
ar
X

iv
:1

20
7.

43
82

v3
 [

cs
.D

S]
 2

3
M

ay
 2

01
6

The Space Complexity of 2-Dimensional Approximate Range

Counting and Combinatorial Discrepancy∗

Zhewei Wei †Ke Yi ‡

June 20, 2021

Abstract

We study the problem of 2-dimensional orthogonal range counting with additive error. Given
a set P of n points drawn from an n × n grid and an error parameter ε, the goal is to build
a data structure, such that for any orthogonal range R, it can return the number of points in
P ∩ R with additive error εn. A well-known solution for this problem is the ε-approximation,
which is a subset A ⊆ P that can estimate the number of points in P ∩ R with the number of
points in A∩R. It is known that an ε-approximation of size O(1

ε
log2.5 1

ε
) exists for any P with

respect to orthogonal ranges, and the best lower bound is Ω(1
ε
log 1

ε
).

The ε-approximation is a rather restricted data structure, as we are not allowed to store any
information other than the coordinates of the points in P . In this paper, we explore what can be
achieved without any restriction on the data structure. We first describe a simple data structure
that uses O(1

ε
(log2 1

ε
+ logn)) bits and answers queries with error εn. We then prove a lower

bound that any data structure that answers queries with error εn must use Ω(1
ε
(log2 1

ε
+ logn))

bits. Our lower bound is information-theoretic: We show that there is a collection of 2Ω(n log n)

point sets with large union combinatorial discrepancy, and thus are hard to distinguish unless
we use Ω(n logn) bits.

1 Introduction

Range counting is one of the most fundamental problems in computational geometry and data
structures. Given n points in d dimensions, the goal is to preprocess the points into a data structure,
such that the number of points in any query range can be returned. Range counting has been studied
intensively, and a lot of work has focused on the space-query time tradeoff or the update-query
tradeoff of the data structure. We refer the reader to the survey by Agarwal and Erickson [2] for
these results. In this paper, we look at the problem from a data summarization/compression point
of view: What is the minimum amount of space that is needed to encode all the range counts
approximately? Approximation is necessary here, since otherwise we will have to remember the
entire the point set. It is also easy to see that relative approximation will not help either, as it
requires us to differentiate between empty ranges and those containing only one point. Thus, we
aim at an absolute error guarantee. As we will be dealing with bit-level space complexity, it is
convenient to focus on an integer grid. More formally, we are given a set of n points P drawn from

∗A preliminary version of the paper appeared in SODA’13.
†School of Information, Renmin University of China. zhewei@ruc.edu.cn
‡Hong Kong University of Science and Technology. yike@cs.ust.hk

1

http://arxiv.org/abs/1207.4382v3

an n × n grid and an error parameter ε . The goal is to build a data structure, such that for any
orthogonal range R, the data structure can return the number of points in P ∩ R with additive
error εn.

We should mention that there is another notion of approximate range counting that approxi-
mates the range, i.e., points near the boundary of the range may or may not be counted [5]. Such
an approximation notion clearly precludes any sublinear-space data structure as well.

1.1 Background and related results

ε-approximations. Summarizing point sets while preserving range counts (approximately) is
a fundamental problem with applications in numerical integration, statistics, and data mining,
among many others. The classical solution is to use the ε-approximation from discrepancy theory.
Consider a range space (P,R), where P is a finite point set of size n. A subset A ⊆ P is called an
ε-approximation of (P,R) if

max
R∈R

∣

∣

∣

∣

|R ∩A|

|A|
−

|R ∩ P |

|P |

∣

∣

∣

∣

≤ ε.

This means that we can approximate |R∩P | by counting the number of points in R∩A and scaling
back, with error at most εn.

Finding ε-approximations of small size for various geometric range spaces has been a central
research topic in computational geometry. Please see the books by Matousek [19] and Chazelle [9]
for a comprehensive coverage on this topic. Here we only review the most relevant results, i.e.,
when the range space is the set of all orthogonal rectangles in 2 dimensions, which we denote as
R2. This question dates back to Beck [7], who showed that there are ε-approximations of size
O(1ε log

4 1
ε) for any point set P . This was later improved to O

(

1
ε log

2.5 1
ε

)

by Srinivasan [25]. These
were not constructive due to the use of a non-constructive coloring with combinatorial discrepancy
O(log2.5 n) for orthogonal rectangles. Recently, Bansal [6] and Lovett et al. [17] proposed algorithms
to construct such a coloring, and therefore has made these results constructive. On the lower bound
side, it is known that there are point sets that require ε-approximations of size Ω(1ε log

1
ε) [7].

Combinatorial discrepancy. Given a range space (P,R) and a coloring function χ : P →
{−1,+1}, we define the discrepancy of a range R ∈ R under χ to be

χ(P ∩R) =
∑

p∈P∩R

χ(p).

The discrepancy of the range space (P,R) is defined as

disc(P,R) = min
χ

max
R∈R

|χ(P ∩R)| ,

namely, we are looking at the coloring that minimizes the color difference of any range in R. This
kind of discrepancy is called combinatorial discrepancy or sometimes red-blue discrepancy. Taking
the maximum over all point sets of size n, we say that the combinatorial discrepancy of R is
disc(n,R) = max|P |=n disc(P,R).

There is a close relationship between combinatorial discrepancy and ε-approximations, as ob-
served by Beck [7]. For orthogonal ranges, the relationship is particularly simple: The combinatorial

2

discrepancy is at most t(n) if and only if there is an ε-approximation of size O(1ε t(
1
ε)). In fact, all the

aforementioned results on ε-approximations follow from the corresponding results on combinatorial
discrepancy. So the current upper bound on the combinatorial discrepancy of R2 is O(log2.5 n)
[25]. The lower bound is Ω(log n) [7], which follows from the Lebesgue discrepancy lower bound
(see below). Closing the Θ(log1.5 n) gap between the upper and the lower bound remains a major
open problem in discrepancy theory. For orthogonal ranges in d ≥ 3 dimensions, the current best
upper bound is O(logd+1/2 n) by Larsen [16], while the lower bound is Ω((log n)d−1) , which is
recently proved by Matoušek and Nikolov [18].

Lebesgue discrepancy. Suppose the points of P are in the unit square [0, 1)2. The Lebesgue
discrepancy of (P,R) is defined to be

D(P,R) = sup
R∈R

∣

∣|P ∩R| −
∣

∣R ∩ [0, 1)2
∣

∣

∣

∣ .

The Lebesgue discrepancy describes how uniformly the point set P is distributed in [0, 1)2. Taking
the infimum over all point sets of size n, we say that the Lebesgue discrepancy of R is D(n,R) =
inf |P |=nD(P,R).

The Lebesgue discrepancy forR2 is known to be Θ(log n). The lower bound is due to Schmidt [23],
while there are many point sets (e.g., the Van der Corput sets [26] and the b-ary nets [24]) that are
proved to have O(log n) Lebesgue discrepancy. It is well known that the combinatorial discrepancy
of a range space cannot be lower than its Lebesgue discrepancy, so this also gives the Ω(log n) lower
bound on the combinatorial discrepancy of R2 mentioned above.

ε-nets. For a range space (P,R), a subset A ⊆ P is called an ε-net of P if for any range R ∈ R
that satisfies |P ∩R| ≥ εn, there is at least 1 point in A ∩ R. Note that an ε-approximation is an
ε-net, but the converse may not be true.

For a range space (P,A), Haussler and Welzl [14] show that if the range space has finite VC-
dimension d, there exists an ε-net of size O(dε log

d
ε). For R2, the current best construction is due to

Aronv, Ezra and Sharir [3], which has size O(1ε log log
1
ε). A recent result by Pach and Tardos [20]

shows that this bound is essentially optimal. For more results on ε-nets, please refer to the book
by Matoušek [19]. In this paper, our data structure will be based an ε-net for R2.

Approximate range counting data structures. The ε-approximation is a rather restricted
data structure, as we are not allowed to store any information other than the coordinates of a
subset of points in P . In this paper, we explore what can be achieved without any restriction on
the data structure. In 1 dimension, there is nothing better: An ε-approximation has size O(1ε),
which takes O(1ε log n) bits. On the other hand, simply consider the case where the n points are
divided into groups of size εn, where all points in each group have the same location. There are
n1/ε such point sets and the data structure has to differentiate all of them. Thus log(n1/ε) = 1

ε log n
is a lower bound on the number of bits used by the data structure.

Finally, we remark that there are also other work on approximate range counting with various
error measure, such as relative ε-approximation [13], relative error data structure [1, 4], and absolute
error model [5]. These error measures are different from ours, and it is not clear if these problems
admit sublinear space solutions.

1.2 Our results

This paper settle the following problem: How many bits do we need to encode all the orthogonal
range counts with additive error εn for a point set on the plane? We first show that if we are allowed

3

to store extra information other than the coordinates of the points, then there is a data structure
that uses O(1ε (log

2 1
ε + log n)) bits. This is a Θ(log1.5 1

ε) improvement from ε-approximations.
The majority of the paper is the proof of a matching lower bound: We show that for ε ≥

c log n/n for some constant c, any data structure that answers queries with error εn must use
Ω(1ε (log

2 1
ε + log n)) bits. In particular, if we set ε = c log n/n, then any data structure that

answers queries with error εn must use Ω(n log n) bits, which implies that that answering queries
with error O(log n) is as hard as answering the queries exactly.

The core of our lower bound proof is the construction of a collection P∗ of 2Ω(n logn) point sets
with large union combinatorial discrepancy. More precisely, we show that the union of any two
point sets in P∗ has high combinatorial discrepancy, i.e., at least c log n. Then, for any two point
sets P1, P2 ∈ P∗, if disc(P1∪P2,R2) ≥ c log n, that means for any coloring χ on P1∪P2, there must
exist a rectangle R such that |χ(R)| ≥ c log n. Consider the coloring χ where χ(p) = 1 if p ∈ P1 and
χ(p) = −1 if p ∈ P2. Then there exists a rectangle R such that |χ(R)| = ||R ∩ P1| − |R ∩ P2|| ≥
c log n. This implies that a data structure that answers queries with error c

2 log n have to distinguish

P1 and P2. Thus, to distinguish all the 2Ω(n logn) point sets in P∗, the data structure has to use
at least Ω(n log n) bits, which is a tight lower bound for ε = n/ log n. We will show how the
combinatorial discrepancy bound implies tight lower bound for arbitrary ε in Section 3.

While point sets with low Lebesgue discrepancy or high combinatorial discrepancy have been
extensively studied, here we have constructed a large collection of point sets in which the pairwise
union has high combinatorial discrepancy. This particular aspect appears to be novel, and our
construction could be useful in proving other space lower bounds. It may also have applications in
situations where we need a “diverse” collection of (pseudo) random point sets.

2 Upper Bound

In this section, we build a data structure that supports approximate range counting queries. Given
a set of n points on an n × n grid, our data structure uses O(1ε (log

2 1
ε + log n) bits and answers

an orthogonal range counting query with error εn. We note that it is sufficient to only consider
two-sided ranges, since an 4-sided range counting query can be expressed as a linear combination
of four two-sided range counting queries by the inclusion-exclusion principle. A two-sided range is
specified by a rectangle of the form [0, x)× [0, y), where (x, y) is called the query point.

The data structure. Our data structure is an approximate variant of Chazelle’s linear-space
version of the range tree, originally for exact orthogonal range counting [10]. Consider a set P of
n points on an n×n grid. We divide P into the left point set PL and the right point set PR by the
median of the x-coordinates. We will recursively build a data structure for PL and PR. Let B be
a parameter to be determined later. Let Q(P) denote the n

B quantiles of the y-coordinates of P .
Note that the i-th quantile is the y-coordinate in P with exactly iB points below it. We use indices
[nB] = 1, . . . , n

B to represent Q(P), where i denote the i-th quantile. We don’t explicitly store the
y-values or even the indices of Q(P). Instead, for each index i in Q(P) with coordinate y, we store
a pointer to the successor of y in Q(PL). Note that these n

B pointers form a monotone increasing
sequence of n

B indices in [n
2B], and can be encoded in O(nB) bits. Similarly, we store the successor

pointers from Q(P) to Q(PR) with O(nB) bits. It follows that the space in bits satisfies recursion
S(n) = 2S(n2) + O(nB), with base case S(B) = 0. The recurrence solves to S(n) = O(nB log n

B).
Finally, we explicitly store the 1

ε quantiles Q0(P) for the y-coordinates of P with O(1ε log n) bits.

4

Given a query q = (q.x, q.y). For simplicity, we assume q.y is in Q0(P). If not, we can use the
successor of q.y in Q0(P) as an estimation with additive error at most εn to the final count. If q
is in PL, we follow the pointer to find the successor of q.y in Q.L, and the recurse the problem in
PL. If q is in Pr, we first follow the pointer to get the successor of q.y in Q(PL). This gives an
approximate count for PL∩q with additive error B. We then follow the pointer to get the successor
of q.y in Q(PR), and recurse the problem in PR. Note that rounding q.y with the successor in PR or
RL causes additive error B, and using the approximate count for PL ∩ q also causes additive error
B. Thus, the overall additive error satisfies E(n) = E(n2) + 2B, with base case E(B) = B. The
recurrence solves to E(n) = O(B log n

B), and we can then set B = εn/ log 1
ε to make E(n) = O(εn).

It follows that S(n) = O(1ε log
2 1
ε), and thus total space usage is O(1ε (log

2 1
ε+log n)) bits. The query

time can also be made O(log 1
ε), if we use succinct rank-select structures to encode the pointers, as

in Chazelle’s method.

Theorem 2.1. Given a set of n points drawn from an n × n grid, there is a data structure that

uses O(1ε (log
2 1
ε + log n)) bits and answers orthogonal range counting query with additive error εn.

3 Lower Bound

In this section, we prove a lower bound that matches the upper bound in Theorem 2.1.

Theorem 3.1. Consider a set of n points drawn from an n×n grid. A data structure that answers

orthogonal range counting query with additive error εn for any point set must use Ω(1ε (log
2 1
ε+log n))

bits.

To prove Theorem 3.1, we need the following theorem on union discrepancy.

Theorem 3.2. Let P denote the collection of all n-point sets drawn from an n × n grid. There

exists a constant c and a sub-collection P∗ ⊆ P of size 2Ω(n logn), such that for any two point sets

P1, P2 ∈ P∗, their union discrepancy disc(P1 ∪ P2,R2) ≥ c log n.

We first show how Theorem 3.2 implies Theorem 3.1.

of Theorem 3.1. We only need to prove the Ω(1ε log
2 1
ε) lower bound. Suppose we group the points

into N = 1
ε log

1
ε fat points, each of size εn/ log 1

ε . By Theorem 3.2, there is a collection P∗ of

2Ω(N logN) fat point sets, such that for any two fat point sets P1, P2 ∈ P∗, there exists a rectangle
R such that the number of fat points in R∩P1 and R∩P2 differs by at least ≥ c logN . Since each
fat points corresponds to εn/ log 1

ε points, it follows that the counts of P1 ∩ R and P2 ∩ R differs
by at least

εn

log 1
ε

· c logN =
εn

log 1
ε

· c log

(

1

ε
log

1

ε

)

≥ cεn.

Therefore, a data structure that answers queries with error c
2εn have to distinguish P1 and P2.

Thus, to distinguish all the 2Ω(N logN) point sets in P∗, the data structure has to use at least
Ω(N logN) = Ω(1ε log

2 1
ε) bits.

In the rest of this section, we will focus on proving Theorem 3.2. To derive the sub-collection
P∗ in Theorem 3.2, we begin by looking into a collection of point sets called binary nets. Binary
nets are a special type of point sets under a more general concept called (t,m, s)-nets, which are

5

2a

2b

Number of (a, b)-cells: n/2a

Ga,b(3, 3)

G0

G2 G3

n/2b G1

Figure 1: Illustrations of (a, b)-cells and canonical cells.

introduced in [19] as an example of point sets with low Lebesgue discrepancy. See the survey by
Clayman et al. [11] or the book by Hellekalek et al. [15] for more results on (t,m, s)-nets. In this
paper we will show that binary nets have two other nice properties: 1) A binary net has high
combinatorial discrepancy, i.e., Ω(log n); 2) there is a bit vector representation for every binary
net, which allows us to extract a sub-collection by constructing a subset of bit vectors. In the
following sections, we will define binary nets, and formalize these two properties.

3.1 Definitions

For ease of the presentation, we assume that the n× n grid is embedded in the unit square [0, 1)2.
We partition [0, 1)2 into n × n squares, each of size 1

n2 . We assume the grid points are placed at

the mass centers of the n2 squares, that is, each grid point has coordinates (i
n + 1

2n ,
j
n + 1

2n), for
i, j ∈ [n], where [n] denote the set of all integers in [0, n). For the sake of simplicity, we define the
grid point (i, j) to be the grid point with coordinates (i

n + 1
2n ,

j
n + 1

2n), and we do not distinguish
a grid point and the square it resides in.

Now we introduce the concepts of (a, b)-cell and k-canonical cell.

Definition 3.1. A (a, b)-cell at position (i, j) is the rectangle [i2
a

n , (i+1)2a

n)× [j2
b

n , (j+1)2b

n). We use

Ga,b(i, j) to denote the (a, b)-cell at position (i, j), and Ga,b to denote the set of all (a, b)-cells.

Definition 3.2. A k-canonical cell at position (i, j) is a (k, log n − k)-cell with coordinates (i, j).
We use Gk(i, j), to denote the k-canonical cell at position (i, j), and Gk to denote the set of all

k-canonical cells.

Figure 1 is the illustration of (a, b)-cells and canonical cells. Note that the position (i, j) for a
(a, b)-cell takes value in [n/2a]×[n/2b]. In particular, we call G0(i, 0) the i-th column and Glog n(0, j)
the j-th row. Note that for a fixed k, Gk partitions the grid [0, 1)2 into n rectangles. Based on the
definition of k-canonical cells, we define the binary nets:

Definition 3.3. A point set P is called a binary net if for any k ∈ [log n], P has exactly one point

in each k-canonical cell.

6

q

2k

n/2k

x x + u

x + v

x + u + v

Gk(i, j)

Gk(i, j)UL

Gk(i, j)LL

Gk(i, j)UR

Gk(i, j)LR

Y (k, i, j)

X(k, i, j)

Figure 2: Illustration of the corner volume and the four analogous points. The area in shadow
represents the corner volume VP (k, i, j).

Let P0 denote the collection of binary nets. In other word, P0 is the set

{P | |P ∩Gk(i, j)| = 1, k ∈ [log n], i ∈ [n/2k], j ∈ [2k]}.

It is known that the point sets in P0 have Lebesgue discrepancy O(log n); below we show that
they also have Ω(log n) combinatorial discrepancy. However, the union of two point sets in P0 could
have combinatorial discrepancy as low as O(1). Thus we need to carefully extract a subset from
P0 with high pairwise union discrepancy.

3.2 Combinatorial Discrepancy and Corner Volume

In this section, we focus on proving the following theorem, which shows that the combinatorial
discrepancy of a binary net is large.

Theorem 3.3. For any point set P ∈ P0, we have disc(P,R2) = Ω(log n).

Strictly speaking, Theorem 3.2 does not depend on Theorem 3.3, but this theorem gives us
some insights on the binary nets. Moreover, a key lemma to proving Theorem 3.2 (Lemma 3.3)
shares essentially the same proof with Theorem 3.3. To prove Theorem 3.3, we need the following
definition of corner volume:

Definition 3.4. Consider a point set P ∈ P0 and a k-canonical cell Gk(i, j). Let q be the point of

P in Gk(i, j). We define the corner volume VP (k, i, j) to be the volume of the orthogonal rectangle

defined by q and its nearest corner of Gk(i, j). We use SP to denote the summation of the corner

volumes over all possible triples (k, i, j), that is,

SP =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

VP (k, i, j).

See Figure 2 for the illustration of corner volumes. A key insight of our lower bound proof is
the following lemma, which relates the combinatorial discrepancy of P with its corner volume sum
SP .

7

Lemma 3.1. There exists a constant c, such that for any point set P ∈ P0 with corner volume

sum

SP ≥ c log n,

we have disc(P,R2) = Ω(log n).

The proof of Lemma 3.1 makes use of the Roth’s orthogonal function method [21], which is
widely used for proving lower bounds for Lebesgue discrepancy (see [9, 19]).

Proof. Consider a binary net P ∈ P0 that satisfies SP ≥ c log n, where c is constant to be determined
later. Given any coloring χ : P → {−1,+1} and a point x = (x1, x2) ∈ [0, 1)2, the combinatorial
discrepancy D(x) at a point x is defined to be

D(x) =
∑

p∈P∩[0,x1)×[0,x2)

χ(p).

If we can prove supx∈[0,n)2 |D(x)| = Ω(log n), the lemma will follow.
For k ∈ [log n], we define normalized wavelet functions fk as follow: for each k-canonical cell

Gk(i, j), let q denote the point contained in it. We subdivide Gk(i, j) into four equal-size quadrants,
and use Gk(i, j)UR, Gk(i, j)UL, Gk(i, j)LR, Gk(i, j)LL to denote the upper right, upper left, lower
right and lower left quadrants, respectively (See Figure 2). Set fk(x) = χ(q) over quadrants
Gk(i, j)UR and Gk(i, j)LL, and fk(x) = −χ(q) over the other two quadrants. To truly reveal
the power of these wavelet functions, we define a more general class of functions called checkered

functions.

Definition 3.1. We say a function f : [0, 1)2 → R is (a, b)-checkered if for each (a, b)-cell, there
exists a color C ∈ {−1,+1} such that f is equal to C over Ga,b(i, j)UR and Ga,b(i, j)LL and −C
over the other two quadrants.

Note that our definition of checkered function is slight different from the one used in [9]. It
is easy to see the wavelet function fk is (k, log n − k)-checkered, and the integration of a (a, b)-
checkered function over an (a, b)-cell is 0. The following lemma states that the checkered property
is “closed” under multiplication.

Fact 3.1. If f is (a1, b1)-checkered and g is (a2, b2) checkered, where a1 < a2 and b1 > b2, then fg
is (a1, b2)-checkered.

For a proof, consider an (a1, b2)-cell Ga1,b2(i, j). We observe that this cell is defined by the inter-
section of an (a1, b1)-cell and an (a2, b2)-cell, and we useGa,b(i1, j1) and Ga2,b2(i2, j2) to denote these
two cells, respectively. Therefore the four quadrants of Ga1,b2(i, j) are defined by the intersections of
two neighboring quadrants of Ga1,b1(i1, j1) and two neighboring quadrants of Ga2,b2(i2, j2). Without
loss of generality, we assume the four quadrants are defined by the intersections of the two upper
quadrants of Ga1,b1(i1, j1) and two left quadrants of Ga2,b2(i2, j2) (see Figure 3). Since f is (a1, b1)-
checkered and g is (a2, b2) checkered, we can assume f equal to C1 and −C1 over Ga1,b1(i1, j1)UR

and Ga2,b2(i2, j2), and g equal to C2 and −C2 over Ga2,b2(i2, j2)UL and Ga2,b2(i2, j2)LL, respec-
tively. It follows that the fg is equal to C1C2 over Ga1,b2(i, j)UL and Ga1,b2(i, j)LR, and −C1C2

over Ga1,b2(i, j)UR and Ga1,b2(i, j)LL. Thus fg is an (a1, b2)-checkered function.
A direct corollary from Fact 3.1 is that the wavelet functions are generalized orthogonal:

8

2a1

Ga1,b1(i1, j1)

2b2 Ga2,b2(i2, j2)

2a1

Ga1,b2(i, j)

Figure 3: Illustration of the intersection of two cells

Corollary 3.1. For 0 ≤ k1 < · · · < kl ≤ log n, the function fk1(x) · · · fkl(x) is a (k1, log n − kl)-
checkered. As a consequence, we have

∫

[0,1)2
fk1(x) · · · fkl(x)dx = 0.

In the remaining of the paper we assume the range of the integration is [0, 1)2 and the variable
of integration is dx when not specified. We define the Riesz product

G(x) = −1 +

logn
∏

k=0

(γfk(x) + 1),

where γ is some constant to be determined later. By the inequality
∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

≤

∫

|GD| ≤ sup
x∈[0,1)2

|D| ·

∫

|G| ,

we can lower-bound the combinatorial discrepancy of P as follows:

sup
x∈[0,1)2

|D| ≥

∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

/
∫

|G| . (3.1)

For the denominator
∫

|G|, we have

∫

|G| =

∫

∣

∣

∣

∣

∣

−1 +

logn
∏

k=0

(γfk + 1)

∣

∣

∣

∣

∣

≤ 1 +

logn
∑

l=0

γl
∑

0≤k1<...<kl≤logn

∫

fk1 · · · fkl

= 2 +

logn
∑

l=1

γl
∑

0≤k1<...<kl≤logn

∫

fk1 · · · fkl = 2. (3.2)

9

The last equation is due to Corollary 3.1. The numerator
∣

∣

∫

G(x)D(x)dx
∣

∣ can be expressed as
follow:

∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

(

−1 +

logn
∏

k=0

(γfk + 1)

)

·D

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∫



γ

logn
∑

k=0

fk +

logn
∑

l=2

γl
∑

0≤k1<...<kl≤logn

fk1 · · · fkl



 ·D

∣

∣

∣

∣

∣

∣

≥ γ

∣

∣

∣

∣

∣

logn
∑

k=0

∫

fkD

∣

∣

∣

∣

∣

−

logn
∑

l=2

γl

∣

∣

∣

∣

∣

∣

∑

0≤k1<...<kl≤logn

∫

fk1 · · · fklD

∣

∣

∣

∣

∣

∣

. (3.3)

In order to estimate
∫

fkD, we consider the integration of a single product fk(x)D(x) over a
k-canonical cell Gk(i, j). Recall that there is exactly one point of P that lies in Gk(i, j). We use

q to denote this point in P , and χ(q) denote its color. Define horizontal vector u = (2
k−1

n , 0) and
vertical vector v = (0, 1

2k+1). Then for any point x ∈ Gk(i, j)LL, points x+ u, x+ v and x+ u+ v
are the analogous points in quadrants Gk(i, j)LR, Gk(i, j)UL and Gk(i, j)UR of x, respectively (see
Figure 2). The four analogous points defines an orthogonal rectangle. We use Rx to denote the
orthogonal rectangle, and function R(x) to denote the indicator function of point q and Rx, that
is, R(x) = 1 if q ∈ Rx and R(x) = 0 if otherwise. We can express the integral as

∫

Gk(i,j)
fk(x)D(x)dx =

∫

Gk(i,j)LL

χ(q) (D(x)−D(x+ u)−D(x+ v) +D(x+ u+ v)) dx

=

∫

Gk(i,j)LL

χ(q) · χ(q)R(x)dx =

∫

Gk(i,j)LL

R(x)dx.

The second equation is because (D(x) −D(x+ u)−D(x+ v) +D(x+ u+ v)) only counts points
inside Rx, which can only be q, or nothing otherwise. Observe that R(x) = 1 if and only if one of
x’s analogous points lies inside the rectangle defined by q and its nearest corner (see Figure 2), so
we have

∫

Gk(i,j)
fkD =

∫

Gk(i,j)LL

R = VP (k, i, j). (3.4)

Now we can compute the first term in (3.3):

γ

∣

∣

∣

∣

∣

logn
∑

k=0

∫

fkD

∣

∣

∣

∣

∣

= γ

∣

∣

∣

∣

∣

∣

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

∫

Gk(i,j)
fkD

∣

∣

∣

∣

∣

∣

= γ

∣

∣

∣

∣

∣

∣

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

VP (k, i, j)

∣

∣

∣

∣

∣

∣

= γSP ≥ cγ log n. (3.5)

For the second term in (3.3), consider a (k1, log n − kl)-cell Gk1,logn−kl . Note that P inter-
sects Gk1,logn−kl(i, j) with at most 1 point. By Fact 3.1, function fk1 · · · fkl is (k1, log n − kl)-
checkered, so following similar arguments in the proof of equation (3.4), we can show that the

10

integral
∣

∣

∣

∫

Gk1,log n−kl
(i,j) fk1 · · · fklD

∣

∣

∣ is 0 if P ∩ Gk1,logn−kl = ∅ and otherwise equal to the cor-

ner volume of Gk1,kl(i, j). In the latter case, we can relax the corner volume to the volume of
Gk1,logn−kl(i, j), that is,

1
2kl−k1n

. Thus we can estimate the integral as follows:
∣

∣

∣

∣

∣

∫

Gk1,logn−kl
(i,j)

fk1 · · · fklD

∣

∣

∣

∣

∣

≤
1

2kl−k1n
.

Since there are n non-empty (k1, log n− kl)-cells, we have
∣

∣

∣

∣

∫

fk1 · · · fklD

∣

∣

∣

∣

≤ n ·
1

2kl−k1n
=

1

2kl−k1
.

Now we can estimate the second term in (3.3):

logn
∑

l=2

γl

∣

∣

∣

∣

∣

∣

∑

0≤k1<...<kl≤logn

∫

fk1 · · · fklD

∣

∣

∣

∣

∣

∣

≤

logn
∑

l=2

γl
∑

0≤k1<...<kl≤logn

1

2kl−k1

=

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

. (3.6)

For the last equation we replace kl − k1 with a new index w and use the fact that there are
(w−1
l−2

)

ways to choose k2, . . . , kl−1 in an interval of length w. Note that for a fixed w, there are log n+1−w
possible values for k1, so

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

=

logn
∑

l=2

γl
logn+1
∑

w=l−1

log n+ 1− w

2w

(

w − 1

l − 2

)

≤

logn
∑

l=2

γl
logn+1
∑

w=l−1

log n

2w

(

w − 1

l − 2

)

= log n

logn
∑

l=2

γl
logn+1
∑

w=l−1

1

2w

(

w − 1

l − 2

)

. (3.7)

By inverting the order of the summation,

log n

logn
∑

l=2

γl
logn+1
∑

w=l−1

∑

kl−k1=w

1

2w

(

w − 1

l − 2

)

=γ2 log n

logn+1
∑

w=1

1

2w

w+1
∑

l=2

(

w − 1

l − 2

)

γl−2

=γ2 log n

logn+1
∑

w=1

1

2w
(1 + γ)w−1

=2γ2 log n

logn+1
∑

w=1

(

1 + γ

2

)w−1

≤
2γ2

1− γ
log n. (3.8)

So from (3.5), (3.6), (3.7) and (3.8) we have
∣

∣

∣

∣

∫

GD

∣

∣

∣

∣

≥ cγ log n−
2γ2

1− γ
log n.

Setting γ small enough while combining with (3.1) and (3.2) completes the proof.

11

Now we can give a proof to Theorem 3.3. By Lemma 3.1, we only need to show that the corner
volume sum of any point set P ∈ P0 is large. Fix k and consider a k-canonical cell Gk(i, j). Let
q denote the point in P ∩Gk(i, j). We define the corner x-distance of Gk(i, j) to be the difference
between the x-coordinate of q and that of its nearest corner of Gk(i, j). The corner y-distance is
defined in similar manner. See Figure 2. We use X(k, i, j) and Y (k, i, j) to denote the corner x-
distance and corner y-distance, respectively. Note that the corner volume VP (k, i, j) is the product
of X(k, i, j) and Y (k, i, j). The following fact holds for the x-distances of canonical cells in a
column:

Fact 3.2. Fix k and i, we have {X(k, i, j) | j ∈ [2k]} = { j
n + 1

2n ,
j
n + 1

2n | j ∈ [2k−1]}, where both

are taken as multisets.

For a proof, note that the k-canonical cell Gk(i, j) is intersecting with 2k columns: G0(i2
k, 0), . . . , G0((i+

1)2k − 1, 0). There are 2k points in Gk(i, 0), . . . , Gk(i, 2
k − 1), and they must reside in different

columns. Therefore there is exactly one point in the each of the 2k columns, and their corner
x-distances span from 1

2n to 2k−1−1
n + 1

2n , and each value is hit exactly twice. Similarly, we have

Fact 3.3. Fix k and j, we have {X(k, i, j) | i ∈ [n/2k]} = { i
n + 1

2n ,
i
n + 1

2n | i ∈ [n/2k+1]}, where
both are taken as multisets.

Now consider the product of X(k, i, j) and Y (k, i, j) over all (i, j) for a fixed k:

n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j) =

n/2k−1
∏

i=0

2k−1
∏

j=0

X(k, i, j)Y (k, i, j)

=

n/2k−1
∏

i=0

2k−1
∏

j=0

X(k, i, j) ·
2k−1
∏

j=0

n/2k−1
∏

i=0

Y (k, i, j)

=

n/2k−1
∏

i=0

2k−1−1
∏

j=0

(
j

n
+

1

2n
)2 ·

2k−1
∏

j=0

n/2k+1−1
∏

i=0

(
i

n
+

1

2n
)2.

The last equation is due to Fact 3.2 and Fact 3.3. By relaxing i
n + 1

2n and j
n + 1

2n to i+1
2n and j+1

2n ,
we have

n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j) ≥

n/2k−1
∏

i=0

2k−1−1
∏

j=0

(

i+ 1

2n

)2

·
2k−1
∏

j=0

n/2k+1−1
∏

i=0

(

j + 1

2n

)2

=
1

nn

n/2k−1
∏

i=0

(

(2k−1)!

22k−1

)2

·
2k−1
∏

j=0

(

(n/2k+1)!

2n/2k+1

)2

.

12

By the inequality x! ≥ (x/e)x,

n/2k−1
∏

i=0

2k−1
∏

j=0

V (k, i, j) ≥
1

n2n

n/2k−1
∏

i=0

(

(

2k−1

2e

)2k−1)2

·
2k−1
∏

j=0

(

(

n/2k+1

2e

)n/2k+1)2

=
1

n2n

n/2k−1
∏

i=0

(

2k−1

2e

)2k

·
2k−1
∏

j=0

(

n/2k+1

2e

)n/2k

=
1

n2n

(

2k−1

2e

)2k·n/2k

·

(

n/2k+1

2e

)n/2k ·2k

=
1

n2n

(

2k

4e

)n

·

(

n/2k

4e

)n

=

(

1

16en

)n

.

Using the inequality of geometric means,

n/2k−1
∑

i=0

2k−1
∑

j=0

VP (k, i, j) ≥ n ·





n/2k−1
∏

i=0

2k−1
∏

j=0

VP (k, i, j)





1/n

≥ n ·
1

16en
=

1

16e
.

So the corner volume sum SP =
∑logn

k=0

∑n/2k−1
i=0

∑2k−1
j=0 V (k, i, j) is lower bounded by log n/16e,

and by Lemma 3.1, Theorem 3.3 follows.

3.3 A bit vector representation for P0

Another nice property of P0 is that we can derive the exact number of point sets in it. The following
lemma is from the book [12]. We sketch the proof here, as it also provides a bit vector presentation
of each binary net, which is essential in our lower bound proof.

Lemma 3.2 ([12]). The number of point sets in P0 is 2
1
2
n logn.

Proof. It is equivalent to prove that the number of possible ways to place n points on the n × n
grid such that any k-canonical cell Gk(i, j) has exactly 1 point is 2

1
2
n logn. Our proof proceeds by

an induction on n. Let P0(n) denote the collection of binary nets of size n in a n× n grid.
Observe that the line y = n/2 divides the grid [0, 1)2 into two rectangles: the upper grid

[0, 1)× [12 , 1) and the lower grid [0, 1)× [0, 12). For i even, let Ri denote the rectangle defined by the
union of i-th and (i+1)-th columns G0(i, 0) and G0(i+1, 0). Note that the line y = n/2 divides Ri

into G1(
i
2 , 0) and G1(

i
2 , 1), and therefore defines four quadrants. By the definition of P0, for any

point set P ∈ P0, the two points in G0(i, 0) and G1(i+1, 0) must either reside in the lower left and
upper right quadrants or in the lower right and upper left quadrants. There are in total n/2 even
i’s, so the number of the possible choices is 2n/2. See Figure 4. Note that after determining which
half the point in each column resides in, the problem is divided into two sub-problems: counting
the number of possible ways to place n/2 points in the upper grid and the lower grid. It is easy
to show that each sub-problem is identical to the problem of counting the number of point sets in
P0(n/2), so we have the following recursion:

|P0(n)| = 2
n
2 · |P0(n/2)|

2 .

Solving this recursion with P0(1) = 1 yields that |P0(n)| = 2
1
2
n logn.

13

G0(0, 0) G0(1, 0) G0(n− 2, 0) G0(n− 1, 0)

ZP (0, 0, 0) =











0

1
ZP (0, n/2− 1, 0) =











0

1

. . .

. . .⇒

n points in a n× n grid n
2
points in n

2
×

n
2
grid

. . .⇒

. . .

Figure 4: Illustration of the partition vector of G0.

A critical observation is that the proof of Lemma 3.2 actually reveals a bit vector representation
for each of the point sets in P0, which will allow us to refine the collection P0. To see this, we define
the partition vector ZP for a point set P ∈ P0 as follows. For any (k, i, j) ∈ [log n]× [n/2k+1]× [2k],
consider the k-canonical cells Gk(2i, j) and Gk(2i + 1, j) and (k + 1)-canonical cells Gk+1(i, 2j)
and Gk+1(i, 2j + 1). The two k-canonical cells overlap with the two (k + 1)-canonical cells, which
defines four quadrants. By the definition of binary nets, there are two points in P contained in
these quadrants. We define ZP (k, i, j) = 0 if the two points are in the lower left and upper right
quadrants and ZP (k, i, j) = 1 if they are in the lower right and upper left quadrants. See Figure 4.
We say the k-canonical cells Gk(2i, j) and Gk(2i+1, j) is associated with bit ZP (k, i, j). Note that
we use the triple (k, i, j) as the index into ZP for the ease of presentation; we can assume that the
bits in ZP are stored in for example the lexicographic order of (k, i, j). Since the number of triples

(k, i, j) is 1
2n log n, the total number of bits in ZP is 1

2n log n. Let Z0 = {0, 1}
1
2
n logn denote the set

of all possible partition vector ZP ’s. By the proof of Lemma 3.2, there is a bijection between Z0

and P0.

3.4 Combinatorial discrepancy and corner volume distance

Although we have proved that binary nets have large combinatorial discrepancy, it does not yet
lead us to Theorem 3.2. In this section, we will refine P0, the collection of all binary nets, to derive
a collection P∗, such that the union of any two point sets in P∗ has large combinatorial discrepancy.
In order to characterize the combinatorial discrepancy of the union of two point sets, we will need
the following definition of corner volume distance.

Definition 3.5. For two point sets P1, P2 ∈ P0, the corner volume distance of P1 and P2 is the

summation of |VP1
(k, i, j) − VP2

(k, i, j)|, over all (k, i, j). In other words, let ∆(P1, P2) denote the

14

corner volume distance of P1 and P2, then

∆(P1, P2) =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

|VP1
(k, i, j) − VP2

(k, i, j)| .

The following lemma relates the combinatorial discrepancy of the union of two point sets with
their corner volume distance:

Lemma 3.3. Let P∗ be a subset of P0. If there exists a constant c, such that for any two point sets

P1, P2 ∈ P0, that their corner volume distance satisfies ∆(P1, P2) ≥ c log n, then disc(P1∪P2,R2) =
Ω(log n).

Proof. The proof follows the same framework as the proof for Lemma 3.1. Note that there are
exactly two points of P1 ∪ P2 in each k-canonical cell Gk(i, j), and we use q1, q2 denote the two
points from P1 and P2, respectively. We will set fk(x) = C for quadrants Gk(i, j)UR and Gk(i, j)LL
and fk(x) = −C for the other two quadrants, where C is determined as follows:

C =

{

χ(q1) if VP1
(k, i, j) ≥ VP2

(k, i, j);
χ(q2) if VP1

(k, i, j) < VP2
(k, i, j).

Let D(x) be the combinatorial discrepancy at x over P1 ∪ P2. By equation (3.5) in the proof of
Lemma 3.1, we get

∫

Gk(i,j)
fkD =

{

(VP1
(k, i, j) + VP2

(k, i, j)) if χ(q1) = χ(q2);
|VP1

(k, i, j) − VP2
(k, i, j)| if χ(q1) 6= χ(q2).

In either case,
∫

Gk(i,j)
fkD ≥ |VP1

(k, i, j) − VP2
(k, i, j)| .

And the rest of the proof follows the same argument in the proof of Lemma 3.1.

Here we briefly explain the high level idea for proving Theorem 3.2. By Lemma 3.3, it is
sufficient to find a sub-collection P∗ ⊆ P0, such that for any two point sets in P∗, their corner
volume distance is large. We will choose a subset Z1 ⊆ Z0, and project each vector in Z1 down to a
slightly shorter bit vector T. The collection T of all resulted bit vector T’s induces a sub-collection
P1 ⊆ P0, and each T represents a point set in P1. Then we prove that for any two point sets
P1, P2 ∈ P1, there is a linear dependence between the corner volume distance ∆(P1, P2) and the
Hamming distance of their bit vector representations TP1

and TP2
. Finally, we show that there is

a large sub-collection of T with large pair-wise Hamming distances, and this sub-collection induces
a collection of point sets P∗ ∈ P1 in which the union of any two point sets has large combinatorial
discrepancy.

We focus on an (k + 6, log n − k)-cell Gk+6,logn−k(i, j), for k ∈ {0, 6, 12, . . . , log n − 6}. Note
that Gk+6,logn−k(i, j) only contains (k + l)-canonical cells for l ∈ [7]. Let Fk,i,j(l) denote the set of
all (k + l)-canonical cells in Gk+6,logn−k(i, j), which can be listed as

Fk,i,j(l) = {Gk+l(2
6−li+ s, 2lj + t) | s ∈ [26−l], t ∈ [2l]}.

15

Note that |Fk,i,j(l)| = 64 for each l ∈ [7]. Let Zk,i,j(l) denote the set of indices of bits in the
partition vector that are associated with the some (k + l)-canonical cells in Gk+6,logn−k(i, j), for
l ∈ [6], i.e.,

Zk,i,j(l) = {(k + l, 25−li+ s, 2lj + t) | s ∈ [25−l], t ∈ [2l]}.

Define Zk,i,j to be the union of the Zk,i,j(l)’s. Since there are 32 bits in Zk,i,j(l) for each l ∈ [6], the
total number of bits in Zk,i,j is 192 (here we use the indices in Zk,i,j to denote their corresponding
bits in the partition vector of P , with a slightly abuse of notation). The following fact shows the
Zk,i,j’s partition all the 1

2n log n bits:

Fact 3.4. The number of Zk,i,j’s is
1

384n log n; For different (k, i, j) and (k′, i′, j′), Zk,i,j∩Zk′,i′,j′ =
∅.

The proof of the above claims are fairly straightforward: The number of different Zk,i,j’s is equal
to the number of different Gk+6,logn−k(i, j)’s. For a fixed k, the number of different (k+6, log n−k)-
cells is n/64, and the number of different k’s is log n/6, so the total number of different Zk,i,j’s is
1

384n log n. For the second claim, we consider the following two cases: If k = k′, we have(i, j) 6=
(i′, j′). This implies that the two (k, log n − k + 6)-cells are disjoint, therefore the bits associated
with the canonical cells inside them are disjoint. For k 6= k′, observe that we choose k and k′ from
{0, 6, . . . , log n− 6}, and Zk,i,j and Zk′,i′,j′ only contain bits associated with (k + l)-canonical cells
and (k′ + l′)-canonical cells, respectively, for l, l′ ∈ [6], so Zk,i,j(l) and Zk′i′j′(l

′) are disjoint, for
l, l′ ∈ [6].

The reason we group the bits in the partition vector into small subsets is that we can view each
subset Zk,i,j as a partition vector of the cell Gk+6,logn−k(i, j), which allows us to manipulate the
positions of the points inside it. More precisely, we can view Gk+6,logn−k(i, j) as a 64 × 64 grid,
with each grid cell being a (k, log n − k − 6)-cell in the original [0, 1)2 grid. Moreover, a (k + l)-
canonical cell contained in Gk+6,logn−k(i, j) corresponds to a l-canonical cell in the 64 × 64 grid.
Note that there are 64 points in this grid, and the bits in Zk,i,j correspond to the partition vector
of this 64-point set. Now consider a (k + 3)-canonical cell Gk+3(8i, 8j), which corresponds to the
lower left 8 × 8 grid in Gk+6,logn−k(i, j). For each point set P ∈ P0, there is exactly one point in
Gk+3(8i, 8j), and the bits in Zk,i,j encode the position of the point on the 8×8 grid. Suppose s1 and
s2 are two bit vectors of length 192, such that when the bits in Zk,i,j are assigned as s1 (denoted
Zk,i,j = s1), the point in Gk+3(8i, 8j) resides in the upper left grid cell,; and when Zk,i,j = s2, it
resides in the grid cell to the upper left of the center of Gk+3(8i, 8j) (see Figure 5). Note that
by this definition, the corner volume distance of this two point is at least n/8. Meanwhile, since
there are no constraints on the other 63 points in Gk+6,logn−k(i, j), it is easy to show that such
assignments s1 and s2 indeed exist.

By restricting the assignments of Zk,i,j to {s1, s2}, we have created a subset Z1 of Z0 =

{0, 1}
1
2
n logn:

Z1 = {Z | Zk,i,j = s1 or s2, k ∈ {0, 6, . . . , log n− 6}, i ∈ [n/2k+6], j ∈ [2k]}.

Let P1 denote the sub-collection of P0 that Z1 encode. By Fact 3.4, the number of Zk,i,j’s is
1

384n log n, so |P1| = 2
1

384
n logn. Define a bit vector T of length 1

384n log n, such that T(k, i, j) = 0
if Zk,i,j = s1 and T(k, i, j) = 1 if Zk,i,,j = s2, then a bit vector T encodes a bit vector Z ∈ Z1, and

therefore encodes a point set in P1. Let T = {0, 1}
1

384
n logn denote the collection of all bit vectors

T. Then there is a bijection between T and P1, and |T | = |P1| = 2
1

384
n logn.

16

Gk+6,log n−k(i, j) Gk+3(8i, 8j)

Zk,i,j =











s1
s2

n/2k

2k+6 2k+3

n/2k+3

Figure 5: Illustration of the 64×64 grid. The volume of each cell in Gk+3(8i, 8j) is n/64. The cells
in shadow represent the corner volume difference of s1 and s2.

Consider two point sets P1 and P2 in P1. Let TP1
and TP2

denote the bit vector that encode
these two point sets, respectively. The following lemma relates the corner volume distance of P1

and P2 with the Hamming distance between TP1
and TP2

.

Lemma 3.4. Suppose there exists a constant c, such that for any P1, P2 ∈ P1, the Hamming

distance H(TP1
,TP2

) ≥ cn log n, then the corner volume distance between P1 and P2, ∆(P1, P2),
is Ω(n2 log n).

Proof. We make the following relaxation on ∆(P1, P2) :

∆(P1, P2) =

logn
∑

k=0

n/2k−1
∑

i=0

2k−1
∑

j=0

|VP1
(k, i, j) − VP1

(k, i, j)|

≥
∑

k∈{0,6,...,logn−6}

n/2k+6−1
∑

i=0

2k−1
∑

j=0

|VP1
(k + 3, 8i, 8j) − VP1

(k + 3, 8i, 8j)| .

Now consider the bits TP1
(k, i, j) and TP2

(k, i, j). If TP1
(k, i, j) 6= TP2

(k, i, j), then by the
choice of s1 and s2 we have |VP1

(k + 3, 8i, 8j − VP2
(k + 3, 8i, 8j)| ≥ n/8. So the corner volume

distance ∆(P1, P2) is lower bounded by the Hamming distance H(TP1
,TP2

) multiplied by n/8, and
the lemma follows.

The following lemma (probably folklore; we provide a proof here for completeness) states that
there is a large subset of T , in which the vectors are well separated in terms of Hamming distance.

Lemma 3.5. Let N = 1
384n log n. There is a subset T ∗ ⊆ T = {0, 1}N of size 2

1
16

N , such that for

any T1 6= T2 ∈ T ∗, the Hamming distance H(T1,T2) ≥
1
4N .

Proof. We embed T into a graph (V,E). Each node in V represents a vector T ∈ T , and there
is edge between two nodes T1 and T2 if and only if H(T1,T2) < 1

4N . By this embedding, it is

equivalent to prove that there is an independent set of size 2
1
16

N in (V,E).

17

Fix a vector T ∈ T , and consider a random vector T′ uniformly drawn from T . It is easy to
see that the Hamming distance H(T,T′) follows binomial distribution. By Chernoff bound

Pr[H(T,T′) <
1

4
N] ≤ e−

1
16

N ≤ 2−
1
16

N .

This implies that the probability that there is an edge between T and T′ is at most 2−
1
16

N . By the
fact that T′ is uniformly chosen from T , it follows that the degree of T is at most d = 2N ·2−

1
16

N =
2

15
16

N . Since a graph with maximum degree d must have an independent set of size at least |V | /d,

there must be an independent set of size at least 2
1
16

N .

Let P∗ denote the collection of point sets encoded by T ∗. By Lemma 3.5, |P∗| ≥ 2
1
16

N =

2
1

6144
n logn. From Lemma 3.3 and 3.4 we know that for any two point sets P1 6= P2 ∈ P∗, the

combinatorial discrepancy of the union of P1 and P2 is Ω(log n). This completes the proof of
Theorem 3.2.

References

[1] P. Afshani and T. Chan. On approximate range counting and depth. Discrete and Computa-

tional Geometry, 42(1):3–21, 2009.

[2] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Discrete and

Computational Geometry: Ten Years Later. Mathematical Society Press, 1997.

[3] B. Aronov, E. Ezra, and M. Sharir. Small-size ε-nets for axis-parallel rectangles and boxes.
SIAM Journal on Computing, 39(7):3248–3282, 2010.

[4] B. Aronov and M. Sharir. Approximate halfspace range counting. SIAM Journal on Comput-

ing, 39(7):2704–2725, 2010.

[5] S. Arya and D. M. Mount. Approximate range searching. Computational Geometry: Theory

and Applications, 17(3–4):135–152, 2000.

[6] N. Bansal. Constructive algorithms for discrepancy minimization. In Proc. IEEE Symposium

on Foundations of Computer Science, pages 3–10. IEEE, 2010.

[7] J. Beck. Balanced two-colorings of finite sets in the square, I. Combinatorica, 1(4):327–335,
1981.

[8] J. Beck and T. Fiala. “Integer-making” theorems. Discrete Applied Mathematics, 3(1):1–8,
1981.

[9] B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.

[10] B. Chazelle. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal on Computing, 17(3):427–462, 1988.

[11] A. Clayman, K. Lawrence, G. Mullen, H. Niederreiter, and N. Sloane. Updated tables of
parameters of(t, m, s)-nets. Journal of Combinatorial Designs, 7(5):381–393, 1999.

18

[12] M. Darnall. Results on low discrepancy point sets. ProQuest, 2008.

[13] S. Har-Peled and M. Sharir. Relative (p, ε)-approximations in geometry. Discrete and Com-

putational Geometry, 45(3):462–496, 2011.

[14] D. Haussler and E. Welzl. Epsilon-nets and simplex range queries. Discrete and Computational

Geometry, 2:127–151, 1987.

[15] P. Hellekalek, G. Larcher, and J. Beck. Random and quasi-random point sets, volume 138.
Springer Verlag, 1998.

[16] K. G. Larsen. On range searching in the group model and combinatorial discrepancy. In Proc.

IEEE Symposium on Foundations of Computer Science, 2011.

[17] S. Lovett and R. Meka. Constructive discrepancy minimization by walking on the edges. In
Proc. IEEE Symposium on Foundations of Computer Science, pages 61–67. IEEE, 2012.

[18] J. Matoušek, and A. Nikolov. Combinatorial Discrepancy for Boxes via the gamma 2 Norm.
International Symposium on Computational Geometry, pages 1–15, 2015

[19] J. Matoušek. Geometric Discrepancy. Springer, Heidelberg, Germany, 1999.

[20] J. Pach and G. Tardos. Tight lower bounds for the size of epsilon-nets. In Journal of the

American Mathematical Society, 26(3)645–658, 2013.

[21] K. Roth. On irregularities of distribution. Mathematika, 1(02):73–79, 1954.

[22] K. Roth. On a theorem of Beck. Glasgow Mathematical Journal, 27(1):195–201, 1985.

[23] W. Schmidt. Irregularities of distribution. vii. Acta Arithmetica, 21:45–50, 1972.

[24] I. Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967.

[25] A. Srinivasan. Improving the discrepancy bound for sparse matrices: Better approximations
for sparse lattice approximation problems. In Proc. ACM-SIAM Symposium on Discrete Al-

gorithms, pages 692–701, 1997.

[26] J. Van der Corput. Verteilungsfunktionen. NV Noord-Hollandsche Uitgevers Maatschappij,
1936.

19

kεn

(k + 1)εn

(k + 2)εn

x
a2l

x(a+1)2l

