C is updated as follows: some children of a node
u are removed and merged into a single node; this node is either added as a child of u (if a
replacement path was found) or it is added as a child of a new node u′ which is added as a
child of the parent p of u and the process is repeated recursively on p (if a replacement path
was not found). We observe that all C-nodes whose children are updated are contained in two
leaf-to-root paths in C after the delete-operation has been executed.

There are two types of induced shortcuts that need to be updated, those incident to a
type 1 special node and those descending from a type 3 special node and not ascending from
a type 1 special node (see definitions of types in Section 4.6). Below we show how to update
the latter.

For the former, it follows from the above that we only need to focus on type 1 special
nodes on a leaf-to-root path P in CL (there are two paths but they are handled in the
same manner). Let u1, . . . , uk be the sequence of special nodes as we move up P during
the delete-operation (some of them may be new or merged nodes and hence do not exist
before the delete-operation). By Lemma 7, we can find all induced shortcuts descending
from u1 in O((log n)1+3ǫ(log log n)4) time. When we reach uj , j > 1, we compute induced
shortcuts between uj−1 and uj. By Lemma 7, this takes O(log n log log n) time (including
binary searches in the BBSTs of uj−1 and uj) for a total of O(log2 n/ log log n) over all j
which the delete-operation can pay for. We also compute induced shortcuts descending
from uj for those i for which edge(uj)[i] = 1 and edge(uj−1)[i] = 0. Total time over all j is
O((log n)1+3ǫ(log log n)4) since if edge(uj)[i] = 1 then edge(uj′)[i] = 1 for all j′ > j, implying
that the second part of Lemma 7 is applied at most once for each i. Note that all i-induced
shortcuts from uj to a special child which have not been identified by the second part of
Lemma 7 must have edge(uj)[i] = edge(uj−1)[i] = 1 and hence must connect uj to uj−1

which we have computed above. Hence, we correctly compute all induced shortcuts incident
to special nodes on P and we do so within the desired time bound.

Now we show how to maintain induced shortcuts descending from a type 3 special node

16

p and not ascending from a type 1 special node. We may assume that p is not on one of the
leaf-to-root paths considered above. Then the only structural changes to CL that may require
such shortcuts to be updated are

1. a type 3 special node is created or deleted, or

2. a leaf is removed from a bottom tree in the light tree containing p.

A type 3 special node can pay any polylogarithmic amount when it is created/deleted so
consider updating induced shortcuts descending from p when a leaf u is removed from a
bottom tree B in the light tree Tl(w) containing p. To handle this case, we will assume that
each rank node of Tl(w) has log n/ log log n credits for each i for which it is an i-induced
branch node. To see that this assumption can be made, first observe that when a buffer tree
is turned into a bottom tree, it can pay any polylogarithmic amount if we pick α sufficiently
big. This is also the case when a new rank node of Tl(w) is created/deleted. Since we never
add but only remove leaves from bottom trees, the only other way a rank node of Tl(w) can
become an i-induced branch node is if some edge of G has its level increased to i. Such an
edge can only contribute with two i-induced branch nodes to Fi (one for each of its endpoints)
so we may add log n/ log log n credits to the two new i-induced branch nodes which the level
increase can pay for. This shows the desired.

Let branch(u) be the bitmap where branch(u)[i] = 1 iff there is an i-induced branch
node v 6= u on the path from u to p. By Lemmas 4 and 5, we can form branch(u) in
O((log n)3ǫ(log log n)4) time which the removal of u from B can pay for. For each i for
which branch(u)[i] = 1, the removal of u may require us to compute an i-induced shortcut
descending from p. Since a branch node is removed in the process, we can spend its credits
to pay for applying Lemma 7 to find this shortcut. We can binary search for each of the k
1-entries of branch(u) in O(k log log n) time; for instance, to determine whether the lower half
of branch(u) has any 1-bits, we can take the bitwise ’and’ of branch(u) and a precomputed
bitmap having 1-bits in the lower half and 0-bits in the upper half. The ’and’ is 1 iff there
are 1-bits in the lower half of branch(u).

Now consider an i for which branch(u)[i] = 0. We may assume that a bitmap induced(p)
associated with p is maintained where induced(p)[j] = 1 iff p has a j-induced shortcut to a
special child. If edge(u)[i] = 0 or induced(p)[i] = 0, nothing needs to be done for i so assume
edge(u)[i] = 1 and induced(p)[i] = 1. Then we delete the i-induced shortcut descending from
p. If there is an i-induced shortcut from p to its special parent p′, we remove it too and recurse
on p′; the recursion stops when we reach a special node q without an i-induced shortcut to
its special parent q′. Each induced shortcut can be removed in O(log log n) time using binary
search in the associated BBSTs. By adding log log n credits to an induced shortcut when it
is created, we can pay for all deletions of induced shortcuts. If q′ is a rank node of Tl(w), we
may need to add an i-induced shortcut from q′ to a special child. This can only happen if an
i-induced branch node between q and q′ disappears and as above, we can spend its credits to
pay for finding this shortcut.

4.9 Non-structural changes

Above we dealt with updates of shortcuts due to structural changes in CL. We now handle
updates when leaves of Fi appear or disappear due to edge level changes.

17

Edge deletions: When a level i-edge e is deleted (possibly due to its level being increased
to i + 1), edge(u)[i] might change from 1 to 0 for one of its endpoints u which will then no
longer be an i-induced leaf of Fi. We describe how to update other edge-bitmaps accordingly
and remove some of the i-induced shortcuts. The following is done for u. If there are still
level i-edges incident to u then no updates are needed. Otherwise, all i-induced shortcuts on
the simple path in CL from u to its i-induced parent p should be removed. Since u is a leaf of
CL, it is a special node. We traverse i-induced shortcuts from u to ancestors until we reach
a special node v without an i-induced shortcut to an ancestor. Since u is the only i-induced
leaf below v, we delete all shortcuts traversed. We also set edge(v)[i]← 0 for all black nodes
v between u and v (including v) in O(log n/ log log n) time by traversing standard i-shortcuts
between u and v.

We then traverse black nodes up from v in CL and stop if we find a special node w.
Whenever we visit a black node b, we perform a DFS in the subtree of CL rooted at b,
backtracking at descending black nodes. If each black node b′ visited below b has edge(b′)[i] =
0, u was the only leaf of CL below b with an incident level i-edge so we set edge(b)[i] ← 0
and proceed up to the next black node. Conversely, if some black node b′ visited below b has
edge(b′)[i] = 1, p must be below b and no more bitmaps need to be updated.

Having updated the bitmaps and removed all i-induced shortcuts below v, we need to check
if an i-induced shortcut should be added from w to one of its descendants. By Lemma 7, this
takes O((log n)3ǫ(log log n)4) time which can be paid for by the deletion of e; here we can also
afford to add log log n credits to the shortcut if it was added.

Edge insertions Now suppose a level i-edge e is inserted. To update edge-bitmaps and
add new i-induced shortcuts, we do the following for each endpoint u of e. If other level
i-edges are incident to u then nothing needs to be done as u is already a leaf of Fi so assume
otherwise. Inserting e corresponds to updating Fi by adding a new edge (u, p), where p is the
i-induced parent of u. Hence, we need to add i-induced shortcuts between u and p. Suppose
u has an ancestor black node v such that edge(v)[i] = 1. We traverse standard shortcuts up
from u and stop when we identify the first such v. Let u1, . . . , uk be the ordered (possibly
empty) sequence of special nodes visited from u to v. Since v already has a descending leaf
incident to a level i-edge and uk does not, p must be on the uk-to-v path in CL. Hence, the
new i-induced shortcuts to be added are (u1, u2), (u2, u3), . . . , (uk−1, uk). We also set to 1 the
ith bit of the edge-bitmaps of all black nodes visited. By Lemmas 1 and 2, all of this can be
done in O(log n/ log log n) time and we can also afford to add log log n credits to each of the
O(log n/(log log n)2) new i-induced shortcuts.

We assumed that a node v with edge(v)[i] = 1 was encountered. If this is not the case,
it means that u should not be added to an existing tree in Fi. Rather, a new tree should be
formed consisting of a single edge (u, p), where p is the level (i+1)-ancestor of u in CL. Clearly,
the corresponding i-induced shortcuts can be added and edge-bitmaps updated within the
same O(log n/ log log n) time bound.

We can now conclude with the following theorem.

Theorem 1. There is a deterministic data structure for fully dynamic graph connectivity
which supports edge insertions/deletions in O(log2 n/ log log n) amortized time per update and
connectivity queries in O(log n/ log log n) worst case time, where n is the number of vertices
of the graph.

18

5 Concluding Remarks

We gave a deterministic data structure for fully-dynamic graph connectivity that achieves an
amortized update time ofO(log2 n/ log log n) and a worst-case query time ofO(log n/ log log n),
where n is the number of vertices of the graph. This improves the update time of Holm, de
Lichtenberg, and Thorup [5] and Thorup [10] by a factor of log log n. We believe our improve-
ment may extend to fully-dynamic minimum spanning tree, 2-edge, and/or biconnectivity.

There is still a small gap between upper and lower bounds. For instance, forO(log n/ log log n)
query time, [6] gives an Ω((log n)1+ǫ) cell-probe lower bound for updates for constant ǫ > 0.
Simultaneously getting O(log n) update and query time and improving the O(

√
n) worst-case

update bound in [1] remain the main open problems for fully-dynamic graph connectivity.

References

[1] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsification - a technique for
speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997. See also FOCS’92.

[2] G. N. Frederickson. Data structures for on-line updating of minimum spanning trees,
with applications. SIAM J. Comput., 14(4):781–798, 1985. See also STOC’83.

[3] M. R. Henzinger and V. King. Randomized dynamic graph algorithms with polyloga-
rithmic time per operation. Proc. twenty-seventh annual ACM symposium on Theory of
computing (STOC), 1995, pp. 519–527.

[4] M. R. Henzinger and M. Thorup. Sampling to provide or to bound: With applications
to fully dynamic graph algorithms. Random Structures and Algorithms, 11(4):369–379,
1997. See also ICALP’96.

[5] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-
dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4): 723–760, 2001. See also STOC’98.

[6] M. Pătraşcu and E. Demaine. Logarithmic Lower Bounds in the Cell-Probe Model. SIAM
J. Comput., 35(4): 2006. Special issue 36th ACM Symposium on Theory of Computing
(STOC 2004).

[7] D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J. Comput. Syst. Sc.,
26(3):362–391, 1983. See also STOC’81.

[8] R. E. Tarjan. Efficiency of a good but not linear set union algorithms. J. ACM, 22:215–
225, 1975.

[9] M. Thorup. Decremental dynamic connectivity. Proc. 8th SODA, pp. 305–313, 1997.

[10] M. Thorup. Near-optimal fully-dynamic graph connectivity. Proc. thirty-second annual
ACM symposium on Theory of computing (STOC), 2000, pp. 343–350.

19

	1 Introduction
	2 Preliminaries
	3 A Simple Data Structure
	3.1 The cluster forest
	3.2 Handling insertions
	3.3 Handling deletions
	3.4 Local trees
	3.5 Searching for edges
	3.6 Maintaining CL
	3.7 Maintaining bitmaps

	4 An Improved Data Structure
	4.1 Lazy local trees
	4.2 Maintaining lazy local trees
	4.2.1 Merging

	4.3 Removing a child
	4.4 Adding a child
	4.5 Shortcutting
	4.6 Induced shortcuts
	4.7 Faster iterator
	4.8 Structural changes
	4.9 Non-structural changes

	5 Concluding Remarks

