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The Traveling Salesman Problem for Lines, Balls and Planes∗
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Abstract

We revisit the traveling salesman problem with neighborhoods (TSPN) and propose several
new approximation algorithms. These constitute either first approximations (for hyperplanes,
lines, and balls in Rd, for d ≥ 3) or improvements over previous approximations achievable in
comparable times (for unit disks in the plane).

(I) Given a set of n hyperplanes in Rd, a TSP tour whose length is at most O(1) times the
optimal can be computed in O(n) time, when d is constant.

(II) Given a set of n lines in Rd, a TSP tour whose length is at most O(log3 n) times the
optimal can be computed in polynomial time for all d.

(III) Given a set of n unit balls in Rd, a TSP tour whose length is at most O(1) times the
optimal can be computed in polynomial time, when d is constant.

Keywords: Traveling salesman, group Steiner tree, linear programming, minimum-perimeter
rectangular box, approximation algorithm, lines, planes, hyperplanes, unit disks and balls.

1 Introduction

In the Euclidean Traveling Salesman Problem (ETSP), given a set of points in the plane (or in
the Euclidean space R

d, d ≥ 3), one seeks a shortest tour (closed curve) that visits each point. In
the TSP with neighborhoods (TSPN), first studied by Arkin and Hassin [1], each point is replaced
by a (possibly disconnected) region. The tour must visit at least one point in each of the given
regions (i.e., it must intersect each region). A tour for a set of neighborhoods is also referred to as
a TSP tour. Since ETSP is known to be NP-hard in R

d for every d ≥ 2 [27, 28, 44], TSPN is also
NP-hard for every d ≥ 2. TSP is recognized as one of the corner-stone problems in combinatorial
optimization. See [40, 41] for a list of related problems in geometric network optimization.

Related work. It is known that ETSP admits a polynomial-time approximation scheme in R
d,

where d = O(1), due to Arora [2] and Mitchell [39]. Subsequent running time improvements were
obtained by Rao and Smith [46]; specifically, the running time of their PTAS is O(f(ε)n log n),
where f(ε) grows exponentially in 1/ε. In contrast, TSPN in general is harder to approximate.
Certain instances are known to be APX-hard. Research efforts focused on approximations for
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families of neighborhoods with “nice” geometric properties. Typically, improved approximation
methods are available when the neighborhoods are pairwise disjoint, or fat, or have comparable
sizes. We briefly review previous work most closely related to our results.

Arkin and Hassin [1] gave constant-factor approximations for translates of a convex region,
translates of a connected region, and more generally, for regions with diameters parallel to a com-
mon direction and of comparable length (within a constant factor). Dumitrescu and Mitchell [17]
extended the above result to arbitrary connected neighborhoods with comparable diameters.

For n connected (possibly overlapping) neighborhoods in the plane, TSPN can be approximated
with ratio O(log n) by the algorithm of Mata and Mitchell [35]. See also the survey by Bern and
Eppstein [4] for a short outline of this algorithm. Subsequent running time improvements were
offered by Elbassioni et al. [22] and by Gudmundsson and Levcopoulos [30]. At its core, the
O(log n)-approximation relies on the following early result by Levcopoulos and Lingas [34]: Every
(simple) rectilinear polygon P with n vertices, r of which are reflex, can be partitioned in O(n log n)
time into rectangles whose total perimeter is log r times the perimeter of P .

Bodlaender et al. [6] gave a PTAS for TSPN for disjoint fat regions of about the same size
(this includes the case of disjoint unit disks) in R

d, where d is constant. Earlier Dumitrescu and
Mitchell [17] proposed a PTAS for TSPN for fat regions of about the same size and bounded depth
in the plane, where Spirkl [50] recently found and filled a gap.

Using an approximation algorithm due to Slavik [49] for Euclidean group TSP (see below), de
Berg et al. [12] obtained constant-factor approximations for disjoint fat convex regions in the plane,
not necessarily of comparable size. Elbassioni et al. [21] improved the runtime of the approximation
algorithm. Subsequently, Elbassioni et al. [22, 23] gave constant-factor approximations for (possi-
bly intersecting) fat convex regions of comparable size. Preliminary work by Mitchell gave (i) a
PTAS [42] for bounded depth fat regions of arbitrary sizes in the plane; in particular for disjoint
fat regions in the plane, and (ii) constant-factor approximations for pairwise-disjoint connected
neighborhoods of any size or shape [43]. Very recently, Chan and Jiang [9] gave a PTAS for fat
weakly disjoint regions in metric spaces of constant doubling dimension by combining a QPTAS
by Chan and Elbassioni [8] with a PTAS for TSP in doubling metrics by Bartal et al. [3]. (For
example, disjoint unit balls in R

d, d ≥ 2, are fat weakly disjoint regions per the definition in [9],
but disjoint balls of arbitrary radii need not be). A constant-factor approximation for disks in the
Euclidean plane (with arbitrary radii and overlaps) was obtained in [19].

Finally, interesting variants are those with unbounded neighborhoods, such as lines or planes.
For TSPN for n lines in the plane, an exact solution can be found in O(n5) time [7, 13, 51, 52] (see
also [33]), and a 1.28-approximation can be computed in O(n) time [15]. In contrast, TSPN for
lines in R

3 is NP-hard. The status of TSPN for planes in R
3 appears to be unknown.

Regarding the degree of approximation achievable, TSPN for arbitrary neighborhoods is gen-
erally APX-hard [12, 48], and it remains so even for segments of nearly the same length [22]. For
instance, approximating TSPN for connected regions in the plane within a factor smaller than 2 is
intractable (NP-hard) [48]. The problem is also APX-hard for disconnected regions [48], the sim-
plest case being point-pair regions [14]. It is conjectured that approximating TSPN for disconnected
regions in the plane within a O(log1/2 n) factor is intractable [48]. Similarly, it is conjectured that
approximating TSPN for connected regions in R

3 within a O(log1/2 n) factor and for disconnected
regions in R

3 within a O(log2/3 n) factor [48] are intractable. Moreover, proving these conjectures
seems to require advances in complexity, rather than geometry.

Our results. In this paper we present several improved approximation algorithms for TSPN, for
three types of neighborhoods: (i) hyperplanes in R

d; (ii) lines in R
d; (iii) congruent disks in the

plane and congruent balls in R
d. Our results and related older results are summarized in Table 1.
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Region type Old ratio New ratio NP-hard

1 Hyperplanes in R
d, d ≥ 3 — (1 + ε) 2d−1/

√
d open

2 Planes in R
3 — 2.31 in O(n) time open

3 Lines in R
d, d ≥ 3 — O(log3 n) yes

4 Disjoint unit disks in the plane 3.55 — yes

5 Unit disks in the plane 7.62 6.75 yes

6 Disjoint unit balls in R
3 — 7.01 yes

7 Unit balls in R
3 — 100.61 yes

8 Unit balls in R
d — O(7.73d) yes

9 Disjoint balls in R
d O(2d/

√
d) — yes

Table 1: Old and new (asymptotic) approximation ratios obtained in polynomial time. The ratios in rows
4–8 are obtained by using a black box PTAS for computing point tours. Disjoint unit balls in Rd, d ≥ 2,
admit a PTAS [6, 9, 17, 50]. The old ratios listed in column 2 are from [17] (rows 4,5) and [23] (row 9).

We start with hyperplanes in R
d; no approximation algorithm was known for this type of

neighborhoods. For constant d, we can compute constant-factor approximations in linear time.

Theorem 1. Given a set of n hyperplanes in R
d, and ε > 0, a TSP tour whose length is at

most (1 + ε) 2d−1/
√
d times the optimal can be computed in at most O(Cd,ε n) time, where Cd,ε =

d222d (d/ε)d. In particular for d = 3, a TSP tour whose length is at most 2.31 times the optimal
can be computed in O(n) time.

We continue with lines in R
d, a problem much harder to deal with. Note that an instance

with parallel lines reduces to an instance of ETSP for points in one dimension lower (namely the
points of intersection between the given lines orthogonal to a hyperplane). Here we obtain the first
approximations.

Theorem 2. Given a set of n lines in Rd, a TSP tour whose length is at most O(log3 n) times the
optimal can be computed in time O(d · poly(n)).

While for disjoint unit balls in R
d, d ≥ 2, the existence of a PTAS has been established [6, 9, 17,

50], no PTAS is known for intersecting unit balls in any dimension d ≥ 2. For arbitrary unit balls
in R

d, we give constant-factor approximations by using a black box that computes a good tour of
at most n points (the centers of a suitable subset of disks, resp., balls). For unit disks in R

2, we
obtain an improved approximation factor 6.75; the previous best ratio, 7.62, holds for translates of
a convex region [17]. Let T (n, d, ε) denote the running time for computing a (1+ ε)-approximation
of an optimal tour of n points in Rd; recall that T (n, d, ε) is currently exponential in 1/ε [46].

Theorem 3. Given a set of n unit disks in the plane, and ε > 0, a TSP tour whose length is at

most
(
7
3 +

8
√
3

π

)
(1+ε) times the optimal, apart from an additive constant, can be computed in time

O(T (n, 2, 1.8 ε)). In particular, a TSP tour whose length is at most 6.75 times the optimal can be
computed in time O(T (n, 2, 0.0018)). Alternatively, a TSP tour whose length is at most 8.52 times
the optimal can be computed in time O(n3/2 log5 n).

For congruent balls in R
3 we give the first explicit constant approximation factor, not in the

O(1) form.
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Theorem 4. Given a set of n unit balls in R
3, and ε > 0, a TSP tour whose length is at

most 54
√
3(1 + ε) times the optimal, apart from an additive constant, can be computed in time

O(T (n, 3, ε)). In particular, a TSP tour whose length is at most 100.61 times the optimal can be
computed in time O(T (n, 3, 0.01)). Alternatively, a TSP tour whose length is at most 104.1 times
the optimal can be computed in time O(n3).

The above result generalizes to congruent balls in R
d for any fixed dimension d; the proof is

analogous to that of Theorem 4 for the 3-dimensional version.

Theorem 5. Given a set of n unit balls in R
d, and ε > 0, a TSP tour whose length is at most

O(7.73d) times the optimal can be computed in time O(T (n, d, ε)).

Preliminaries. Let R be a set of regions in R
d, d ≥ 2. A set Ξ ⊂ R

d intersects R if Ξ intersects
each region in R, that is, Ξ∩ r 6= ∅, ∀r ∈ R. A shortest TSP tour for a set R of regions (neighbor-
hoods), denoted by OPT(R), is a shortest closed curve in the ambient space that intersects R.

The Euclidean length of a curve γ is denoted by len(γ), or just |γ| when there is no danger of
confusion. Similarly, the total (Euclidean) length of the edges of a geometric graph G or a polygon
P is denoted by len(G) and per(P ), respectively. For a hyperrectangle (rectangular box) Q in R

d

with sides w1, . . . , wd, the total edge length per(Q) = 2d−1
∑d

i=1wi is called its perimeter.
For α ≥ 1, we say that an approximation algorithm (for TSPN) has ratio α if its output tour

ALG satisfies len(ALG) ≤ α len(OPT), where OPT is an optimal tour, and has asymptotic ratio α
if its output satisfies len(ALG) ≤ α len(OPT) + β for some constant β ≥ 0.

The convex hull of a set A ⊂ R
d is denoted by conv(A). The Cartesian coordinates of a point

p ∈ R
d are denoted by x1(p), . . . , xd(p). For a line segment s ∈ R

3, ∆1(s), . . . ,∆d(s) denote the
lengths of its projections on the d coordinate axes.

2 The illusions and pitfalls of localization

Given a set R of n regions, it would be helpful to find a convex set that contains an optimal tour
OPT = OPT(R) and whose diameter is a polynomial in n and perhaps other parameters, such as
an upper bound on diam(OPT). A convex set C1 that intersects R is often easy to compute. It is
tempting to believe (as it has been suggested by several researchers) that if C1 is scaled up by some
suitable polynomial factor, the resulting convex set C2 might contain OPT. Finding such a set C2

would allow using standard approximation techniques (such as discretization, convex approximation
tools, etc.).

In this section, we show that this näıve approach is infeasible when the regions in R are lines
or hyperplanes in R

d. Let λ(x, y) be a given polynomial of 2 variables with positive coefficients.
We present constructions for a set of n lines and a set of n hyperplanes, respectively, such that the
minimum intersecting ball B1 is centered at the origin, but λB1 fails to contain OPT, where λ =
λ(n,diam(B1)). Moreover: (i) the shortest TSP tour contained in λB1 is a Θ(

√
n)-approximation

for lines, in contrast with the O(log3 n)-approximation in Theorem 2, and (ii) the shortest TSP
tour contained in λB1 is a c-approximation for hyperplanes, where c > 1 is a constant, which rules
out a (1 + ε)-approximation algorithm using this approach.

Lines in R
3. For an integer n and a polynomial λ(x, y), we construct a set L of n lines in

R
3. Consider the square Q = [−1, 1]2 in the xy-plane (Fig. 1 (left)). Let B1 be the ball of

radius
√
2 centered at the origin, and note that Q ⊂ B1. We first construct two skew lines in

R
3 whose minimum intersecting ball is B1. Start with two vertical lines passing through (1, 1, 0)
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Figure 1: Left: a set L of nearly vertical lines that intersect a square Q in a grid-like pattern, and their
minimum intersecting ball B1. Right: a set of four nearly vertical planes containing four sides of a square
Q = [−1, 1]2 in the xy-plane, and their minimum intersecting ball B1.

and (−1,−1, 0), and observe that they intersect any horizontal plane at two points at distance
2
√
2 apart. Rotate these lines about the horizontal line ℓ0 : y = x by some small angle α and −α,

respectively, to obtain two skew lines ℓ1 and ℓ2. As ℓ1 and ℓ2 remain orthogonal to ℓ0, the minimum
intersecting ball of ℓ1 and ℓ2 is still B1. Choose α such that ℓ1 and ℓ2 intersect the horizontal plane
z = nλ(n, 4) at two points, p1 and p2, at distance 4 apart. We now define the set L of n lines as
follows: L contains ℓ1 and ℓ2, about half of the lines in L pass through p1 and the other half pass
through p2. The lines in L are nearly vertical and intersect Q in a square grid pattern, where any
two intersection points are at distance at least 2/

√
n apart.

Lemma 1. Every TSP tour γ lying in λB1 satisfies len(γ) ≥
√
n
8 len(OPT). In particular, λB1

does not contain the optimal tour OPT = OPT(L) or any o(
√
n)-approximation of it.

Proof. Note that the tour that visits points p1 and p2, of length 2|p1p2| = 8, intersects all lines.
Consequently, len(OPT) ≤ 8 and diam(OPT) ≤ 4. Consider a tour γ lying in λB1 and let γ′ be
the orthogonal projection of γ onto the xy-plane, where len(γ′) ≤ len(γ). Since the lines in L are
nearly vertical, the orthogonal projections of the line segments in {ℓ ∩ λB1 : ℓ ∈ L} have length
at most 2/n, and they each contain distinct grid points within Q. Since the distance between any
two grid points is at least 2/

√
n, we have len(γ′) ≥ n(2/

√
n − 4/n) = 2

√
n − 4 ≥ √

n, and so

len(γ) ≥ √
n ≥

√
n
8 len(OPT), as required.

Planes in R
3. For an integer n and a polynomial λ(x, y), we construct a set H of n planes in

R
3. Consider the unit square Q = [−1, 1]2 in the xy-plane (Fig. 1 (right)). Let the first 4 planes

in H each contain one side of Q. The two planes containing the two sides of Q parallel to the
x-axis intersect in a line parallel to the x-axis and containing the point q = (0, 0, h), where h is
large, specifically h = nλ(n, 3). The two planes containing the sides of Q parallel to the y-axis
intersect in a line parallel to the y-axis and containing the point −q = (0, 0,−h). By symmetry, the
minimum intersecting ball of these four planes is centered at the origin, and its radius is at least
1 − 1/h and at most 1. Arrange the remaining n − 4 planes in H such that they all contain the
point q = (0, 0, h), are tangent to the ball B1, and the tangency points are uniformly distributed

5



along a horizontal circle C ⊂ ∂B1. By construction, B1 is the minimum intersecting ball of the n
planes in H.

Lemma 2. Every TSP tour γ lying in λB1 satisfies len(γ) ≥ π
2 (1−O(1/n)) len(OPT). In partic-

ular, λB1 does not contain the optimal tour OPT = OPT(H) or any (1 + ε)-approximation of it
for a sufficiently small ε > 0.

Proof. Note that the triangle formed by the point q and its orthogonal projections onto the two
planes containing the two sides of Q parallel to the y-axis is a tour for H. The length of this tour
is at most 4 + 4/h. Consequently, len(OPT) ≤ 4 + 4/h and diam(OPT) ≤ 3. Consider a tour γ
lying in λB1, and let γ′ be the orthogonal projection of γ to the xy-plane, where len(γ′) ≤ len(γ).
Since the planes in H are nearly vertical, the orthogonal projections of the disks in {H ∩ λB1 :
H ∈ H} are ellipses of width at most 2/n. The first four ellipses each contain a side of the square
Q. The remaining ellipses form ⌊(n − 4)/2⌋ pairs such that the major axes of any pair are on
parallel lines at distance at least 2 − 2/n apart, and the directions of the pairs are uniformly
distributed. Consequently, the width of γ′ is at least 2−O(1/n), and so len(γ′) ≥ 2π(1−O(1/n))
≥ π

2 (1−O(1/n)) len(OPT), as required.

Easy weak approximations. Finding a minimum-radius ball B1 that intersects a set of n
hyperplanes (resp., lines) in R

d is an LP-type problem [20]; for a fixed d, such a ball can be
computed in O(n) time. This immediately leads to a simple 2d−1-approximation for hyperplanes
and a O(n1−1/(d−2))-approximation for lines in R

d. Indeed, since the minimum enclosing ball BOPT

of an optimal tour OPT also intersects all n hyperplanes (resp., lines), it is clear that diam(B1) ≤
diam(BOPT). Since BOPT is spanned by up to d + 1 points, it is easy to see that len(OPT) ≥
2 diam(BOPT). On the other hand, a Hamiltonian cycle of the 2d vertices of an enclosing hypercube
of B1 intersects all hyperplanes (cf. Observation 1), and has length at most 2ddiam(B1). For n lines
in R

d, one can compute all intersection points of the n lines with the boundary of B1, and return
an approximate tour for these 2n points of length diam(B1) ·O(n1−1/(d−2)) by a result of Few [25].

In Section 3 we obtain a better approximation for TSPN for n hyperplanes, a ratio close to
2d−1/

√
d, by using hyperrectangles instead of balls and a careful analysis. In Section 4, we use a

completely different approach to achieve a much better O(log3 n)-approximation for TSPN for n
lines in R

3.

3 TSPN for hyperplanes in Rd

In this section we prove Theorem 1: we present a constant factor approximation algorithm for
TSPN for a set H of n hyperplanes in R

d with ratio (1 + ε)2
d−1

√
d

and running in O(n) time, for

constant d and ε > 0. In particular, for ε = 0.0002, we get the approximation ratios 2.31 in R
3,

4.001 in R
4, and 7.16 in R

5.
Our algorithm is based on solving low-dimensional linear programs; it combines ideas from [15,

16, 17, 33]. We show below (Lemma 4) that any closed curve γ ⊂ R
d is contained in a rectangular

box of edge lengths w1, . . . , wd such that
∑d

i=1 wi ≤
√
d
2 len(γ). We apply this result to the optimal

tour OPT(H). Then we use linear programming to compute a (1 + ε)-approximation for the
minimum-perimeter rectangular box intersecting H, and produce a Hamiltonian cycle of the 2d

vertices as an approximate tour.
Let Q be rectangular box in R

d such that the d extents of Q are w1 ≤ w2 ≤ . . . ≤ wd. It is not

6



difficult to see (by induction on d) that Q admits a Hamiltonian cycle of total length

τ(Q) = 2d−1w1 + 2d−2w2 + . . .+ 2wd−1 + 2wd = wd +

d∑

j=1

2d−jwj .

The orientation of a rectangular box Q in R
d is given by an orthonormal basis whose vectors

are parallel to the edges of Q. Cover the unit sphere S
d−1 ⊂ R

d with spherical caps of radius
r = ε/(d − 1). Since the (spherical) volume of Sd−1 is constant, and the volume of a spherical cap
of radius r is Θ(rd−1) = Θ((d/ε)d−1), we can select a set A = {α1, . . . , αm} of m = O(ddε1−d)
orientations that cover all possible orientations within an error of ε/(d − 1). That is, for any
orientation α, there is an orientation α′ ∈ A and a matching between the orthogonal bases α and
α′ so that the angle between any two corresponding vectors is at most ε/(d − 1).

Algorithm A1.

Step 1: Let m = O(ddε1−d). For each i = 1, . . . ,m, compute a minimum-perimeter rectan-
gular box Qi with orientation αi that intersects H.

Step 2: Let Q be a box with the minimum perimeter over all m directions, found above.
Return a Hamiltonian cycle of the 2d vertices of Q, of length τ(Q), as depicted in Fig. 2 (right).

q7

q6q4

q5

q3q1
q2

q8

x

y

z

w
l

h

Q

Figure 2: Left: An axis-aligned rectangular box Q. Right: a Hamiltonian cycle (in bold lines) of length
2l+ 2w + 4h of the vertices of Q that visits all planes intersecting Q.

For each iteration i = 1, . . . ,m, we compute the box Qi by linear programming. By a suitable
rotation of the set H of hyperplanes, the box Qi is axis-aligned. This can be obtained in O(n) time
per iteration. For a hyperplane σ, let ~u(σ) denote the unit vector orthogonal to σ with a positive
xd-coordinate. An axis-aligned rectangular box in R

d has 2d−1 antipodal pairs of vertices, which
we denote by sj and tj , for j = 1, . . . , 2d−1, such that the vector sjtj has a positive xd-coordinate.
Partition H into 2d−1 types based on the following rule (ties are broken arbitrarily):

• σ ∈ H is of type j, j ∈ {1, . . . , 2d−1}, if the ~u(σ)-minimal and ~u(σ)-maximal vertices of Qi
are sj and tj , respectively.

Let H =
⋃2d−1

j=1 Hi be the corresponding partition of the hyperplanes given by this rule. For
a hyperplane σ, that is not parallel to any coordinate axis, denote by σ(p) ≤ 0 (respectively, by
σ(p) ≥ 0) that a point p ∈ R

d lies in the closed halfspace bounded from above by σ (resp., bounded
from below by σ). Observe that for j = 1, . . . 2d−1,

• a hyperplane σ ∈ Hj intersects the rectangular box Qi if and only if σ(sj) ≤ 0 ≤ σ(tj).

7



The minimum-perimeter objective is naturally expressed as a linear function. The resulting
linear program has 2d variables x1, y1, . . . , xd, yd for the box Qi = [x1, y1]× . . .× [xd, yd], and 2n+d
constraints.

minimize

d∑

k=1

(yk − xk) (LP1)

subject to





σ(sj) ≤ 0 if σ ∈ Hj, ∀σ ∈ H
σ(tj) ≥ 0 if σ ∈ Hj, ∀σ ∈ H
xk ≤ yk ∀k ∈ {1, . . . , d}

Algorithm analysis. The key observation is the following.

Observation 1.

(i) If a polygon γ intersects H, then conv(γ), and any other set containing conv(γ), also inter-
sects H.

(ii) If a convex polytope Q intersects H, then every Hamiltonian cycle of the vertices of Q also
intersects H.

Let Q∗ be a minimum-perimeter rectangular box intersecting H, with side lengths denoted by
w1, . . . , wd. To account for the error made by discretization, we need the following easy fact. The
planar variant was shown in [16, Lemma 2]. We include the almost identical proof for completeness.

Lemma 3. There exists i ∈ {1, . . . ,m} such that per(Qi) ≤ (1 + ε) per(Q∗).

Proof. Consider a box Qi, i ∈ {1, . . . ,m}, that minimizes the angle difference β between the
orientations of Qi and Q∗. By construction, there exists i ∈ {1, . . . ,m} such that the angle β
between the orientations of Qi and Q

∗ is at most ε/(d − 1), that is, β ≤ ε/(d − 1).
Let Q′

i be the minimum-perimeter box with the same orientation as Qi such that Q′
i contains Q

∗.
By definition, per(Qi) ≤ per(Q′

i). An easy trigonometric calculation shows that the corresponding
sides w′

1, . . . , w
′
d of Q′

i are bounded from above as follows. For j = 1, . . . , d, we have

w′
j ≤ wj cos β +


∑

k 6=j
wk


 sin β ≤ wj +


∑

k 6=j
wk


 ε

d− 1
.

Consequently,
d∑

j=1

w′
j ≤ (1 + ε)

d∑

j=1

wj,

that is,
per(Q′

i) ≤ (1 + ε) per(Q∗).

Since per(Qi) ≤ per(Q′
i), it follows that per(Qi) ≤ (1 + ε) per(Q∗), as required.

Lemma 4. A closed curve γ ⊂ R
d is contained in a rectangular box Q with side lengths w1, . . . , wd

satisfying
∑d

j=1wj ≤
√
d
2 len(γ). Consequently, per(Q) ≤

√
d · 2d−2 len(γ).
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Proof. Let γ be a closed curve and let Q = Q(γ) be a minimum-perimeter enclosing rectangular
box. Assume for convenience that Q is axis-aligned, so that its extents in the d coordinates are
w1, . . . , wd, respectively. Since Q has minimum perimeter, γ meets each (d − 1)-dimensional face
of Q. Arbitrarily select a point ai of γ on each of the 2d faces of Q, in the order traversed by
γ, to obtain a polygonal closed curve γ1 = (a1, . . . , a2d) still enclosed in Q (duplicate points are
possible). For convenience, introduce a2d+1 = a1.

By the triangle inequality,

len(γ) ≥ len(γ1) =

2d∑

i=1

len(aiai+1). (1)

By the Cauchy-Schwarz inequality, for i = 1, . . . , 2d, we have

len(aiai+1) =




d∑

j=1

∆2
j(aiai+1)




1/2

≥ 1√
d

d∑

j=1

∆j(aiai+1). (2)

Since γ1 is a closed curve that visits both faces of Q orthogonal to the jth axis for each j =
1, . . . , d, we have

2d∑

i=1

∆j(aiai+1) ≥ 2wj , for j = 1, . . . , d.

Combined with (1) and (2), this yields len(γ) ≥ 2√
d

∑d
j=1wj, as claimed.

Let L∗ = len(OPT) and let QOPT be a minimum-perimeter rectangular box containing OPT.
By Observation 1 and Lemmas 3 and 4, we have

per(Qi) ≤ (1 + ε)per(Q∗) ≤ (1 + ε)per(QOPT) ≤ (1 + ε)
√
d · 2d−2L∗. (3)

By Observation 1, any Hamiltonian cycle of Qi is a valid tour of the hyperplanes in H, and its
length is bounded above by per(Qi). From (3), this length is at most (1 + ε)

√
d · 2d−2 times the

optimum.
We now refine the analysis and show that the length τ(Qi) of a shortest Hamiltonian cycle of Qi

is at most 2d−1/
√
d times the optimum. Algorithm A1 computes a tour T of length L = τ(Qi) =

wd +
∑d

j=1 2
d−jwj, where

∑d
j=1wj ≤ (1 + ε)

√
d
2 L

∗. For i = 1, . . . , d put Si =
∑i

j=1wj and S = Sd.
Since w1 ≤ w2 . . . ≤ wd, we have Si ≤ iS/d, for i = 1, . . . , d. Consequently,

L = wd +

d∑

j=1

2d−jwj = 2d−1w1 + 2d−2w2 + . . .+ 2wd−1 + 2wd

= 2Sd +

d−2∑

i=1

2iSd−i−1 ≤
S

d

(
2d+

d−2∑

i=1

2i(d− i− 1)

)

=
S

d

((
2d+ d

d−2∑

i=1

2i

)
−

d−2∑

i=1

(i+ 1)2i

)

=
S

d

(
d 2d−1 − (d− 2) 2d−1

)
=

2d

d
S. (4)

9



To evaluate
∑d−2

i=1 (i+1)2i in the last line of (4), we set F (x) =
∑d−1

i=2 x
i, and evaluate its derivative

F ′(x) in two ways (we omit the details). Substituting now the upper bound S ≤ (1+ε)
√
d
2 L

∗ yields

L ≤ 2d

d
S ≤ (1 + ε)

√
d

2

2d

d
L∗ = (1 + ε)

2d−1

√
d
L∗,

as required.
A rough upper estimate on the running time accounts for m = O(ddε1−d) 2d-dimensional linear

programs, each solved in O(d222d n) time [10, 36]. The overall running time is O(Cd,ε n), where
Cd,ε = d222d (d/ε)d.

In particular, for d = 3 and ε ≤ 0.00022, we have L ≤ 2.31L∗, thus algorithm A1 computes
a tour whose length is at most 2.31 times the optimal. The algorithm solves a (large!) constant
number of 6-dimensional linear programs, each in O(n) time [38]. The overall time is O(n). A
modest number of linear programs suffices to get a weaker approximation, say 2.5 or 3.

Remark. A standard reduction from the sorting problem or from the convex hull problem as
in [45], applied to a suitable set of hyperplanes, shows that a shortest TSP tour for n hyperplanes
in R

d, d ≥ 2, cannot be computed in O(n) time; that is, in the worst-case, finding an optimal tour
requires Ω(n log n) time in the algebraic decision tree model of computation.

4 TSPN for lines in Rd

In this section we prove Theorem 2. Let L = {ℓ1, . . . , ℓn} be a set of n lines in R
d, d ≥ 3. If all

lines are parallel, we reduce TSPN for L to TSP for the n intersection points of the lines with an
arbitrary orthogonal hyperplane. Otherwise, we reduce the TSPN problem to a group Steiner tree
problem on a geometric graph. Specifically, we construct a geometric graph GL = (V,E), where V
is a set of points on the lines in L, and E consists of line segments connecting some of these points;
the weight of an edge is its Euclidean length. We have V =

⋃n
i=1 Vi, where Vi ⊂ ℓi (i = 1, . . . , n)

naturally form n groups, one for each line. We then run an approximation algorithm for the group
Steiner tree problem on this graph.

It is well known that an optimal TSP tour for points can be 2-approximated by a minimum
spanning tree (a TSP tour is obtained by doubling the edges of the MST and by using shortcuts
and the triangle inequality). Reich and Widmayer [47] introduced the following group Steiner
tree (a.k.a., one-of-a-set Steiner tree) problem. Given an edge weighted graph G = (V,E) and
g groups of vertices V1, . . . , Vg ⊆ V , |V | = n, find a tree of minimum weight in G that includes
at least one vertex from each group. The problem is known to be APX-hard [5], and it cannot
be approximated better than Ω(log2−ε n) for any ε > 0 unless NP admits quasipolynomial-time
Las Vegas algorithms [31]. The current best approximation ratio, O(log2 n log g) comes from the
algorithm of Garg et al. [29] as further refined by Fakcharoenphol et al. [24]. As before with the
MST, by doubling the edges of such a tree, and by using shortcuts and the triangle inequality,
one can obtain a Hamiltonian cycle which includes at least one vertex from each group, and the
approximation ratio of this cycle is of the same asymptotic order as the approximation ratio of the
group Steiner tree used.

The key Lemma 7 below shows that the length of a minimum group Steiner tree in GL (the
graph used by the algorithm) is a constant-factor approximation for the minimum TSP tour for L.
In our case, the graph GL has O(n3) vertices and the number of groups is n, so the O(log2 n log g)-
approximation [24, 29] for the group Steiner tree problem on a graph with n vertices and g groups
yields an O(log3 n)-approximation for TSPN for n lines in R

d.
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Construction of graph GL. A transversal between two lines, ℓi and ℓj , is a line segment ti,jtj,i
with ti,j ∈ ℓi and tj,i ∈ ℓj . A minimum transversal of two lines is one of minimum length; it is
orthogonal to both lines, and if the two lines intersect, it is a segment of zero length (i.e., ti,j = tj,i).
A pair of skew lines admits a unique minimal transversal.

We define GL in terms of a set S of transversal segments among the lines: let the vertices of
GL be the set of endpoints of the segments in S; the edges of GL include all segments in S, and
all segments along the lines in L between consecutive vertices. We use two types of transversal
segments, S1 and S2, with S = S1∪S2. Let S1 be the set of minimum transversals between all pairs
of nonparallel lines in L. To define S2, we proceed as follows; see Fig. 3 (left). For each ordered
pair of nonparallel lines (ℓi, ℓj) ∈ L2, let Ti,j be the hyperplane orthogonal to ℓi and containing ti,j,
and let Pi,j = {Ti,j ∩ ℓ : ℓ ∈ L} be the set of intersection points of Ti,j with the lines in L. Note
that ti,j ∈ Pi,j and |Pi,j| ≤ n. Add all edges of the complete graph on Pi,j to the set S2.

ℓ1

ℓ2
ℓ3

ℓ4

H4

H1 = H2 = H3

p1 p2

p3 p4

q4

q1

q2 = r2

q3 = r3 r4t1,2

t1,3

t1,4

ℓ4
ℓ1

ℓ2 ℓ3

T1,2

T1,4 t3,4

t2,1

t4,1

T1,3

t3,1

Figure 3: Left: A set of four lines ℓ1, . . . , ℓ4. The minimum transversals between ℓ1 and the other three
lines are t1,2t2,1, t1,3t3,1 and t1,4t4,1. For i = 1, 2, 3, we insert a complete graph in the plane T1,i orthogonal
to ℓ1 and incident to t1,i. Right: An optimal tour OPT visits the lines ℓ1, ℓ2, ℓ3, ℓ4 at points p1, p2, p3, p4,
respectively. We construct a path γ1 = (q1q2q3q4) that visits these lines in the same order. Points q1, q2, q3
are in the same hyperplane H1 = H2 = H3. Point q4 is in a hyperplane H4 6= H3 because |q3r4| > 3|p3p4|.

The set of transversals S = S1 ∪ S2 determines GL. The segments in S1 have at most n(n− 1)
endpoints, and for each segment endpoint we compute a complete graph, each with at most n
vertices and

(n
2

)
edges, thus S2 contains O(n4) segments and |S| = |S1∪S2| = O(n2+n4) = O(n4).

Consequently, GL has O(n3) vertices and |S| + O(n3) = O(n4) edges. The vertices in GL are
partitioned into n groups, one for each line ℓ ∈ L. The group corresponding to line ℓ contains all
O(n2) endpoints of transversal segments in S on ℓ.

The minimum transversal of two skew lines in R
d lies in the 3-dimensional affine subspace

spanned by the lines, and it can be computed in O(d) time; point-hyperplane intersections can also
be computed in O(d) time in R

d. Consequently, the graph GL can we computed in O(dn4) time.

Two technical lemmas. The approximation relies on Lemmas 5 and 6 (below). According to
Lemma 5, if the directions of two lines are far apart, then a connecting segment can be approximated
by a 3-segment path that detours through the minimum transversal of the two lines. According
to Lemma 6, if two lines are nearly vertical and we are given some horizontal transversal segment
between the lines, then the only way to find a significantly shorter transversal is to move the
endpoints closer to the endpoints of the minimum transversal.
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ℓ1

ℓ2

x

y

z

p1

p2

t1,2

t2,1

a

b

x

y

z

ℓ1 ℓ2

r2

p1

t1,2 t2,1

p2

r1

≤ ψ ≤ ψ

π−ϕ

2

π−ϕ

2

≤
π

2
+ ψ

≥
π

2
− ψ

ϕ

ϕ

Figure 4: Left: The angle between lines ℓ1 and ℓ2 is ϕ. The distance between p1 ∈ ℓ1 and p2 ∈ ℓ2
is approximated by the polygonal path (p1, s1, s2, p2) that passes through the minimum transversal s1s2
between the two lines. Middle: If |p1p2| ≤ 1

3
|r1r2|, then p1 and p2 are much closer to the minimum

transversal than r1 and r2, respectively. Right: Two triangles with angle ϕ. The other two angles are equal
in one triangle, and they differ by at most 2ψ in the other triangle.

Lemma 5. Let ℓ1 and ℓ2 be two lines in R
d such that the angle between their directions is ϕ ∈

(ϕ0,
π
2 ]. Let t1,2t2,1 be their minimum transversal with t1,2 ∈ ℓ1 and t2,1 ∈ ℓ2. Let p1 ∈ ℓ1 and

p2 ∈ ℓ2 be two points. Then |p1t1,2|+ |t1,2t2,1|+ |t2,1p2| ≤
√

3
1−cosϕ0

|p1p2|.

Proof. Consider the 3-dimensional affine subspace spanned by ℓ1 and ℓ2. Without loss of generality,
we may assume that ℓ1 is the x-axis, p1 = (a, 0, 0), t1,2 = (0, 0, 0), and t2,1 = (0, 0, h) as in
Fig. 4 (left). Let a = |p1t1,2| and b = |p2t2,1|. The Cauchy-Schwarz inequality yields the upper
bound

|p1t1,2|+ |t1,2t2,1|+ |t2,1p1| = a+ h+ b ≤
√

3(a2 + b2 + h2).

If x(p2) ≥ 0 (as in Fig. 4, left), then the law of cosines yields

|p1p2|2 = h2 + a2 + b2 − 2ab cosϕ

= h2 + (a− b)2 cosϕ+ (a2 + b2)(1 − cosϕ)

≥ (1− cosϕ)(a2 + b2 + h2)

≥ (1− cosϕ0)(a
2 + b2 + h2).

If x(p2) ≤ 0, then |p1p2|2 = h2 + a2 + b2 − 2ab cos(π − ϕ) ≥ h2 + a2 + b2, since cos(π − ϕ) < 0,
and we obtain |p1p2|2 ≥ (1− cosϕ0)(a

2 + b2 + h2) in this case, as well. In both cases, the claimed
inequality follows after taking square roots.

Lemma 6. Let ℓ1 and ℓ2 be two lines in R
d such that the angle between their directions is ϕ ∈ (0, π6 ];

and the direction of each line differs from the xd-axis by at most ψ ∈ [0, π6 ]. Let p1 ∈ ℓ1 and p2 ∈ ℓ2
be two arbitrary points on the two lines; let r1 ∈ ℓ1 and r2 ∈ ℓ2 be the intersection points of the two
lines with a hyperplane orthogonal to the xd-axis; and t1,2t2,1 be the minimum transversal of the two

lines such that t1,2 ∈ ℓ1 and t2,1 ∈ ℓ2 (Fig. 4, middle). If 3|p1p2| ≤ |r1r2|, then |p1t1,2| ≤ 2
√
3

9 |r1t1,2|
and |p2t2,1| ≤ 2

√
3

9 |r2t2,1|.

Proof. Let h = |t1,2t2,1| be the distance between the two lines. Put a = |p1t1,2|, b = |p2t2,1|,
e = |r1t1,2|, and f = |r2t2,1|. Let ϕp ∈ {ϕ, π − ϕ} be the angle between the rays

−−−→
t1,2p1 and

−−−→
t2,1p2.

By the law of cosines, we have |p1p2|2 = h2+a2+b2−2ab cosϕp. The sum of the last three terms in
this expression is c2 = a2 + b2 − 2ab cosϕp, where c is the third side of a triangle with two adjacent
sides of lengths a and b that meet at angle ϕp. Denote by β the angle of this triangle opposite to
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the longer of a and b. Then the law of sines yields

a2 + b2 − 2ab cosϕp = (max{a, b})2 · sin
2 ϕp

sin2 β
≥ (max{a, b})2 sin2 ϕp = (max{a, b})2 sin2 ϕ.

Consequently,
|p1p2|2 ≥ h2 + (max{a, b})2 sin2 ϕ. (5)

Let ϕr ∈ {ϕ, π − ϕ} be the angle between the rays
−−−→
t1,2r1 and

−−−→
t2,1r2. We show that ϕr = ϕ.

Indeed, since r1r2 lies in a hyperplane orthogonal to the xd-axis, and the direction of each line
differs from the xd-axis by at most ψ ∈ [0, π6 ], the directions of r1r2 and the minimal transversal
t1,2t2,1 differ by at most π

6 . If ϕr = π − ϕ ≥ 5π
6 , then |r1t1,2| ≤ h tan π

6 and |r2t2,1| ≤ h tan π
6 . The

triangle inequality yields |r1r2| ≤ |r1t1,2|+ |t1,2t2,1|+ |t2,1r2| ≤ (1+2 tan π
6 )h = (1+ 2

√
3

3 )h ≤ 2.16h,
in contradiction with the assumed inequality |r1r2| ≥ 3|p1p2| ≥ 3h.

By the law of cosines we have

|r1r2|2 = h2 + e2 + f2 − 2ef cosϕr = h2 + e2 + f2 − 2ef cosϕ.

Consider a triangle where e and f are adjacent sides parallel with r1t1,2 and r2t2,1 respectively,
that meet at angle ϕ. Since the directions of ℓ1 and ℓ2 differ from vertical by at most ψ, the angle
opposite to the shorter of e and f is at least π

2 −ψ (see Fig. 4, right). Hence the law of sines yields

e2 + f2 − 2ef cosϕ ≤ (min{e, f})2 · sin2 ϕ
sin2(π/2−ψ) , and consequently

|r1r2|2 ≤ h2 + (min{e, f})2 · sin2 ϕ

sin2(π/2− ψ)
. (6)

The inequality 3|p1p2| ≤ |r1r2| in combination with inequalities (5) and (6) implies

9
(
h2 + (max{a, b})2 sin2 ϕ

)
≤ h2 + (min{e, f})2 sin2 ϕ

sin2(π/2− ψ)
,

9 (max{a, b})2 sin2 ϕ ≤ (min{e, f})2 sin2 ϕ

sin2(π/2− ψ)
, (7)

and further (after canceling sin2 ϕ and taking square roots) that

max{a, b} ≤ min{e, f}
3 sin(π/2 − ψ)

. (8)

If ψ ∈ [0, π6 ], then sin
(
π
2 − ψ

)
≥ sin

(
π
3

)
=

√
3
2 and so max{a, b} ≤ 2

√
3

9 min{e, f}. It follows

that a ≤ 2
√
3

9 e and b ≤ 2
√
3

9 f , as required.

Group Steiner tree yields a constant-factor approximation for TSP with lines. The
main result of this section is the following lemma. Theorem 2 then directly follows from this lemma.

Lemma 7. Let L be a set of n lines in R
d. Then the length of a minimum group Steiner tree in

GL is O(1) times the length of a minimum TSP tour for the lines in L.

Proof. Let L = {ℓ1, . . . , ℓn}, where the lines are indexed so that an optimal TSP tour is OPT(L) =
(p1, . . . , pn) with pi ∈ ℓi, i = 1, . . . , n. We show that GL contains a group Steiner tree T of length at
most 83 len(OPT(L)). The argument does not use the optimality of the tour OPT(L), i.e., for any
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cycle C = (p1, . . . , pn), pi ∈ ℓi, we construct a group Steiner tree T of length at most 83 len(C). The
tree T consists of a main (backbone) path γ0, and a path attached to each vertex of the backbone.

Decompose the cyclic sequence (ℓ1, . . . , ℓn) into maximal subsequences, called blocks,

(ℓτ(i), ℓτ(i)+1, . . . , ℓτ(i+1)−1), i = 1, 2, . . . , k

for some k ≥ 1 as follows. Let τ(1) = 1, and for each i = 1, . . . , k− 1, let τ(i+1) be the first index
such that the directions of ℓτ(i) and ℓτ(i+1) differ by more than π

12 . That is, the directions of the
lines in the i-th block differ from the direction of ℓτ(i) by at most π

12 . By the triangle inequality,
the directions of any two lines in a block differ by at most π

6 (as required by Lemma 6).
Consider the sequence of the first elements of the blocks, (ℓτ(1), ℓτ(2), . . . , ℓτ(k)). By construction,

the directions of any two consecutive lines in the above sequence differ by more than π
12 . If k ≥ 2,

the “backbone” of the group Steiner tree T is the polygonal path

γ0 = (tτ(1),τ(2) tτ(2),τ(1) tτ(2),τ(3) tτ(3),τ(2) . . . tτ(k−1),τ(k) tτ(k),τ(k−1)).

Lemma 5 with ϕ0 =
π
12 implies that len(γ0) is bounded from above as follows:

len(γ0) = len(tτ(1),τ(2) tτ(2),τ(1) tτ(2),τ(3) tτ(3),τ(2) . . . tτ(k−1),τ(k) tτ(k),τ(k−1))

≤ len(pτ(1) tτ(1),τ(2) tτ(2),τ(1) pτ(2)) + . . .+ len(pτ(k−1) tτ(k−1),τ(k) tτ(k),τ(k−1) pτ(k))

≤
√

3

1− cos(π/12)
len(pτ(1)pτ(2) . . . pτ(k))

≤ 9.4 len(p1p2 . . . pn) ≤ 9.4 len(C). (9)

For each block (ℓτ(i), ℓτ(i)+1, . . . , ℓτ(i+1)−1), i = 1, . . . , k, we attach a path γi visiting the lines
in this block to the backbone γ0. Each path γi is constructed incrementally starting from an
initial vertex and an initial hyperplane containing that vertex. If k ≥ 2, then γi starts from vertex
tτ(i),τ(i+1) ∈ ℓτ(i) ∩ γ0 within hyperplane Tτ(i),τ(i+1) for i = 1, . . . , k − 1; and γk starts from vertex
tτ(k),τ(k−1) ∈ ℓτ(k) ∩ γ0 within hyperplane Tτ(k),τ(k−1). If k = 1 (i.e., there is only one block), then
γ0 is not needed, and we set T := γ1. In this case, we construct a path γ1 starting from each of
the O(n2) vertices on ℓ1 and every possible hyperplane of the form Ti,j containing that vertex; and
then show that one of these paths satisfies len(γ1) ≤ 9.77 len(C).

The paths γi, i = 1, . . . , k, are constructed analogously apart from the choice of their initial
vertex q1 and initial hyperplane H1, q1 ∈ H1. We explain the construction for i = 1 only. Consider
the first block, (ℓ1, ℓ2, . . . , ℓm), where 1 ≤ m ≤ n. The path γ1 will use transversal segments from
S2 between lines in ℓ1, . . . , ℓm, and possibly some edges along the lines ℓ1, . . . , ℓm.

We construct γ1 incrementally for a given initial vertex q1 and hyperplane H1, q1 ∈ H1. Refer
to Fig. 3 (right). In each step, we maintain a vertex qi ∈ ℓi of γ1 and hyperplane Hi such that
qi ∈ Hi and GL contains a complete graph on the intersection points between the lines in L and
Hi. Initially, we have a single-vertex path γ1 = (q1), where q1 ∈ ℓ1 and q1 ∈ H1. We extend γ1 in
m− 1 steps to visit some points qi ∈ ℓi, i = 2, . . . ,m. In step i, we would like to extend γ1 from qi
to qi+1 ∈ ℓi+1 by a single edge in Hi. However, if the distance from qi to ℓi+1 ∩Hi is more than
3 |pipi+1|, then γ1 will follow ℓi to the endpoint ti,i+1 of the minimal transversal between ℓi and
ℓi+1, and reach ℓi+1 in the hyperplane Ti,i+1 (orthogonal to ℓi).

Assume that we have already built the path γ1 up to vertex qi ∈ ℓi, i ∈ {1, . . . ,m − 1}, with
a hyperplane Hi, qi ∈ Hi. We choose qi+1 ∈ ℓi+1, the portion of γ1 from qi to qi+1, and the
hyperplane Hi+1 as follows. Let ri+1 = ℓi+1∩Hi (note that ri+1 is a vertex of GL by construction).
We distinguish two cases:
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• If |qiri+1| ≤ 3 |pipi+1|, then let qi+1 = ri+1, extend the path γ1 with the edge qiqi+1 ⊂ Hi,
and let Hi+1 = Hi.

• Otherwise let Hi+1 = Ti,i+1 (the hyperplane orthogonal to ℓi and containing ti,i+1), and let
qi+1 = ℓi+1 ∩Hi+1. Now extend γ1 with the segments qiti,i+1 ⊂ ℓi and ti,i+1qi+1 ⊂ Hi+1.

For estimating len(γ1), we consider the transversal segments and the edges along the lines in
L separately. The length of the transversal segment between ℓi and ℓi+1 is at most 3 |pipi+1|, and
consequently, the total length of all transversal segments in γ1 is at most 3 len(p1 . . . pm). Indeed,
in the first case Hi contains the edge qiqi+1 of length |qiqi+1| = |qiri+1| ≤ 3 |pipi+1|. In the second
case, Hi+1 contains segment ti,i+1 qi+1 of length

|ti,i+1 qi+1| ≤
1

cos(π/6)
|ti,i+1 ti+1,i| =

2√
3
|ti,i+1 ti+1,i| ≤

2√
3
|pipi+1|,

where the first inequality follows from the fact that the directions of ℓi and ℓi+1 differ by at most
π
6 , and so the right triangle ∆ti,i+1ti+1,iqi+1 has an interior angle at most π

6 at ti,i+1.
It remains to bound the total length of the edges in γ1 that lie along the lines ℓ1, . . . , ℓm. Let

1 ≤ σ(1) < . . . < σ(h) < m be the subsequence of indices such that qσ(i)tσ(i),σ(i)+1 ⊂ γ1 for
i = 1, . . . , h; and put σ(0) = 1 (possibly σ(0) = σ(1)). By construction, the vertices q1, . . . , qσ(1)
of γ1 lie in the same hyperplane H1 = . . . = Hσ(1). We introduce a shorthand notation for the
transversals: for i = 1, . . . , h, let sσ(i) = tσ(i),σ(i)+1. With this notation, the length of the edges in
γ1 that lie along the lines ℓ1, . . . , ℓm is precisely

Z1 =
h∑

i=1

|qσ(i) sσ(i)|.

By construction, γ1 contains the segment qσ(i)sσ(i) ⊂ ℓσ(i) when |pσ(i) pσ(i)+1| < 1
3 |qσ(i) rσ(i)+1|.

In this case, Lemma 6 is applicable, and it gives |pσ(i) sσ(i)| ≤ 2
√
3

9 |qσ(i) sσ(i)|.
For i = 1, . . . ,m, let proji : R

d → ℓi be the projection onto the line ℓi along the hyperplane Hi.
In particular for i = 1, . . . , h, we have qσ(i) = projσ(i)sσ(i−1), and qσ(1) = projσ(1)q1, where q1 is the
first vertex of γ1. Recall that the directions of the lines ℓσ(i), i = 1, . . . , h, differ by at most π

6 from

each other. Consequently, for any line segment ab, we have |projσ(i)(ab)| ≤ |ab|/ cos π6 = 2
√
3

3 |ab|.
Obviously, for any line segment ab ⊂ ℓσ(i), we have |projσ(i)(ab)| = |ab|.

We now bound Z1 from above: intuitively, we estimate |qσ(i) sσ(i)| by making a detour via
pσ(i−1) pσ(i), which can be related to the optimal tour. This leads to an upper bound on Z1 in
terms of len(p1 . . . pm).
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Z1 =

h∑

i=1

|qσ(i) sσ(i)| = |projσ(1)(q1 sσ(1))|+
h∑

i=2

|projσ(i)(sσ(i−1) sσ(i))| (10)

≤
(
|projσ(1)(q1p1)|+ |projσ(1)(p1pσ(1))|+ |projσ(1)(pσ(1)sσ(1))|

)
+

h∑

i=2

(
|projσ(i)(sσ(i−1)pσ(i−1))|+ |projσ(i)(pσ(i−1)pσ(i))|+ |projσ(i)(pσ(i)sσ(i))|

)

≤ 2
√
3

3
|q1p1|+

2
√
3

3

h∑

i=2

|sσ(i−1)pσ(i−1)|+
2
√
3

3

h∑

i=1

|pσ(i−1)pσ(i)|+
h∑

i=1

|sσ(i)pσ(i)|

≤ 2
√
3

3
|q1p1|+

2
√
3

3
len(pσ(0)pσ(1) . . . pσ(h)) +

(
2
√
3

3
+ 1

)
2
√
3

9

h∑

i=1

|qσ(i)sσ(i)|

≤ 2
√
3

3
|q1p1|+

2
√
3

3
len(p1 . . . pm) +

4 + 2
√
3

9
Z1,

where we used the triangle inequality. After rearranging, we obtain

Z1 ≤
6(6 + 5

√
3)

13
(|q1p1|+ len(p1 . . . pm)) ≤ 6.77 (|q1p1|+ len(p1 . . . pm)) . (11)

It remains to bound the term |q1p1| in (11), which depends on the choice of the initial vertex q1 of
γ1. We distinguish two cases.

Case 1: k ≥ 2 (there are two or more blocks). Since q1 = t1,m+1 in the first block, Lemma 5
yields

|q1p1| = |t1,m+1p1| ≤ len(p1t1,m+1tm+1,1pm+1) ≤ 9.4 |p1pm+1| = 9.4 |pτ(1) pτ(2)|,
Z1 ≤ 6.77 · 10.4 len(pτ(1), . . . , pτ(2)) ≤ 70.5 len(pτ(1), . . . , pτ(2)),

len(γ1) ≤ Z1 + 3 len(pτ(1), . . . , pτ(2)) ≤ 73.5 len(pτ(1), . . . , pτ(2)). (12)

Analogous bounds hold for each of the first k − 1 blocks. The last block requires a differ-
ent argument. The term |q1p1| in (11) corresponds to |tτ(k−1),τ(k) pτ(k−1)| and |tτ(k),τ(k−1) pτ(k)|,
respectively, in the last two blocks. By Lemma 5, the sum of these two terms is bounded by

len(pτ(k−1)tτ(k−1),τ(k) tτ(k),τ(k−1) pτ(k)) ≤ 9.4 |pτ(k−1) pτ(k)|. (13)

Summing over all k blocks, the combination of (12) and (13) yields

k∑

i=1

len(γi) ≤ 73.5

k−1∑

i=1

len(pτ(i), . . . , pτ(i+1)) ≤ 73.5 len(C). (14)

Summing (9) and (14), we conclude that GL contains a group Steiner tree for L of length

len(γ0) +

k∑

i=1

len(γi) ≤ (9.4 + 73.5) len(C) ≤ 83 len(C).
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Case 2. k = 1 (there is only one block). In this case, we have m = n. Recall that each vertex
q ∈ ℓ1 in GL is the intersection of line ℓ1 and some hyperplane Ti,j, i, j ∈ {1, . . . , n}. For every vertex
q ∈ ℓ1 and every hyperplane H of this form containing q, let γ1 = γ1(q,H) be the path produced
by the incremental process discussed above. Note that γ1(q,H) visits ℓ1, . . . , ℓn in this order, and
the total length of transversal segments along γ1(q,H) is at most 3len(C) by construction. If there
is a vertex q ∈ ℓ1 and a hyperplane H for which γ1(q,H) consists of transversal segments only, then
it is a Stener tree for ℓ1, . . . , ℓn of length len(γ1(q,H)) ≤ 3 len(C), as required. Otherwise, denote
by Z1(q,H) the total length of the edges of γ1(q,H) along the lines in L.

Extend each path γ1(q,H) from its last vertex in ℓn to a vertex qn+1 ∈ ℓ1 in a hyperplane Hn+1

by performing one more iteration. Denote by γ̂1(q,H) the resulting path. Suppose that there is a
vertex q ∈ ℓ1 and a hyperplane H such that qn+1 = q and Hn+1 = H. In this case, γ̂1(q,H) is a
tour. Since the vertices sσ(h), qn+1 = q, and qσ(1) are in the hyperplane Hn+1 = H = Hσ(1), we
have projσ(1)sσ(h) = projσ(1)qσ(1); and (10) can be replaced by

Z1(q,H) =
h∑

i=1

|qσ(i) sσ(i)| = |projσ(1)(sσ(h) sσ(1))|+
h∑

i=2

|projσ(i)(sσ(i−1) sσ(i))| (15)

≤
(
|projσ(1)(sσ(h) pσ(h))|+ |projσ(1)(pσ(h) pσ(1))|+ |projσ(1)(pσ(1) sσ(1))|

)
+

h∑

i=2

(
|projσ(i)(sσ(i−1)pσ(i−1))|+ |projσ(i)(pσ(i−1)pσ(i))|+ |projσ(i)(pσ(i)sσ(i))|

)

≤ 2
√
3

3

h+1∑

i=2

|sσ(i−1)pσ(i−1)|+
2
√
3

3

(
|pσ(h)pσ(1)|+

h∑

i=2

|pσ(i−1)pσ(i)|
)

+

h∑

i=1

|sσ(i)pσ(i)|

≤ 2
√
3

3
len(C) +

(
2
√
3

3
+ 1

)
2
√
3

9

h∑

i=1

|qσ(i)sσ(i)|

≤ 2
√
3

3
len(C) +

4 + 2
√
3

9
Z1(q,H). (16)

After rearranging, we obtain

Z1(q,H) ≤ 6(6 + 5
√
3)

13
len(C) ≤ 6.77 len(C). (17)

Even if γ̂1(q,H) is not a tour for any vertex q ∈ ℓ1 and hyperplane H, the concatenation of
some paths γ̂1(q,H) forms a cycle that we denote by Γ. The cycle Γ is the union of λ paths, for
some λ ∈ N, each visiting all lines in L. Similarly to (16) and (17), the total length of the segments
of Γ along the lines in L is at most 6.77λ len(C). Consequently, one of the λ paths γ1(q,H) ⊂ Γ
satisfies Z1(q,H) ≤ 6.77 len(C). This path visits all lines in L and its length (including transversal
segments) is at most

len(γ1(q,H)) ≤ (3 + 6.77) len(C) ≤ 9.77 len(C).

In both cases, GL contains a group Steiner tree for L of length at most 83 len(C), as required.

5 TSPN for unit disks and balls

In this section we prove Theorems 3 and 4 concerning TSPN for unit disks and balls. Congruent
disks are without a doubt among the simplest neighborhoods [1, 17]. TSPN for unit disks is NP-
hard, since when the disk centers are fixed and the radius tends to zero, the problem reduces to
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a TSP for points. Given a set S of n points in the plane, let D = D(S, r) be the set of n disks
of radius r centered at the points. It is known (and easy to argue) that the optimal tours for the
points and the disks, respectively, are polygonal tours with at most n sides. The lengths of the
optimal tours for the points and the disks are not too far from each other. Indeed, given any tour
of the n disks, one can convert it into a tour of the n centers by adding detours of length at most
2r at each of the n visiting points (arbitrarily selected); see e.g., [17, 32]. Let OPT(S) denote a
shortest TSP tour of S, and OPT(S, r) denote a shortest TSP tour of the disks of radius r centered
at the points in S. Consequently, for each n ≥ 3 and r > 0, we have:

len(OPT(S))− len(OPT(S, r)) ≤ 2nr. (18)

As it is currently the case with TSP for points, the known approximation schemes are highly
impractical; see the comments in [37]. This is even more so for the approximation schemes for TSP
with neighborhoods, including disks, such as those in [6, 17]. Designing more efficient constant
approximation algorithms remains of high interest. The obvious motivation is to provide faster and
conceptually simpler algorithmic solutions.

5.1 Unit disks: an improved approximation

Background. The current best approximation ratio for the TSP with n unit disks, 7.62, was
obtained in [17]. The algorithm works by reducing the problem for n disks to one for at most
n (representative) points (representative points could be shared). These points are selected after
computing a line cover consisting of parallel lines. More generally, this ratio holds for translates of
a convex region. An alternative approach (also from [17]) selects representative points from among
the centers of the disks (i.e., a suitable subset). However, the approximation obtained in [17] in
this way is weaker. For instance, starting from a (1+ ε)-approximation for the center points yields
a ratio of (8+π)(1+ ε) ≤ 11.16, provided that ε ≤ 0.001. Starting from a 1.5-approximation (with
a faster algorithm) for the center points yields a ratio of (8 + π)1.5 ≤ 16.72.

Here we improve the two asymptotic approximation ratios, from 7.62 to 6.75 (when using the
PTAS for points), and from 11.43 to 8.52 (when using the faster 1.5-approximation for points).
Somewhat surprisingly, we employ the latter approach with center points, which gave previously
only a weaker bound. It is worth mentioning that the ratios for the special case of disjoint unit
disks remain unchanged, at 3.55 and 5.32, respectively. We now proceed with the details.

A simple packing argument. Let B(x) denote a ball of radius x centered at the origin. Let
G = (V,E) be a connected geometric graph in R

2 and let L = len(G). Let C be the set of points at
distance at most x from the edges and vertices of G. Equivalently, C = G+B(x) is the Minkowski
sum of G and B(x). We need the following inequality; see also [23, Lemma 4].

Lemma 8. Area(C) ≤ 2Lx+ πx2. This bound cannot be improved.

Proof. Start by marking an arbitrary vertex v0 of G; The area covered by the Minkowski sum
B(x) + v0 is πx2. Pick an edge uv of G where u is marked and v is unmarked. Place B(x) with
the center at u and translate B(x) along uv (its center moves from u to v), and mark v. Observe
that the newly covered area is at most 2|uv|x. Continue and repeat this step as long as there are
unmarked vertices. Since G is connected the procedure will terminate when all vertices of G are
marked. It follows that the area of C is at most

πx2 +
∑

uv∈E(G)

2|uv|x = 2Lx+ πx2,
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as required.
Equality holds if and only if G is a straight-line path. Indeed, except for the first step (i.e., in

each step involving an edge) the newly covered area is strictly less than 2|uv|x, unless all edges of
G are collinear in a straight-line path.

Figure 5: From left to right: (i) a line-sweep independent set (in bold lines); (ii) the curve γ; (iii) a part of
the constructed disk tour.

Approximation algorithm—outline. The idea is to first compute a maximal independent set
and then an approximate tour of the centers of the independent set, as in [17]. The approximate
tour of the centers is then extended by detours so that it visits all the other disks (not in the
independent set). However the details differ significantly in both phases of the algorithm, in order
to obtain a better approximation ratio: a monotone independent set is found, and a tailored visiting
procedure is employed that takes advantage of the special form of the independent set.

Let D be a set of unit disks. First, compute a maximal independent set of disks I ⊂ D by the
following line-sweep algorithm. Select a leftmost disk ω ∈ D and include it in I. Remove from D
all disks intersecting ω. Repeat this selection step as long as D is non-empty.

We call I a line-sweep independent set or x-monotone independent set. Clearly, I is a maximal
independent set in D, that is, each disk in D \ I intersects a disk in I. Moreover, by construction,
each disk in D \ I intersects the right half-circle boundary of a disk in I. Let L∗ = len(OPT(D))
and L∗

I = len(OPT(I)). Obviously, L∗
I ≤ L∗.

Algorithm. The algorithm for computing a TSP tour of the disks is as follows. Compute a
(maximal) line-sweep independent set I; write k = |I|. Next, compute TI = o1 . . . ok, an α-
approximate tour of the center points of disks in I, for some constant α > 1. If we use the PTAS
for Euclidean TSP [2, 39], for a given 0 < ε < 1/2, we have α = 1+ ε. If we use the approximation
algorithm for metric TSP due to Christofides [11], we have α = 1.5.

Write SI = {o1, o2, . . . , ok}. For each disk ω ∈ I, let ω− and ω+ be the two unit disks tangent
to ω from below and from above, respectively. Let o− and o+ be the centers of ω− and ω+,
respectively. See Fig. 5(ii). Let γ(ω) be the open curve obtained as follows: start with the tangent
segment of positive slope from o− to ω; concatenate the arc of ω subtending a center angle of π/3
and symmetric about the x-axis; concatenate the tangent segment of negative slope from ω to o+.
Now remove two unit segments, one from each endpoint of the curve obtained in the previous step.
The resulting curve is γ = γ(ω). Observe that the open curve γ(ω) intersects any unit disk from
D that intersects the right half-circle boundary of ω (this includes ω as well). Let v denote the
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vertical segment connecting the endpoints of γ. It is easy to check that

len(γ) = 2
(π
6
+ 2 cos

π

6
− 1
)
= 2

(π
6
+

√
3− 1

)
≤ 2.512,

len(v) = 4−
√
3 ≤ 2.268. (19)

Replace each segment oioi+1 of this tour, with i odd, by a parallel segment of equal length
connecting the two highest endpoints of the curves γ(ωi) and γ(ωi+1). Similarly, replace each
segment oioi+1 of this tour, with i even, by a parallel segment of equal length connecting the two
lowest endpoints of γ(ωi) and γ(ωi+1). See Fig. 5(iii).

To obtain a tour (closed curve) we visit the disks in I in the same order as TI . After each
segment, the tour traverses the corresponding curve γ(ω) (going up or down, as needed, in an
alternating fashion). If k is even we proceed as above, while if k is odd, the curve γ(ω1) is traversed
in a circular way (going down along γ and up again along the vertical segment v) in order to get a
closed curve. We call T the resulting tour.

Algorithm analysis. Since any disk in D is either in I or intersects the curve γ(ω) of some disk
ω ∈ I, and since T visits all disks in I and contains the curves γ(ω) of all disks in I, it follows that
T is a valid tour for all disks in D. Further observe that the disjoint unit disks in I are contained
in the figure C = T ∗

I +B(2). By Lemma 8, π|I| ≤ Area(C) ≤ 4 len(T ∗
I ) + 4π, hence

k = |I| ≤ 4

π
L∗
I + 4 ≤ 4

π
L∗ + 4. (20)

The total length of the detours incurred by T over all disks in I is k len(γ) when k is even, and
k len(γ)+ len(v) when k is odd. Hence by (19) the length of the output tour is bounded from above
as follows.

L ≤ LSI
+ k len(γ) + len(v) ≤ LSI

+ (2.512k + 2.268). (21)

Inequality (20) implies the following upper bound on the second term in (21).

2.512k + 2.268 ≤ 2.512

(
4

π
L∗ + 4

)
+ 2.268. (22)

We next bound from above the first term in (21). The inequality (18) applied to I and SI
yields

L∗
SI

≤ L∗
I + 2k. (23)

Since the algorithm computes a α-approximation of the optimal tour for the points in SI ,
by (20) we have

LSI
≤ αL∗

SI
≤ α(L∗

I + 2k) ≤ α(L∗ + 2k)

≤ α

(
L∗ + 2

(
4

π
L∗ + 4

))

≤ α

((
1 +

8

π

)
L∗ + 8

)
. (24)

Substituting into (21) the upper bounds in (24) and (22) yields

L ≤ α

((
1 +

8

π

)
L∗ + 8

)
+ 2.512

(
4

π
L∗ + 4

)
+ 2.268

≤
(
α

(
1 +

8

π

)
+ 2.512 · 4

π

)
L∗ + (8α + 4 · 2.512 + 2.268)

≤ (3.5465α + 3.1984)L∗ + (8α+ 12.32). (25)
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For α = 1 + ε (using the PTAS for the center points), the length of the output tour is L ≤
6.75L∗ + 20.4, assuming that ε ≤ 0.001. A more precise calculation along the lines above yields
the following upper on the main term (in L∗); the constant factor appears in Theorem 3; note also
that 1/0.53 > 1.8, which explains the other parameter in Theorem 3.

(
7

3
+

8
√
3

π

)
1 +

(
1 + 8

π

)
ε(

7
3 + 8

√
3

π

)


L∗ ≤

(
7

3
+

8
√
3

π

)
(1 + 0.53 ε)L∗.

The running time is dominated by that of computing a (1 + ε)-approximation of the optimal tour
of n points in R

2.
For α = 1.5 (using the algorithm of Christofides for the center points), the length of the output

tour is L ≤ 8.52L∗+24.4. The running time is dominated by that of computing a minimum-length
perfect matching on n points in the plane (n even), e.g., O(n3/2 log5 n) by using the algorithm of
Varadarajan [53].

Remarks. 1. If the input consists of pairwise-disjoint (unit) disks, then (24) yields improved
approximations. These are not new: the case α = 1 + ε was already analyzed in [17]; we just list
them for comparison. For α = 1 + ε, (24) yields L ≤ 3.55L∗ + 8.01, assuming that ε ≤ 0.001.
For α = 1.5, (24) yields L ≤ 5.32L∗ + 12. The approximation ratio 3.55 for disjoint unit disks is
probably far from tight; the current best lower bound is 2, see [17]. The example in [32, Fig. 4] is
yet another instance with a ratio (lower bound) of 2. Hence the approximation ratio 6.75 for unit
disks (which uses the above) is probably also far from tight.

2. A simple example shows that one cannot extend the above approach to disks of arbitrary
radii. Let x ≥ 1. See Fig. 6 (left) where n = 3, and Fig. 6 (right) for its analogue with arbitrarily
large n. Let x→ ∞ and ε→ 0.

(i) Suppose that we first compute a maximal independent set I in a greedy manner, by se-
lecting disks in increasing order of their radii. Further suppose that we start by computing T ,
a constant approximation for the shortest TSP tour on I, for instance by using the algorithm
of de Berg et al. [12]; recall, this algorithm works with fat, disjoint regions. In some instances,
no constant factor extension (by adding suitable detours to visit the remaining disks) exists. In
Fig. 6 (left), len(OPT(I)) = 2ε, while len(OPT) = 4x. Moreover, since x → ∞, no asymptotic
constant factor can be guaranteed by this approach; indeed, for any constants α, β, there exists x
large enough, such that α 2ε+ β < 4x.

ε

Figure 6: A set of three disks of radii 1, x, and x, centered at 0, 1 + x + ε and 1 + 3x (left) and a set of n
disks, n ≥ 3, of radii 1, . . . , 1, x and x (right). A maximal independent set of disks (in bold) is shown for
each case.

(ii) Suppose that we first compute a maximal line-sweep independent set, as in our algorithm
for unit disks. The same example depicted in Fig. 6 (left) shows that no constant factor extension
(by adding suitable detours to visit the remaining disks) exists. Moreover, as in (i), since x→ ∞,
no asymptotic constant factor can be guaranteed by this approach.
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3. Consider an algorithm that first computes a maximal independent set I of disks (according
to some criterion), then computes a good approximate tour of the disks in I, and then extends
this tour with the boundary circles of the disks in I (in some way). Observe that the length of the
overall detour incurred in this way is proportional to

∑
i∈I ri. The following claim (and example)

shows a deeper cause for which this general approach does not give a constant approximation ratio;
see also [18] for refinements of this inequality and other related results.

Claim. For every M > 0, there exists a disk packing in the unit square [0, 1]2 with
∑
ri ≥ M

and all disks tangent to the unit segment [0, 1] × [0, 0].

Proof. We place disks in layers of decreasing radius. Each layer consists of congruent disks placed
in blocks in between consecutive tangent disks of the previous layer, or in between a disk and a
vertical side, as in Fig. 7. The first layer consists of k disks of radius 1/(2k), for some k ≥ 1. By

Figure 7: The first two layers of an iterative construction: k = 1 (left), and k = 2 (right).

choosing the radius of the disks in the next layer much smaller than the radius of the disks in the
current layer, one can “cover” any prescribed large fraction ρ < 1 of the length of the bottom side
of the square by disks tangent to the bottom side of the square and having the sum of radii at least
ρ/2. Consequently, by using sufficiently many layers, one can achieve

∑
ri ≥M , as required.

5.2 Unit balls in R3: an improved approximation

We need an analogue of Lemma 8, specifically Lemma 9 below; its proof works in the same way.
Let B(x) denote a ball of radius x. Let G = (V,E) be a connected geometric graph in R

3 and let
L = len(G). Let C be the set of points at distance at most x from the edges and vertices of G.
Equivalently, C = G+B(x) is the Minkowski sum of G and B(x).

Lemma 9. Vol(C) ≤ πx2L+ 4π
3 x

3. This bound cannot be improved.

Let D be a set of unit balls (as input). As in the planar case, we compute a maximal independent
set of disks I ⊂ D by a plane-sweep algorithm. For convenience, we sweep a horizontal plane in the
positive direction of the z-axis. We call I a plane-sweep independent set or z-monotone independent
set.

The algorithm computes a tour of D as follows. First, compute a maximal z-monotone inde-
pendent set I; write k = |I|. Next, compute TI = o1 . . . ok, an α-approximate tour of the center
points of the balls in I, for some constant α > 1. Write SI = {o1, o2, . . . , ok}. For each ball ω ∈ I,
let Γ = Γ(ω) be a discrete set of 28 lattice points associated with ω (relative to its center). For
describing this set we will assume for convenience that the center of ω is (0, 0, 0). Let a = 1/

√
3.
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Γ contains 16 points in the plane z = a and 12 points in the plane z = 3a; see Fig. 8. Specifically,

Γ = {(−3a,−3a, a), (−3a,−a, a), (−3a, a, a), (−3a, 3a, a),

(−a,−3a, a), (−a,−a, a), (−a, a, a), (−a, 3a, a),
(a,−3a, a), (a,−a, a), (a, a, a), (a, 3a, a),
(3a,−3a, a), (3a,−a, a), (3a, a, a), (3a, 3a, a)}
∪ {(−3a,−a, 3a), (−3a, a, 3a), (−a,−3a, 3a), (−a,−a, 3a), (−a, a, 3a), (−a, 3a, 3a),
(a,−3a, 3a), (a,−a, 3a), (a, a, 3a), (a, 3a, 3a), (3a,−a, 3a), (3a, a, 3a)}.

One can check that the points in Γ admit a Hamiltonian path in which each edge has length
2a, say ξ(Γ) = γ1, γ2, . . . , γ28, starting at γ1 = (−a,−3a, a) and ending at γ28 = (−a,−3a, 3a).

−a

−3a

a

3a

−3a −a a 3a

Figure 8: The set Γ has 16 points with z = a and 12 points with z = 3a; |Γ| = 28. The hollow circles indicate
the four missing points in the plane z = 3a.

We will prove shortly that any unit ball that intersects ω from above (i.e., the z-coordinate of
its center is non-negative) contains at least one of the points in Γ(ω). Moreover, this also holds for
ω itself.

We modify (extend) the tour TI = o1 . . . ok as follows. Assume first that k is even. We replace
each segment oioi+1 of this tour, with i odd, by a parallel segment of equal length connecting
γ1 ∈ Γ(ωi) with γ1 ∈ Γ(ωi+1). Similarly, we replace each segment oioi+1 of this tour, with i even,
by a parallel segment of equal length connecting γ28 ∈ Γ(ωi) with γ28 ∈ Γ(ωi+1). To obtain a
tour, we visit the balls in I in the same order as TI . After each segment, the tour visits all the
28 points in the corresponding set Γ(ω) by using the Hamiltonian path ξ(Γ) and then continues
with the next segment, etc. This extension procedure can be adapted to work for odd k without
incurring any increase in cost: specifically, the first cycle of period 2 is replaced by a cycle of period
3. For odd k, the output TSP tour has the form T = ξ1ξ2ξ3ξξ

RξξR . . . ξξR, rather than the form
T = ξξRξξR . . . ξξR (for k even). Here ξR is the path ξ traversed in the opposite direction, and
ξ1, ξ2, ξ3 are three suitable Hamiltonian paths on Γ (details are omitted).

Algorithm analysis. The analysis of the approximation ratio is similar to that in the planar
case. The disjoint unit balls in I are contained in the body C = T ∗

I +B(2). By Lemma 9,

4π

3
|I| ≤ Vol(C) ≤ 4π len(T ∗

I ) +
4π

3
8,

hence

k = |I| ≤ 3

(
L∗ +

8

3

)
= 3L∗ + 8. (26)
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The total length of the detours incurred by T over all balls in I is bounded from above by

(28− 1)2ak = 27
2√
3
k = 18

√
3k. (27)

It follows that the length of the output tour is bounded from above as follows.

L ≤ LSI
+ 18

√
3k. (28)

The upper bound on LSI
(analogue of (24)) is

LSI
≤ αL∗

SI
≤ α(L∗

I + 2k) ≤ α(L∗ + 2k) ≤ α(L∗ + 2(3L∗ + 8))

= 7αL∗ + 16α. (29)

The upper bound on 18
√
3k (analogue of (22)) is

18
√
3k ≤ 18

√
3(3L∗ + 8) = 54

√
3L∗ + 144

√
3. (30)

Substituting into (28) the upper bounds in (29) and (30) yields

L ≤ (7αL∗ + 16α) + (54
√
3L∗ + 144

√
3)

= (7α + 54
√
3)L∗ + (16α + 144

√
3). (31)

For α = 1 + ε (using the PTAS for the center points), the length of the output tour is L ≤
100.61L∗ + 265.6, assuming that ε ≤ 0.01. For α = 1.5 (using the algorithm of Christofides for
the center points), the length of the output tour is L ≤ 104.1L∗ + 273.5. The running time is
dominated by that of computing a minimum-length perfect matching on n points in R

3 (n even),
e.g., O(n3) [26].

Lemma 10. Let ω and ω′ be two intersecting unit balls, centered at (0, 0, 0) and (x, y, z), respec-
tively, where z ≥ 0. Then ω contains a point in Γ(ω).

Proof. By symmetry, it suffices to prove the claim when x, y ≥ 0. We therefore have x, y, z ≥ 0
and x2+ y2+ z2 ≤ 4. We distinguish two cases, depending on whether z ≤ 2a or z ≥ 2a. If z ≤ 2a,
we show that ω contains a point of Γ in the lower plane σ1 : z = a; if z ≥ 2a, we show that ω
contains a point of Γ in the higher plane σ3 : z = 3a. Write Γ1 = Γ ∩ σ1, and Γ3 = Γ ∩ σ3.

Case 1: z ≤ 2a. Since x2 + y2 + z2 ≤ 4, we have max(x, y) ≤ 2 < 4a. The closest lattice point
γ = (γx, γy, γz) ∈ Γ1 to (x, y, z) satisfies

|x− γx| ≤ a, |y − γy| ≤ a, and |z − γz| ≤ a,

thus
(x− γx)

2 + (y − γy)
2 + (z − γz)

2 ≤ 3a2 = 1,

as required.

Case 2: z ≥ 2a. Since x2 + y2 + z2 ≤ 4, we have x2 + y2 ≤ 4 − 4a2 = 8/3. Observe that the
disk x2 + y2 ≤ 8/3 does not intersect the interior of the square [2a, 3a]2 in the plane z = 0. Thus
the projection of (x, y, z) onto the plane z = 0 is contained in [0, 3a]2 \ (2a, 3a]2. This implies that
the closest lattice point γ = (γx, γy, γz) ∈ Γ3 to (x, y, z) satisfies

|x− γx| ≤ a, |y − γy| ≤ a, and |z − γz| ≤ a,

and the conclusion follows as in Case 1.

24



Remark. Analogous to the planar case, if the input consists of pairwise-disjoint (unit) balls,
then (29) yields improved approximations. For α = 1+ ε, (29) yields L ≤ 7.01L∗ +16.1, assuming
that ε ≤ 0.001. For α = 1.5, (29) yields L ≤ 10.5L∗ + 24.

Generalization to higher dimensions. The technique in this section generalizes to congruent
balls in R

d for any fixed d ≥ 4. First, the plane-sweep algorithm does so and yields an independent
set I. Then compute an α-approximate tour TI of the center points of the balls in I for a small
α ≤ 1.5.

ω

π/6

√

3

o

√

3ω

ω′ ω′′

1

1
1

1

Figure 9: A unit disk ω centered at o intersects two unit disks, ω′ and ω′′, whose centers are at distance 1
and 2 from o. Both ω′ and ω′′ intersects the boundary of

√
3ω in a spherical cap of radius

√
3 · π/6.

For each ball ω ∈ I, we construct a finite point set Γ = Γ(ω) with the property that any unit
ball that intersects ω contains at least one of the points in Γ(ω). Consider a unit ball ω′ that
intersects ω. If the distance between their centers is less than 1, then ω′ contains the center of
ω; otherwise ω′ intersects the boundary of

√
3ω (i.e., the ball of radius

√
3 concentric with ω) in

a spherical cap of radius at least
√
3 π

6 in spherical distance (refer to Fig. 9). The bound
√
3 π

6 is
attained when the centers of ω and ω′ are at distance 1 or 2 apart. Compute a maximal packing
of the sphere ∂(

√
3ω) with spherical caps of radius

√
3 π

12 , starting with an arbitrary cap, and
incrementally adding interior-disjoint caps so that each touches some previous cap.

Let Γ(ω) contain the centers of all caps in this maximal packing and the center of ω. Suppose a
unit disk ω′ intersects ω but misses Γ(ω). Then ω′ contains a spherical cap in ∂(

√
3ω) of radius at

least
√
3 · π/6, which contains no point in Γ(ω); consequently a spherical cap with the same center

and radius
√
3 π

12 is disjoint from all caps in the packing, contradicting maximality. Therefore Γ(ω)
has the desired property.

We extend the tour TI by suitable detours visiting all points in Γ(ω) for all ω ∈ I and thereby
obtain a tour for the input set. The analysis of the approximation ratio is similar to the 2- and
3-dimensional cases and uses volume arguments in R

d. Let Vold(r) be the volume of a ball of radius
r in R

d. It is well-known that

Vold(r) =





πd/2

(d/2)!
· rd if d is even,

2d · π(d−1)/2 ((d− 1)/2)!

d!
· rd if d is odd.

(32)

Combining (32) with the Stirling formula yields the following upper bound:

Lemma 11.
Vold−1(1)

Vold(1)
≤ (1 + o(1))

√
d

2π
.
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Proof. Write f ∼ g whenever limd→∞ f(d)/g(d) = 1. We distinguish two cases according to the
parity of d.

If d is even, then

Vold−1(1)

Vold(1)
=

2d−1π(d−2)/2((d− 2)/2)!

(d− 1)!

(d/2)!

πd/2

=
2d

π

πd/2(d/2)!

d!

(d/2)!

πd/2
∼ 2d

π

(2πd/2)
(
d
2e

)d
√
2πd

(
d
e

)d

=
2d

π

πd√
2πd

1

2d
=

√
d

2π
.

If d is odd, then

Vold−1(1)

Vold(1)
=

π(d−1)/2

((d− 1)/2)!

d!

2dπ(d−1)/2 ((d − 1)/2)!

=
d!

2d((d− 1)/2)!((d − 1)/2)!
∼

√
2πd

(
d
e

)d

2d 2π d−1
2

(
d−1
2e

)d−1

=

√
2πd dd 2d−1 ed−1

π ed 2d (d− 1)d
∼

√
2πd

2eπ
e =

√
d

2π
.

By Lemma 11, a volume argument analogous to (26) yields

k = |I| ≤ Vold−1(2)L
∗ +Vold(2)

Vold(1)
≤ (1 + o(1))

√
d

2π
2d−1L∗ + 2d.

The surface area of a sphere of radius r in R
d is Aread−1(r) = 2πrVold−2(r), and the surface

area of a spherical cap of radius rϕ is bounded from below by Vold−1(r sinϕ). A volume argument
yields

|Γ| ≤ Aread−1(
√
3)

Vold−1(
√
3 sin(π/12))

+ 1 ≤ 2πVold−2(1)

(sin(π/12))d−1Vold−1(1)
+ 1 ≤ (1 + o(1))

√
2πd

(sin(π/12))d−1
. (33)

If two spherical caps of radius
√
3 π

12 are in contact on the sphere ∂(
√
3ω), then the distance between

their centers is 2
√
3 sin π

12 . By construction, the length of a minimum spanning tree of Γ is

(|Γ| − 2) 2
√
3 sin

π

12
+

√
3 ≤ (1 + o(1))

2
√
6πd

(sin(π/12))d−2
,

and the length of a Hamiltonian cycle ξ of Γ is at most twice this length. Consequently, we obtain
a tour of length

L ≤ αL∗ + 2k len(ξ) ≤ αL∗ + 2

(
(1 + o(1))

√
d

2π
2d−1L∗ + 2d

)(
(1 + o(1))

2
√
6πd

(sin(π/12))d−2

)
.

The resulting (asymptotic) approximation ratio is

α+ (1 + o(1))
2
√
3 d 2d

(sin(π/12))d−2
= O

(
d

(
2

sin(π/12)

)d)
= O

(
7.73d

)
,

as claimed.
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6 Conclusion

We revisited TSP with neighborhoods and obtained several approximation algorithms: some for
neighborhoods previously less studied, such as lines and hyperplanes in R

d, and some for the most
previously studied, such as disks and balls. Despite the progress, one may rightfully say that the
general problem of TSP with neighborhoods is far from resolved. Interesting questions remain open
regarding the structure of optimal TSPN tours for lines, segments, balls, and hyperplanes, and the
degree of approximation achievable for these problems. We record the simplest and most natural
open questions on TSPN that we could identify.

(1) Is there a polynomial-time exact algorithm for planes in R
3?

(2) Is there a constant approximation algorithm for lines in R3 (or in Rd for d ≥ 3)? Can the
current O(log3 n) ratio be improved?

(3) Is there a constant approximation algorithm for planar convex bodies?

(4) Is there a constant approximation algorithm for parallel segments in R
3? To start with, one

can further assume that the segments are pairwise-disjoint.

(5) Is there a constant approximation algorithm for balls (of arbitrary radii) in R
3?
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