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Approximate Distance Oracles with Improved Query Time

Christian Wulff-Nilsen ∗

Abstract

Given an undirected graph G with m edges, n vertices, and non-negative edge
weights, and given an integer k ≥ 2, we show that a (2k − 1)-approximate distance
oracle for G of size O(kn1+1/k) and with O(log k) query time can be constructed in

O(min{kmn1/k,
√
km+kn1+c/

√

k}) time for some constant c. This improves the O(k)
query time of Thorup and Zwick. Furthermore, for any 0 < ǫ ≤ 1, we give an oracle of
size O(kn1+1/k) that answers ((2 + ǫ)k)-approximate distance queries in O(1/ǫ) time.
At the cost of a k-factor in size, this improves the 128k approximation achieved by
the constant query time oracle of Mendel and Naor and approaches the best possible
tradeoff between size and stretch, implied by a widely believed girth conjecture of
Erdős. We can match the O(n1+1/k) size bound of Mendel and Naor for any constant
ǫ > 0 and k = O(log n/ log logn).

∗Department of Mathematics and Computer Science, University of Southern Denmark,
koolooz@diku.dk, http://www.imada.sdu.dk/˜ cwn/.
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1 Introduction

The practical need for efficient algorithms to answer shortest path (distance) queries in
graphs has increased significantly over the years, in large part due to emerging GPS navi-
gation technology and other route planning software. Classical algorithms like Dijkstra do
not scale well as they may need to explore the entire graph just to answer a single query.
As road maps are typically of considerable size, developing more efficient algorithms and
data structures has received a great deal of attention from the research community.

A distance oracle is a data structure that answers shortest path distance queries be-
tween vertex pairs in time independent of the size of the graph. A naive way of achieving
this is to precompute and store all-pairs shortest path distances in a look-up table, allow-
ing subsequent queries to be answered in constant time. The obvious drawback is of course
the huge space requirement which is quadratic in the number of vertices of the graph, as
well as the long time for precomputing all-pairs shortest path distances.

It is not difficult to see that quadratic space is necessary for constant query time.
It is therefore natural to consider approximate distance oracles where some error in the
reported distances is allowed. We say that an approximate distance d̃G(u, v) between two
vertices u and v in a graph G is of stretch δ ≥ 1 if dG(u, v) ≤ d̃G(u, v) ≤ δdG(u, v), where
dG(u, v) denotes the shortest path distance in G between u and v. Awerbuch et al. [1]
gave for any integer k ≥ 1 and a graph with m edges and n vertices a data structure with
stretch 64k, space Õ(kn1+1/k), and preprocessing Õ(mn1/k). Its query time is Õ(kn1/k)
and therefore not independent of the size of the graph. Stretch was improved to 2k+ ǫ by
Cohen [5] and further to 2k − 1 by Matoušek [7].

In the seminal paper of Thorup and Zwick [14], it was shown that a data structure
of size O(kn1+1/k) can be constructed in O(kmn1/k) time which reports shortest path
distances stretched by a factor of at most 2k − 1 in O(k) time. Since its query time is
independent of the size of the graph (when k is), we refer to it as an approximate distance
oracle. The tradeoff between size and stretch is optimal up to a factor of k in space,
assuming a widely believed and partially proved girth conjecture of Erdős [6].

Time and space in [14] are expected bounds; Roditty Thorup, and Zwick [12] gave a
deterministic oracle with only a small increase in preprocessing.

Baswana and Kavitha [3] showed how to obtain O(n2) preprocessing for k ≥ 3, an
improvement for dense graphs. Subquadratic time was recently obtained for k ≥ 6 and
m = o(n2) [16]. Pătraşcu and Roditty [11] gave an oracle of size O(n2/α1/3) and stretch
2 for a graph with m = n2/α edges. Furthermore, they showed that a size O(n5/3)
oracle with multiplicative stretch 2 and additive stretch 1 exists for unweighted graphs.
Baswana, Gaur, Sen, and Upadhyay [2] also gave oracles with both multiplicative and
additive stretch.

Although the oracles above answer queries in time independent of the graph size, query
time still depends on stretch. Mendel and Naor [8] asked the question of whether good
approximate distance oracles exist with query time bounded by a universal constant. They
answered this in the affirmative by giving an oracle of size O(n1+1/k), stretch at most 128k,
query time O(1) and preprocessing time O(n2+1/k log n). Combining results of Naor and
Tao [10] with Mendel and Naor [8] improves stretch to roughly 33k; according to Naor and
Tao, with a more careful analysis of the arguments in [8], it should be possible to further
improve stretch to roughly 16k but not by much more. The O(n2+1/k log n) preprocessing
time was later improved by Mendel and Schwob [9] to O(mn1/k log3 n); for an n-point
metric space, they obtain a bound of O(n2).1

1I thank an anonymous referee for mentioning this improvement.
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Stretch Query time Space Preprocessing time Reference

2k − 1 O(k) O(kn1+ 1

k ) O(min{kmn
1

k ,
√
km+ kn

1+ c√
k }) [14, 16]

2k − 1 O(log k) O(kn1+ 1

k ) O(min{kmn
1

k ,
√
km+ kn

1+ c√
k }) This paper

128k O(1) O(n1+ 1

k ) O(mn
1

k log3 n) [8, 9]

(2 + ǫ)k O( logCǫ ) O(kn1+ 1

k ) O(kmn
1

k + kn1+ 1

k log n+mn
1

Ck log3 n) This paper

Table 1: Performance of distance oracles in weighted undirected graphs.

We refer the reader to the survey by Sen [13] on distance oracles as well as the related
area of spanners.

Our contributions: Our first contribution is an improvement of the query time of the
Thorup-Zwick oracle from O(k) to O(log k) without increasing space, stretch, or pre-
processing time. We achieve this by showing how to apply binary search on the bunch-
structures, introduced by Thorup and Zwick. Our improved query algorithm is very simple
to describe and straightforward to implement. It can easily be incorporated into our recent
distance oracle [16], giving improved preprocessing.

Our second contribution is an approximate distance oracle with universally constant
query time whose size is O(kn1+1/k) and whose stretch can be made arbitrarily close to
the optimal 2k − 1 (when k = ω(1)): for any positive ǫ ≤ 1, we give an oracle of size
O(kn1+1/k), stretch O((2 + ǫ)k), and query time O(1/ǫ). For k = O(log n/ log log n) and
constant ǫ, space can be improved to O(n1+1/k), matching that of Mendel and Naor2.
To achieve this result, the main idea is to first query the Mendel-Naor oracle to get an
O(k)-approximate distance and then refine this estimate in O(1/ǫ) iterations using the
bunch-structures of Thorup and Zwick. Our results are summarized in Table 1.

Note that we are interested in non-constant k only; if k = O(1), the Thorup-Zwick
oracle is optimal up to constants (assuming the girth conjecture) since it has size O(n1+1/k),
stretch 2k − 1, and query time O(1).

Organization of the paper: In Section 2, we introduce notation and give some basic
definitions and results. Our oracle with O(log k) query time is presented in Section 3.
This is followed by our constant time oracle in Section 4; first we present a generic algo-
rithm in Section 4.1 that takes as input a large-stretch distance estimate and outputs a
refined estimate. Some technical results are presented in Section 4.2 that will allow us to
combine this generic algorithm with the Mendel-Naor oracle to form our own oracle. We
describe preprocessing and query in detail in Sections 4.3 and 4.4 and we bound time and
space requirements in Section 4.5. In Section 4.6, we show how to improve preprocessing
compared to that in [9]. Finally, we conclude in Section 5.

2 Preliminaries

Throughout the paper, G = (V,E) is an undirected connected graph with non-negative
edge weights and with m edges and n vertices. For u, v ∈ V , we denote by dG(u, v) the

2This covers almost all values of k that are of interest as the Mendel-Naor oracle has O(n) space
requirement for k = Ω(log n).
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p2(u)

p1(u)

u = p0(u)

Figure 1: A bunch Bu in a complete Euclidean graph with k = 3. Black vertices belong
to A0, grey vertices to A1, and white vertices to A2. Line segments connect u to vertices
of Bu.

shortest path distance between u and v.
Sometimes we consider list representations of sets. We denote by S[i] the ith entry of

some chosen list representation of a set S, i ≥ 0. For x > 0, log x is the base 2 logarithm
of x.

The following definitions are taken from [14] and we shall use them throughout the
paper. Let k ≥ 1 be an integer and form sets A0, . . . , Ak with V = A0 ⊇ A1 ⊇ A2 . . . ⊇
Ak = ∅. For i = 1, . . . , k−1, set Ai is formed by picking each element of Ai−1 independently
with probability n−1/k. Set Ai has expected size O(n1−i/k) for i = 0, . . . , k − 1. For each
vertex u and each i = 1, . . . , k − 1, pi(u) denotes the vertex of Ai closest to u (breaking
ties arbitrarily). Define a bunch Bu as

Bu =

k−1
⋃

i=0

{v ∈ Ai \ Ai+1|dG(u, v) < dG(u, pi+1(u))},

where we let dG(u, pk(u)) =∞; see Figure 1.
Thorup and Zwick showed how to compute all bunches in O(kmn1/k) time and showed

that each of them has expected size O(kn1/k) for a total of O(kn1+1/k). The following
lemma states some simple but important results about bunches.

Lemma 1. Let u, v ∈ V be distinct vertices and let 0 ≤ i < k − 1. If pi(v) /∈ Bu then

dG(u, pi+1(u)) ≤ dG(u, pi(v)). Furthermore, Ak−1 ⊂ Bu. In particular, pk−1(v) ∈ Bu.

Algorithm distk(u, v, i) in Figure 2 is identical to the query algorithm of Thorup and
Zwick except that we do not initialize i ← 0 but allow any start value. We shall use this
generalized algorithm in our analysis in the following.

3 Oracle with O(log k) Query Time

In this section, we show how to improve the O(k) query time of the Thorup-Zwick oracle
to O(log k). Let I be the index sequence 0, . . . , k− 1. The idea is to identify r = O(log k)
subsequences (I1 = I) ⊃ I2 ⊃ . . . ⊃ Ir of I in that order, where for j = 2, . . . , r,
|Ij| ≤ 1

2 |Ij−1|. Each subsequence Ij has the property that distk applied to the beginning of
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Algorithm distk(u, v, i)

1. w ← pi(u); j ← i
2. while w /∈ Bv

3. j ← j + 1
4. (u, v)← (v, u)
5. w ← pj(u)
6. return dG(w, u) + dG(w, v)

Figure 2: Answering a distance query, starting at sample level i.

it outputs a desired (2k−1)-approximate distance in O(|Ij|) time. We apply binary search
to identify the subsequences, with each step taking constant time. The final subsequence
Ir has O(log k) length and distk is applied to it to compute a (2k − 1)-distance estimate
in O(log k) additional time.

In the following, we define a class of such subsequences. For vertices u and v, an index
j ∈ I is (u, v)-terminal if

1. j = k − 1 (in which case pj(u) ∈ Bv) or

2. j < k − 1 is even and either pj(u) ∈ Bv or pj+1(v) ∈ Bu.

Note that if an index j is (u, v)-terminal, distk(u, v, i) terminates if it reaches j or j + 1.
We say that a subsequence I ′ = i1, . . . , i2 of I is (u, v)-feasible if

1. i1 is even,

2. dG(u, pi1(u)) ≤ i1 · dG(u, v), and

3. i2 is (u, v)-terminal.

The following lemma implies that distk answers a (2k− 1)-approximate distance query for
u and v when applied to a (u, v)-feasible sequence.

Lemma 2. Let i1, . . . , i2 be a (u, v)-feasible subsequence. Then distk(u, v, i1) gives a (2k−
1)-approximate uv-distance in O(i2 − i1) time.

Proof. The time bound follows since i2 is (u, v)-terminal and since each iteration can be
implemented to run in constant time using hash tables to represent bunches as in [14]. The
stretch bound follows from the analysis of Thorup and Zwick for their query algorithm:
when pj(u) = w /∈ Bv, we have dG(v, pj+1(v)) ≤ dG(v, pj(u)) ≤ dG(u, pj(u)) + dG(u, v)
by Lemma 1 and the triangle inequality. Hence, each iteration of distk(u, v, i1) increases
dG(w, u) by at most dG(u, v). Since dG(u, pi1(u)) ≤ i1 · dG(u, v), we have at termination
that dG(u,w) + dG(w, v) ≤ 2dG(u,w) + dG(u, v) ≤ (2(i1 + (i2 − i1)) + 1)dG(u, v) ≤ (2k −
1)dG(u, v).

Lemma 3. I is (u, v)-feasible for all vertices u and v.

For each vertex u and 0 ≤ i < k − 2, define δi(u) = dG(u, pi+2(u))− dG(u, pi(u)). The
following lemma allows us to binary search for a (2k − 1)-approximate distance estimate
of dG(u, v).
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Algorithm bdistk(u, v, i1, i2)

1. if i2 − i1 ≤ log k then return distk(u, v, i1)
2. let i be the middle even index in i1, . . . , i2
3. let j be the (precomputed) even index in i1, . . . , i− 2 maximizing δj(u)
4. if pj(u) /∈ Bv and pj+1(v) /∈ Bu then return bdistk(u, v, i, i2)
5. else return bdistk(u, v, i1, j)

Figure 3: Answering a distance query using binary search. The initial call is
bdistk(u, v, 0, k − 1). For correctness of the pseudocode, we assume here that k ≥ 16.
The call in line 1 is to distk in Figure 2.

Lemma 4. Let i1, . . . , i2 be a (u, v)-feasible sequence and let i be even, i1+2 ≤ i ≤ i2−2.
Let j be an even index in subsequence i1, . . . , i − 2 that maximizes δj(u). If pj(u) /∈ Bv

and pj+1(v) /∈ Bu then i, . . . , i2 is (u, v)-feasible. Otherwise, i1, . . . , j is (u, v)-feasible.

Proof. If pj(u) ∈ Bv or pj+1(v) ∈ Bu then j is (u, v)-terminal. Since i1, . . . , i2 is (u, v)-
feasible, so is i1, . . . , j.

Now assume that pj(u) /∈ Bv and pj+1(v) /∈ Bu. Then dG(v, pj+1(v)) ≤ dG(v, pj(u))
and dG(u, pj+2(u)) ≤ dG(u, pj+1(v)) by Lemma 1. Applying the triangle inequality twice
yields

dG(u, pj+2(u)) ≤ dG(u, pj+1(v))

≤ dG(u, v) + dG(v, pj+1(v))

≤ dG(u, v) + dG(v, pj(u))

≤ 2dG(u, v) + dG(u, pj(u))

so δj(u) = dG(u, pj+2(u))− dG(u, pj(u)) ≤ 2dG(u, v).
Let I ′ be the set of even indices i1, i1 + 2, i1 + 4, . . . , i − 2. Since i1, . . . , i2 is (u, v)-

feasible, dG(u, pi1(u)) ≤ i1 · dG(u, v). By the choice of j,

dG(u, pi(u)) = dG(u, pi1(u)) +
∑

j′∈I′

δj′(u)

≤ i1 · dG(u, v) + |I ′|max
j′∈I′

δj′(u)

= i1 · dG(u, v) +
i− i1
2

δj(u)

≤ i1 · dG(u, v) + (i− i1)dG(u, v)

= i · dG(u, v).

Hence, since i1, . . . , i2 is (u, v)-feasible, so is i, . . . , i2.

We can now show our first main result.

Theorem 1. For an integer k ≥ 2, a (2k − 1)-approximate distance oracle of G of

size O(kn1+1/k) and O(log k) query time can be constructed in O(min{kmn1/k,
√
km +

kn1+c/
√
k}) time for some constant c.

Proof. In order for δi(u)-values to be defined, we assume that k ≥ 3; the result of the
theorem is already known for k = 2 (in fact for any constant k). We obtain bunch Bu
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for each vertex u in a total of O(kmn1/k) time using the Thorup-Zwick construction. The
following additional preprocessing is done for u to determine the (u, v)-subsequences of I
that are needed. Let I ′ = i1, . . . , i2 be the current sequence considered; initially, I ′ = I.
Pick an even index i, i1+2 ≤ i ≤ i2−2, such that i1, . . . , i and i, . . . , i2 have (roughly) the
same size and find an even index j in i1, . . . , i − 2 which maximizes δj(u). Then recurse
on subsequences i1, . . . , j and i, . . . , i2. The recursion stops when a sequence of length at
most log k is reached. Below we show that these indices j can be identified in O(k) time
which is O(kn) over all u.

Now, to answer a distance query for vertices u and v, we do binary search on sequences
I ′ = i1, . . . , i2 generated; see Figure 3. We start the search with I ′ = I and check if both
pj(u) /∈ Bv and pj+1(v) /∈ Bu. If so, we continue the search on subsequence i, . . . , i2.
Otherwise, we continue the search on i1, . . . , j. We stop when reaching a sequence of
length at most log k. By Lemmas 3 and 4, this subsequence is (u, v)-feasible. Applying
distk to it outputs a (2k − 1)-approximate distance estimate of dG(u, v) by Lemma 2.

Binary search takes O(log k) time. Since we end up with a (u, v)-feasible sequence of
length at most log k, distk applied to it takes O(log k) time. Hence, query time is O(log k).

The oracle in [16] with O(
√
km+kn1+c/

√
k) preprocessing time also constructs bunches

and applies linear search in these to answer distance queries in O(k) time. Our binary
search algorithm can immediately be plugged in instead.

It remains to bound, for each vertex u, the time to identify the indices j. Since sequence
lengths are reduced by a factor of at least two in each recursive step, simple linear searches
will give all the indices in a total of O(k log k) time. In the following, we improve this to
O(k).

Let us call a subsequence of I canonical if it is obtained during the following procedure:
start with the subsequence I ′ of I consisting of the even indices. Then find an index
i ∈ I ′ that partitions I ′ into two (roughly) equal-size subsequences (both containing i),
and recurse on each of them; the recursion stops when a subsequence consisting of two
indices is obtained. We keep a binary tree T reflecting the recursion, where each node of T
is associated with the canonical subsequence generated at that step in the recursion. From
this procedure, we identify (the endpoints of) all canonical subsequences in O(k) time. A
bottom-up O(k) time algorithm in T can then identify, for each canonical subsequence
I ′ = i1, i1 + 2 . . . , i2, an index j = j(I ′) in i1, i1 + 2, . . . , i2 − 2 that maximizes δj(u).

Now consider a (not necessarily canonical) subsequence I ′ = i1, i1 +2, . . . , i2 of I with
indices i1 < i2 even. We can find O(log k) canonical subsequences whose union is I ′ as
follows: let ℓ1 and ℓ2 be the leaves of T associated with canonical subsequences i1, i1 + 2
and i2 − 2, i2, respectively. Let P be the path in T from the parent of ℓ1 to the parent of
ℓ2 and let X be the set of nodes in T \P having a parent in P . Then it is easy to see that
the O(log k) canonical subsequences associated with nodes in X have I ′ as their union.
It follows that finding the desired index j for I ′ takes O(log k) time as it can be found
among the j-indices for canonical subsequences associated with nodes in X.

In our preprocessing for vertex u, we only need to find j-indices for O(k/ log k) sub-
sequences since the recursion stops when a subsequence of length at most log k is found.
Total preprocessing for u is thus O(k), as desired.
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Algorithm refine distα,ǫ(u, v, d̃uv)

1. du ← d̃uv
2. iu ← evenu(du)
3. if not refine further(u, v, iu) then return du
4. i← 0
5. while refine further(u, v, iu) and i ≤ ⌈log(2α)/ log(1 + ǫ)⌉
6. du ← du/(1 + ǫ)
7. iu ← evenu(du)
8. i← i+ 1
9. i′u ← evenu(du(1 + ǫ))
10. if i′u ≥ 2 then
11. let j be an even index in 0, . . . , i′u − 2 maximizing δj
12. if pj(u) ∈ Bv then return dG(u, pj(u)) + dG(v, pj(u))
13. if pj+1(v) ∈ Bu then return dG(u, pj+1(v)) + dG(v, pj+1(v))
14. if pi′u(u) ∈ Bv then return dG(u, pi′u(u)) + dG(v, pi′u(u))
15. else return dG(u, pi′u+1(v)) + dG(v, pi′u+1(v))

Algorithm refine further(u, v, iu)

1. if iu ≥ 2 then
2. let j be an even index in 0, . . . , iu − 2 maximizing δj
3. if pj(u) ∈ Bv or pj+1(v) ∈ Bu then return true

4. if piu(u) ∈ Bv or piu+1(v) ∈ Bu then return true

5. else return false

Figure 4: Algorithm refine dist takes as input an αk-approximate uv-distance d̃uv and
outputs a (2(1 + ǫ)k − 1)-approximate uv-distance.

4 Oracle with Constant Query Time

Let 0 < ǫ ≤ 1
2 be given. In this section, we show how to achieve stretch 2(1 + ǫ)k − 1,

query time O(1/ log(1 + ǫ)) = O(1/ǫ)3, and space O(kn1+1/k). Initially, we aim for a
preprocessing bound of O(n2+1/k log n), matching that in [8]. In Section 4.6, we improve
this to the bound stated in Table 1.

We start with a generic algorithm, refine dist, to refine a distance estimate. Later
we will show how to combine this with the Mendel-Naor oracle. We shall assume that
1/ log(1 + ǫ) = o(log k) since otherwise, the oracle of the previous section can be applied.

4.1 A generic algorithm

For a vertex u and a non-negative value du, we define evenu(du) as the largest even index
iu such that dG(u, piu(u)) ≤ du.

Pseudocode of refine dist can be found in Figure 4. It takes as input an αk-approximate

3Let x = 1/ǫ ≥ 2. Since ln is concave, ln(1 + ǫ) = ln(x + 1) − lnx > ∂

∂x
ln(x + 1) = 1/(x + 1) ≥

2

3
ǫ,

which implies 1/ log(1 + ǫ) = O(1/ǫ).
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uv-distance d̃uv and outputs a (2(1 + ǫ)k − 1)-approximate uv-distance. In line 3, it calls
subroutine refine further which checks a condition similar to that in Lemma 4 to determine
whether the initial estimate d̃uv is already a good enough approximation. If so, refine dist
outputs this distance in line 3. Otherwise, it repeatedly refines the initial estimate in the
while loop in lines 5–8. In each iteration, the estimate is reduced by a factor of (1+ ǫ) and
refine further is called to determine whether we can refine the estimate further. If not,
the while-loop ends and the refined estimate is output in lines 12–15. The while-loop also
terminates after roughly logα/ǫ iterations since then the refined estimate is small enough
as the initial estimate is an αk-approximate uv-distance. With the Mendel-Naor oracle,
we can pick α = 128, giving only O(1/ǫ) iterations. We will implement refine dist so that
each iteration takes O(1) time, giving the desired O(1/ǫ) query time.

The following lemma shows that refine dist outputs the stretch we are aiming for.

Lemma 5. For k ≥ 4, α ≥ 1, and ǫ > 0, algorithm refine distα,ǫ(u, v, d̃uv) outputs a

(2(1 + ǫ)k − 1)-approximate uv-distance if d̃uv is an αk-approximate uv-distance.

Proof. Initially, dG(u, v) ≤ d̃uv = du. If the test in line 3 of refine dist succeeds, i.e., if
algorithm refine further returns false, then since the test in line 3 of that algorithm fails, a
telescoping sums argument similar to that in the proof of Lemma 4 implies dG(u, piu(u)) ≤
iu · dG(u, v). Since also line 4 fails, we have dG(u, piu+2(u)) − dG(u, piu(u)) ≤ 2dG(u, v).
Hence dG(u, v) ≤ du < dG(u, piu+2(u)) ≤ (iu + 2)dG(u, v) ≤ (k − 1)dG(u, v) (note that
iu + 2 ≤ k − 1 since piu+1(v) /∈ Bu which implies iu + 1 < k − 1 by Lemma 1). In the
following, we can thus assume that the test in line 3 of refine dist fails.

We know that refine further(u, v, i′u) returns true since i′u is the value of iu in the
iteration before the last. Hence, if a distance is returned in line 15, pi′u+1(v) ∈ Bu. In
particular, all distances returned are at least dG(u, v).

Assume first that the while-loop ended because refine further(u, v, iu) returned false.
Observing the following string of inequalities in lines 10 to 15 will help us in the following:

dG(u, piu(u)) ≤ du < dG(u, piu+2(u)) ≤ dG(u, pi′u(u)) ≤ du(1 + ǫ).

We have du < dG(u, piu+2(u)) ≤ (iu + 2)dG(u, v). If lines 11 to 13 are executed then
dG(u, pj(u)) < dG(u, pi′u(u)) ≤ du(1 + ǫ) < (1 + ǫ)(iu + 2)dG(u, v). Thus, if pj(u) ∈ Bv, a
value of at most

2dG(u, pj(u)) + dG(u, v) < (2(1 + ǫ)(iu + 2) + 1)dG(u, v)

≤ (2(1 + ǫ)(k − 1) + 1)dG(u, v)

< (2(1 + ǫ)k − 1)dG(u, v)

is returned in line 12. If pj(u) /∈ Bv and pj+1(v) ∈ Bu, Lemma 1 gives j + 1 ≤ k − 1 and

dG(v, pj+1(v)) ≤ dG(v, pj(u)) ≤ dG(u, v) + dG(u, pj(u)) < ((1 + ǫ)(iu + 2) + 1)dG(u, v).

Furthermore, since pj+1(v) ∈ Bu and j + 1 < i′u, we have

dG(u, pj+1(v)) ≤ dG(u, pj+2(u)) ≤ dG(u, pi′u(u)) ≤ du(1 + ǫ) < (1 + ǫ)(iu + 2)dG(u, v).

Hence, a value of less than

(2(1 + ǫ)(iu + 2) + 1)dG(u, v) ≤ (2(1 + ǫ)(k − 1) + 1)dG(u, v) < (2(1 + ǫ)k − 1)dG(u, v)
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is returned in line 13. The same argument as for line 12 with i′u instead of j shows that
the desired distance estimate is output in line 14. If we reach line 15, pi′u(u) /∈ Bv and (as
already observed) pi′u+1(v) ∈ Bu. Then iu + 2 ≤ i′u ≤ k − 2 and

dG(v, pi′u+1(v)) ≤ dG(v, pi′u(u))

≤ dG(u, v) + dG(u, pi′u(u))

≤ dG(u, v) + du(1 + ǫ)

< ((1 + ǫ)(iu + 2) + 1)dG(u, v)

≤ ((1 + ǫ)(k − 2) + 1)dG(u, v)

< ((1 + ǫ)k − 1)dG(u, v)

so a value of at most

2dG(v, pi′u+1(v)) + dG(u, v) < (2((1 + ǫ)k − 1) + 1)dG(u, v) = (2(1 + ǫ)k − 1)dG(u, v)

is returned in line 15.
Now assume that the while-loop ended with refine further(u, v, iu) returning true.

Then i = ⌈log(2α)/ log(1 + ǫ)⌉ iterations have been executed so the final value of du is
at most αk · dG(u, v)/(1 + ǫ)i ≤ k

2 · dG(u, v). If the algorithm returns a value in line
12 then this value is at most 2dG(u, pj(u)) + dG(u, v) < 2du(1 + ǫ) + dG(u, v) ≤ ((1 +
ǫ)k + 1)dG(u, v). If pj(u) /∈ Bv and pj+1(v) ∈ Bu then dG(v, pj+1(v)) ≤ dG(v, pj(u)) ≤
dG(u, v) + dG(u, pj(u)) < dG(u, v) + du(1 + ǫ) so a value of at most 2dG(v, pj+1(v)) +
dG(u, v) < 2du(1 + ǫ) + 3dG(u, v) ≤ ((1 + ǫ)k + 3)dG(u, v) is returned in line 13. Since
k ≥ 4, this gives the desired estimate. A similar argument gives the same estimate for
lines 14 and 15. This completes the proof.

4.2 Combining with the Mendel-Naor oracle

Our oracle will query that of Mendel and Naor for a distance estimate and then give it
as input to an efficient implementation of refine dist. It is worth pointing out that any
oracle with universally constant query time and O(k) stretch can be used as a black box
and not just that in [8]; the only requirement is that the number of distinct distances it
can output is not too big; see details below.

We will keep a sorted list of values such that for any distance query, the list contains
the O(1/ log(1 + ǫ)) du-values found in refine dist as consecutive entries. We linearly
traverse the list to identify these entries some of which point to iu-indices needed by
refine dist. These pointers together with some additional preprocessing allow us to execute
each iteration of the while-loop in O(1) time.

We will ensure the property that the elements of the list are spaced by a factor of at
least 1 + ǫ. For this we need a new definition. Let S be a non-empty set of real numbers
and let ǫ > 0 be given. Define the ǫ-comb of S to be the set Sǫ of real numbers obtained by
the iterative algorithm combǫ(S) in Figure 5. Lemmas 6 and 8 below show that the ǫ-comb
of a certain superset of the set of all distances that can be output by the Mendel-Naor
oracle has the above property while not containing too many elements.

Lemma 6. Let Sǫ be the ǫ-comb of a set S. Then

1. for any s ∈ S, there is a unique s′ ∈ Sǫ such that s ≤ s′ < (1 + ǫ)s,

2. any two elements of Sǫ differ by a factor of at least 1 + ǫ, and
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Algorithm combǫ(S)

1. let smax be the largest element of S
2. Sǫ ← {smax}; S′ ← S \ {smax}
3. while S′ 6= ∅
4. let s1 be the largest element of S′ and let s2 be the smallest element of Sǫ

5. s← min{s1, s2/(1 + ǫ)}
6. Sǫ ← Sǫ ∪ {s}
7. remove all the elements from S′ that have value at least s
8. return Sǫ

Figure 5: Algorithm that outputs the ǫ-comb Sǫ of a non-empty set S of real values.

3. |Sǫ| ≤ |S|.

Proof. To show the first part, define s(i) to be the element s found in the ith iteration of the

while-loop. Define s
(i)
1 and s

(i)
2 similarly. Now, let s ∈ S be given. Since smax ∈ Sǫ, there

is an element of Sǫ which is at least s. Let smin be the smallest such element and suppose
for the sake of contradiction that smin ≥ (1 + ǫ)s. Let i be the iteration in which smin is

added to Sǫ. Since s < s(i), s = s(j) for some j ≥ i+1 so s ≤ s
(i+1)
1 . After line 7 has been

executed, every element of S′ is strictly smaller than s(i) = smin. Thus, s ≤ s
(i+1)
1 < smin.

Since also s
(i+1)
2 = s(i) = smin ≥ (1+ ǫ)s, it follows that s ≤ s(i+1) < smin. But s

(i+1) ∈ Sǫ,
contradicting the choice of smin.

We have shown that s ≤ smin ≤ (1 + ǫ)s. To show uniqueness, let s′ be the first
element added to Sǫ for which s ≤ s′ < (1 + ǫ)s. Assume for the sake of contradiction
that s′ 6= smin. Then smin was added in a later iteration than s′ so s ≤ smin = s(i) ≤
s
(i)
2 /(1 + ǫ) ≤ s′/(1 + ǫ) < s, a contradiction. Thus, s′ = smin, showing uniqueness.

The second part of the lemma holds since in line 5, s2 is the smallest element of Sǫ

and the next element s to be added to this set satisfies s ≤ s2/(1 + ǫ).
The third part of the lemma follows since in line 2, |Sǫ| = 1 and S′ = |S| − 1 and since

at least one element (namely s1) is removed from S′ in line 7 after an element has been
added to Sǫ.

For any vertices u and v, denote by dMN (u, v) the uv-distance estimate output by the
Mendel-Naor oracle and let αMNk be the stretch achieved by the oracle, i.e., αMN = 128.
Let DMN = {dMN (u, v)|u, v ∈ V } be the set of all distances that the oracle can output.

Lemma 7. |DMN | = O(n1+1/k).

Proof. The Mendel-Naor oracle stores trees representing certain ultrametrics. Each tree
node is labelled with a distance and each approximate distance output by the Mendel-Naor
oracle is one such label. Hence, since the oracle has size O(n1+1/k), so has DMN .

Lemma 8. For each d ∈ DMN , let Dd = {d/(1+ǫ)i|0 ≤ i ≤ ⌈log(2αMN (1+ǫ))/ log(1+ǫ)⌉}
and let Dǫ be the ǫ-comb of ∪d∈DMN

Dd. Then for each d ∈ DMN , there exists a unique

d′ ∈ Dǫ such that d ≤ d′ ≤ d(1 + ǫ) and d′/(1 + ǫ)i ∈ Dǫ for 0 ≤ i ≤ ⌈log(2αMN (1 +
ǫ))/ log(1 + ǫ)⌉. Also, |Dǫ| = O(n1+1/k/ log(1 + ǫ)).

Proof. The existence and uniqueness of d′ follows from DMN ⊂
⋃

d∈DMN
Dd and from

part 1 of Lemma 6. Define di = d/(1 + ǫ)i and d′i = d′/(1 + ǫ)i. We use induction on
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Pu

Su

τSu
(Dǫ(u))

∪d∈DMN
Dd

Dǫ

Figure 6: Sets ∪d∈DMN
Dd, Dǫ, Su, and Pu (ordered by increasing value from left to right)

as well as the map τSu
restricted to the subset Dǫ(u) (white points) of Dǫ. Elements of

∪d∈DMN
Dd represented by long line segments are those belonging to DMN . For clarity,

elements of each set Dd from Lemma 8 are evenly spaced in the figure.

i ≥ 0 to show that d′i ∈ Dǫ. The base case i = 0 has been shown since d′0 = d′ so
assume 0 < i ≤ ⌈log(2αMN (1+ ǫ))/ log(1+ ǫ)⌉ and that d′i−1 ∈ Dǫ. Consider the iteration
of combǫ(∪d∈DMN

Dd) following that in which di−1 was added to Sǫ. Here, s1 ≥ di−1

since di−1 ∈ S′ and so s2 = d′i−1 = d′i(1 + ǫ) ≤ di−1(1 + ǫ) ≤ s1(1 + ǫ), giving s =
min{s1, s2/(1 + ǫ)} = s2/(1 + ǫ) = d′i which is added to Sǫ in line 6. Hence, d′i ∈ Dǫ,
completing the induction step.

For the last part of the lemma, since log(2αMN (1 + ǫ))/ log(1 + ǫ) = O(1/ log(1 + ǫ)),
Lemma 7 and part 3 of Lemma 6 give

|Dǫ| ≤
∑

d∈DMN

|Dd| = O(|DMN |/ log(1 + ǫ)) = O(n1+1/k/ log(1 + ǫ)).

As mentioned earlier, certain elements of the ǫ-comb in Lemma 8 contain pointers to
iu-indices. These pointers are defined by the following type of map. For a set S of real
values with smallest element smin, define τS : [smin,∞)→ S by τS(x) = max{s ∈ S|s ≤ x}.
Lemma 9. Let S be a set of real values with smallest element smin and let x, y ∈ [smin,∞).
If s1 < s2 are consecutive elements in S then τS(x) = τS(y) = s1 iff x, y ∈ [s1, s2).

4.3 Preprocessing

We are now ready to give an efficient implementation of algorithm refine dist. We construct
the Mendel-Naor oracle and obtain the set DMN . For each vertex u, we construct bunch
Bu and the set Pu of values dG(u, v) for each v ∈ Bu. We represent Pu as a list sorted
by increasing value. Furthermore, we find a set Su of real values as follows. For each
index i ∈ {0, . . . , |Pu| − 2} of Pu, subdivide interval [Pu[i], Pu[i+ 1]] into four even-length
subintervals. We denote by Iu the set of these subintervals over all i and form the set
Su of all their endpoints. We obtain the ǫ-comb Dǫ as defined in Lemma 8 and represent
it as a sorted list. Then we form a set Dǫ(u) of those d ∈ Dǫ for which d is either
the smallest or the largest element that τSu

maps to τSu
(d); see Figure 6. With each

d ∈ Dǫ(u), we associate the largest even index iu(d) such that dG(u, piu(d)(u)) ≤ τSu
(d).

For all d ∈ Dǫ \ Dǫ(u), we leave iu(d) undefined.

4.4 Query

To answer an approximate uv-distance query, we first obtain the Mendel-Naor estimate
dMN (u, v) and identify the smallest element d̃uv of Dǫ which is at least dMN (u, v). This
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element is the input to refine distα,ǫ where α = (1 + ǫ)αMN . By Lemma 8, d̃uv is an
αk-approximate distance so the output will be a (2(1 + ǫ)k − 1)-approximate distance.

It follows from Lemma 8 and part 2 of Lemma 6 that all values of du in refine dist are
consecutive and start from d̃uv in Dǫ. Linearly traversing the list from d̃uv thus corresponds
to updating du in the while-loop.

We also need to maintain even index iu. Assume for now that for the initial du, index
iu(du) is defined. Then the initial iu is iu(du). As du is updated in the while-loop, at some
point it may happen that iu(du) is undefined. Let d

′
u be the last value encountered in the

linear traversal such that iu(d
′
u) is defined. Then d′u is the largest element in Dǫ that τSu

maps to τSu
(d′u) and du is larger than the smallest such element. Hence, τSu

(du) = τSu
(d′u)

and it follows from Lemma 9 that iu need not be updated from the value it had when d′u
was encountered. Thus, maintaining iu is easy, assuming its initial value can be identified.

What if iu(du) is undefined for the initial du? Then we move down the list Dǫ until we
find an index iu(d

′
u) that is defined. By Lemma 9, this index is the initial value of iu and

we are done. The problem with this approach is that we may need to traverse a large part
of the list before the index can be found. We can only afford to traverse O(1/ log(1 + ǫ))
entries of Dǫ. The following lemma shows that if the search has not identified an index
iu(du) after a small number of steps then our oracle can output twice the distance value
in the final entry considered.

Lemma 10. For vertices u and v, let j be the index of Dǫ such that Dǫ[j] = d̃uv. Assume

that jmin = j−⌈log(2αMN )/ log(1+ǫ)⌉ is an index of Dǫ such that iu(Dǫ[j
′]) and iv(Dǫ[j

′])
are undefined for all jmin ≤ j′ ≤ j. Then dG(u, v) ≤ 2Dǫ[jmin] ≤ (1 + ǫ)k · dG(u, v).
Proof. We have dG(u, v) ≤ Dǫ[j] ≤ (1 + ǫ)αMNk · dG(u, v). For each index j′ > 0 of Dǫ,
Dǫ[j

′ − 1] = Dǫ[j
′]/(1 + ǫ) by Lemma 8 and part 2 of Lemma 6. Thus,

Dǫ[jmin] =
Dǫ[j]

(1 + ǫ)j−jmin

≤ (1 + ǫ)αMNk

(1 + ǫ)log(2αMN )/ log(1+ǫ)
dG(u, v) =

(1 + ǫ)k

2
dG(u, v),

showing the second inequality of the lemma.
To show the first inequality, let I ∈ Iu be the interval containing Dǫ[j]. Then it follows

from Lemma 9 that Dǫ[j
′] ∈ I for every j′ satisfying the condition in the lemma. Recalling

our assumption ǫ ≤ 1
2 < 1− 1/αMN , we get (1 + ǫ)j−jmin ≥ 2αMN > 2/(1 − ǫ) so

Dǫ[j] −Dǫ[jmin] =

(

1− 1

(1 + ǫ)j−jmin

)

Dǫ[j] >

(

1− 1− ǫ

2

)

Dǫ[j] >
1

2
dG(u, v)

and since Dǫ[j],Dǫ[jmin] ∈ I, I must have length > 1
2dG(u, v). Let ju be the index of Pu

such that interval Iu = [Pu[ju], Pu[ju + 1]] contains I. Since I is one of four consecutive
subintervals of Iu of even length, Iu has length > 2dG(u, v). Also, Pu[ju] ≤ Dǫ[jmin].

Similarly, there is an index jv of Pv such that Iv = [Pv[jv ], Pv [jv + 1]] has length
> 2dG(u, v) and Pv[jv ] ≤ Dǫ[jmin].

Let j be the final index of distk(u, v, 0) (corresponding to a uv-query to the Thorup-
Zwick oracle). Assume it is even (the odd case is handled in a similar manner). Then
dG(u, pj′+2(u)) − dG(u, pj′(u)) ≤ 2dG(u, v) for all even j′ ≤ j − 2 (using an observation
similar to that in the proof of Lemma 4). By the above, Pu[ju] ≥ dG(u, pj(u)). We also
have dG(v, pj′+2(v))−dG(v, pj′(v)) ≤ 2dG(u, v) for all odd j′ ≤ j−3 so again by the above,
Pv[jv ] ≥ dG(v, pj−1(v)). Finally, since pj−1(v) /∈ Bu,

dG(v, pj(u)) ≤ dG(u, v) + dG(u, pj(u))

≤ dG(u, v) + dG(u, pj−1(v))

≤ 2dG(u, v) + dG(v, pj−1(v)).
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Thus, dG(v, pj(u))−dG(v, pj−1(v)) ≤ 2dG(u, v) and since pj(u) ∈ Bv we have dG(v, pj(u)) ∈
Pv. Also, dG(v, pj−1(v)) ∈ Pv so since Pv [jv] ≥ dG(v, pj−1(v)), we get Pv[jv ] ≥ dG(v, pj(u)).
We can now conclude the proof with the first inequality of the lemma:

dG(u, v) ≤ dG(u, pj(u)) + dG(v, pj(u)) ≤ Pu[ju] + Pv[jv ] ≤ 2Dǫ[jmin].

4.5 Running time and space

We now bound the time and space of our oracle.

Preprocessing: Constructing the Mendel-Naor oracle takes O(n2+1/k log n) time and
requires O(n1+1/k) space. Traversing the nodes of the trees kept by the oracle identifies all
distances in time proportional to their number which by Lemma 7 is O(n1+1/k). Sorting
them to get the list representation of DMN then takes O(n1+1/k log n) time.

Forming a sorted list of the values from ∪d∈DMN
Dd in Lemma 8 can be done in

O((|DMN |/ log(1 + ǫ)) log n) = O(1ǫn
1+1/k log n) time and requires O(1ǫn

1+1/k) space.
Clearly, when the input to combǫ is given as a sorted list, the algorithm can be im-
plemented to run in time linear in the length of the list. Thus, computing a sorted list of
the values of Dǫ can be done in O(1ǫn

1+1/k log n) time.

By the analysis of Thorup and Zwick, forming bunchesBu takes O(kmn1/k) time. Since
these bunches have total size O(kn1+1/k), sorted lists Pu can be found in O(kn1+1/k log n)
time. Sets Su can be found within the same time bound.

Forming Dǫ(u)-sets can be done by two linear traversals of the sorted list L of values
from Dǫ ∪

⋃

u∈V Su. The first traversal visits elements in decreasing order. Whenever
we encounter a d from a set Su, let d′ be the previous visited element of Su (d′ = ∞ if
no such element exists) and let d′′ be the latest visited element of Dǫ. If d ≤ d′′ < d′,
d′′ is the smallest element of Dǫ that τSu

maps to τSu
(d′′) = d so we add d′′ to Dǫ(u).

Otherwise we do nothing as τSu
maps no element of Dǫ to d. The second traversal visits

elements in increasing order. When we encounter a d ∈ Su, let d′ be the predecessor of
d in Su (d′ = −∞ is no such element exists) and let d′′ be the latest visited element of
Dǫ. Then, assuming d′ ≤ d′′ < d, d′′ is the largest element that τSu

maps to τSu
(d′′) = d′

and so we add d′′ to Dǫ(u). Together, these two traversals form all Dǫ(u)-sets in time
O(|Dǫ|+

∑

u∈V |Su|).
Since each element of each set Su is associated with at most two elements of Dǫ(u),

we get a space bound of O(kn1+1/k) for sets Dǫ(u). In the two traversals, we can easily
identify iu(d), d ∈ Dǫ(u), without an asymptotic increase in time. We represent each of
these index maps as hash functions in the same way as bunches Bu are represented in the
Thorup-Zwick oracle. These hash functions do not increase space.

Query: To answer a uv-query, we need an efficient implementation of algorithm refine dist.
The while-loop consists of O(1/ǫ) iterations. Sub-routine refine further can be imple-
mented to run in constant time assuming we have precomputed, for each u and each even
index iu ≥ 2, the even index j in 0, . . . , iu − 2 that maximizes δj . This preprocessing can
easily be done in O(kn) time. It then follows that refine dist runs in O(1/ǫ) time and we
can conclude with our second main result.

Theorem 2. For any integer k ≥ 1 and any 0 < ǫ ≤ 1, a ((2 + ǫ)k)-approximate distance

oracle of G of size O(kn1+1/k) and query time O(1/ǫ) can be constructed in O(n2+1/k log n)
time. For k = O(log n/ log log n) and constant ǫ, space can be improved to O(n1+1/k).
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Proof. We may assume that k ≥ 4 since otherwise we can apply the Thorup-Zwick oracle
or our O(log k) query time oracle. Apply Lemma 5 and Lemma 10 with ǫ′ = 1

2ǫ ≤ 1
2

instead of ǫ. Then we get stretch (2 + ǫ)k, size O(kn1+1/k), and query time O(1/ǫ). This
shows the first part of the theorem.

To show the second part, apply the first part with ǫ1 =
1
2ǫ instead of ǫ and k′ = k(1+ǫ2)

instead of k, where ǫ2 = ǫ/(4+ǫ) (we assume here for simplicity that k(1+ǫ2) is an integer).
Then (2+ǫ1)k

′ = (2+ǫ)k so we get the desired stretch. Size is O(k′n1+1/k′) = O(kn1+1/k′).
Letting ǫ3 = ǫ2/(1+ ǫ2), we have 1/k

′ = (1− ǫ3)/k so we get size O(n1+1/k) if kn−ǫ3/k ≤ 1,
i.e., if k log k ≤ ǫ3 log n. The latter holds when k = O(log n/ log log n).

4.6 Faster preprocessing

In this subsection, we show how to improve the O(n2+1/k log n) preprocessing bound
in Theorem 2. First, we can replace the Mendel-Naor oracle with that of Mendel and
Schwob [9]. This follows since the latter also uses ultrametric representations of approxi-
mate shortest path distances so the proof of Lemma 7 still holds. This modification alone
gives a preprocessing bound of O(mn1/k log3 n).

Next, observe that our result holds for any O(k)-approximate distance dMN (u, v) out-
put and not just for αMN = 128. More precisely, let C > 1 be an integer. If dMN (u, v) has
stretch Ck then it follows from our analysis that this estimate can be refined to (2 + ǫ)k
in O(logC/ǫ) iterations and we get preprocessing time O(mn1/(Ck) log3 n) and query time
O(logC/ǫ). In addition to this, we need to construct bunches and form sorted lists Pu. As
shown earlier, this can be done in O(kmn1/k + kn1+1/k log n) time. Combining this with
the above gives the following improvement in preprocessing over that in Theorem 2.

Theorem 3. For any integers k ≥ 3 and C ≥ 2 and any 0 < ǫ ≤ 1, a ((2 + ǫ)k)-
approximate distance oracle of G of size O(kn1+1/k) and query time O(logC/ǫ) can be con-

structed in O(kmn1/k + kn1+1/k log n+mn1/(Ck) log3 n) time. For k = O(log n/ log log n)
and constant ǫ, space can be improved to O(n1+1/k).

5 Concluding Remarks

We gave a size O(kn1+1/k) oracle with O(log k) query time for stretch (2k − 1)-distances,
improving the O(k) query time of Thorup and Zwick. Furthermore, for any positive ǫ ≤ 1,
we gave an oracle with stretch (2 + ǫ)k which answers distance queries in O(1/ǫ) time.
This improves the result of Mendel and Naor which answers stretch 128k-distances in O(1)
time.

For the first oracle, can we go beyond the O(log k) query bound? And can space be
improved to O(n1+1/k)? For the second oracle, can stretch be improved to 2k − 1 while
keeping O(1) query time? To our knowledge, the oracle of Mendel and Naor cannot be
used to produce approximate shortest paths, only distances. Our second oracle then has
the same drawback (due to Lemma 10). What can be done to deal with this?
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