
The complexity of detecting taut angle structures

on triangulations

Benjamin A. Burton and Jonathan Spreer

October 3, 2012

Abstract

There are many fundamental algorithmic problems on triangulated 3-manifolds whose
complexities are unknown. Here we study the problem of finding a taut angle structure
on a 3-manifold triangulation, whose existence has implications for both the geometry and
combinatorics of the triangulation. We prove that detecting taut angle structures is NP-
complete, but also fixed-parameter tractable in the treewidth of the face pairing graph of
the triangulation. These results have deeper implications: the core techniques can serve as
a launching point for approaching decision problems such as unknot recognition and prime
decomposition of 3-manifolds.

Keywords Computational topology, triangulations, 3-manifolds, taut structures, angle
structures

1 Introduction

Much work in 3-dimensional topology is driven by algorithmic problems. Examples include
unknot recognition (testing whether a knot in R3 is trivial), 3-sphere recognition (testing whether
a triangulated 3-manifold is a topological sphere), connected sum decomposition (decomposing
a 3-manifold into “prime” pieces), JSJ decomposition (decomposing a 3-manifold into pieces
with geometric structures), and the homeomorphism problem (testing whether two triangulated
3-manifolds are topologically equivalent).

Many of these algorithms are new; for instance, 3-sphere recognition was only solved in 1992
by Rubinstein [29], and the homeomorphism problem was only solved in 2003 with Perelman’s
proof of the geometrisation conjecture [19], which ties together many complex sub-algorithms by
many different authors [16]. Some algorithms, such as unknot recognition, 3-sphere recognition
and connected sum decomposition, have been implemented [6] but require exponential time;
others are currently so slow and so complex that they have never been implemented at all.

In this paper we consider the computational complexity of problems such as these in 3-
dimensional topology, where many important questions remain wide open. For instance, it
is a major open question as to whether unknot recognition and 3-sphere recognition can be
solved in polynomial time. Both problems are known to lie in NP [14, 31], and in recent
announcements both problems also lie in co-NP if the generalised Riemann hypothesis holds [13,
21]. Nevertheless, current state-of-the-art algorithms for both problems still require exponential
time.

1

ar
X

iv
:1

20
7.

09
04

v2
  [

m
at

h.
G

T
] 

 3
 O

ct
 2

01
2



There is one prominent hardness result in this area, due to Agol, Hass and Thurston, in-
volving knot genus: if we generalise unknot recognition to computing the genus of a knot, and
we generalise the ambient space from R3 to an arbitrary 3-manifold, then the problem becomes
NP-complete [1]. The underlying proof technique also applies to problems relating to least-area
surfaces [1, 10].

Beyond the results cited above, very little is known about the computational complexity of
difficult algorithmic problems such as these in 3-dimensional topology.

In this paper we address the problem of finding a taut angle structure on a triangulated
3-manifold (as outlined below). In particular, we show that this problem is both NP-complete
and fixed-parameter tractable. To the authors’ best knowledge, this is the first parameterised
complexity result in areas relating to difficult 3-manifold recognition/decomposition problems,
and the first such NP-completeness result that is not based on the Agol-Hass-Thurston construc-
tion. More importantly, the techniques that we describe here offer a potential launching point
for obtaining such results in the related setting of normal surface theory, a key ingredient in all
of the decomposition and recognition problems outlined above. We discuss these possibilities
further in Section 5.

Taut angle structures were introduced by Lackenby [22], and offer a bridge between the
combinatorial structure of a triangulation and the geometric structure of the underlying man-
ifold. Taut angle structures are combinatorial objects that act as limiting cases of the more
general angle structures, as introduced by Rivin [27, 28] and Casson; these in turn act as linear
analogues of complete hyperbolic structures, which play an important role in recognising and
distinguishing triangulated hyperbolic 3-manifolds. Despite their simple discrete combinatorial
description, taut angle structures can in the right setting lead to strict angle structures [18]
and then complete hyperbolic structures [11], which in general are highly desirable but also
potentially elusive.

More specifically, a taut angle structure on a 3-manifold triangulation T assigns interior
angles {0, 0, 0, 0, π, π} to the six edges of each tetrahedron of T , so that the two π angles are
opposite in each tetrahedron, and so that around each edge of the overall triangulation the sum
of angles is 2π. The decision problem that we study in this paper is as follows:

Problem (taut angle structure). Given an orientable 3-manifold triangulation T with no
boundary faces, determine whether there exists a taut angle structure on T . We measure the
size of the input by the number of tetrahedra in T , which we denote by n.

Our first main theorem is the following:

Theorem 1. taut angle structure is NP-complete.

We prove this in Section 3 using a reduction from the NP-complete problem monotone
1-in-3 sat [30]. In monotone 1-in-3 sat we have boolean variables x1, . . . , xt and clauses of
the form xi ∨ xj ∨ xk, and we must determine whether the variables can be assigned true/false
values so that one and only one of the three variables in each clause is true.

The proof involves an explicit piecewise construction of a 3-manifold triangulation that
represents a given instance of monotone 1-in-3 sat. We use three types of building blocks,
which represent (i) variables xi; (ii) the duplication of variables; and (iii) clauses xi ∨ xj ∨ xk.
Finding such building blocks—particularly (ii) and (iii)—was a major challenge in constructing
the proof, and was performed with significant assistance from the software package Regina [6, 8].

In Section 4 we present additional results on parameterised complexity. Introduced by
Downey and Fellows [9], parameterised complexity studies which aspects of an NP-complete

2



problem make it difficult, and identifies classes of inputs for which fast algorithms can nonethe-
less be found.

Our parameters are based on the face pairing graph of the input triangulation T (that is,
the dual 1-skeleton of T ). Denoted Γ(T ), the face pairing graph is the multigraph whose nodes
represent tetrahedra of T , and whose arcs represent pairs of tetrahedron faces that are joined
together.

For taut angle structure, we identify two parameters of interest: the cutwidth of Γ(T ),
and the treewidth of Γ(T ). We define these concepts precisely in Section 2, but in essence the
cutwidth measures the worst “bottleneck” of parallel arcs in an optimal left-to-right layout of
nodes, and the treewidth measures how “tree-like” the graph is. Our results are the following:

Theorem 2. Let T be a 3-manifold triangulation with n tetrahedra, where the graph Γ(T ) has
cutwidth ≤ k, and for which a corresponding layout of nodes is known. Then taut angle
structure can be solved for T in O(nk · 33k/2) time.

Theorem 3. Let T be a 3-manifold triangulation with n tetrahedra, where the graph Γ(T ) has
treewidth ≤ k, and for which a corresponding tree decomposition with O(n) tree nodes is known.
Then taut angle structure can be solved for T in O(nk · 37k) time.

Because treewidth ≤ cutwidth (as shown in [3]), the latter result is more powerful. Moreover,
if we fix an upper bound on the treewidth k, there is a known linear-time algorithm to test
whether a graph has treewidth ≤ k and, if so, to compute a corresponding tree decomposition
with O(n) tree nodes [4]. Therefore Theorem 3 shows that, in the case of bounded treewidth,
we can solve taut angle structure in linear time in the input size n. That is:

Corollary 4. taut angle structure is linear-time fixed-parameter tractable, where the pa-
rameter is taken to be the treewidth of the face pairing graph of the input triangulation.

For 3-manifold triangulations the treewidth of Γ(T ) is a natural parameter, and there are
well-known families of triangulations for which the treewidth remains small. Moreover, our
fixed-parameter tractability result is consistent with experimental observations from running
other, more complex algorithms over small-treewidth triangulations. We discuss these issues
further in Section 5.

Throughout this paper we work in the word RAM model, where simple arithmetical opera-
tions on (log n)-bit integers are assumed to take constant time.

2 Preliminaries

2.1 Triangulations

By a 3-manifold triangulation, we mean a collection of n abstract tetrahedra, some or all of
whose faces are affinely identified or “glued together” in pairs. As a consequence of these face
gluings, many tetrahedron edges may become identified together; we refer to the result as a
single edge of the triangulation, and likewise with vertices.

This is a purely combinatorial definition: there are no geometric constraints (such as embed-
dability in some Rd), and the result need not be a simplicial complex. We may glue together
two faces of the same tetrahedron if we like. A single edge of the triangulation might appear as
multiple edges of the same tetrahedron, and likewise with vertices. It is common to work with
one-vertex triangulations, where all vertices of all tetrahedra become identified as a single point.
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The only constraints are the following. Each tetrahedron face must be identified with one
and only one partner (we call these internal faces), or with nothing at all (we call these boundary
faces). Moreover, no edge may be identified with itself in reverse as a result of the face gluings.
Any edge on a boundary face is called a boundary edge, and all others are called internal edges.

The link of a vertex V of the triangulation is the frontier of a small regular neighbourhood
of V . If the link of V is a closed surface but not a sphere, we call V an ideal vertex. Any
triangulation with one or more ideal vertices is called an ideal triangulation.

Although the neighbourhood of an ideal vertex is not locally R3 (and so ideal triangulations
do not represent 3-manifolds per se), topologists often use ideal triangulations as an econom-
ical way to represent 3-manifolds with boundary (obtained by truncating the ideal vertices)
or non-compact 3-manifolds (obtained by deleting the ideal vertices). Because of this, ideal
triangulations are ubiquitous in the study of hyperbolic 3-manifolds.

C

D

A

B

G

H

E

F

(a) (b)

Figure 1: The figure eight knot complement and its face pairing graph

Figure 1(a) illustrates Thurston’s famous ideal triangulation of the figure eight knot com-
plement [33]. There are n = 2 tetrahedra, labelled ABCD and EFGH , with the following face
gluings:

ABC ←→ FGE ; ABD ←→ HEF ; ACD ←→ HEG ; BCD ←→ GHF .

As a consequence of these face gluings, we obtain two edges of the triangulation, indicated by
the two types of arrowhead in the diagram. All vertices of all tetrahedra become identified as a
single ideal vertex of the triangulation, whose link is a torus. It can be shown that truncating
this vertex does indeed yield the figure eight knot complement (i.e., the 3-manifold with torus
boundary obtained by deleting a small neighbourhood of the figure eight knot from the 3-
sphere).1

The size of a triangulation is measured by the number of tetrahedra n. To input a trian-
gulation, one presents the list of face gluings (as illustrated above), which requires O(n log n)
bits.

2.2 Taut angle structures

Let T be a 3-manifold triangulation with no boundary faces. A taut angle structure on T assigns
interior angles {0, 0, 0, 0, π, π} to the six edges of each tetrahedron of T , so that the two π angles
are opposite in each tetrahedron, and so that around each edge of the triangulation the sum

1To highlight the efficiency of ideal triangulations: the smallest known non-ideal triangulation of the figure
eight knot complement (using boundary faces instead of an ideal vertex) requires n = 10 tetrahedra.
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of angles is 2π. Geometrically, a taut structure shows how the tetrahedra can be consistently
“flattened” throughout the triangulation. Here we use the nomenclature of Hodgson et al. [15]—
our taut angle structures are slightly more general than the original taut structures of Lackenby
[22], who also requires consistent coorientations on the 2-faces of the triangulation.

To illustrate, we can place a taut angle structure on Figure 1(a) by assigning π to the opposite
edges AC and BD of the first tetrahedron, and to the opposite edges EG and FH of the second
tetrahedron. It is easily seen that both edges of the triangulation (the single arrowheads versus
the double arrowheads) receive the angle π exactly twice each.

We refer to the two π edges in each tetrahedron as marked. Combinatorially, a taut structure
simply involves choosing two opposite edges of each tetrahedron to mark, in such a way that
every edge of the triangulation is marked exactly twice.

A simple Euler characteristic calculation shows that, in a triangulation with no boundary
faces, a taut angle structure can only exist if every vertex link is a torus or a Klein bottle. That
is, taut angle structures require ideal triangulations.

Here we generalise this definition to support triangulations with boundary (which become
important as we piece together triangulations for our NP-completeness proof). If T is any
3-manifold triangulation (with or without boundary faces), then a taut angle structure on T
involves choosing two opposite edges of each tetrahedron to mark, so that every internal edge
of the triangulation is marked exactly twice, and every boundary edge of the triangulation is
marked at most twice.

Let T and T ′ be 3-manifold triangulations for which T is a subcomplex of T ′ (i.e., T ′ is
obtained from T by adding new tetrahedra and/or additional face gluings). If τ and τ ′ are taut
angle structures on T and T ′ respectively, we say that τ ′ extends τ if they both assign the same
interior angles to the tetrahedra from T (i.e., the tetrahedra that belong to both triangulations).

2.3 Face pairing graphs

The face pairing graph of a 3-manifold triangulation T , denoted Γ(T ), is the multigraph whose
nodes represent tetrahedra, and whose arcs represent pairs of tetrahedron faces that are glued
together. A face pairing graph may contain loops (if two faces of the same tetrahedron are
glued together), and/or multiple edges (if two tetrahedra are joined together along more than
one face).

If every face of T is internal, then Γ(T ) is a 4-valent graph. Figure 1(b) shows the face
pairing graph of the figure eight knot complement as presented in Figure 1(a).

In our parameterised complexity analysis, we measure both the cutwidth and the treewidth
of Γ(T ). These concepts are defined as follows [9, 20]:

Definition (Cutwidth). A cut of a graph G is a partition of its nodes into two disjoint subsets
N1 and N2. The set of arcs with one endpoint in N1 and the other in N2 is called the cutset,
and the number of arcs in the cutset is referred to as the width of the cut (N1, N2).

The cutwidth of G is the smallest k for which there exists an ordering (or layout) ν1, . . . , νn
of the nodes of G such that the width of every cut ({ν1, . . . νi}, {νi+1, . . . νn}) is at most k.

Definition (Treewidth). A tree decomposition of a graph G is a tree T and a collection of bags
{Xi | i is a node of T}. Each bag Xi is a subset of nodes of G, and we require: (i) every node
of G is contained in at least one bag Xi; (ii) for each edge of G, some bag Xi contains both its
endpoints; and (iii) for all nodes i, j, k of T , if j lies on the unique path from i to k in T , then
Xi ∩Xk ⊆ Xj .
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The width of a tree decomposition is defined as max |Xi| − 1, and the treewidth of G is the
minimum width over all tree decompositions.

In essence, cutwidth measures the worst “bottleneck” of parallel arcs in an optimal left-to-
right layout of nodes that is chosen to make this bottleneck as small as possible, and treewidth
measures how farG is from being a tree (in particular, a tree always has treewidth 1). Bodlaender
shows that cutwidth ≥ treewidth [3]; on the other hand, there are graphs with bounded treewidth
and arbitrarily large cutwidth, and so these two parameters measure genuinely different features.

Computing cutwidth and treewidth are both NP-complete [2, 12]. However, for fixed k it
can be decided in linear time whether a given graph has cutwidth ≤ k and/or treewidth ≤ k
[4, 32].

3 NP-completeness

In this section we prove Theorem 1, i.e., that taut angle structure is NP-complete. As
stated earlier, we do this using a reduction from the NP-complete problem monotone 1-in-3-
sat [30].

The overall structure of the proof is as follows. Throughout this section, let M be a given
instance of monotone 1-in-3 sat, with t variables x1, . . . , xt, and c clauses each of the form
xi ∨ xj ∨ xk. We say that M is solvable if and only if there is some assignment of true/false
values to the variables so that exactly one of the three terms in each clause is true.

Our strategy is to build a corresponding triangulation TM that has a taut angle structure if
and only ifM is solvable. We build TM by hooking together three types of gadgets, all of which
are triangulations with boundary faces: (i) variable gadgets, each with two choices of taut angle
structure that represent true or false respectively for a single variable xi ofM; (ii) fork gadgets
that allow us to propagate this choice for xi to several clauses simultaneously; and (iii) clause
gadgets that connect three variable gadgets and support an overall taut angle structure if and
only if precisely one of the three corresponding variable choices is true.

These gadgets have 2, 21 and 4 tetrahedra respectively, and we describe and analyse them
in Sections 3.1, 3.2 and 3.3. We then finish off the proof of Theorem 1 in Section 3.4, which is
a simple matter of hooking the gadgets together and observing that the entire construction can
be done in polynomial time.

We hook the gadgets together along tori: each such torus consists of two faces, three edges
and one vertex. To facilitate lemmas and proofs, we assign types a, b and c to the three edges
of each such torus Θ, as illustrated in Figure 2 (we explicitly describe these edge types for each
gadget).

b b

a

a

c

Figure 2: A two-face torus Θ with edge types a, b and c

For any taut angle structure τ , the boundary pattern of τ on the torus Θ is the triple
(ma,mb,mc), where ma, mb and mc count the number of markings on the edges of type a, b
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and c respectively. By definition of a taut angle structure, each of ma,mb,mc ∈ {0, 1, 2}. We use
boundary patterns to represent true/false values of variables inM: in particular, the boundary
pattern (2, 0, 0) represents true, and the boundary pattern (0, 2, 0) represents false.

3.1 The variable gadget

A variable gadget is a triangulation with torus boundary that has precisely two taut angle
structures: one with boundary pattern (2, 0, 0) (representing true), and the other with boundary
pattern (0, 2, 0) (representing false). We first define the gadget, and then prove the necessary
properties.

The construction is simple: we use a (1, 3, 4) layered solid torus, a two-tetrahedron instance
of a more general and much-studied family of solid torus triangulations [17]. The details are as
follows.

Construction (Variable gadget). To build a variable gadget, we begin with the tetrahedron ∆1

whose vertices are labelled A,B,C,D, and we identify faces ABD and BDC (the rear faces in
the diagram). This is the well-known one-tetrahedron triangulation of the solid torus [5, 17], and
has three boundary edges AB = BD = DC ; AD = BC ; and CA, as illustrated in Figure 3(a).

D

C

B

A

(a)

H

G F

E

a
a

b

b

c

a

a

c

b

(b)

Figure 3: Building a variable gadget

We now take a second tetrahedron ∆2 with vertices labelled E,F,G,H, and glue the re-
maining boundary faces of ∆1 to ∆2 by identifying ABC with EFH and ACD with FGH as
indicated in Figure 3(b). This is the two-tetrahedron (1, 3, 4) layered solid torus, with three
boundary edges and one internal edge. On the boundary we assign edge types a→ AB = BD =
DC = EF = HG ; b→ CA = HE = GF ; and c→ EG . For completeness, the one internal edge
is AD = BC = FH .

Observation 5. The variable gadget is a layered solid torus, as described in [17]. In particular,
it has just one vertex, whose link is a disc, and its two boundary faces join together to form a
torus.

These properties are true of any layered solid torus; see [5, 17] for more information on the
general layered solid torus construction (the details of which are not important here). All of the
claims above can also be verified computationally using the software package Regina [6, 8].

Lemma 6. The variable gadget supports precisely two taut angle structures: one with boundary
pattern (2, 0, 0), and one with boundary pattern (0, 2, 0).

We give a theoretical proof here; however, again this is easy to verify computationally using
Regina, which can enumerate all taut angle structures on a given triangulation.
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Proof. Consider the internal edge AD = BC = FH . Since edges AD and BD are opposite in
tetrahedron ∆1, the only way to mark this internal edge twice is to mark edges AD and BC of
tetrahedron ∆1, and to not mark edge FH in tetrahedron ∆2.

Therefore our choice for ∆1 is forced, and we are left with two options for what to mark in ∆2.
We could either mark EF and HG , which yields a taut angle structure with boundary pattern
(2, 0, 0), or we could mark EH and FG , which yields a taut angle structure with boundary
pattern (0, 2, 0).

3.2 The fork gadget

A fork gadget is a triangulation that allows us to duplicate a variable xi from our monotone
1-in-3 sat instance M. Specifically, we can attach a fork gadget to some boundary torus Θ of
some triangulation T with a taut angle structure τ ; as a result it produces two new boundary
tori that both inherit the same boundary pattern with which τ meets Θ. The details are as
follows.

Construction (Fork gadget). To build a fork gadget, we begin with an annular prism; that
is, the prism over a disc with a hole cut out of the centre, as illustrated in Figure 4(a). We
triangulate this prism with 21 tetrahedra: the precise triangulation is important, and is spelled
out explicitly in the appendix. As a consequence, this triangulates the outer cylinder with four
triangles and four vertices A,B,C,D, and triangulates the inner cylinder with two triangles and
two vertices E,F .

We then glue the top of the prism to the bottom, effectively creating a “hollow” solid torus;
that is, a manifold with a torus boundary component on the outside and another torus boundary
component on the inside. We assign edge types a, b, c to the three edges of the inner torus, and
also to the six edges of the outer torus; the precise labellings are shown in Figure 4(b).

A

C

E

F

B

D

(a)

A

C

E

F

B

D

a
a

a

a

c

c

b

b

c

c

a

b

(b)

Figure 4: Building a fork gadget

Lemma 7. Let T be a 3-manifold triangulation, two of whose boundary faces form a two-triangle
torus Θ with the usual a, b, c edge types. Let T ′ be the new triangulation obtained by attaching a
fork gadget to Θ along the right-hand side of the outer torus of the fork gadget, as illustrated in
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Figure 5(a), so that the edge types a, b, c match. Then T ′ is a 3-manifold triangulation with four
new boundary faces that form two disjoint two-triangle tori Θ′,Θ′′, as illustrated in Figure 5(b).

A

C

B

D

a

a

c

c
b

c

c

b

a

a

Θ

T

(a)

Θ

Θ′

Θ′′

T

(b)

Figure 5: Attaching a fork gadget to the 3-manifold triangulation T

Let τ be a taut angle structure on T that meets the original boundary torus Θ in one of the
patterns (2, 0, 0) or (0, 2, 0). Then we can extend τ through the fork gadget to obtain a taut angle
structure τ ′ on T ′. Moreover, every such extension τ ′ meets the new boundary tori Θ′,Θ′′ in
the same boundary pattern with which τ meets Θ.

In other words: a fork gadget allows us to duplicate a boundary torus in a way that also
duplicates the boundary patterns of taut angle structures. Because the fork gadget contains
21 tetrahedra, a theoretical analysis of the possible taut angle structures would be onerous;
therefore we use the software package Regina to assist with our analysis.

Proof. It is simple to see that the new triangulation T ′ satisfies our conditions for a 3-manifold
triangulation: the only new edge identification that results from the gluing the fork gadget
to the torus Θ is that the vertical edges AC and BD on the outer cylinder become identified
together (note that the upper right-hand edge AB and the lower right-hand edge CD are already
identified, and the gluing to Θ is consistent with this). In particular, no edge becomes glued to
itself in reverse.

The inner cylinder (with vertices E = F ) remains unchanged, and becomes the first new
torus boundary component Θ′ (recall again that the upper edge of the inner cylinder is already
glued to the lower edge within the fork gadget). As the vertical edges AC and BD become
identified, the two remaining faces on the left-hand side of the outer cylinder form a second
boundary torus Θ′′, with one horizontal edge a → AB = CD , one diagonal edge b → AD , and
one vertical edge c→ AC = BD .

We now examine how the taut structure τ can be extended through the fork gadget. By
entering Table 3 as a triangulation into the software package Regina [6, 8]2 and enumerating
all taut angle structures, we find that the fork gadget has precisely four taut angle structures
τ1, τ2, τ3, τ4. Table 1 lists the number of times that each τi marks each edge on the inner and

2Readers are welcome to download Regina and try this for themselves. However, a word of caution: Regina
numbers its tetrahedra and vertices starting from 0, not 1. Therefore all tetrahedron labels and all vertex numbers
in Table 3 must be reduced by 1.
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Edge τ1 τ2 τ3 τ4
Inner cylinder
Vertical edge (a) 0 0 2 2
Diagonal edge (b) 2 2 0 0
Horizontal edge (c) 0 0 0 0
Outer cylinder
Horizontal left edge (a, on Θ′′) 1 0 2 1
Horizontal right edge (a, meets Θ) 1 2 0 1
Diagonal left edge (b, on Θ′′) 1 2 0 1
Diagonal right edge (b, meets Θ) 1 0 2 1
Vertical front edge (c→ AC ) 0 0 0 0
Vertical rear edge (c→ BD) 0 0 0 0

Table 1: Edge markings from the four taut angle structures on the fork gadget

outer cylinder of the fork gadget; the edges are identified by their labels as shown in Figures 4(b)
and 5(a).

From here the proof is a simple matter of chasing edge markings around the diagram.

• Suppose that τ meets the torus Θ in the boundary pattern (2, 0, 0).

Consider edge a on the torus Θ, which becomes an internal edge of the final triangulation
T ′. Since edge a on Θ already has two markings, and since this edge is joined to the
horizontal right edge a on the outer cylinder of the fork gadget, this latter edge must have
zero markings within the fork gadget. This means that the only compatible taut angle
structure within the fork gadget is τ3.

Likewise, edge b on the torus Θ becomes an internal edge of T ′. Since edge b on Θ has no
markings, it requires two markings from within the fork gadget; we see from Table 1 that
τ3 provides this as required.

The vertical edge c on the torus Θ becomes the boundary edge c of the new boundary
torus Θ′′. Since this edge receives no markings from either Θ or τ3, it has no markings in
the final triangulation T ′.
This shows that combining τ3 with τ gives us a taut angle structure on T ′; that is, τ can
indeed be extended through the fork gadget (and this is the only one way of doing so).
We now examine the boundary patterns that arise on the new boundary tori Θ′ and Θ′′.

We have already seen above that edge c on the torus Θ′′ receives no markings at all. The
remaining edges of Θ′ and Θ′′ are all new to the fork gadget, and so any markings on
them must come from τ3. Reading these figures from Table 1, we see that the inner torus
Θ′ receives a final boundary pattern of (2, 0, 0), and the outer torus Θ′′ likewise receives a
final boundary pattern of (2, 0, 0).

• Suppose instead that τ meets the torus Θ in the boundary pattern (0, 2, 0).

We can follow a similar argument as before. This time edge b on Θ already has two
markings, and so the diagonal right edge b on the outer cylinder of the fork gadget must
have no markings within the fork gadget, forcing us to choose τ2. As before we see that
the markings from τ2 are consistent on the gluing torus Θ, and leave the new boundary
tori Θ′ and Θ′′ with boundary patterns (0, 2, 0) and (0, 2, 0) respectively.
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Therefore any such taut angle structure τ on T can be extended through the fork gadget,
and the resulting boundary patterns on both new tori Θ′ and Θ′′ will be identical to the original
boundary pattern on Θ.

Remark. Constructing the fork gadget, and in particular finding the “right” triangulation
of the annular prism, was the most difficult aspect of this paper. It involved an interplay
between theory and computation, and the triangulation includes substructures explicitly tailored
to eliminate unwanted extensions of τ . See the full version of this paper for details.

3.3 The clause gadget

A clause gadget represents a clause xi ∨ xj ∨ xk from our monotone 1-in-3 sat instance M.
We can attach it to three boundary tori of some triangulation T with a taut angle structure τ ,
and τ will only extend through the clause gadget if exactly one of its boundary patterns on the
tori is (2, 0, 0) (true), and the other two are (0, 2, 0) (false). The details are as follows.

Construction (Clause gadget). To build a clause gadget, we begin with a two-triangle torus
ABCD and cone it to a point using two tetrahedra, as illustrated in Figure 6(a) (so the upper
and lower faces ABX and DCX are joined, as are the left and right faces ADX and BCX). This
makes the cone point X an ideal vertex (its link is a torus). There are two boundary faces
remaining (at the front of the diagram); to each we attach a new tetrahedron, as shown in
Figure 6(b). We now have six boundary faces that together form a torus, which concludes our
construction.

D C

BA

X

(a) (b)

U

T

S

R

P

Q

Y

(c)

Figure 6: Building a clause gadget

For convenience, Figure 6(c) presents this same boundary torus as a hexagon PQRSTU ; this
will make the attaching process easier to describe in Lemma 8 below.

Lemma 8. Let T be a 3-manifold triangulation (possibly disconnected), six of whose boundary
faces form three disjoint two-triangle tori Θ1, Θ2, Θ3 each with the usual a, b, c edge types. Let
T ′ be the new triangulation obtained by attaching these three tori to a clause gadget along the
rectangles PQRY , RSTY and TUPY respectively, as illustrated in Figure 7; in particular, so
the type a edges join to PR, RT and TP, and the type b edges join to QR and PY for Θ1, ST
and RY for Θ2, and UP and TY for Θ3. Then T ′ is a 3-manifold triangulation.

Let τ be a taut angle structure on T that meets each torus Θ1,Θ2,Θ3 in one of the patterns
(2, 0, 0) or (0, 2, 0). Then we can extend τ through the clause gadget to obtain a taut angle
structure τ ′ on T ′ if and only if exactly one of these three boundary patterns is (2, 0, 0).
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c
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Figure 7: Attaching a clause gadget to three boundary tori of T

We give a theoretical proof here, but again this can also be verified computationally.

Proof. Once again it is simple to see that T ′ satisfies our conditions for a 3-manifold triangula-
tion: as a result of the torus gluings, we obtain new edge identifications on the clause gadget as
follows: QP = RY = ST ; QR = PY = UT ; and RS = YT = PU . None of these identifications
cause an edge to be glued to itself in reverse.

Now let τ be a taut angle structure on T as described in the statement of the lemma. We
examine how we might extend τ through the clause gadget.

• Consider the three edges AB , BC and CA. These become three distinct internal edges
after the gluings, and so they require six markings between them. However, every pair
of opposite edges in every tetrahedron from the clause gadget only includes one of these
three edges, and so between them these three edges can only receive at most four markings
from within the clause gadget itself.

Therefore edges AB , BC and CA must receive at least two markings from the external
structure τ . Since AB , BC and CA are all joined to edges of type a on the tori Θ1,Θ2,Θ3,
it follows that at least one of the boundary patterns on these three tori must be (2, 0, 0).

• Now consider the three edges QP = RY = ST , QR = PY = UT and RS = YT = PU .
Again these become three distinct internal edges after the gluings, and so again they require
six markings between them. However, this time they can only receive two markings from
within the clause gadget: these edges do not meet the “cone tetrahedra” from Figure 6(a)
at all, and the two tetrahedra that we attach in Figure 6(b) feature these edges only once
for any pair of opposite edges.

Therefore edges QP = RY = ST , QR = PY = UT and RS = YT = PU need at least
four markings between them from the external structure τ . Since these edges are all joined
to edges of types b and c on the tori Θ1,Θ2,Θ3, it follows that at least two of the boundary
patterns on these tori must be (0, 2, 0).

We have now established that, if there is any hope to extend τ through the clause gadget,
exactly one of the three boundary patterns on the three tori Θ1, Θ2 and Θ3 must be (2, 0, 0).
We must still show that such an extension is possible.

Our clause gadget is symmetric, and so without loss of generality we can suppose that τ meets
Θ1 in the boundary pattern (2, 0, 0), and meets Θ2 and Θ3 in the boundary pattern (0, 2, 0).
We mark edges within the clause gadget as follows: for the “cone tetrahedra” in Figure 6(a),
we mark edge pairs AB/CX and DC/AX . For each of the two tetrahedra that we attach in
Figure 6(b), we mark AC and the corresponding opposite edge.
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From here it is a simple matter to follow the edge markings through the clause gadget and
verify that every edge of the clause gadget receives exactly two markings in total; that is, τ can
indeed be extended through the clause gadget as required.

3.4 Proving Theorem 1

Now that we are equipped with our various gadgets, we can prove Theorem 1, i.e., that taut
angle structure is NP-complete.

In summary: we build a variable gadget for each variable xi of M, duplicate its boundary
torus using fork gadgets until we have one “copy” for each time xi occurs in a clause of M,
and then hook these boundary tori together using clause gadgets. Lemmas 6, 7 and 8 together
ensure that the resulting triangulation (which is indeed orientable with no boundary faces) has
a taut angle structure if and only if M is solvable. The full details are as follows.

Proof. First we note that taut angle structure is clearly in NP: if a taut angle structure
exists, then the corresponding edge markings form a linear-sized certificate that is simple to
verify in small polynomial time.

To show that taut angle structure is NP-complete, we give a polynomial reduction
from monotone 1-in-3 sat. Let M be an instance of monotone 1-in-3 sat, as described
at the beginning of Section 3, with t variables x1, . . . , xt, and with c clauses each of the form
xi∨xj∨xk. For simplicity we assume that each variable appears in at least one clause (otherwise
it can be harmlessly removed). We build a corresponding triangulation TM as follows:

(i) For each variable xi, we construct a variable gadget Vi.

(ii) For each variable xi, suppose that xi appears ni times in total amongst the clauses of M
(so

∑
ni = 3c). Beginning with Vi, we attach a fork gadget to the boundary torus of Vi,

then attach another fork gadget to one of the new boundary tori and so on, until we have
attached ni − 1 fork gadgets in total. Each time we attach a fork gadget we ensure that
the boundary edge labels a, b, c match, as described in Lemma 7. The result is a connected
triangulation with ni distinct two-triangle boundary tori; we denote this triangulation by
Wi.

(iii) For each clause xi ∨ xj ∨ xk, we construct a clause gadget and attach one of the boundary
tori from Wi, one of the boundary tori from Wj , and one of the boundary tori from Wk.
Again we ensure that the boundary edge labels a, b, c match, as described in Lemma 8.

By Observation 5 and Lemmas 7 and 8, the resulting object TM is a 3-manifold triangulation;
moreover, it is simple to see from the construction that TM is orientable and has no remaining
boundary faces. The total number of tetrahedra in TM is 2t+ 21

∑t
i=1(ni− 1) + 4c = 67c− 19t,

and the construction is easy to perform in small polynomial time in t and c.
All that remains is to show that TM has a taut angle structure if and only if M is solvable:

• Suppose that M is solvable. By Lemma 6, we can assign a taut angle structure to each
Vi with boundary pattern (2, 0, 0) or (0, 2, 0) according to whether xi is true or false
respectively. By Lemma 7, this extends to a taut angle structure on each Wi where every
boundary pattern on Wi is (2, 0, 0) or (0, 2, 0) according to whether xi is true or false
respectively. Finally, because each clause contains exactly one true variable, Lemma 8
shows that these taut angle structures extend through the clause gadgets, giving a taut
angle structure on the full triangulation TM.
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• Suppose that TM has a taut angle structure τ . By Lemma 6, restricting τ to each variable
gadget Vi must give one of the boundary patterns (2, 0, 0) or (0, 2, 0); we set the corre-
sponding variable xi to true or false accordingly. For each i, Lemma 7 shows that τ must
meet every boundary torus of Wi in the same pattern as for Vi; that is, (2, 0, 0) if we set xi
to true, or (0, 2, 0) if we set xi to false. Finally, because we know that τ extends through
the clause gadgets, Lemma 8 shows that each clause must have exactly one variable xi set
to true; that is, M is solvable.

Therefore our construction is indeed a polynomial reduction from monotone 1-in-3 sat to
taut angle structure, and so taut angle structure is NP-complete.

4 Fixed-parameter tractability

So far we have shown that detecting taut angle structures is hard in general. However, in practice
running times are often surprisingly fast. This leads us to the natural question of whether the
running time can be improved if we restrict ourselves to more specific classes of triangulations.

The way we approach this question here is to prove that taut angle structure is fixed-
parameter tractable in both the cutwidth and the treewidth of the face pairing graph of the
triangulation. The precise results are given by Theorem 2 (for cutwidth) and Theorem 3 (for
treewidth), both of which we restate below. In this section we give full proofs for both of these
theorems.

Note that the precise running times given here (parameterised by both the number of tetra-
hedra n and the cutwidth/treewidth k) assume that we are given extra information alongside
our triangulation: for Theorem 2 we assume a left-to-right ordering (or layout) of nodes that
corresponds to a cutwidth of ≤ k, and for Theorem 3 we assume a tree decomposition of width
≤ k with O(n) tree nodes. In contrast, Corollary 4 (that taut angle structure is linear-time
fixed-parameter tractable in the treewidth) does not require any such information, since in the
setting of bounded treewidth we can use the algorithm of Bodlaender [4] to compute such a tree
decomposition in time linear in n.

In both proofs we assume that we have access to the full skeleton of the triangulation T (i.e.,
we know which tetrahedron edges are identified and which tetrahedron vertices are identified);
such information is easily computed using linear time depth-first search techniques.

4.1 Bounded cutwidth: Proving Theorem 2

Theorem 2. Let T be a 3-manifold triangulation with n tetrahedra, where the graph Γ(T ) has
cutwidth ≤ k, and for which a corresponding layout of nodes is known. Then taut angle
structure can be solved for T in O(nk · 33k/2) time.

Proof. Let the given layout of nodes of the face pairing graph Γ(T ) be v1, . . . , vn, so that no cut
Ci = ({v1, . . . , vi}, {vi+1, . . . , vn}) has width more than k.

Recall that every node vi of Γ(T ) corresponds to a tetrahedron ∆vi of the triangulation T ,
and that every arc in the cutset for Ci is an arc of Γ(T ), and represents a triangle of T .

Following a dynamic programming approach, we define sub-triangulations T1, . . . , Tn, where
the sub-triangulation Ti contains only the tetrahedra ∆v1 , . . . ,∆vi . We maintain all face gluings
between these tetrahedra, but if a tetrahedron ∆vx is glued to a tetrahedron ∆vy in the full
triangulation T with x ≤ i < y, then this will simply appear as a boundary face of ∆vx in Ti.
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A triangulation Ti might contain “pinched edges”, which occur when multiple edges on the
boundary of the sub-triangulation Ti correspond to the same edge of T (see edge e in Figure 8).
We happily accept such anomalies and consider these edges identical in Ti; as a result the number
of edges on the boundary of Ti is at most (but might not be equal to) 3/2 the number of faces.

e

Figure 8: A pinched edge in the boundary of Ti

By construction, every boundary face of Ti corresponds to an arc in the cutset Ci, and so
it follows that Ti has ≤ k boundary faces and thus ≤ 3k/2 boundary edges. Since any taut
angle structure on Ti must mark each boundary edge 0, 1 or 2 times, there can be at most 33k/2

different patterns of markings on the boundary of Ti that correspond to taut angle structures
on Ti.

Following our dynamic programming strategy, we work through the triangulations in the
order T1, . . . , Tn, and for each i we compute precisely which boundary marking patterns on Ti
correspond to taut angle structures on Ti:

• For T1 we simply try all three choices of markings on the tetrahedron ∆v1 , identify which
of these form a taut angle structure on T1, and store the resulting marking patterns on
the boundary.

• For Ti, we consider each of the ≤ 33k/2 boundary marking patterns on Ti−1 that yields
a taut angle structure on Ti−1, and attempt to combine these with each of the three
choices of markings on the new tetrahedron ∆vi . We discard any combination that marks
an edge more than twice, or that marks an internal edge less than twice; the remaining
combinations yield taut angle structures on Ti, and we store them in our solution set for
Ti. See Figure 9 for an illustration of this procedure.

v1 v2 vi−2 vi−1

vi

vi+1

≤ 33k/2 marking patterns times

3 choices for tetrahedron i

Figure 9: Finding taut angle structures under bounded cutwidth

Since the final triangulation Tn = T has no boundary faces (and hence no boundary edges),
the full triangulation T has a taut angle structure if and only if the solution set for Tn contains
the empty marking pattern (as opposed to no marking patterns at all).
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Taking into account that in each step the number of boundary patterns to consider is at
most 33k/2, that there are only three choices of markings for the tetrahedron ∆vi , and that we
can update and test each boundary marking pattern in O(k) time, it follows that each step can
be performed in O(k ·33k/2) time overall. The total running time for all n steps of the algorithm
is therefore O(nk · 33k/2).

4.2 Bounded treewidth: Proving Theorem 3

Theorem 3. Let T be a 3-manifold triangulation with n tetrahedra, where the graph Γ(T ) has
treewidth ≤ k, and for which a corresponding tree decomposition with O(n) tree nodes is known.
Then taut angle structure can be solved for T in O(nk · 37k) time.

Proof. Here we adopt a similar approach to before, but this time we do our dynamic program-
ming over a tree.

Recall that each node ν of the tree corresponds to a bag of nodes in Γ(T ); that is, a bag of
tetrahedra. We arbitrarily choose a root for the tree, so that the tree becomes a hierarchy of
subtrees as illustrated in Figure 10.

µ1 µ2 . . . µd

ν

Figure 10: Dynamic programming over a tree decomposition

As in the taut angle structure problem statement, we assume that T has no boundary
faces. For each node ν of the tree, we define the sub-triangulation Tν by considering only
those tetrahedra that appear only in bags within the subtree rooted at ν; that is, we exclude
any tetrahedron that appears in any bag outside this subtree. As in the previous proof, we
maintain all face gluings between these tetrahedra; however, if a tetrahedron ∆ ∈ Tν is glued
to a tetrahedron ∆′ /∈ Tν in the full triangulation T then this will simply appear as a boundary
face of ∆ in Tν . Once again a triangulation Tν might contain “pinched edges”; again we happily
accept such anomalies and consider these edges identical in Tν , which means that the number of
edges on the boundary of Tν is at most (but not necessarily equal to) 3/2 the number of faces.

We now make a series of observations:

(i) Each sub-triangulation Tν has at most 4(k+1) boundary faces and at most 6(k+1) boundary
edges.

If ν is the root node then this is trivial (since Tν = T contains no boundary faces at
all). Otherwise, let η be the parent node of ν in the tree. Any boundary face of Tν
must correspond to some gluing between tetrahedra ∆ ∈ Tν and ∆′ /∈ Tν , which in turn
corresponds to some arc α in the face pairing graph. Because ∆ only appears in bags
within the subtree rooted at ν, and because one of these bags must contain both endpoints
of the arc α, it follows that ∆′ appears in some bag within the subtree at ν also.
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By the definition of tree decomposition, since ∆′ appears in some bag within the subtree
at ν and also in some bag outside this subtree, it must also appear in the bag at the parent
node η. There are ≤ k+ 1 tetrahedra in the bag at η and so ≤ 4(k+ 1) possibilities for the
face of ∆′ that is joined to ∆. Therefore there are ≤ 4(k + 1) such boundary faces of Tν .

Finally, since the number of edges on the boundary surface is ≤ 3/2 the number of faces,
Tν has ≤ 6(k + 1) boundary edges.

(ii) Suppose the tree node ν has child nodes µ1, . . . , µd, as illustrated in Figure 10. Then no
two triangulations Tµi , Tµj have any tetrahedra in common.

This is true by definition of Tµi
, since no tetrahedron in Tµi

can appear in the subtree
rooted at µj (which lies outside the subtree rooted at µi).

(iii) Suppose the tree node ν has child nodes µ1, . . . , µd, as illustrated in Figure 10. Then the
triangulations Tµ1 , . . . , Tµd

have ≤ 4(k + 1) boundary faces in total. Moreover, they have
≤ 6(k+ 1) boundary edges in total, even if we count each edge repeatedly for each Tµi

that
contains it.

As in the argument for (i) above, each boundary face of each triangulation Tµi
corresponds

to a face of some tetrahedron ∆′ in the bag at the parent node ν. Moreover, from (ii)
the triangulations Tµi contain distinct tetrahedra, and so each such boundary face can
only appear in one of the Tµi . Therefore the triangulations Tµ1 , . . . , Tµd

have ≤ 4(k + 1)
boundary faces between them, and these boundary faces are all distinct.

From above, each Tµj
has at most 3/2 as many boundary edges as it has boundary faces.

It therefore follows that Tµ1
, . . . , Tµd

have ≤ 6(k+ 1) boundary edges between them, even
if we count repeated edges multiple times.

Our algorithm for solving taut angle structure is based on dynamic programming over
the tree, and operates as follows. For each triangulation Tν , we compute the number of marking
patterns on the boundary of Tν that correspond to taut angle structures on Tν . Since there are
≤ 6(k + 1) boundary edges on Tν , there are ≤ 36(k+1) such possible marking patterns.

We work our way from the leaves of the tree up to the root, computing these boundary
patterns on each triangulation Tν as we go:

• If ν is a leaf node, we simply try all 3k+1 possible markings on the ≤ k + 1 tetrahedra in
the bag at ν, which takes O(3k+1) time. For each combination that yields a taut angle
structure, we record the corresponding marking pattern on the boundary.

• If ν is not a leaf node then let µ1, . . . , µd be its immediate children in the tree, as illustrated
in Figure 10. Let T ′ be the (possibly disconnected) triangulation obtained by combining
the tetrahedra from Tµ1

, . . . , Tµd
.

For each combination of boundary marking patterns on Tµ1
, . . . , Tµd

, we combine these into
a single boundary marking pattern on T ′ (if any boundary edges are repeated then we sum
the corresponding markings). By observation (iii) above, we can form each such combina-
tion in O(k) time. If each Tµi has bi boundary edges, the total number of combinations
that we form is ≤ 3b1 . . . 3bd = 3b1+...+bd ≤ 36(k+1).

We discard any combination that marks a boundary edge more than twice in total, or that
marks an internal edge less than twice. Any combination b′ that survives must correspond
to a taut angle structure on T ′ (we simply combine the taut angle structures on each Tµi ,
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which we can do because the Tµi
have no tetrahedra in common). We now combine b′

with all possible markings on the new tetrahedra in Tν that are not already present in T ′;
there are ≤ k+ 1 new tetrahedra because they must all belong to the bag at ν. Again we
discard combinations that mark an edge more than twice, or that mark an internal edge
less than twice; any combination that remains must arise from a taut angle structure on
Tν , whereupon we add its boundary marking pattern to our solution set.

In summary, we obtain ≤ 36(k+1) marking patterns on T ′ which we combine with 3k+1

choices of markings for the new tetrahedra in Tν , giving a grand total of ≤ 37(k+1) combi-
nations overall. Adding in a factor of k to merge marking patterns and test for bad edge
markings, the overall running time of this step is O(k · 37(k+1)) = O(k · 37k).

Let ρ be the root node. Since Tρ = T has no boundary faces (and hence no boundary edges),
the full triangulation T has a taut angle structure if and only if the solution set for Tρ contains
the empty marking pattern (as opposed to no marking patterns at all). Since there are O(n)
nodes in our tree decomposition, the total running time for the algorithm is O(nk · 37k).

5 Discussion

Theorem 1 shows that even if we restrict our attention to orientable triangulations with no
boundary faces, detecting taut angle structures is still NP-complete. However, our construc-
tion creates triangulations with many ideal vertices. It would be interesting to know if this
NP-completeness result could be tightened to detecting taut angle structures on one-vertex
triangulations.

We have an explicit script that uses the software package Regina to build the triangulation
TM for a given monotone 1-in-3 sat instance M. In the full version of this paper we discuss
this script further and describe some of the 3-manifolds that it produces.

Theorems 2 and 3 help explain why taut angle structures are relatively easy to detect in prac-
tice [15]: there are many triangulations T for which Γ(T ) has small cutwidth and/or treewidth.3

In the closed setting, for instance, the conjectured minimal triangulations of many Seifert fibred
spaces have extremely small treewidth [24, 26], and common building blocks such as layered solid
tori and triangular prisms have treewidth 1 and 3 respectively. Small cutwidth and treewidth
triangulations have also been found fast to work with in other settings, such as normal surface
theory [7].

It is worth considering whether we can find a more powerful parameter than the treewidth
of the face pairing graph. In the more general setting of constraint satisfaction problems, it
is known (under certain hypotheses) that treewidth essentially yields the best algorithms [25].
In our setting, however, we are also subject to strong topological constraints that are difficult
to analyse in a purely combinatorial framework, and that may provide new opportunities for
optimisation.

Looking forward: the frameworks in this paper for NP-completeness and fixed-parameter
tractability have significant potential for use with normal surface theory, which is the central al-
gorithmic machine for solving problems such as unknot recognition, 3-sphere recognition, prime
decomposition, and many more. A key feature of both taut angle structures and normal surfaces
is that they correspond to vertices of a high-dimensional polytope subject to simple combinato-
rial constraints derived from the tetrahedra [18, 23]. Moreover, both taut angle structures and

3In contrast, there are at present no conjectured examples of manifolds that do not have small treewidth
triangulations. Such a conjecture would likely be extremely difficult to prove.
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normal surfaces can be incrementally “extended” through different sections of the triangulation
according to constraints derived from the local face gluings—a technique used throughout this
paper.

Although normal surfaces are more numerous and more difficult to work with, this common
foundation gives us hope that the techniques developed here could, with further research, be
used to tackle some of the fundamental open complexity problems in knot theory and 3-manifold
topology.

Appendix: The fork gadget

In Section 3.2 we outline the construction of the fork gadget, but we do not give the precise
21-tetrahedron triangulation of the annular prism. Here we present this 21-tetrahedron trian-
gulation in full. We refer the reader to the labels and diagrams from Section 3.2.

Table 2 lists the individual face gluings for the annular prism as shown in Figure 4(a). There
are 21 tetrahedra labelled ∆1, . . . ,∆21, and the four vertices of each tetrahedron are labelled
1, 2, 3, 4. Each row of the table represents a tetrahedron, and each column represents one of its
four faces. For instance, the top-left cell of table indicates that the face with vertices 1, 2, 3 of
tetrahedron ∆1 is glued to the face with vertices 3, 1, 2 (in that order) of tetrahedron ∆18 (the
same gluing can be seen from the other side in the fourth-last row of the table).

Face 123 Face 124 Face 134 Face 234
∆1 ∆18 : 312 ∆13 : 312 ∆18 : 324 ∆4 : 234
∆2 ∆7 : 342 ∆20 : 342 ∆20 : 312 ∆11 : 234
∆3 ∆19 : 312 ∆8 : 342 ∆16 : 321 Outer L
∆4 Outer L ∆9 : 124 Outer R ∆1 : 234
∆5 ∆16 : 342 ∆15 : 321 ∆19 : 324 Outer R
∆6 Inner ∆12 : 342 ∆21 : 312 Upper
∆7 Inner ∆11 : 132 ∆8 : 134 ∆2 : 312
∆8 ∆14 : 324 ∆14 : 321 ∆7 : 134 ∆3 : 412
∆9 Upper ∆4 : 124 Upper ∆10 : 234
∆10 ∆13 : 324 ∆11 : 124 ∆11 : 134 ∆9 : 234
∆11 ∆7 : 142 ∆10 : 124 ∆10 : 134 ∆2 : 234
∆12 ∆21 : 423 ∆13 : 124 ∆13 : 134 ∆6 : 412
∆13 ∆1 : 241 ∆12 : 124 ∆12 : 134 ∆10 : 213
∆14 ∆8 : 421 ∆15 : 124 ∆15 : 134 ∆8 : 213
∆15 ∆5 : 421 ∆14 : 124 ∆14 : 134 Lower
∆16 ∆3 : 431 ∆17 : 124 ∆17 : 134 ∆5 : 312
∆17 Lower ∆16 : 124 ∆16 : 134 Lower
∆18 ∆1 : 231 ∆19 : 124 ∆19 : 134 ∆1 : 314
∆19 ∆3 : 231 ∆18 : 124 ∆18 : 134 ∆5 : 314
∆20 ∆2 : 341 ∆21 : 124 ∆21 : 134 ∆2 : 412
∆21 ∆6 : 341 ∆20 : 124 ∆20 : 134 ∆12 : 231

Table 2: The 21-tetrahedron triangulation of the prism over the annulus
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There are 12 faces on the boundary of the annular prism: three on the upper annulus with
vertices A,B,E (marked Upper in the table); three on the lower annulus with vertices C,D, F
(marked Lower in the table); four on the outer cylinder with vertices A,B,C,D (two on the
left-hand side of the diagram marked Outer L, and two on the right-hand side of the diagram
marked Outer R), and finally two on the inner cylinder with vertices E,F (marked Inner in the
table).

The final stage of the construction is to glue the upper annulus to the lower annulus. The
result is shown in Table 3, where only six boundary faces remain (on the outer and inner
cylinders). This triangulation is the fork gadget in its entirety.

Face 123 Face 124 Face 134 Face 234
∆1 ∆18 : 312 ∆13 : 312 ∆18 : 324 ∆4 : 234
∆2 ∆7 : 342 ∆20 : 342 ∆20 : 312 ∆11 : 234
∆3 ∆19 : 312 ∆8 : 342 ∆16 : 321 Outer L
∆4 Outer L ∆9 : 124 Outer R ∆1 : 234
∆5 ∆16 : 342 ∆15 : 321 ∆19 : 324 Outer R
∆6 Inner ∆12 : 342 ∆21 : 312 ∆15 : 432
∆7 Inner ∆11 : 132 ∆8 : 134 ∆2 : 312
∆8 ∆14 : 324 ∆14 : 321 ∆7 : 134 ∆3 : 412
∆9 ∆17 : 213 ∆4 : 124 ∆17 : 234 ∆10 : 234
∆10 ∆13 : 324 ∆11 : 124 ∆11 : 134 ∆9 : 234
∆11 ∆7 : 142 ∆10 : 124 ∆10 : 134 ∆2 : 234
∆12 ∆21 : 423 ∆13 : 124 ∆13 : 134 ∆6 : 412
∆13 ∆1 : 241 ∆12 : 124 ∆12 : 134 ∆10 : 213
∆14 ∆8 : 421 ∆15 : 124 ∆15 : 134 ∆8 : 213
∆15 ∆5 : 421 ∆14 : 124 ∆14 : 134 ∆6 : 432
∆16 ∆3 : 431 ∆17 : 124 ∆17 : 134 ∆5 : 312
∆17 ∆9 : 213 ∆16 : 124 ∆16 : 134 ∆9 : 134
∆18 ∆1 : 231 ∆19 : 124 ∆19 : 134 ∆1 : 314
∆19 ∆3 : 231 ∆18 : 124 ∆18 : 134 ∆5 : 314
∆20 ∆2 : 341 ∆21 : 124 ∆21 : 134 ∆2 : 412
∆21 ∆6 : 341 ∆20 : 124 ∆20 : 134 ∆12 : 231

Table 3: The complete triangulation of the fork gadget

For reference, the six boundary faces as shown in Figure 4(b) are as follows:

• the upper triangle ABD on the left-hand side of the outer cylinder is ∆4 : 213;

• the lower triangle ACD on the left-hand side of the outer cylinder is ∆3 : 243;

• the upper triangle ABD on the right-hand side of the outer cylinder is ∆4 : 413;

• the lower triangle ACD on the right-hand side of the outer cylinder is ∆5 : 423;

• the upper triangle EFE on the inner cylinder is ∆6 : 312;

• the lower triangle FEF on the inner cylinder is ∆7 : 321.
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