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Abstract

We study the two-dimensional bin packing problem: Given a list of n rectangles the
objective is to find a feasible, i.e. axis-parallel and non-overlapping, packing of all rect-
angles into the minimum number of unit sized squares, also called bins. Our problem
consists of two versions; in the first version it is not allowed to rotate the rectangles while
in the other it is allowed to rotate the rectangles by 90◦, i.e. to exchange the widths and
the heights. Two-dimensional bin packing is a generalization of its one-dimensional coun-
terpart and is therefore strongly NP-hard. Furthermore Bansal et al. [2] showed that even
an APTAS is ruled out for this problem, unless P = NP . This lower bound of asymp-
totic approximability was improved by Chlebík & Chlebíková [5] to values 1 + 1/3792
and 1 + 1/2196 for the version with and without rotations, respectively. On the positive
side there is an asymptotic 1.69.. approximation by Caprara [4] without rotations and an
asymptotic 1.52... approximation by Bansal et al. [1] for both versions.

We give a new asymptotic upper bound for both versions of our problem: For any fixed
ε and any instance that fits optimally into OPT bins, our algorithm computes a packing
into (3/2+ ε) ·OPT+69 bins in the version without rotations and (3/2+ ε) ·OPT+39
bins in the version with rotations. The algorithm has polynomial running time in the input
length.

In our new technique we consider an optimal packing of the rectangles into the bins. We
cut a small vertical or horizontal strip out of each bin and move the intersecting rectangles
into additional bins. This enables us to either round the widths of all wide rectangles, or
the heights of all long rectangles in this bin. After this step we round the other unrounded
side of these rectangles and we achieve a solution with a simple structure and only few
types of rectangles. Our algorithm initially rounds the instance and computes a solution
that nearly matches the modified optimal solution.
Keywords: Scheduling and Resource Allocation Problems, Bin Packing, Rectangle Pack-
ing, Approximation Algorithms

1 Introduction
In the two-dimensional bin packing problem it is desired to pack a list I = {r1, . . . , rn} of
rectangles with heights hi and widthswi into the smallest possible number of unit sized squares,
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also called bins. The rectangles have to be packed axis-parallel and may not overlap. Our
problem consists of two versions; in the first version it is not allowed to rotate the rectangles
while in the other it is allowed to rotate the rectangles by 90◦, i.e. to exchange the widths and
the heights. Two-dimensional packing problems have many real world applications that can be
found in the area of scheduling, chip design and logistics. In particular the version of the two-
dimensional bin packing problem with rotations can be used for example for stock-cutting,
when we want to cut some items out of some sheets of raw material. The version without
rotations is for example used for the print and web layout, when we want to place all ads into
the minimum number of pages.

Related Work Two-dimensional bin packing is a generalization of its one-dimensional coun-
terpart (where each rectangle has height 1) and is therefore strongly NP-hard. Furthermore
Bansal et al. [2] showed that even an APTAS is ruled out. This asymptotic lower bound
was further improved by Chlebík & Chlebíková [5] to values 1 + 1/3792 and 1 + 1/2196 for
the version with and without rotations, respectively. On the positive side there is an asymp-
totic 2.125-approximation by Chung et al. [6]. The AFPTAS of Kenyon & Rémila [19]
and Jansen & van Stee [17] for the related strip packing problem can be used to achieve an
asymptotic 2 + ε-approximation for the two-dimensional bin packing problem without and
with rotations, respectively. Caprara [4] gave the first asymptotic approximation algorithm for
the version without rotations that breaks the barrier of 2. The asymptotic approximation ratio
of this algorithm is arbitrary close to the harmonic number T∞ = 1.69... This result was fur-
ther improved by Bansal et al. [1] with an asymptotic approximation ratio of arbitrary close
to ln(T∞ + 1) = 1.52.. with and without rotations. The additive constant of this algorithm
depends on a precision ε of this algorithm.

In the non-asymptotic setting without rotations there is a 3-approximation by Zhang [23]
and by Harren & van Stee [12] with an improved running time. Harren & van Stee [12] also
developed a non-asymptotic 2-approximation with rotations. Independently this approximation
guarantee is also achieved for the version without rotations by Harren & van Stee [13] and
Jansen et al. [15]. These results match the non-asymptotic lower bound of this problem, unless
P = NP .

Our Contribution We present the following result for the two-dimensional bin packing prob-
lem with and without rotations:

Theorem 1. For any ε > 0, there is an approximation algorithm A which produces a packing
of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT(I) + 69.

The running time of A is polynomial in n.

This result is an important step in closing the gap between the current asymptotic lower
bound and the former best asymptotic approximation ratio. Furthermore, since we have a
small additive constant of 69, our algorithm already computes better results for instances with
OPT(I) ≥ 200 and ε ≤ 1/8, or for OPT(I) ≥ 150 and ε ≤ 1/30 than the non-asymptotic
2-approximations.

In the version that allows rotation we can further improve the additional constant to 39. We
obtain the following result.
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Theorem’ 1. For any ε > 0, there is an approximation algorithm A which produces a packing
of a list I of n rectangles that are allowed to be rotated in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT(I) + 39.

The running time of A is polynomial in n.

Techniques The main idea of our work is to analyse an arbitrary solution of the two-dimensional
bin packing problem. Here it does not matter whether the rectangles are rotated or not. We cut
in each bin a small vertical or horizontal strip out of the solution, i.e. we move some rectangles
to additional bins, so that a horizontal or vertical strip at one side of the bin is completely free
of rectangles. We prove that this is possible for any bin in any possible solution. At these
modification steps, we do not rotate the rectangles in order to ensure that it also works for the
version where rotations are not allowed. When we have removed a vertical strip of some width
εc, it is possible to round the widths of all rectangles of width at least εc to a multiple of ε2c/2
and place them also on an x-coordinate whose value is a multiple of ε2c/2. When we have re-
moved a horizontal strip of height εc we are able to round the heights of all rectangles of height
at least εc to a multiple of ε2c/2. These rectangles are placed on a y-coordinate whose value is
a multiple of ε2c/2. It follows that our modified solution consists of two different types of bins.
The packing of the bins of the first type satisfy the following property.

Property 1. The width and the x-coordinate of each rectangle in Bi of width at least εc is a
multiple of ε2c/2.

The packing of the bins of the second type satisfy the analogous property for rounding the
heights:

Property 2. The height and the y-coordinate of each rectangle in Bi of height at least εc is a
multiple of ε2c/2.

We ensure one of these properties also on the additional bins that are used to modify the
solution and we obtain the following main result of our work:

Theorem 2. For any value εc, with 1/εc being a multiple of 24, and for any solution that fits
into m bins, we are able to round up the widths and the heights of the rectangles so that they fit
into (3/2 + 5εc) ·m + 37 bins while the packing of each of the bins satisfies either Property 1
or Property 2.

After having rounded one side of the rectangles the rounding technique for the unrounded
side is fairly standard in the theory of packing algorithms. In general, we employ the rounding
technique used in the AFPTAS by Kenyon & Rémila [19]. Small rectangles are packed
in containers using some techniques by Jansen & Solis-Oba [16]. Furthermore, we use the
algorithm of Steinberg [21], to pack some medium rectangles.

In the non-rotational version, our algorithm initially uses a flow network to assign some big
rectangles that have both side lengths at least εc to bins of the first and second type. The same
flow network is used in the setting that allows rotation to rotate these rectangles. The remaining
small, (rotated) long and (rotated) wide rectangles are packed into containers with a modified
version of the algorithm by Kenyon & Rémila [19]. Afterwards we pack the containers and the
big rectangles with an integer linear program into the bins. There are only minor differences to
improve the additional constant in the version that allows rotation. We state these differences
at the end of each section.
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2 Modifying a Packing
In the following sections, we consider an arbitrary solution, which does not have to be the
optimal one, of the rectangles in m bins. We set a coordinate system to each bin, with the
origin (0, 0) in the lower left corner and with the coordinate (1, 1) in the upper right corner.
The lower left corner of the rectangle rj is placed at the position (xj, yj) and the upper right
corner at the position (x′j, y

′
j). The area of rj is defined by aj := hj · wj . For a set X of

rectangles, we have h(X) :=
∑

rj∈X hj , w(X) :=
∑

rj∈X wj and a(X) :=
∑

rj∈X hj · wj for
the total height, total width and total area of the rectangles in X . The maximal occurring width
and height in X is defined by wmax(X) := maxrj∈X wj and hmax := maxrj∈X hj .

Sometimes, we define a certain rectangular or Γ-shaped region in a bin Bi of our solution.
These regions are defined by a closed traverse starting at the lower left corner. A rectangular
region, defined by some corner points (x1, y1), (x2, y1), (x2, y2) and (x1, y2), is also defined by
the Cartesian product [x1, x2]× [y1, y2].

Let εc < 1 be a value, so that 1/εc is a multiple of 24. In order to round the rectangles in
our solution, we cut a horizontal strip of height εc and width 1 or a vertical strip of width εc
and height 1 out of each bin Bi. Therefore, we clear always one of the four strips at the sides
of the bin, i.e. we remove all rectangles that intersect one of them (except the bins Bi with a
very large rectangle that intersects simultaneously all four strips).

Denote the strips of width 1 and height εc at the top and at the bottom of the strip by
S
(i)
U := [0, 1] × [1 − εc, 1] and S(i)

B := [0, 1] × [0, εc]. The strips of height 1 and width εc to
the right and left of the bin are called S(i)

R := [1− εc, 1]× [0, 1] and S(i)
L := [0, εc]× [0, 1] (cf.

Figure 1). There are two kinds of rectangles that intersect these strips. The set of rectangles
that lies completely in one of these strips S(i)

K , K ∈ {U,B,R, L} is denoted by C(i)
K ; the set of

rectangles that does not lie completely inside a strip but intersects this strip is denoted by I(i)K .
In the following, we want to prove that the union of all sets C(i)

R , C
(i)
L , C

(i)
U and C(i)

B , i ∈
{1, . . . ,m}, covers a very small total area and can be moved into few additional bins.

Lemma 1. We move all rectangles in C
(i)
R , C

(i)
L , C

(i)
U and C

(i)
B for all i ∈ {1, . . . ,m} into

4εcm+ 2 additional bins. The packing of these bins satisfy either Property 1 or Property 2.
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Proof. The rectangles in C(i)
R and C(i)

L are already packed into a strip of height 1 and width
εc. We pack 1/εc of these strips into an additional bin. We have in total 2m strips to pack
into extra bins. Hence, we need at most d2εc · me ≤ 2εcm + 1 bins. The rectangles of the
width εc are placed on an x-coordinate whose value is a multiple of εc. This value is also a
multiple of ε2c/2. The remaining rectangles have a width of less than εc and hence, this packing
satisfies Property 1. The analogous packings for the rectangles in the strips SU and SR satisfy
Property 2, and we need in total 4εcm+ 2 bins.

In the following, we suppose that there is no rectangle completely situated in one of the
strips S(i)

K , K ∈ {U,B,R, L} and i ∈ {1, . . . ,m}, but only rectangles that intersect them.
Furthermore, we suppose that the rectangles that intersect S(i)

K , i.e. the rectangles of I(i)K , touch
the corresponding side of the bin. Therefore, we extend the widths or heights if necessary. Note
that this is only for the ease of explanation, the rectangles are rounded later. The rectangles in
the corners that intersect a vertical and a horizontal strip are extended in both directions so
that they are placed directly in the corners. If there is no such rectangle in one corner, we
employ a dummy rectangle of width and height εc. We denote the rectangles in the corners by
r
(i)
u` ∈ I

(i)
U ∩ I

(i)
L ; r

(i)
ur ∈ I

(i)
U ∩ I

(i)
R ; r

(i)
b` ∈ I

(i)
B ∩ I

(i)
L and r(i)br ∈ I

(i)
B ∩ I

(i)
R . Dummy rectangles

of the width or the height εc are also filled in the remaining gaps. Hence, we suppose that
h(I

(i)
L ) = 1, h(I

(i)
R ) = 1, w(I

(i)
U ) = 1 and w(I(i)B ) = 1. Consequently, the bins that contain a

very large rectangle that simultaneously intersects all four strips, contain no further rectangles.
The width and the height of this rectangle is rounded up to 1, and so the packing of these bins
satisfies Property 1 and Property 2.

Lemma 2. IfBi is a bin in our solution that contains a rectangle that simultaneously intersects
the strips S(i)

U , S
(i)
B , S

(i)
R and S(i)

L , then we are able to round up this rectangle and the packing
satisfies Property 1.

The rectangles intersecting at least one of these strips and having a height or a width larger
than 1/2 play a crucial part in our analysis. Consequently, let L(i)

U ⊆ I
(i)
U be the set of rectangles

intersecting S(i)
U and having a height larger than 1/2. L(i)

B ⊆ I
(i)
B is the set of rectangles inter-

secting S(i)
B and having a height larger than 1/2. Furthermore, let W (i)

R ⊆ I
(i)
R and W (i)

L ⊆ I
(i)
L

be the rectangles of a width larger than 1/2 and intersecting S
(i)
R or S(i)

L , respectively. The
rectangle of a maximum height in L(i)

U is denoted by r(i)u and that of L(i)
B is denoted by r(i)b . The

rectangle of a maximum width in W (i)
L is denoted by r(i)` and that of W (i)

R is denoted by r(i)r (cf.
Figure 2(a)).

We separate each bin Bi into 28 horizontal and vertical strips. Therefore, let

IN =
11⋃
i=0

{i/24} ∪ {8/24− εc, 12/24− εc},

be a set of numbers and let
IN′ := IN ∪ {12/24}

be the extended set. We assume that these sets are sorted according to non-decreasing values.
We use two consecutive numbers ini and ini+1 of IN′ as x-coordinates of each vertical strip of
the height 1(cf. Figure 2(b)). Therefore, we define the 14 vertical strips on the left and right
side of the bin by VL

(i)
ini

:= [ini, ini+1] × [0, 1] and by VR
(i)
ini

:= [1 − ini+1, 1 − ini] × [0, 1].
Analogously, we define the 14 horizontal strips of the width 1 in the lower half and upper half
of Bi by HB

(i)
ini

:= [0, 1]× [ini, ini+1] and HU
(i)
ini

:= [0, 1]× [1− ini+1, 1− ini] .
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Figure 2: Definition of rectangles and strips

If we completely remove one vertical strip of the width εc in one bin, including all rectangles
that intersect it, we are able to round up the widths of all rectangles that have a width of at least
εc.

Lemma 3. If there is a vertical strip of the width εc free of rectangles in a bin Bi, then we are
able to round up the widths of the rectangles so that the packing of Bi satisfies Property 1.

Proof. W.l.o.g. we assume that S(i)
R is the free strip of rectangles, since we can move all

rectangles on the right of one free strip by εc to the left. We divide the remaining bin into
2/εc − 2 vertical strips of the width εc/2 by introducing vertical lines at the position i · εc/2,
for i ∈ {1, . . . , 2/εc − 2}. Each rectangle of a width larger than εc intersects at least 3 of
these strips and hence crosses at least 2 vertical lines. In a next step we enlarge the strips to
a width of εc/2 + ε2c/2 by giving some extra space to a rectangle each time it intersects one
of these vertical lines by ε2c/2. The total width of all strips is (2/εc − 2) · (εc/2 + ε2c/2) =
(1/εc − 1) · (εc + ε2c) = 1 + εc − εc − ε2c = 1− ε2c ≤ 1.

Let rk be a rectangle that intersects at least 2 vertical lines and that has a width of wk ∈
(iε2c/2, (i + 1)ε2c/2] and an x-coordinate xk ∈ (jε2c/2, (j + 1)ε2c/2], for some values i ∈
{2/εc, . . . , 2/ε2c − 2/εc − 1} and j ∈ {1, . . . , 2/ε2c − 2/εc − 1}. The extra space of rk is
at least 2 · ε2c/2 = ε2c and is large enough for increasing the width from wk to wk := (i+1)ε2c/2
and the x-coordinate from xk to xk := (j + 1)ε2c/2. All rectangles of a width larger than εc
intersect at least 2 vertical lines and thus we round up their widths. It is possible that a rectangle
rk of a width exactly wk = εc does not intersect 2 vertical lines, because the x-coordinate is
already a multiple of ε2c . In this case we do not have to change the position and the width of
rk.

Analogously, we can prove the same result when there is a horizontal strip of the height εc
free of rectangles.

Lemma 4. If there is a horizontal strip of the height εc free of rectangles in a bin Bi, then we
are able to round up the heights of the rectangles so that the packing of Bi satisfies Property 2.

7



Packing with Rotations In the version with rotations, we always clear one of the vertical
strips S(i)

L or S(i)
R of the width εc. This is possible since we are able to rotate the packing by

90◦. This also enables us to use less bins than in the version in which rotations are not allowed.
Nevertheless, in the version with rotations we use the same techniques as in the version without
rotations. Therefore, we first state the methods without rotations and explain afterwards the
minor differences occurring, when we are allowed to rotate the rectangles. In Lemma 1, we
obtain already an improvement of 1 additional bin, since we are able to rotate the rectangles
in the horizontal strips. Thus, we have 4εc ·m vertical strips to pack into additional bins. The
total number of additional bins is therefore d4εc ·me ≤ 4εc ·m + 1. We obtain the following
lemma.

Lemma’ 1. We move all rectangles in C
(i)
R , C

(i)
L , C

(i)
U and C

(i)
B for all i ∈ {1, . . . ,m} into

4εcm+ 1 additional bins. The packing of these bins satisfies Property 1.

2.1 Classify the Bins
In the Section 2.1 and Section 2.2 we explain how to clear a vertical or horizontal strip in each
bin of our solution. We start by displaying the following lemma that has some impact on the
structure of the packing in the remaining bins.

Lemma 5. Let there be two bins B1, B2 in our solution, with vertical strips S(1)
C1
, S

(2)
C2

for C1 ∈
{L,R} and C2 ∈ {L,R}. Furthermore, let there be an x ∈ [0, 1/2], being a multiple of εc, and
a value y ∈ [0, 1/2]. If the following conditions hold

1.1. all rectangles of W (1)
C1
,W

(2)
C2

have a width of at most 1− x,

1.2. h(W (1)
C1

) ≤ y and h(W (2)
C2

) ≤ y,

1.3. there are rectangles in the set I(1)C1
and I(2)C1

that have a width of at most x and a total
height of at least y,

then we are able to round up the rectangles and rearrange them into three bins, while the
packing of each of the bins satisfies Property 1.

Proof. We clear the strips S(1)
C1

and S(2)
C2

in the bins B1 and B2 and pack the intersecting sets of
rectangles I(1)C1

and I(2)C2
into a new bin B3 (cf. Figure 3). The rectangles of I(1)C1

and I(2)C2
each

have a total height of 1 (including the dummy rectangles).
In a first step, we sort these rectangles according to their widths. The rectangles of I(1)C1

are
sorted according to non-increasing widths and placed with their x-coordinates at the position
0 in bin B3. The rectangle with the maximal width is placed at the bottom of the bin and
the rectangle with the minimum width is placed at the top. The rectangles of I(2)C2

are sorted
according to non-decreasing widths and are placed left aligned with their x′-coordinates at the
position 1. Here, the rectangle with the minimum width is at the bottom of the bin and the
rectangle with the maximum width is at the top (cf. Figure 4). To prove that these two columns
of rectangles do not intersect, we look at the three regions between the horizontal lines at height
0, y, 1− y and 1. Since y ≤ 1/2 we have always y ≤ 1− y.

All rectangles in W (1)
C1

have a total height of at most y (cf. Condition 1.2), and are therefore
placed in the left column below the horizontal line at height y. They have a width of at most
1 − x (cf. Condition 1.1). There are rectangles of a total height of at least y that have widths
of at most x in I(1)C1

(cf. Condition 1.3). These rectangles are placed in the right column below
the horizontal line at height y. Consequently, the rectangles below the horizontal line at height
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Figure 3: Using Lemma 5 with y = 8/24 and x = 4/24

y do not intersect each other. Vice versa, this also holds for the packing above the horizontal
line at height 1− y. The rectangles that are placed between the horizontal lines at height y and
1− y have widths of at most 1/2. Thus, the rectangles in the two columns do not intersect each
other.

After that there is a vertical strip of the width εc completely free of rectangles in bin B1

and B2. Hence, we are able to round the rectangles according to Lemma 3 in order to satisfy
Property 1. The widths of the rectangles in bin B3 are also rounded to the next largest multiple
of ε2c/2, to values of at most x, 1/2 and 1 − x, respectively. These values are all multiples of
εc and therefore also multiples of ε2c/2 (for 1/εc = i · 24 and x = jεc we have x = jεc =
2jε2c/(2εc) = (2 · j · i · 24)ε2c/2 = (48 · j · i)ε2c/2; furthermore, since x = jεc ≤ 1 it is
1− x = 1− jεc = (1/εc − j)εc = (i · 24− j) · εc = (48 · (i · 24− j) · i)ε2c/2).

The analogous lemma for rounding the heights is as follows. We omit the proof, since it is
analogous to the proof of Lemma 5.

Lemma 6. Let there be two bins B1, B2 in our solution, with horizontal strips S(1)
C1
, S

(2)
C2

for
C1 ∈ {U,B} and C2 ∈ {U,B}. Furthermore, let there be an x ∈ [0, 1/2], being a multiple of
εc, and a value y ∈ [0, 1/2]. If the following conditions hold

1.4. all rectangles of L(1)
C1
, L

(2)
C2

have height at most 1− x,

1.5. w(L(1)
C1
) ≤ y and w(L(2)

C2
) ≤ y,

1.6. there are rectangles in the set I(1)C1
and I(2)C1

that have a height of at most x and a total
width of at least y,

then we are able to round up the rectangles and rearrange them into three bins, while the
packing of each of the bins satisfies Property 2.

We are not able to use this lemma to all values of x and y, since there might be an unbounded
number of them. Thus, we use a discretization and employ these lemmas only for all x ∈ IN
and for y ∈ {0, 1/2}
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Lemma 7. Let k denote the number of bins Bi in our solution, for which an x ∈ IN and a
y ∈ {0, 1/2} exists so that one of the following conditions holds:

1.7. The total height of W (i)
L is at most y, all rectangles of W (i)

L have a width of at most 1− x
and there are rectangles of a total height of at least y in I(i)L that have a width of at most
x.

1.8. The total height of W (i)
R is at most y, all rectangles of W (i)

R have a width of at most 1− x
and there are rectangles of a total height of at least y in I(i)R that have a width of at most
x.

1.9. The total width of L(i)
B is at most y, all rectangles of L(i)

B have a height of at most 1 − x
and there are rectangles of a total width of at least y in I(i)B that have a height of at most
x.

1.10. The total width of L(i)
U is at most y, all rectangles of L(i)

U have a height of at most 1 − x
and there are rectangles of a total width of at least y in I(i)U that have a height of at most
x.

We are able to round the rectangles of these k bins and rearrange them into 3/2k + 15 bins,
while the packing of each of the bins satisfies either Property 1 or Property 2.

Proof. We separate these k bins into 30 sets. For each x ∈ IN we denote the set of bins, for
which either Condition 1.7 or Condition 1.8 holds with y = 1/2, by Vx,1/2. Analogously, we
denote the set of the remaining bins, for which either Condition 1.9 or Condition 1.10 holds
with y = 1/2, by Hx,1/2. Furthermore, let V0 denote the set of remaining bins, for which
WL = ∅ or WR = ∅ holds and let H0 denote the set of remaining bins, for which LB = ∅ or
LU = ∅ holds. These are the bins that satisfy one of the four conditions with y = 0.

We employ Lemma 5 with each sequence of two bins in each set Vx,1/2 and V0 and Lemma 6
with each sequence of two bins in each set Hx,1/2 and H0. We need one additional bin for each
set with an odd cardinality `. This results in a packing of 3/2(` − 1) + 2 bins. Consequently,
we have at most 3/2(k − 30) + 2 · 30 = 3/2k + 15 bins in total, when all 30 sets have an odd
cardinality.
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In the following, we present some corollaries following from the lemma above. We prove
that the packings in the remaining bins have a certain structure.

Corollary 1. Let Bi be a bin in our solution for which Lemma 2 and Lemma 7 are not appli-
cable. It follows that the sets L(i)

U , L
(i)
B ,W

(i)
L and W (i)

R are non-empty and disjoint.

Proof. Suppose by contradiction that W (i)
L = ∅. It follows that all rectangles intersecting S(i)

L

have a width of at most 1/2. Hence, we have fulfilled Condition 1.7, with y = 0, which is a
contradiction. The proof for L(i)

U , L
(i)
B and W (i)

R is analogous. Thus, the sets L(i)
U , L

(i)
B ,W

(i)
L and

W
(i)
R are non-empty and as a consequence of Lemma 2 there is no rectangle simultaneous in all

four sets.
Suppose by contradiction that there is a rectangle r1 ∈ L(i)

U ∩ L
(i)
B . The rectangle r1 has a

height of 1. If r1 ∈ W
(i)
L , then r1 /∈ W

(i)
R and its x′-coordinate has to be larger than 1/2. It

follows that each rectangle in W (i)
R intersects r1, which is a contradiction. If r1 /∈ W (i)

L , then
its x-coordinate has to be larger than 1/2, since otherwise each rectangle in W (i)

L intersects r1.
However, each rectangle in W (i)

R intersects r1, which is again a contradiction. Consequently,
there is no rectangle in L(i)

U ∩ L
(i)
B and analogously there is no rectangle in W (i)

L ∩W
(i)
R .

Suppose by contradiction that there is a rectangle r1 ∈ L
(i)
U ∩ W

(i)
L . This rectangle has

a width and a height of larger than 1/2. Thus, its y-coordinate is less than 1/2 and its x′-
coordinate is larger than 1/2. Each rectangle r2 ∈ W (i)

R is therefore positioned below r1 with
a y′-coordinate less than 1/2. If this was the case each rectangle in L(i)

B would intersect ei-
ther r1 or r2, which is a contradiction. The proof for the disjunction of the remaining sets is
analogously.

This result enables us to do a first analysis of the packings in the remaining bins. Let Bi

be a bin, in which Lemma 2 and Lemma 7 are not applicable. Suppose by contradiction that
there are two (not necessarily distinct) rectangles r1, r2 ∈ L(i)

U so that r1 has the x-coordinate
x1 ≤ 1/2 and r2 has the x′-coordinate x′2 ≥ 1/2. The rectangles r3 ∈ W (i)

L and r4 ∈ W (i)
R have

to lie below r1 and r2 and their y′-coordinates are less than 1/2. Hence, each rectangle in L(i)
B

intersects either r3 or r4, which is a contradiction.
Consequently, all x- and x′-coordinates of the rectangles in L(i)

U are either less than 1/2 or
larger than 1/2. W.l.o.g. we assume that all x-coordinates are less than 1/2, since we are able
to mirror the packing at the vertical line at the x-coordinate 1/2. All rectangles of W (i)

L are
placed below the rectangles of L(i)

U and their y′-coordinates are less than 1/2. Consequently,
the rectangles of L(i)

B are on the right of the rectangles inW (i)
L and their x-coordinates are larger

than 1/2. The rectangles ofW (i)
R are situated above the rectangles inL(i)

B and their y-coordinates
are larger than 1/2 (cf. Figure 5). We obtain the following structural theorem.

Theorem 2. Consider a bin Bi in our solution, for which Lemma 2 and Lemma 7 are not
applicable. The rectangles of L(i)

U are, w.l.o.g., completely in the left half of these bins (all
x′-coordinates are less than 1/2); the rectangles of L(i)

B are completely in the right half of
these bins (all x-coordinates are larger than 1/2); the rectangles of W (i)

L are completely in the
lower half of these bins (all y′-coordinates are less than 1/2) and the rectangles of W (i)

R are
completely in the upper half of these bins (all y-coordinates are larger than 1/2).

It is very useful that this structure remains the same when turning the bin by 90◦, 180◦ and
270◦ since sometimes we use analogous arguments. Note that by turning the bin by 180◦, we
rotate the packing but not the rectangles.
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Figure 5: A packing as described in Theorem 2

Corollary 2. Let Bi be a bin in our solution for which Lemma 2 and Lemma 7 are not applica-
ble. Furthermore, let there be a rectangle r1 in L(i)

U with an x′-coordinate in an interval VL(i)
v ,

for a v ∈ IN. It follows that the x-coordinates of all rectangles in L(i)
B are situated in VR(i)

v .

Proof. Let w be an element of IN. Suppose by contradiction that w 6= v and that there is a
rectangle r2 in L(i)

B with an x-coordinate in VR(i)
w (cf. Figure 6).

1
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(a) Case 1 with v = 5/24 and w = 9/24
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(b) Case 2 with v = 5/24 and w = 2/24

Figure 6: The two cases of Corollary 2

Case 1, w > v. Let u ≤ w be the successor of v in IN, i.e. VL(i)
v = [v, u] × [0, 1]. The

widths of all rectangles in I(i)L that lie above the horizontal line at the y-coordinate y1 or that

12



intersect with it are bounded by the rectangle r1. Hence, their widths are bounded by the value
u ≤ w. The height of r1 is larger than 1/2, hence y1 < 1/2. Consequently, there are rectangles
of the total height of at least 1/2 that have a width of at most w. The remaining rectangles in
I
(i)
L that lie below the horizontal line at the y-coordinate y1 are bounded by the rectangle r2.

The x-coordinate of r2 is within VL(i)
w , it follows that these rectangles have a width of at most

1− w. We have fulfilled Condition 1.7 with y = 1/2 and x = w, which is a contradiction.
Case 2, w < v. Let u ≤ v be the successor of w in IN′, i.e. VR(i)

w = [1− u, 1−w]× [0, 1].
We use the same argumentation as in the first case on the strip S(i)

R . The widths of the rectangles
in I(i)R that are positioned below the y′-coordinate y′2 are bounded by the rectangle r2. Their total
height is larger than 1/2 and their widths are at most u ≤ v. The widths of the rectangles in I(i)R
that lie above the horizontal line at the y′-coordinate y′2 are bounded by r1. The x′-coordinate of
r1 is in VL(i)

v and hence the widths are bounded by 1−v. It follows that we satisfy Condition 1.8
with y = 1/2 and x = v, which is a contradiction.

Consequently, if there is a rectangle in L(i)
U with its x′-coordinate in an interval VL(i)

v , all
rectangles of L(i)

B have their x-coordinates in the interval VR(i)
v . Furthermore, we can use

this corollary after turning the bin by 180◦. We obtain: if there is a rectangle in L
(i)
B with

its x-coordinate in an interval VR(i)
v , then all rectangles of L(i)

U have their x′-coordinates in
the interval VL(i)

v . Hence, the x′-coordinates of all rectangles in L
(i)
U are in VL(i)

v and the
x-coordinates of all rectangles in L(i)

B are in VR(i)
v . The same holds for the wide rectangles

intersecting S(i)
R and S(i)

L by employing this corollary on the bin turned by 90◦. Thus, the y′-
coordinates of all rectangles in W (i)

L are in HB
(i)
h and the y-coordinates of all rectangles in W (i)

R

are in HU
(i)
h , for some h ∈ IN.

Corollary 3. Let Bi be a bin in our solution for which Lemma 2 and Lemma 7 are not appli-
cable. Furthermore, let there be a rectangle r1 6= r

(i)
u` in L(i)

U with x′-coordinate in an interval
VL(i)

v for v ∈ IN (r(i)u` is the rectangle in the upper-left corner). It follows that the x-coordinate
of r1 is also situated in VL(i)

v .

Proof. Suppose by contradiction that there is a member w < v of IN and the x-coordinate of
r1 is in VL(i)

w . It holds that r1 6= r
(i)
u` and hence r1 does not intersect S(i)

L (cf. Figure 7(a)).
Let u ≤ v be the successor of w in IN′, i.e. VL(i)

w = [w, u] × [0, 1]. The widths of the
rectangles in I(i)L that lie above the horizontal line at y-coordinate y1 or that intersect this line
are bounded by r1. It follows that their total height is at least 1 − y1 > 1/2 and their widths
are at most u ≤ v. Furthermore, as a consequence of Corollary 1 and Corollary 2 there exists a
rectangle r2 of L(i)

B that has its x-coordinate x2 within VR(i)
v . Thus, all remaining rectangles in

I
(i)
L that are below the horizontal line at y-coordinate y1 have a bounded width of at most 1− v.

Consequently, we satisfy Condition 1.7 with y = 1/2 and x = v, which is a contradiction.

As a consequence of Corollary 2 and Corollary 3, all rectangles of L(i)
U except r(i)u` , if r(i)u` ∈

L
(i)
U , are completely situated in an interval VL(i)

v . Again, we employ this corollary on each side
of the bin and as a consequence, we achieve that all rectangles of L(i)

B \ {r
(i)
br } are completely

in VR(i)
v . All rectangles of W (i)

L \ {r
(i)
br } are completely in an interval HB(i)

h and all rectangles
of W (i)

R \ {r
(i)
ur} are completely in HU

(i)
h .

Corollary 4. LetBi be a bin in our solution, for which Lemma 2 and Lemma 7 are not applica-
ble and let there be a rectangle r1 ∈ L(i)

U with x′-coordinate in an interval VL(i)
v . It follows that
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(a) Corollary 3; v = 5/24, w = 2/24.
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(b) Corollary 4; v = 5/24.

Figure 7: The situation in the Corollary 3 and Corollary 4

the x′-coordinate x′(i)` is situated within the interval VR(i)
v (r(i)` is the rectangle of maximum

width in W (i)
L ).

Proof. Suppose by contradiction that r(i)` , does not intersect VR(i)
v , i.e. the x′-coordinate x′(i)`

is not within the interval VR(i)
v (cf. Figure 7(b)). Let u be the successor of v in IN′, i.e.

VL(i)
v = [v, u]× [0, 1] and VR(i)

v = [1− u, 1− v]× [0, 1].
Since r(i)` has the maximum width among the rectangles in W

(i)
L , no rectangle of W (i)

L

intersects VR(i)
v . Thus all rectangles of W (i)

L have a bounded width of at most 1 − u. The
rectangles of I(i)L that lie above the horizontal line at height y1 or that intersect this line are
bounded by rectangle r1. Consequently, their total height is at least 1 − y1 > 1/2 and their
widths are at most u. Thus, we satisfy Condition 1.7 with y = 1/2 and x = u, which is a
contradiction

We also adopt this corollary to the bins turned by 90◦, 180◦ and 270◦ and obtain the follow-
ing structural theorem of the packing in the remaining bins in our solution (cf. Figure 8).

Theorem 3. Let there be a packing in one bin Bi of our solution for which Lemma 2 and
Lemma 7 are not applicable. It follows that values h(i), v(i) ∈ IN with the following conditions
exist:

1.11. The sets L(i)
U , L

(i)
B ,W

(i)
L and W (i)

R are non-empty and disjoint.

1.12. All rectangles in L(i)
U \r

(i)
u` and L(i)

B \r
(i)
br are completely situated within VL

(i)

v(i)
and VR

(i)

v(i)
,

respectively.

1.13. All rectangles in W (i)
L \ r

(i)
b` and W (i)

R \ r
(i)
u` are completely situated within HB

(i)

h(i)
and

HU
(i)

h(i)
, respectively.

1.14. If r(i)u` ∈ L
(i)
U , then the x′-coordinate x′(i)u` is situated within VL

(i)

v(i)
;

if r(i)br ∈ L
(i)
B , then the x-coordinate x(i)br is situated within VR

(i)

v(i)
.
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1.15. If r(i)b` ∈ W
(i)
L , then the y′-coordinate y′(i)b` is situated within HB

(i)

h(i)
;

if r(i)ur ∈ W (i)
R , then the y-coordinate y(i)ur is situated within HU

(i)

h(i)
.

1.16. the y-coordinates y(i)u and y′(i)b are situated within HB
(i)

h(i)
and HU

(i)

h(i)
, respectively;

the x-coordinates x(i)r and x′(i)` are situated within VL
(i)

v(i)
and VR

(i)

v(i)
, respectively.

1

0 2/24 4/24 6/24 8/24 10/24 10/24 8/24 6/24 4/24 2/241/2

2/24

4/24

6/24

8/24

10/24

1/2

10/24

8/24

6/24

4/24

2/24

v v’

h

h’

1−h’

1−h

1−v’1−v

1

ru

r`

rr

rb`

ru`
rur

rb = rbr

Figure 8: A packing as described in Theorem 3, with v = 5/24, h = 4/24 and r(i)br ∈ L
(i)
B .

In the following, we classify the remaining bins Bi, for which Lemma 2 and Lemma 7 are
not applicable according to the values v ∈ IN and h ∈ IN. Therefore, denote the values for
which Theorem 3 for bin Bi holds by h(i) ∈ IN and v(i) ∈ IN. Furthermore, let h′(i) ∈ IN′ and
v′(i) ∈ IN′ be the successor of h(i) and v(i), respectively.

The packing that is described in Theorem 3 consists of almost five different regions. The
region at the left of the rectangle r(i)u , the region below r

(i)
` , the region to the right of r(i)b , the

region on top of r(i)r and the region in the middle of the bin. There are only few rectangles
that intersect two of these regions, since they have to lie completely inside the horizontal strips
HB

(i)

h(i)
or HU(i)

h(i)
or inside the vertical strips VL(i)

v(i)
or VR(i)

v(i)
. We make use of this structure in

the following section and remove the rectangles from two of the regions in order to remove a
horizontal or vertical strip.

Classify the Bins with Rotations Before we continue with our analysis, we first state the
differences in the version with rotations. In the proof of Lemma 7 we use 30 sets of bins
Vx,1/2, Hx,1/2, V0 and H0, for x ∈ IN. We rotate the packing of one bin Bi that is in a set Hx,1/2

or in H0. The packing of this bin satisfies either Condition 1.7 or Condition 1.8. Therefore,
it belongs to the set Vx,1/2 or V0, respectively. Thus, when we are allowed to rotate, we have
only 15 different sets of bins. We use Lemma 5 on each sequence of two bins in each set. If all
15 sets have an odd cardinality, we pack k bins, each satisfying at least one of the conditions
Condition 1.7-1.10, into 3/2(k − 15) + 2 · 15 = 3/2k + 15/2 < 3/2k + 8 bins.

Lemma’ 7. Let k denote the number of bins Bi in our solution for which an x ∈ IN and a
y ∈ {0, 1/2} exist so that one of the Conditions 1.7-1.10 holds. We are able to round up the
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rectangles of these k bins and rearrange them into 3/2k + 8 bins, while the packing of each of
the bins satisfies Property 1.

2.2 Case Analysis
In the following, we suppose that for every bin there are values v(i) ∈ IN and h(i) ∈ IN so that
Theorem 3 holds. We do a case analysis for the values h(i) and v(i).

Lemma 8. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing with
the following conditions:

2.1. r(i)b` /∈ W (i)
L or r(i)ur /∈ W (i)

R ,
2.2. h(i) ∈ IN,
2.3. v(i) ∈ {0/24, . . . , 7/24, 8/24− εc}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 2 bins, while the packing of each of them satisfies either Property 1 or Property 2.

Proof. Let i ∈ {1, . . . , k}. W.l.o.g. we assume that r(i)b` /∈ W (i)
L since we are able to turn the bin

by 180◦. We clear the strip S(i)
L in each of the k bins by using the property that the rectangles

W
(i)
L of width larger than 1/2 are completely situated within HB

(i)

h(i)
and thus have a total height

of at most 1/24 (cf. Figure 9).
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(a) Bin with h = 7/24 and v = 5/24
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(b) Bin with h = 11/24 and v = 7/24

Figure 9: Two possible initial situations of Lemma 8.

We divide the rectangles in I(i)L into three sets. Let A(i) = W
(i)
L be the set of rectangles that

have a width of larger than 1/2. Let B(i) ⊂ I
(i)
L denote the set of rectangles that have a width

of at most 1/3. Finally, let C(i) denote the set of the remaining rectangles in I(i)L that have a
width within (1/3, 1/2]. As mentioned above, the total height of the rectangles in A(i) is at
most 1/24, since r(i)b` /∈ W (i)

L (Condition 2.1). We pack these rectangles on top of each other
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into a container of height h(A(i)) ≤ 1/24 and width wmax(A
(i)) ≤ 1. We treat this container as

a rectangle r(i)A of width w(i)
A = 1 and height h(i)A = h(A(i)).

The rectangles in L
(i)
U have their x′-coordinates within VL

(i)

v(i)
. Thus, the rectangles of

I
(i)
L that lie on the left of the rectangles in L(i)

U , including r(i)u` if r(i)u` ∈ L
(i)
U , have a bounded

width of v′(i) ≤ 8/24 = 1/3 (Condition 2.3). Remember that v′(i) is the successor of v(i) in
IN′. Therefore, these rectangles belong to the set B(i). Consequently, the total height of the
rectangles in the set B(i) is at least h(B(i)) = h

(i)
u > 1/2. The rectangles are also packed

on top of each other into the container/rectangle r(i)B of a width w
(i)
B = wmax(B

(i)) ≤ 1/3

and a height h(i)B = h(B(i)) > 1/2. Moreover, the rectangles in C(i) are packed on top of
each other into a container/rectangle r(i)C of a width w(i)

C = wmax(C
(i)) ≤ 1/2 and a height

h
(i)
C = h(C(i)) ≤ 1− h(B(i)) = 1− h(i)B .

We clear the strips S(i)
L of each bin by packing the rectangles of each sequence of 6 bins into

3 additional bins C1, C2, C3. Let B1, . . . , B6 be 6 bins among the k bins. W.l.o.g. we assume
that these bins are sorted by non-decreasing heights of h(i)B .

The rectangles r(1)A , . . . , r
(6)
A have a total height of at most 6 · 1/24 = 1/4. We pack them

on top of each other at the bottom of bin C1 with their x-coordinates positioned on the value
0. On top of these rectangles we pack r(1)C and r(2)C . They have both a width and a height of
at most 1/2 and fit next to each other on the positions (0, 1/4) and (1/2, 1/4). The uppermost
horizontal strip of the height 1/4 ≥ εc is still free of rectangles (cf. Figure 10(a)). We employ
Lemma 4 on this bin in order to round up the heights.

The rectangles r(i)B and r(i)C always fit on top of each other since h(i)C < 1− h(i)B . This allows
us to place r(3)C and r(3)B on top of each other in bin C2 with their x-coordinates positioned on the
value 0. The rectangles r(4)C and r(4)B are also placed on top of each other, where r(4)C is placed
on position (1/2, 0) and r(4)B is placed on top of r(4)C on the x-coordinate 2/3. Between the
rectangles r(3)B and r(4)B there is a free space of width 1/3 and height at least min{h(3)B , h

(4)
B } =

h
(3)
B . Since h(1)B ≤ h

(3)
B and w(1)

B ≤ 1/3 this space is sufficient to place r(1)B on top of r(3)C and
r
(4)
C on the x-coordinate 1/3 (cf. Figure 10(b)).

A horizontal or vertical strip free of rectangles does not necessarily have to exists in this
bin. However, we are able to round up the widths of the rectangles r(1)B , r

(3)
B and r(4)B to the

next largest multiple of ε2c/2 that is at most 1/3. The widths of the rectangles r(3)C and r(4)C
are also rounded to the next largest multiple of ε2c/2 that is at most 1/2. The rectangles that
are inside the rectangles r(i)B and r(i)C are packed on top of each other. This enables us also
to round up their widths to the next largest multiple of ε2c/2, which is at most 1/3 or 1/2,
respectively. Furthermore, their x-coordinates are either 0, 1/3, 1/2, 2/3 and hence multiples
of ε2c/2. Consequently, this packing satisfies Property 1. The packing of bin C3 is analogous to
the packing of C2 with rectangles r(5)C , r

(6)
C , r

(2)
B , r

(5)
B and r(6)B .

We modify each sequence of 6 of the k bins. If ` ≤ 4 bins remain, we pack the rectangles
that intersect SL into ` additional bins. In this case, we need in total 3/2(k− `) + 2` = 3/2k+
`/2 ≤ 3/2k+2. If ` = 5 bins remain, we adopt the same packing as described above without the
rectangles r(6)A , r

(6)
B and r(6)C . We need in total 3/2(k−`)+`+3 = 3/2k−(3/2·5)+8 ≤ 3/2k+1.

The case analysis in this paragraph is also used in some of the following lemmas, we do not
repeat it there.

Analogously, we achieve the same result for the following corollary. By turning the bin by
90◦, the proof is exactly the same. Consequently, we do not need this lemma, if we are allowed
to rotate the rectangles.
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Figure 10: The structure of the additional bins of Lemma 8

Lemma 9. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing with
the following conditions:

2.4. r(i)u` /∈ L
(i)
U or r(i)br /∈ L(i)

B ,
2.5. h(i) ∈ {0/24, . . . , 7/24, 8/24− εc},
2.6. v(i) ∈ IN.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 2 bins, while the packing of each of them satisfies either Property 1 or Property 2.

The following lemma covers the case that there is a binBi with r(i)u` ∈ L
(i)
U , r

(i)
br ∈ L

(i)
B , r

(i)
ur ∈

W
(i)
R and r(i)b` ∈ W

(i)
L .

Lemma 10. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.7. h(i) ∈ {0/24, . . . , 7/24},
2.8. v(i) ∈ {0/24, . . . , 7/24, 8/24− εc}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 1 bins, while the packing of each of them satisfies either Property 1 or Property 2.

Proof. Let i ∈ {1, . . . , k}. W.l.o.g. we assume that x′(i)u ≤ 1 − x(i)b since we are able to turn
the bin by 180◦. We want to remove the rectangles intersecting the strip S(i)

L in each bin.
Similar to the proof of Lemma 8 we use containers/rectangles for grouping the rectangles

in I(i)L . If r(i)u` ∈ L
(i)
U and r(i)u` = r

(i)
u , i.e. the rectangle in the upper left corner is the largest

rectangle in L
(i)
U , the rectangle r(i)A is r(i)u` . In any other case, let A(i) ⊂ I

(i)
L be the set of

rectangles that are at the left of r(i)u , i.e. the rectangles in I
(i)
L that lie above the horizontal

line at height y(i)u and that intersect with it. In this case, we define r(i)A as a rectangle of height
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Figure 11: A possible initial situation of Lemma 10

h
(i)
A = h(A(i)) and width w(i)

A = wmax(A
(i)). The width of r(i)A is limited in both cases to at most

w
(i)
A ≤ x

′(i)
u ≤ v′(i) ≤ 8/24 = 1/3 (Condition 2.8). Since r(i)u intersects the horizontal interval

HB
(i)

h(i)
, the height of r(i)A is at least h(i)A ≥ 1− h′(i) ≥ 1− (8/24− εc) = 16/24+ εc = 2/3+ εc

(Condition 2.7).
The widths of the rectangles in W (i)

L are bounded by the leftmost rectangle of L(i)
B . Hence,

their widths are at most x(i)b ≤ 1 − x
′(i)
u . We use a set B(i) = I

(i)
L \ A(i) of the remaining

rectangles that intersect S(i)
L . Analogously, we define a rectangle r(i)B for these rectangles of

width w(i)
B = wmax(B

(i)) ≤ x
(i)
b ≤ 1 − x′(i)u and height h(i)B = 1 − h(i)A ≤ 1/3 − εc. Note that

w
(i)
A + w

(i)
B ≤ x

′(i)
u + (1 − x′(i)u ) = 1 and therefore the rectangles r(i)A and r(i)B fit next to each

other in one bin (cf. Figure 11).
In order to employ Lemma 3, we pack r(i)A and r(i)B and with them all rectangles that intersect

with S(i)
L into an additional bin. To this end, we pack the rectangles of each sequence of 4 bins

B1, . . . , B4 of the k bins into 2 additional bins C1 and C2. W.l.o.g. we assume that r(1)A is the
rectangle with the minimum width among the rectangles r(1)A , . . . , r

(4)
A and r(2)B is the rectangle

with the minimum height among the rectangles r(2)B , r
(3)
B , r

(4)
B .

We pack r(1)A in the lower left corner of C1 on the position (0, 0). Since w(1)
A ≤ w

(3)
A ≤

1−w(3)
B and w(1)

A ≤ w
(4)
A ≤ 1−w(4)

B , we are able to pack the rectangles r(1)B , r
(3)
B and r(4)B on the

right side of r(1)A . These three rectangles each have a height of at most 1/3− εc and thus we are
able to place them on top of each other on the positions (w

(1)
A , 0), (w

(1)
A , 1/3) and (w

(1)
A , 2/3).

On top of r(4)B there is still a free space of height εc. The rectangle r(1)A also has a height of at
most 1 − εc, as there would otherwise be no rectangle in W (1)

L . Consequently, the uppermost
strip of height εc is free and we are able to employ Lemma 3 on C1 (cf. Figure 12(a))

The remaining rectangles r(2)A , r
(3)
A , r

(4)
A and r(2)B have to be packed into bin C2. It holds that

h
(i)
A + h

(i)
B = 1 and therefore h(2)B ≤ h

(3)
B = 1 − h

(3)
A and h(2)B ≤ h

(4)
B = 1 − h

(4)
A . Thus, the

rectangles r(2)A , r
(3)
A and r(4)A each fit above r(2)B . The widths of r(2)A , r

(3)
A and r(4)A are at most
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Figure 12: The structure of the additional bins of Lemma 10

1/3. Hence, we are able to place r(2)B on the position (0, 0), r(2)A on the position (0, h
(2)
B ), r(3)A

on the position (1/3, h
(2)
B ) and r(4)A on the position (2/3, h

(2)
B )(cf. Figure 12(b)). A horizontal

or vertical strip free of rectangles does not necessarily have to exist in this bin. However, there
is no rectangle on the right of r(2)B and therefore we are able to round up the rectangle r(2)B and
the rectangles inside it to the next largest multiple of ε2c/2. The rectangles r(2)A , r

(3)
A and r(4)A are

positioned on x-coordinates 0, 1/3 and 2/3 that are multiples of ε2c/2. We are able to round up
the widths of these rectangles to the next largest multiple of ε2c/2 to at most 1/3. If r(i)A is a
container, the rectangles within it are therefore also positioned on a multiple of ε2c/2 and can be
rounded up to the next largest multiple of ε2c/2. Consequently, this packing satisfies Property 1.

We do this for each sequence of 4 of the k bins. Let ` ≤ 3 denote the number of remaining
bins. If ` ≤ 2 we employ an additional bin for each of the ` bins and we pack the rectangles of
the strip S(i)

L into it. We have 3/2(k−`)+2` = 3/2 ·k+`/2 ≤ 3/2 ·k+1 bins in total. If ` = 3

we pack them according to the method described above without the rectangles r(4)A and r(4)B and
use 2 additional bins. We obtain in this case 3/2(k−`)+`+2 = 3/2 ·k−`/2+2 ≤ 3/2 ·k+1
bins.

The lemma described above does not work for h(i) = 8/24 − εc since the rectangles r(i)B
might have a height close to 1/3 and hence the uppermost strip in bin C1 is not free. Therefore,
we have to use a slight modification.

Lemma 11. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.9. r(i)ur ∈ W (i)
R and r(i)b` ∈ W

(i)
L ,

2.10. h(i) = 8/24− εc,
2.11. v(i) ∈ {0/24, . . . , 7/24, 8/24− εc}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
(3/2+εc)·k+2 bins, while the packing of each of them satisfies either Property 1 or Property 2.
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Proof. Let i ∈ {1, . . . , k}. We use the same packing as in the proof of Lemma 10. The
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Figure 13: Initial packing of Lemma 11

difference is that, after possibly turning the bin by 180◦, we have r(i)b` ∈ W
(i)
L and hence the

y′-coordinate of r(i)b` is within HB
(i)
8/24−εc (Condition 2.10). Furthermore, the rectangle r(i)u also

intersects HB(i)
8/24−εc and has its y-coordinate within it. All rectangles in I(i)L that are above the

horizontal line at height y(i)u and that intersect it, belong to A(i). Consequently, the rectangles
in B(i) consist of r(i)b` and rectangles of a total height of at most εc. We move these rectangles
of the total height at most εc into additional bins by packing them on top of each other at the
x-coordinate 0. For all k bins, we need at most dεc ·ke ≤ εc ·k+1 additional bins. We are able
to round up the widths to the next largest multiple of ε2c/2 and satisfy Property 1.

At this moment, we have B(i) = {r(i)b` } and thus r(i)B = r
(i)
b` . We adopt the same packing as

in the proof of Lemma 10. We round the heights of the rectangles r(1)b` , r
(3)
b` and r(4)b` in the bin

C1 to the next largest multiple of ε2c/2 which is at most 1/3. The rounding of the remaining
rectangles is the same as in the proof of Lemma 10. In total, we have (3/2+εc) ·k+2 bins.

This finishes the case analysis for the values v(i) < 8/24 = 1/3 and h(i) < 8/24 = 1/3.
What is left is the case in that the rectangles of a height larger than 1/2 or the rectangles of a
width larger than 1/2 are situated close to the middle of the bin.

2.2.1 Intervals in the Middle

If we have h(i) ∈ {0/24, . . . , 7/24, 8/24− εc} and v(i) ∈ {0/24, . . . , 7/24, 8/24− εc}, we are
able to use one of the lemmas above. Hence, the packing in the remaining bins has at least one
of the two values v(i) and h(i) in the set {8/24, . . . , 11/24, 12/24− εc}.

Lemma 12. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.12. v(i) ∈ {8/24, 9/24, 10/24, 11/24},
2.13. h(i) ∈ {2/24, . . . , 9/24}.
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It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 1 bins, while the packing of each of them satisfies either Property 1 or Property 2.

Proof. Let i ∈ {1, . . . , k}. We want to move the rectangles in the middle of the bin Bi to an
additional bin, in order to free S(i)

R . Let w.l.o.g. y′(i)` ≤ 1− y(i)r since we are able to turn the bin
by 180◦.
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(b) Definition of region B(i) and C(i)

Figure 14: The definition of the regions of Lemma 12

Define a non-rectangular, Γ-shaped region A(i), consisting of the rectangles in the middle
and upper right side of Bi. We define this region along the rectangles r(i)u , r

(i)
` , r

(i)
b and the right

and top of the bin, in order to ensure that there are only few rectangles that intersect this region
from the sides. The regionA(i) is defined by the coordinates (x′(i)u , y

′(i)
` ), (x

(i)
b , y

′(i)
` ), (x

(i)
b , y

′(i)
b ),

(1, y
′(i)
b ), (1, 1) and (x

′(i)
u , 1) (cf. Figure 14(a)). We treat this region with all rectangles that are

completely situated inside it as one object o(i)A and move this object to an additional bin. The
heights and widths are bounded as follows:

The longer, left side has a height of 1−y′(i)` ≤ 1−h(i) ≤ 1−2/24 = 22/24, the shorter, right
side a height of at most 1− y′(i)b ≤ 1− (1− h′(i)) = h′(i) ≤ 10/24 (Condition 2.12). The lower
part of this object has a width of at most x(i)b −x

′(i)
u ≤ (1−v(i))−v(i) = 1−2v(i) ≤ 8/24 = 1/3,

the upper part one of 1− x′(i)u ≤ 1− v(i) ≤ 1− 8/24 = 16/24 = 2/3 (Condition 2.13).
It is possible that there are rectangles that are not completely located inside this region,

but intersect it from below or from the left. The rectangles that intersect it from the left have
to be situated between the rectangles r(i)` and r(i)u since we defined the region A(i) along the
right side of rectangle r(i)u . The rectangles r(i)` and r(i)u intersect both with HB

(i)

h(i)
, hence the

total height of these rectangles is bounded by 1/24. We call the set of these rectangles B(i)

and pack them into a container/rectangle r(i)B of height h(i)B = h(B(i)) ≤ 1/24 and width
w

(i)
B = wmax(B

(i)) ≤ x
(i)
b ≤ 1− v(i) ≤ 1− 8/24 = 16/24 = 2/3 (cf. Figure 14(b)).

The rectangles that intersect A(i) from below are situated on the right of the x′-coordinate
x
′(i)
` since A(i) is defined along r

(i)
` . Furthermore, these rectangles are all bounded by the
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Figure 15: Moving the region C(i) in the proof of Lemma 12

rectangle r(i)r that is completely situated inside A(i). Therefore, we define a region C(i) that
contains all rectangles that intersectA(i) from below by the coordinates (x′(i)` , 0), (1, 0), (1, y

(i)
r )

and (x
′(i)
` , y

(i)
r ). There is no rectangle that intersects C(i) from above since we defined it along

the lower edge of r(i)r . The rectangles that intersect region C(i) from the left above the rectangle
r
(i)
` are completely situated inside A(i). The rectangles that intersect C(i) from the left below

the rectangle r(i)` are bounded by the rectangle r(i)b . Hence, they do not intersect S(i)
R and we

do not move these rectangles. We treat the region C(i) as one container/rectangle r(i)C of height
h
(i)
C = y

(i)
r ≤ 1− y′(i)` and width w(i)

C = 1− x′(i)` ≤ 1− (1− v′(i)) ≤ 12/24− εc that contains
all rectangles completely situated inside this region.

We move the objects o(i)A and r
(i)
B into an additional bin, while r(i)C is moved inside Bi.

Without these three objects the region (x
′(i)
u , y

′(i)
` ), (1, y

′(i)
` ), (1, 1) and (x

′(i)
u , 1) at the right side

of r(i)u is completely free of rectangles. It is h(i)C ≤ 1 − y′(i)` and w(i)
C ≤ 12/24 − εc. Thus, we

can place r(i)C on the position (1/2, y
′(i)
` ) leaving the left strip S(i)

R completely free of rectangles
(cf. Figure 15). We employ Lemma 3 on this bin in order to round up the rectangles and to
satisfy Property 1.

Let there be two bins B1 and B2 of the k bins and let C1 be an additional empty bin. We
pack the objects o(1)A , o

(2)
A , r

(1)
B and r(2)B into C1.

We place r(1)B at the bottom of the bin C1 on the position (1/3, 0). The object o(1)A is turned
by 180◦ so that the long edge is at the bottom. We pack this object on top of r(1)B at position
(1/3, 1/24). Both objects occupy the region(1/3, 0), (1, 0), (1, 23/24), (2/3, 23/24), (2/3, 11/24)
and (1/3, 11/24).

The object o(2)A is placed on top of o(1)A with the top edge at height 22/24. It occupies the
region (0, 0), (1/3, 0), (1/3, 12/24), (2/3, 12/24), (2/3, 22/24) and (0, 22/24) (cf. Figure 16).
These regions do not overlap. On top of o(2)A , there is still a free space of width 2/3 and height
2/24. In this space we place r(2)B on position (0, 22/24). It follows that there is a strip of the
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Figure 16: Packing of the additional bins in the proof of Lemma 12

height 1/24 free of rectangles including the strip SU . This allows us to use Lemma 4 in order
to round up the rectangles and to satisfy Property 2.

We repeat this step with each sequence of 2 of the k bins and achieve a packing of 3/2k+1
bins in total, when k is odd.

The analogous lemma by exchanging the values h(i) and v(i) is as follows. However, in
the version that allows rotation we do not need this lemma, turn the packing by 90◦ to adopt
Lemma 12 instead.

Lemma 13. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.14. h(i) ∈ {8/24, 9/24, 10/24, 11/24},
2.15. v(i) ∈ {2/24, . . . , 9/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 1 bins, while the packing of each of them satisfies either Property 1 or Property 2.

In the following lemma we use the same technique as in the lemma above. We also move
the region in the middle and in the upper right corner into an additional bin. The region in the
lower right corner is shifted in the same way as in the Lemma 12 above. Furthermore, we use
the fact that the values v(i) and h(i) are in the same range.

Lemma 14. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.16. h(i) ∈ {10/24, 11/24},
2.17. v(i) ∈ {10/24, 11/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2k + 1 bins, while the packing of each of them satisfies either Property 1 or Property 2.
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Figure 17: Definitions of the regions of the first bk/2c bins in the proof of Lemma 14

Proof. Let i ∈ {1, . . . , bk/2c} and j ∈ {bk/2c+ 1, . . . , k} and let w.l.o.g. y′(i)` ≤ 1− y(i)r and
x
(j)
b ≤ 1 − x′(j)u since we are able to turn the bin Bi or Bj by 180◦. We use a similar region

definition as in Lemma 12.
Let A(i) be the region defined by (x

′(i)
u , y

(i)
r ), (1, y

(i)
r ), (1, 1) and (x

′(i)
u , 1). The region B(i)

in the middle of bin Bi is defined by (0, y
′(i)
` ), (1, y

′(i)
` ), (1, y

(i)
r ) and (0, y

(i)
r ). The region C(i) is

defined by (x
′(i)
` , 0), (1, 0), (1, y

(i)
r ) and (x

′(i)
` , y

(i)
r ) (cf. Figure 17). Again, we treat these regions

as containers/rectangles. r(i)A has height h(i)A ≤ 1− y(i)r ≤ 1− (1− h′(i)) = h′(i) ≤ 12/24− εc
(Condition 2.17) and width w(i)

A ≤ 1− x′(i)u ≤ 1− v(i) ≤ 1− 10/24 = 14/24 (Condition 2.16).
The width of r(i)B is w(i)

B = 1 and the height is h(i)B = y
(i)
r −y′(i)` ≤ (1−h(i))−h(i) = 1−2h(i) ≤

1− 20/24 = 4/24 (Condition 2.16). The rectangle r(i)C has width w(i)
C = 1− x′(i)` ≤ 1− (1−

h′(i)) = h′(i) ≤ 12/24−εc (Condition 2.16) and height h(i)C = y
(i)
r ≤ 1−y′(i)` . All rectangles that

intersect the region B(i) from below are situated at the right of the rectangle r(i)` . Hence, these
rectangles are all completely situated inside the region C(i). The rectangles that intersect B(i)

from above have to be on the left of rectangle r(i)r . Thus, they are completely situated at the left
of the vertical line at x-coordinate 1/2. These rectangles are not moved. This holds especially
for the rectangles that intersect the region A(i) from below between the rectangles r(i)u and
r
(i)
r . There are no further rectangles that intersect A(i) while they are not completely situated

inside this region. The rectangles that intersect region C(i) are either completely situated inside
region B(i) or are situated below r

(i)
` and thus bounded by rectangle r(i)b . The values of the

x′-coordinates of these rectangles is at most x(i)b . We do not move these rectangles.
We define similar regions in the bin Bj . The only difference is that they are rotated by

90◦ (cf. Figure 18). Let D(j) be the region defined by the coordinates (x(j)b , 0), (1, 0), (1, y
(j)
r )

and (x
(j)
b , y

(j)
r ), E(j) is defined by the coordinates (x′(j)u , 0), (x

(j)
b , 0), (x

(j)
b , 1) and (x

′(j)
u , 1). The

region F (j) is defined by the coordinates (0, 0), (x
(j)
b , 0), (x

(j)
b , y

(j)
u ) and (0, y

(j)
u ). The values

for the heights and the widths of the corresponding rectangles r(j)D , r
(j)
E and r(j)F are the same as

25



2/244/246/2410/24 8/241/210/248/246/244/242/240

1

4/24

6/24

8/24

1/2

8/24

1−v’1−vv’v

1−h’

1−h

h’

h

1

2/24

10/24

10/24

6/24

4/24

2/24

E

r`

rb

rr

ru

(a) Definition of region E(i)

1−v’1−vv’v

1−h’

1−h

h’

h

E

2/244/246/248/2410/241/210/248/246/244/242/240

1

6/24

8/24

1/2

8/24

6/24

4/24

2/24

1

4/24

2/24

10/24

10/24

F

D

r`

rr

rb

ru

(b) Definition of region D(i) and F (i)

Figure 18: Definitions of the regions of the last dk/2e bins in the proof of Lemma 14
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(b) Packing in the last dk/2e bins

Figure 19: Packing of the bins in the proof of Lemma 14
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the values for r(i)A , r
(i)
B and r(i)C by exchanging the widths and the heights. Consequently, w(j)

D ≤
12/24−εc, h(j)D ≤ 14/24, w

(j)
E ≤ 4/24, h

(j)
E = 1, w

(j)
F = x

(j)
b ≤ 1−x′(j)u and h(j)F ≤ 12/24−εc.
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Figure 20: Packing of the additional bins in the proof of Lemma 14

In a first step, we move the regions out of the bins. Analogously to Lemma 12, we place
r
(i)
C on the position (1/2, y

′(i)
` ) and r(j)F on the position (x

′(j)
u , 1/2) (cf. Figure 19). Let there be

two bins B1, B2 of the first bk/2c bins and two bins B3, B4 of the remaining bins. We move
the rectangles r(1)A , r

(2)
A and r(3)E , r

(4)
E into an additional bin C1 and the rectangles r(3)D , r

(4)
D and

r
(1)
B , r

(2)
B into an additional bin C2 (cf. Figure 20).

We pack r(1)A in the lower left corner of bin C1 on the position (0, 0) and r(2)A on top of it
on the position (0, 1/2). The widths of both rectangles are at most 14/24. On the right side
there is enough space to place r(3)E and r(4)E . These rectangles have a total width of 8/24. On
the right side there is still a free space of width 2/24 and hence the strip SR is completely free
of rectangles.

The packing in C2 is analogous. r(3)D and r(4)D are placed next to each other at the bottom
of bin C2 on the positions (0, 0) and (1/2, 0). On top of them there is a free space of at least
10/24. We place r(1)B and r(2)B on top of them, leaving the strip SU free of rectangles. We repeat
this method with each sequence of 4 of the k bins. Having observed the same results as in
the last paragraph of the proof of Lemma 10, we need 3/2k + 1 bins in total, when k is not a
multiple of 4. In each bin there is either a horizontal or a vertical strip free of rectangles, hence
we are able to employ Lemma 3 or Lemma 4 to satisfy either Property 1 or Property 2.

The next lemma considers the case that the horizontal intervals are close to the bottom and
to the top of the bin while the vertical intervals are close to the middle.

Lemma 15. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.18. v(i) ∈ {8/24, 9/24, 10/24, 11/24},
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2.19. h(i) ∈ {0/24, 1/24}.

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2 · k + 2 bins, while the packing of each of them satisfies either Property 1 or Property 2.

Proof. Let i ∈ {1, . . . , k}. We use a similar region definition as in the lemmas before. The
height of the region in the middle is very large, but the regions at the top and at the bottom are
small.

Let A(i) be the rectangular region defined by the points (x
′(i)
u , y

′(i)
` ), (x

(i)
b , y

′(i)
` ), (x

(i)
b , y

(i)
r )

and (x
′(i)
u , y

(i)
r ). The corresponding rectangle r(i)A of this region has a width of w(i)

A = x
(i)
b −

x′(i)u ≤ 1 − v(i) − v(i) ≤ 16/24 − 8/24 = 1/3 (Condition 2.18). The rectangles r(i)` and r(i)r
are not completely situated inside the strips S(i)

B and S(i)
U , as they would have been removed in

Lemma 1. It follows that the height of r(i)A is bounded by h(i)A = y
(i)
r − y′(i)` ≤ 1− 2εc ≤ 1− εc.

In the next step, we define the region B(i) by the coordinates (0, 0), (x(i)b , 0), (x
(i)
b , y

(i)
u ), (0, y

(i)
u )
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(b) The whole strip in the middle is free of rectangles

Figure 21: Definitions of the regions in the proof of Lemma 15

and the region C(i) by the coordinates (x
′(i)
u , y

′(i)
b ), (1, y

′(i)
b ), (1, 1), (x

′(i)
u , 1). The heights of

the corresponding containers/rectangles r(i)B and r(i)C of these regions are bounded by h(i)B =

y
(i)
u − 0 ≤ h′(i) ≤ 2/24 and h(i)C = 1− y′(i)b ≤ 1− (1− h′(i)) = h′(i) ≤ 2/24 (Condition 2.19).

The widths are bounded by w(i)
B = x

(i)
b − 0 ≤ 1 − v(i) ≤ 1 − 8/24 = 16/24 = 2/3 and

w
(i)
C = 1 − x

′(i)
u ≤ 1 − v(i) ≤ 1 − 8/24 = 16/24 = 2/3 (Condition 2.18). We move these

rectangles and with them all rectangles that are completely situated inside these regions into
additional bins. There are some rectangles left that intersect the region A(i) and that are not
completely situated in one of these regions. These rectangles have to intersect A(i) from above
or below since all rectangles that intersect A(i) from the left are below r

(i)
u and hence located

inside B(i) and the rectangles that intersect from the right have to lie above r(i)b and are hence
situated inside C(i). The rectangles that intersect A(i) from below have to be located between
r
(i)
` and r(i)b ; the rectangles that intersect from above have to be situated between r(i)u and r(i)r .

It follows that, after moving the rectangles r(i)A , r
(i)
B and r(i)C into additional bins, the complete
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vertical strip between x
(i)
r and x

′(i)
` is completely free of rectangles (cf. Figure 21). Since

x
′(i)
` ≥ 1 − v′(i) ≥ 1 − (12/24 − εc) = 1/2 + εc and x(i)r ≤ v′(i) ≤ 12/24 − εc = 1/2 − εc,

the strip has a width of at least 2εc. Thus, we can move all rectangles on the right of the
x′-coordinate x′(i)` by εc to the left and secure that the strip S(i)

R is completely free of rectangles.
We move the rectangles of each sequence of 6 bins B1, . . . , B6 of the k bins into 3 addi-

tional bins C1, C2, C3. The rectangles r(1)A , r
(2)
A and r(3)A are moved into bin C1, the rectangles

r
(4)
A , r

(5)
A , r

(6)
A are moved into bin C2 and the remaining rectangles into bin C3. Each rectan-

gle r(i)A has a width of at most 1/3. Thus, we place them on the positions (0, 0), (1/3, 0) and
(2/3, 0) into bins C1 and C2. The uppermost horizontal strip SU of height εc is still free of
rectangles. The total height of the rectangles r(1)B , . . . , r

(6)
B and the rectangles r(1)C , . . . , r

(6)
C is

6 · (2/24+ 2/24) = 1. We place them on top of each other into bin C3 with their y-coordinates
situated on position 0. Since they have a width of at most 2/3 the strip SR is still free (cf.
Figure 22).
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Figure 22: Packing in the additional bins in the proof of Lemma 15

Accordingly to the discussion in the last paragraph of the proof of Lemma 8, we need
3/2k + 2 bins in total, if k is not a multiple of 6. In each bin there is either a vertical strip of
the width εc or a horizontal strip of the height εc free of rectangles. This allows us to employ
Lemma 3 or Lemma 4 in order to round up the rectangles and to satisfy either Property 1 or
Property 2.

The analogous lemma is stated as follows. In the version that allows rotation, we only use
Lemma 15.

Lemma 16. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.20. h(i) ∈ {8/24, 9/24, 10/24, 11/24},
2.21. v(i) ∈ {0/24, 1/24}.
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It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2 · k + 2 bins, while the packing of each of them satisfies either Property 1 or Property 2.

Before concluding our case analysis, there is one remaining case left in which either h(i) =
12/24− εc or v(i) = 12/24− εc.

2.2.2 Last Remaining Case

We distinguish, if the rectangles in the corners intersect the intervals that are very close to the
middle of the bin, or if they do not. If v(i) = 12/24 − εc and r(i)u` ∈ L

(i)
U , then the width of r(i)u`

is close to 1/2 and the height is larger than 1/2. If r(i)u` /∈ L(i)
U , then there are only rectangles

of a total width of εc in I(i)L . In the first lemma, we have v(i) = 12/24 − εc and r(i)u` ∈ L
(i)
U and

r
(i)
br ∈ L

(i)
B . Hence there are two very large rectangles in the packing.

Lemma 17. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.22. v(i) = 12/24− εc,
2.23. h(i) ∈ IN,
2.24. r(i)u` ∈ L

(i)
U and r(i)br ∈ L

(i)
B .

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2 · k + 1 bins, while the packing of each of them satisfies Property 1.

Proof. Let i ∈ {1, . . . , k}. The rectangles r(i)u` and r(i)br have a width of at least 1/2 − εc, since
they have to intersect the interval VL(i)

12/24−εc and VR
(i)
12/24−εc . Therefore, the space between

the rectangles is very small. W.l.o.g. let h(i)u` ≥ h
(i)
br since we are able to turn the bin by 180◦.

We define the region A(i) between these rectangles by the coordinates (x
′(i)
u` , 0), (x

(i)
br , 0),
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Figure 23: Definitions of the regions in the proof of Lemma 17

(x
(i)
br , 1) and (x

′(i)
u` , 1). We treat this region as a rectangle r(i)A of height h(i)A = 1 and width
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w
(i)
A = x

(i)
br −x

′(i)
u` ≤ (1−v(i))−v(i) = 1− (12/24−εc)− (12/24−εc) = 2εc (Condition 2.22).

Moreover, we define a region B(i) by the coordinates (x′(i)u` , y
′(i)
br ), (1, y

′(i)
br ), (1, 1) and (x

′(i)
u` , 1).

The corresponding rectangle r(i)B has a width of at mostw(i)
B = 1−x′(i)u` ≤ 1−v(i) = 1−(12/24−

εc) = 12/24+εc = 1/2+εc and a height of at most h(i)B = 1−y′(i)br ≤ 1− (1−h′(i)) ≤ 1/2 (cf.
Figure 23). We move the rectangles r(i)A and r(i)B of each sequence of 2 bins into one additional
bin. We move r(i)br out of binBi for a moment. There is no rectangle on the right of r(i)u` , since all
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Figure 24: Packing in the proof of Lemma 17

rectangles that were on top of r(i)br are situated in r(i)B and all rectangles that are located between
r
(i)
u` and r(i)br are now to be found in r(i)A . At this moment, we use Lemma 3 on this bin since S(i)

R

is completely free of rectangles. The width of the rectangle r(i)u` is rounded up to the next largest
multiple of ε2c/2 which is at most 1/2. Thus, the new x′-coordinate is x′(i)u` ≤ 1/2. We reinsert
the rectangle r(i)br into the bin after rounding up its width to the next largest multiple of ε2c/2 to
at most 1/2. Since h(i)u` ≥ h

(i)
br , we can place r(i)br on the right side of r(i)u` on the x-coordinate

1/2 (cf. Figure 24).
Let there be two bins B1, B2 of the k bins and let C1 be an additional bin. We pack r(1)B

and r(2)B on top of each other on the positions (0, 0) and (0, 1/2) into C1. On the right side
there is still a free space of at least 12/24 − εc. Hence, there is enough space to place r(1)A on
the position (12/24 + εc, 0) and r(2)A on the position (12/24 + 3εc, 0). There is still a space
of at least 12/24 − 5εc free of rectangles including the strip SR. Thus, we are able to employ
Lemma 3 on bin C1. In total, we have 3/2k + 1 bins when k is odd while the packing of each
bin satisfies Property 1.

By exchanging the values v(i) and h(i), we obtain the following lemma. Since it is the
analogous lemma, by turning the bin by 90◦, we do not need it in the version that allows
rotation.

Lemma 18. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:
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2.25. v(i) ∈ IN,
2.26. h(i) = 12/24− εc,
2.27. r(i)ur ∈ W (i)

R and r(i)b` ∈ W
(i)
L .

It follows that we are able to round up the rectangles in these bins and rearrange them into
3/2 · k + 1 bins, while the packing of each of them satisfies Property 2.

If there are no such big rectangles in the packing of bin Bi, we cannot adopt the method
described above. However, when v(i) = 12/24− εc, the total width of either L(i)

U or L(i)
B is very

small.

Lemma 19. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.28. v(i) = 12/24− εc,
2.29. h(i) ∈ IN,
2.30. r(i)u` /∈ L

(i)
U or r(i)br /∈ L(i)

B .

It follows that we are able to round up the rectangles in these bins and rearrange them into
(3/2 + εc) · k + 2 bins, while the packing of each of them satisfies Property 2.

Proof. Let i ∈ {1, . . . , k}. W.l.o.g. we suppose that r(i)u` /∈ L
(i)
U since we are able to turn the bin

by 180◦. The rectangles in L(i)
U have a total width of at most εc since they have to be completely

situated in the interval VL(i)
12/24−εc . We move these rectangles in L(i)

U into an additional bin.
We are able to pack 1/εc sets next to each other at the bottom. Therefore, we need at most
dεc · ke < εc · k + 1 additional bins for all k bins. We are able to round up the heights of these
rectangles to the next multiple of ε2c/2 to at most 1 and satisfy Property 2.

No rectangle of a height larger than 1/2 remains to intersect S(i)
U . Thus, we are able to

employ Lemma 6 with y = 0 and x = 1/2, and achieve a packing into 3/2 · k + 1 bins, while
each packing satisfies Property 2. In total, we have a packing of (3/2 + εc) · k + 2 bins.

The last remaining case is analogous to Lemma 19. We do not need it in the version that
allows rotation.

Lemma 20. Let B1, . . . , Bk be k bins so that each bin Bi, for i ∈ {1, . . . , k}, has a packing
with the following conditions:

2.31. v(i) ∈ IN,
2.32. h(i) = 12/24− εc,
2.33. r(i)ur /∈ W (i)

R or r(i)b` /∈ W (i)
L .

It follows that we are able to round up the rectangles in these bins and rearrange them into
(3/2 + εc) · k + 2 bins, while the packing of each of them satisfies Property 1.

2.2.3 Résumé of the Case Analysis

In conclusion we obtain the following theorem:

Theorem 4. For any value εc, with 1/εc being a multiple of 24, and for any solution that fits
into m bins, we are able to round up the widths and the heights of the rectangles so that they fit
into (3/2 + 5εc) ·m + 37 bins while the packing of each of the bins satisfies either Property 1
or Property 2.
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Proof. Let Bi be a bin in our solution. We prove that no matter how the packing looks like,
one of the previous lemmas can be employed. A packing that does not satisfy the properties of
Theorem 3 can be solved with Lemma 2 or Lemma 7. Thus, we suppose that the packing has
the properties of Theorem 3 with certain values h(i) ∈ IN and v(i) ∈ IN. Depending on these
values and whether the rectangles in the corner have width or height larger than 1/2, we use
different lemmas (cf. Figure 25).

Case 1: h(i) and v(i) are both in the set {0/24, . . . , 8/24− εc}.
If r(i)b` /∈ W

(i)
L or r(i)ur /∈ W

(i)
R , we employ Lemma 8, if r(i)u` /∈ L

(i)
U or r(i)br /∈ L

(i)
B , we employ

Lemma 9. Consequently, we conclude r(i)b` ∈ W
(i)
L , r(i)ur ∈ W (i)

R , r(i)u` ∈ L
(i)
U and r(i)br ∈ L

(i)
B . We

solve this case either according to Lemma 10 or, if h(i) = 8/24− εc, according to Lemma 11.
Case 2: v(i) = 12/24− εc or h(i) = 12/24− εc.

If v(i) = 12/24 − εc, we employ either Lemma 17, if r(i)u` ∈ L
(i)
U and r

(i)
br ∈ L

(i)
B and else

Lemma 19. If h(i) = 12/24 − εc and if r(i)ur ∈ W (i)
R and r(i)b` ∈ W

(i)
L we adopt Lemma 18 and

else Lemma 20.
Case 3: v(i) ∈ {8/24, . . . , 11/24} and h(i) ∈ {0/24, . . . , 9/24}.

If h(i) ∈ {0/24, 1/24} we make use of Lemma 15. Otherwise, if h(i) ∈ {2/24, . . . , 9/24}, we
employ Lemma 12.

Case 4: h(i) ∈ {8/24, . . . , 11/24} and v(i) ∈ {0/24, . . . , 9/24}.
Analogous to the third case we use Lemma 16 if v(i) ∈ {0/24, 1/24} and Lemma 13 if
v(i) ∈ {2/24, . . . , 9/24}.

Case 5: h(i) and v(i) are both in the set {10/24, 11/24}.
In this case we employ Lemma 14.

In each lemma mentioned here we modify a packing of k bins into a packing with at most
(3/2 + εc)k bins and a constant number of additional bins. Furthermore, we remove all rect-
angles that are completely in the strips at the sides of the bin and need therefore 4εc · m + 2
additional bins in Lemma 1. It follows that we need (3/2+5εc) ·m bins plus a constant number
of bins in total.

In Lemma 7, the constant number of additional bins is 15. Two additional bins are needed
in the Lemma 8, Lemma 9,Lemma 11,Lemma 15,Lemma 16, Lemma 19 and Lemma 20. We
need one additional bin in the Lemma 10, Lemma 12, Lemma 13, Lemma 14, Lemma 17 and
Lemma 18. By summing up these constant numbers, we obtain a value of 2 + 15 + 2 · 7 + 6 =
2 + 15 + 20 = 37.

v(i)\h(i) 0/24 1/24 2/24 3/24 4/24 5/24 6/24 7/24 8/24− εc 8/24 9/24 10/24 11/24 12/24− εc
0/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 16 16 16 16 18,20
1/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 16 16 16 16 18,20
2/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
3/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
4/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
5/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
6/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
7/24 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20

8/24− εc 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,10 8,9,11 13 13 13 13 18,20
8/24 15 15 12 12 12 12 12 12 12 12,13 12,13 13 13 18,20
9/24 15 15 12 12 12 12 12 12 12 12,13 12,13 13 13 18,20
10/24 15 15 12 12 12 12 12 12 12 12 12 14 14 18,20
11/24 15 15 12 12 12 12 12 12 12 12 12 14 14 18,20

12/24− εc 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,19 17,18,19,20

Figure 25: Overview of the lemmas that are applied for different v and h
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Résumé of the Case Analysis with Rotations The additive constant changes in the version
that allows rotation. We employ Lemma’ 1 with an additive constant of 1 and Lemma’ 7 with
an additive constant of 8 instead of Lemma 1 with an additive constant of 2 and Lemma 7 with
an additive constant of 15, respectively. Furthermore, we do not need Lemma 9, Lemma 13,
Lemma 16, Lemma 18 and Lemma 20. This reduces the additive constant to the value 1 + 8 +
2 · 4 + 4 = 21.

Theorem’ 4. For any value εc, with 1/εc being a multiple of 24, and for any solution that fits
into m bins, we are able to rotate and to round up the widths of the rectangles so that they fit
into (3/2 + 5εc) ·m+ 21 bins while the packing of each of the bins satisfies Property 1.

2.3 Rounding the Other Side
In this section, we round the remaining unrounded side of the rectangles after employing The-
orem 4 on an optimal solution in OPT bins. However, before we adopt Theorem 4 we divide
the instance into big, wide, long, small and medium rectangles. Let ε′ ≤ min{ε/39, 1/48}, so
that 1/ε′ is a multiple of 24. Similar as in [16], we find a value δ, so that the rectangles with at
least one side length between δ and δ4 have a small total area.

Lemma 21. We find a value δ ≤ ε′, so that 1/δ is a multiple of 24 and all rectangles ri of the
width wi ∈ [δ4, δ) or the height hi ∈ [δ4, δ] have a total area of at most ε′ ·OPT.

Proof. Define a sequence σ1, . . . , σ2/ε′+1, whereas σ1 is the largest value with σ1 = ε′ and
σk+1 = σ4

k, for k ∈ {1, . . . , 2/ε′}. Each reciprocal of the members in the sequence is a multiple
of 24. This is a consequence of an inductive argument: 1/ε′ is a multiple of 24; let 1/σk = i ·24
for one integer i. It follows that, 1/σk+1 = 1/σ4

k = (1/σk)
4 = (i · 24)4 = (i4 · 243) · 24. Hence,

1/σk+1 is a multiple of 24.
Let Mσk be the set of rectangles ri with wi ∈ [σk+1, σk) or hi ∈ [σk+1, σk). Each rectangle

ri in the instance belongs to at most two sets Mσk . Since the area is a lower bound for OPT

we have
∑2/ε′

k=1 a(Mσk) ≤ 2OPT. Suppose that all sets have an area of a(Mσk) > ε′ · OPT,
for all k ∈ {1, . . . , 2/ε}. We obtain

∑2/ε′

k=1 a(Mσk) > 2/ε′ · ε′OPT = 2 · OPT, which is a
contradiction. Therefore, there exists at least one set with a(Mσk) ≤ ε′ ·OPT. We set δ := σk,
so that k is the smallest value with a(Mσk) ≤ ε′ ·OPT.

The rectangles are separated into big rectangles of width and height at least δ, wide rectan-
gles of width at least δ and height smaller than δ4, long rectangles of width smaller than δ4 and
height at least δ, small rectangles of width and height less than δ4 and medium rectangles of
width or height in [δ4, δ).

Since 1/δ is a multiple of 24 we are able to adopt Theorem 4 with an optimal solution
consisting of OPT bins and with εc := δ. The resulting solution consists of k ≤ (3/2 +
5δ)OPT + 37 bins which satisfy Property 1 or Property 2. A bin is of Type 1, if its packing
satisfies Property 1 and otherwise it is of Type 2. Therefore, let B1, . . . , Bp1 , be the bins of
Type 1 and Bp1+1, . . . , Bk be the bins of Type 2.

The widths of the big and wide rectangles in the bins B1, . . . , Bp1 and the heights of the big
and long rectangles in the bins Bp1+1, . . . , Bk are therefore multiples of δ2/2. We denote the
set of big and wide rectangles that are packed into the binsB1, . . . , Bp1 and that have a width of
iδ2/2, for i ∈ {2/δ, . . . , 2/δ2} by Bw

i and Ww
i , respectively. The set of big and long rectangles

that are packed in the binsBp1+1, . . . , Bk and that have a height of iδ2/2 are denoted byBh
i and

Lhi , respectively. The wide rectangles that are packed in the bins Bp1+1, . . . , Bk are denoted by
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W h and the long rectangles that are packed in the bins B1, . . . , Bp1 are denoted by Lw. The
set of small rectangles is denoted by S. The set of medium rectangles that have a width within
[δ4, δ) are denoted by Mwδ and the remaining rectangles of height within [δ4, δ) are denoted by
Mhδ.

The medium rectangles have a total area of at most ε′ · OPT. Therefore, we are able to
move them into few additional bins with Steinberg’s Algorithm [21].

Theorem 5 (Steinberg’s algorithm). If the following inequalities hold,

wmax(T ) ≤ a, hmax(T ) ≤ b, and 2a(T ) ≤ ab− (2wmax(T )− a)+(2hmax(T )− b)+

where x+ = max(x, 0), then it is possible to pack all items from T into R = (a, b) in time
O((n log2 n)/ log log n).

Therefore, we only have to partition the set of medium rectangles into subsets of a total area
of at most 1/2.

Lemma 22. We pack the medium rectangles into at most 3ε′OPT + 2 additional bins

Proof. We split the sets Mhδ and Mwδ into sets of a total area of at most 1/2. Each medium
rectangle has an area of at most δ. Therefore, we are able to greedily divide Mhδ and Mwδ into
sets of rectangles of a total area within (1/2− δ, 1/2] and two additional sets of rectangles with
a bounded total area of at most 1/2− δ. It holds that 3ε′OPT · (1/2− δ) > 3ε′OPT · (1/2−
1/6) = ε′OPT, since δ ≤ ε′ ≤ 1/48 < 1/6. Hence, the total number of sets is bounded by
d3ε′OPTe ≤ 3ε′OPT+ 2. The rectangles in each set have either a maximum width of at most
δ < 1/2 or a maximum height of at most δ < 1/2. This enables us to pack each set into one
bin using Steinberg’s Theorem 5.

In the next step, we round up the heights of the big and long rectangles in the binsB1, . . . , Bp1

and the widths of the big and wide rectangles in the bins Bp1+1, . . . , Bk. Furthermore, we pack
the wide and long rectangles fractionally into wide and long containers.

Packing Medium Rectangles with Rotations We use the same construction in the version
that allows rotation. The difference is that we rotate the rectangles in the setMhδ. Consequently,
these rectangles belong to the set Mwδ. We partition this set analogous as in the proof of
Lemma 22 into 3ε′OPT + 1 subsets of total area at most 1/2. These sets are packed with
Steinberg’s Theorem 5. We obtain the following lemma for the version that allows rotation.

Lemma’ 22. We rotate and pack the medium rectangles into at most 3ε′OPT + 1 additional
bins

The next steps are explained for the bins B1, . . . , Bp1 , the rounding for the remaining bins
is analogous.

2.3.1 Rounding Big and Long Rectangles

We round the heights of the big and long rectangles in the sets Bw
i and Lwi , for each i ∈

{2/δ, . . . , 2/δ2}.
To do this, we adopt a similar rounding technique as in the algorithm by Kenyon & Rémila [19]

and in the algorithm by Fernandez de la Vega & Lueker [10]. We focus on one set Bw
i of

big rectangles, for i ∈ {2/δ, . . . , 2/δ2}. We sort the rectangles in this set according to non-
decreasing heights. Let ki be the number of rectangles in Bw

i , denoted by ri,1, . . . , ri,ki . The
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rectangle ri,1 has the largest and ri,ki the smallest height. We define at most 1/δ2 subsets
Bw
i,j , which consist of bδ2 · kic rectangles except the last subset with possibly less items.

This is done by assigning bδ2 · kic rectangles into one subset, then we leave one rectan-
gle out and assign the next bδ2 · kic rectangles into the next subset. Thus, the first rect-
angle ri,1 is not assigned to a subset and is called the first cut-rectangle. The rectangles
ri,2, . . . , ri,bδ2·kic+1 are assigned to subset Bw

i,1. The rectangle ri,bδ2·kic+2 is called the second
cut-rectangle. The rectangles ri,bδ2·kic+3, . . . , ri,2·bδ2·kic+2 are assigned to subset Bw

i,2 and so
on. Hence, the jth cut-rectangle is ri,(j−1)·bδ2·kic+j and the subset Bw

i,j contains the rectangles
ri,(j−1)·bδ2·kic+(j+1), . . . , ri,j·bδ2·kic+j . We have at most 1/δ2 cut-rectangles and subsets, since we
have at most 1/δ2 · (1 + bδ2 · kic) ≥ 1/δ2 · δ2 · ki = ki rectangles.

We round the heights of the rectangles in each subset Bw
i,j to the height of the jth cut-

rectangle. Afterwards, we move the rectangles of the first subset Bw
i,1 into additional bins.

Note that the total width of subset Bw
i,1, denoted by w(Bw

i,1), is at most bδ2 · kic · iδ2/2 ≤
δ2 · ki · iδ2/2 = δ2 · w(Bw

i ), with w(Bw
i ) being the total width of all rectangles in Bw

i . Each
rectangle in a remaining subset Bw

i,j is placed on a position of one rectangle in subset Bw
i,j−1.

This is done by placing the `th rectangle of subset Bw
i,j on the position of the `th rectangle of

subset Bw
i,j−1. This is possible since all rectangles have the same width, all subsets, except the

last, have the same cardinality and the height of the `th rectangle in subset Bw
i,j−1 is larger than

or equal to the height of the jth cut rectangle. The cut-rectangles are reinserted at their origin
positions.

This step is done for all sets Bw
i . The rounding method for the long rectangles in Lw is

almost the same. However, we do not have the property that the rectangles in Lw have all
the same width. Therefore, we have to slice the long rectangles vertically. We also sort the
rectangles of set Lw according to non-decreasing heights. w(Lw) denotes the total width of
the rectangles in set Lw. We divide the set Lw into subsets Lw1 , . . . , L

w
1/δ2 of the same total

width, by splitting rectangles vertically if necessary. The subset Lw1 contains the largest and the
subset Lw1/δ2 the shortest rectangles. The rectangles in each subset have a total width w(Lwi ) of
δ2 ·w(Lw). We round up the heights of the rectangles in each subset to the height of the largest
rectangle in it. The rectangles in subset Lw1 are packed later into additional bins. The rectangles
of the remaining subsets are packed on the positions where the rectangles of the previous subset
have been. Again, we split the rectangles vertically if necessary.

It is left to pack the rectangles in the subsets Lw1 , B
w
2/δ,1, . . . , B

w
2/δ2,1 into additional bins.

The total width of all rectangles in all sets w(Lw ∪Bw
2/δ ∪ . . .∪Bw

2/δ2) is at most 1/δ · p1, since
each rectangle has a height of at least δ and they would not fit into p1 bins otherwise. Hence,

w(Lw1 ) +
2δ2∑
i=2/δ

w(Bw
i,1) ≤ δ2 · w(Lw) +

2δ2∑
i=2/δ

δ2 · w(Bw
i ) =

δ2 · (w(Lw) +
2/δ2∑
i=2/δ

w(Bw
i )) ≤ δ2 · 1/δ · p1 = δ · p1.

We pack these rectangles greedily on the floor of additional bins. We start by packing each big
rectangle of width larger than 1/2 into one additional bin. This bin is closed and we do not
pack further rectangles into it. The remaining big rectangles have a width of at most 1/2. We
pack these rectangles greedily on the floor of the bin, until the next big rectangle does not fit.
Then a new bin is opened and we continue with the packing. Afterwards, we pack the long
rectangles with the same method. We secure, that the rectangles in each but the last bin have a
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total width of at least 1/2. In total, we need at most d2(δ · p1)e ≤ 2δ · p1 + 1 bins while each
packing satisfies Property 1, since each big rectangle is placed on a multiple of δ2/2.

The same steps are done analogously for rounding the widths of the big and wide rectangles
that are packed in the bins Bp1+1, . . . , Bk. Therefore, we need 2δ · (1− p1) + 1 additional bins.
In doing so, we use similar subsetsBh

i,j andW h
j for i ∈ {2/δ, . . . , 2/δ2} and j ∈ {1, . . . , 1/δ2}.

With the above discussion we obtain the following result.

Lemma 23. We round up the heights of the long and big rectangles in each set Lw and Bw
i ,

and the widths of the wide and big rectangles in each set W h and Bh
i for i ∈ {2/δ, . . . , 2/δ2}

to at most 1/δ2 values. Therefore, we need 2δ · k + 2 additional bins.

Rounding Big and Long Rectangles with Rotations In the version that allows rotation, we
only have bins with a packing that satisfies Property 1. In this version, we employ Theorem’ 4
and obtain a solution in k′ ≤ (3/2 + δ) ·OPT+ 21 bins. Consequently, we have the following
lemma.

Lemma’ 23. We round up the heights of the long and big rectangles in each set Lw and Bw
i for

i ∈ {2/δ, . . . , 2/δ2} to at most 1/δ2 values and need therefore 2δ · k′ + 1 additional bins.

2.3.2 Containers for the Wide and Long Rectangles

In this section, we construct rectangular containers for the wide and long rectangles. To do
this, we employ some techniques of Jansen & Solis-Oba [16]. We explain these steps only for
the bins B1, . . . , Bp1 of Type 1 as it works analogously for the remaining bins. We define a
set of long containers Cw

L for the long rectangles and a set of wide containers Cw
W for the wide

rectangles. We focus on one bin Bi, for i ∈ {1, . . . , p1}.
We define slots of width δ2/2 by drawing vertical lines on each multiple of δ2/2 in the bin

Bi for the long containers. A small or long rectangle that intersects one of these vertical lines
is vertically cut by it. Each wide and big rectangle intersects either a slot completely or it does
not intersect it at all. Hence, a long container is a part of a slot which is bounded at the top and
at the bottom by a wide or a big rectangle or the top or the floor of the bin. We only consider
containers with at least one long rectangle, i.e. the height of each long container is at least δ.
The width of each long container is δ2/2 (cf. Figure 26). As an upper bound there are at most
1/δ−1 long containers in each slot separated by wide rectangles of small height. Hence, in bin
Bi there are at most (1/δ − 1) · 2/δ2 = 2/δ3 − 2/δ2 long containers. This is an upper bound
when there are no big rectangles situated in this bin. Each big rectangle that is situated in this
bin decreases the number of long containers by 2/δ since it intersects 2/δ slots and it has a
height of at least δ.

Afterwards, we construct horizontal lines by extending the upper and lower edge of each
big rectangle and each long container in both directions until it hits another big rectangle, a
long container or the sides of the bin. Wide and small rectangles are horizontally cut by these
lines. The horizontal lines are the upper and lower edges of the wide containers. Since they
are bounded at the sides by big rectangles, long containers or the sides of the bin, the wide
containers always have a width of a multiple of δ2/2. There are at most 2/δ3 − 2/δ2 big
rectangles and long containers in the solution, hence we extend at most 2/δ3 − 2/δ2 upper and
lower edges. Furthermore, we have two additional lines with the bottom and the top of the bin.
Each extended upper edge is a possible lower edge of one wide container. Each extended lower
edge may be the lower edges of two wide containers, one on the left and one on the right side.
Furthermore, the bottom of the bin is a possible lower edge of one wide container. It follows
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(a) Part of a packing in one bin (b) Construction of long containers

Figure 26: Construction of long containers; long and small rectangles are sliced vertically

that there are at most 3 · (2/δ3− 2/δ2)+ 1 = 6/δ3− 6/δ2+1wide containers in bin Bi. At this
moment, the complete region of the bin is filled with big rectangles, long containers and wide
containers. There is no empty space left, hence all small rectangles are fractionally in the long
and wide containers (cf. Figure 27). This construction is done for all bins B1, . . . , Bp1 .

(a) Drawing horizontal lines (b) Construction of wide containers

Figure 27: Construction of wide containers; wide and small rectangles are sliced horizontally
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2.3.3 Rounding the Wide and Long Containers

Let cw be one of the wide containers in Cw
W . The height of cw is now reduced so that it has a

height of a multiple of δ4. We cut the uppermost wide and small rectangles horizontally by the
new height. The (fractions of the) wide and small rectangles of height less than δ4 that do not
fit in the reduced container are placed next to each other into an additional bin. We do this with
all wide containers in the binsB1, . . . , Bp1 . Since all rectangles have a height of less than δ4 we
are able to place the rectangles of 1/δ4 containers on top of each other into one bin. In total, we
have less than 6/δ3 ·p1 wide containers and hence we need dδ4 ·6/δ3 ·p1e ≤ 6δ ·p1+1 additional
bins. These bins contain only wide and small rectangles, whereas the wide rectangles are placed
on x-coordinates of a multiple of δ2/2. Hence, the packing of these bins satisfy Property 1. We
treat each additional bin as one wide container of height and width 1.

After the construction of the wide containers we round down the heights of the long con-
tainers. We focus one long container c` in Cw

L in the bins B1, . . . , Bp1 . We remove all short
rectangles in this container and shift all long rectangles vertically down, so that they all touch
either the bottom of the container or another long rectangle. The total used height in this
container is a combination of the heights of the long rectangles. Since the heights of the long
rectangles are rounded, the possible number of heights is bounded by a polynomial in the length
of the input. If the remaining space on top of the uppermost long rectangle in the container c`
has a height of at least δ4, then we are able to round the height of the container down to the
next multiple of δ4. If the remaining space is less than δ4 we round the height of c` down to the
height of the top edge of the uppermost long rectangle in c`. Hence, the height of c` is either a
combination of the rounded heights of the long rectangles or a multiple of δ4.

It is not possible to reinsert all small rectangles. Hence, we pack them fractionally into
the reduced container until the free space is exceeded. The remaining rectangles are packed
fractionally into additional bins. The total area loss for each long container is at most δ4 ·
δ2/2 = δ6/2. There are at most 2/δ3 long containers in each bin, hence the total area is at most
δ6/2 · 2/δ3 · p1 = δ3 · p1. Thus, we need at most dδ3 · p1e ≤ δ3 · p1 + 1 additional bins. These
additional bins contain only small rectangles and the packing satisfies Property 1. We treat each
bin as one wide container of height and width 1, in order to ensure that all small rectangles are
packed into containers. By this construction, the total number of wide containers is at most
(6/δ3−6/δ2+1)·p1+6δ ·p1+1+δ3 ·p1+1 = (6/δ3−6/δ2+6δ+δ3+1)·p1+2 < 6/δ3 ·p1+2.

We also construct long containers in the 2δ · p1 +1 additional bins that are needed to round
the heights of the long rectangles (cf. Lemma 23). The long rectangles are placed on the
bottom of these bins and there are no small rectangles in it. Furthermore, we packed them
after we packed the big rectangles so that there is at most one bin that contains big and long
rectangles. The other bins contain either only big rectangles or only long rectangles. We draw
also vertical lines in the bins that contain long rectangles at each multiple of δ2/2 and cut the
long rectangles intersecting these lines. These lines form already the long containers in these
bins, since there are no rectangles on top of the long rectangles. Therefore, we have in these
bins at most (2δ · p1 + 1) · 2/δ2 = 4/δ · p1 + 2/δ2 long containers of width δ2/2 and height 1.

There is still a huge number of different types of the long containers, since we have 1/δ2

different heights of the long rectangles and hence at least (1/δ2)1/δ possibilities for the heights.
In order to reduce this number to 1/δ2 different heights, we use the same rounding technique
as for the big rectangles.

Let k` ≤ (2/δ3 − 2/δ2) · p1 + 4/δ · p1 + 2/δ2 ≤ 2/δ3 · p1 + 2/δ2 be the total number
of long containers in Cw

L , i.e. in the bins of Type 1. We sort all k` containers according to
non-decreasing heights and denote the sorted containers by c1, . . . , ck` . We partition the long
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containers into at most 1/δ2 subsets of bδ2k`c containers. The construction is analogous to the
rounding of the big rectangles by calling c1 the first cut-container and assigning the next bδ2k`c
containers to the first subset and so on. The heights in each subset are rounded up to the height
of the previous cut-container. The containers in the first subset are moved into additional bins,
whereas we are able to pack 2/δ2 containers next to each other at the bottom in one bin. Hence,
we need at most dbδ2k`c·δ2/2e ≤ dδ2 ·(2/δ3 ·p1+2/δ2) ·δ2/2e ≤ δ ·p1+δ2+1 additional bins.
The long containers in the remaining subsets are packed on the position of a long container in
the previous subset and the cut-container are placed at their origin position.

We do the analogous steps for the binsBp1+1, . . . , Bk and achieve the set of wide containers
Ch
W and the set of long containers Ch

L with analogous bounds by replacing p1 with k− p1. This
leads us to the following result:

Lemma 24. Suppose we have a packing without medium rectangles in k bins, while the packing
of each of them satisfies either Property 1 or Property 2. If the long and wide rectangles are
rounded according to Lemma 23, then we are able to pack the wide, long and small rectangles
fractionally into containers with at most 8δ ·k+2δ2+6 additional bins. The rectangles of Ww

and W h are sliced horizontally and packed into wide containers of Cw
W and Ch

W , respectively.
The long rectangles of Lw and Lh are sliced vertically and packed into long containers of Cw

L

and Ch
L. All small rectangles are packed fractionally (vertically and horizontally sliced) into

these containers. The containers have the following properties:

3.1. there are at most 6/δ3 · p1 + 2 wide containers in Cw
W , that have a width of a multiple of

δ2/2 and a height of a multiple of δ4.
3.2. there are at most 2/δ3 · (k− p1) + 2/δ2 wide containers in Ch

W , of at most 1/δ2 different
widths of either a multiple of δ4 or a combination of the rounded widths of the wide
rectangles in W h and of a height δ2/2

3.3. there are at most 6/δ3 ·(k−p1)+2 long containers in Ch
L, that have a height of a multiple

of δ2/2 and a width of a multiple of δ4.
3.4. there are at most 2/δ3 ·p1+2/δ2 long containers in Cw

L , of at most 1/δ2 different heights
of either a multiple of δ4 or a combination of the rounded heights of the long rectangles
in Lw and of a width δ2/2

Proof. By rounding the heights of the wide containers in Cw
W in the bins of Type 1 and the long

containers inCh
L in the bins of Type 2 to a multiple of δ4 we need 6δ·p1+1+6δ·(k−p1)+1 = 6δ·

k+2 additional bins. The heights of the long containers in Cw
L in the bins of Type 1 are rounded

to at most 1/δ2 values of either a multiple of δ4 or a combination of the rounded heights of the
long rectangles. Therefore, we need δ3·p1+1+δ·p1+δ2+1 = (δ+δ3)·p1+δ2+2 additional bins.
The analogous steps for rounding the widths of the wide containers in Ch

W in the bins of Type 2
need (δ+δ3)·(k−p1)+δ2+2 additional bins and hence together (δ+δ3)·k+2δ2+4 additional
bins. The total number of additional bins is thus (6δ+δ+δ3)·k+2δ2+6 ≤ 8δ ·k+2δ2+6.

To conclude, we obtain the following result:

Theorem 6. Given an optimal solution of an instance I into OPT bins. We are able to round
up the widths and heights of the rectangles and to modify the solution so that it fits into at most
(3/2 + 25ε′) ·OPT+ 55 bins, while all medium rectangles are packed into 3ε′ ·OPT+ 2 bins
and 3/2OPT+22δOPT+53 bins have a packing that satisfies either Property 1 or Property 2.
Furthermore, the heights of the long and big rectangles in each set Lw and Bw

i , and the widths
of the wide and big rectangles in each set W h and Bh

i for i ∈ {2/δ, . . . , 2/δ2} are rounded
up to at most 1/δ2 values. The wide and long rectangles are sliced horizontally and vertically,
respectively. They are packed into wide and long containers with the Properties 3.1-3.4. The
small rectangles are packed fractionally into the wide and long containers.
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Proof. In the first step we employ Theorem 4 and need in total k ≤ (3/2+ 5δ)OPT+37 bins.
Afterwards, we pack all medium rectangles into 3ε′ ·OPT+2 additional bins with Lemma 22.
We round up the big, long and wide rectangles with Lemma 23 and need 2δ · k + 2 additional
bins. The wide and long rectangles are packed into long and wide containers with Lemma 24.
Therefore, we need 8δ · k + 2δ2 + 6 additional bins. It holds δ ≤ 1/48, hence in total we need
at most

(1 + 10δ) · ((3/2 + 5δ) ·OPT + 37) + 2δ2 + 8 =

3/2 ·OPT + 5δ ·OPT + 15δ ·OPT + 50δ2 ·OPT + 37 + 370δ + 2δ2 + 8 ≤
3/2 ·OPT + 20δ ·OPT + 50δ/48 ·OPT + 45 + 370/48 + 2/482 ≤

3/2 ·OPT + 22δ ·OPT + 53

bins that have a packing that satisfies either Property 1 or Property 2. Since δ ≤ ε′, we have at
most (3/2 + 25ε′) ·OPT + 55 bins (including the bins for the medium rectangles).

This finishes our analysis and modification of an optimal solution. It enables us to construct
an algorithm that computes a packing that almost matches the modified solution.

Rounding the Wide and Long Containers with Rotations The steps are analogous for the
versions with rotations.
Lemma’ 24. Suppose we have a packing without medium rectangles in k′ bins, while the pack-
ing of each of them satisfies Property 1. If the long and wide rectangles are rounded according
to Lemma 23, then we are able to pack the wide, long and small rectangles fractionally into
containers with at most 8δ · k′ + δ2 + 3 additional bins. The rectangles of Ww are sliced
horizontally and packed into wide containers of Cw

W . The long rectangles of Lw are sliced
vertically and packed into long containers of Cw

L . All small rectangles are packed fractionally
(vertically and horizontally sliced) into these containers. The containers have the following
properties:

3.5. there are at most 6/δ3 · k′ + 2 wide containers in Cw
W , that have a width of a multiple of

δ2/2 and a height of a multiple of δ4.
3.6. there are at most 2/δ3 · k′+2/δ2 long containers in Cw

L , of at most 1/δ2 different heights
of either a multiple of δ4 or a combination of the rounded heights of the long rectangles
in Lw and of a width of δ2/2

To conclude, we obtain a better additional constant for modifying the packing.

Theorem’ 6. Given an optimal solution of an instance I into OPT bins. We are able to rotate
and round up the widths and heights of the rectangles and to modify the solution so that it
fits into at most (3/2 + 25ε′) · OPT + 31 bins, while all medium rectangles are packed into
3ε′ · OPT + 1 bins and 3/2 · OPT + 22δ · OPT + 30 bins have a packing that satisfies
Property 1. Furthermore, the heights of the long and big rectangles in the sets Lw and Bw

i for
i ∈ {2/δ, . . . , 2/δ2} are rounded to at most 1/δ2 values. The wide and long rectangles are
sliced horizontally and vertically, respectively. They are packed into wide and long containers
with the Property 3.5 and Property 3.6. The small rectangles are packed fractionally into the
wide and long containers.

Proof. We adopt Theorem’ 4 with an optimal solution and obtain k′ ≤ (3/2 + 5δ)OPT + 21
bins. We round up the big and long rectangles according to Lemma’ 23 and need 2δ · k′ + 1
additional bins. For rounding the containers with Lemma’ 24, we need 8δ ·k′+δ2+3 additional
bins. The additional constant is therefore, 21+10δ · 21+ δ2+1+3 ≤ 25+210/48+1/482 ≤
25+ 5 = 30. Together with the 3ε′ ·OPT+1 additional bins that are used to pack the medium
rectangles in Lemma’ 22, we obtain (3/2 + 25ε′) ·OPT + 31 bins.
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3 Algorithm
In the last sections we modified an optimal solution in order to achieve a simpler structure. In
this section we describe our algorithm. The algorithm works in two parts. The first part is to
transform an instance I of n rectangles into the rounded instance, the second part is to pack the
rounded rectangles into the bins.

3.1 Transform an Instance I
For dual approximation we use binary search to find the optimum OPT = OPT(I) of I . In
each iteration with a candidate OPT′ for OPT we either find a solution with at most (3/2 +
22δ) · OPT′ + 69 bins or conclude that OPT′ < OPT. In the first case we decrease OPT′

in order to try if there is a solution with less bins and in the second case we increase OPT′.
The upper bound for OPT is the number of rectangles in the instance I , the lower bound is the
total area of the rectangles. In the following, we assume that we found an OPT′ ≤ OPT so
that our algorithm is able to compute a solution. In the next step we are able to set δ according
to Lemma 21 and divide the instance into big, long, wide, small and medium rectangles. We
pack all medium rectangles with Steinberg’s Theorem 5 into 3ε′OPT + 2 additional bins (cf.
Lemma 22). Afterwards, we have to distinguish whether the width or the height of each big
rectangle is rounded up to a multiple of δ2/2. In other words, we have to distinguish, whether
a rectangle belongs to a bin of Type 1, i.e. it is in a set Bw

i , or to a bin of Type 2, i.e. it is in a
set Bh

i , for one i ∈ {2/δ, . . . , 2/δ2}.
In the version that allows rotation, we only have bins of Type 1. However, we do not know

which side we have to round up to the next largest multiple of δ2/2. Therefore, we have to
solve a similar problem.

3.1.1 Transform Big Rectangles

Let i ∈ {2/δ, . . . , 2/δ2} and j ∈ {1, . . . , 1/δ2}. We guess the number of big rectangles that
are rounded to each width of iδ2/2 and to each height of iδ2/2. In other words, we guess the
cardinality of the setsBw

i andBh
i . This can be done by choosing less than 2·2/δ2 = 4/δ2 values

out of n. With the guessed cardinality we compute the number of the at most 1/δ2 subsets Bw
i,j

and Bh
i,j and also the number of the at most 1/δ2 cut-rectangles. We guess the cut-rectangles by

choosing 2 · 2/δ2 · 1/δ2 = 4/δ4 rectangles out of n possible rectangles. We denote the number
of rectangles that are rounded up to the width i · δ2/2 and to the height of the jth cut-rectangle
in Bw

i by nwi,j and we denote the number of rectangles that are rounded up to the height i · δ2/2
and to the width of the jth cut-rectangle in Bh

i by nhi,j .
These values give us the structure of the subsets of the Section 2.3.1, since we know the

rounded heights and widths of the big rectangles and the number of rectangles with these side
lengths. To assign big rectangles to these subsets we set up a flow networkG = (V,E) with the
set V of vertices and the set E of edges. Each big rectangle of I has a corresponding node in
this network and is connected with an edge of capacity 1 to the source s. Either the width or the
height of a big rectangle is rounded up to the next multiple of δ2/2. If this is decided, we know
also the corresponding subset where the rectangle belongs to since it has to be between the
heights or the widths of two cut-rectangles. However, when the height or the width is exactly
that one of a cut-rectangle it could belong to possibly more subsets. For each subset Bw

i,j and
Bh
i,j we have one node in the network and connect it to each rectangle that may belong to it

with an edge of capacity 1. There are at most 2 · 2/δ2 · 1/δ2 = 4/δ4 subset-nodes and each big-
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Figure 28: The flow-network

rectangle-node is connected to at most 2·1/δ2 = 2/δ2 of them, when all cut-rectangles have the
same height and width, respectively. Each subset-node Bw

i,j and Bh
i,j is connected with an edge

to the sink t of capacity nwi,j and nhi,j , respectively (cf. Figure 28). The total number of vertices
is in total |V | ≤ 2+n+4/δ4. The number of edges is n+n · 2/δ2+4/δ4. We find a flow with
the algorithm of Dinic [8] in timeO(|E| · |V |2) = O((n+(2n)/δ2+4/δ4) · (2+n+4/δ4)2) =
O(n3/δ2 + n2/δ6 + n/δ10 + 1/δ14). If there is a possible assignment of big rectangles to
the subsets then there is a flow with the same value as the number of big rectangles, hence
each edge at the source s is satisfied. If there is no flow with this value at all, there exists no
assignment of big rectangles to the subsets and we have to try another guess.

Transform Big Rectangles with Rotations In the version that allows rotation, we only have
subsets Bw

i,j . In this setting we connect each big rectangle with the corresponding subset-nodes
before and after rotating it by 90◦. When we find a flow that satisfies each edge from the source
we have assigned all big rectangles to the corresponding subsets and have decided whether we
have to rotate a big rectangle, or not.

3.1.2 Transform Wide and Long Rectangles

We explain these steps for the wide rectangles, the transformation for the long rectangles is
analogous. We have to decide whether a wide rectangle belongs to a bin of Type 1, i.e. to
one set Ww

2/δ, . . . ,W
w
2/δ2 , or to a bin of Type 2, i.e. to one set W h

1 , . . . ,W
h
1/δ2 . To do this,

we guess the 1/δ2 widths wc1 , . . . , wc1/δ2 that are used to round up the rectangles in the sets
W h

1 , . . . ,W
h
1/δ2 . This is done by choosing 1/δ2 rectangles rc1 , . . . , rc1/δ2 out of n rectangles.

Remember that wc1 ≥ wc2 ≥ . . . ≥ wc1/δ2 . The total heights of the sets are identical, therefore
we guess the total height of the whole set W h approximately and divide it by 1/δ2 to obtain the
total height of each subset. The total height of all wide rectangles is bounded by δ4 ·n since each
wide rectangle has a height of at most δ4. We choose 1 integral value i0 out of 1/δ4 · δ4 ·n = n,
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so that i0 · δ4 ≤ h(W h) < (i0 + 1) · δ4 holds. This leads to an approximately guessed structure
of the sets W h

1 , . . . ,W
h
1/δ2 , since we know the widths and the heights.

The widths of the wide rectangles that are in the sets Ww
2/δ, . . . ,W

w
2/δ2 are rounded up to

the next multiple of δ2/2, hence the width of each rectangle in the set Ww
j is rounded up

to jδ2/2. We guess approximately the total height of the rectangles in each set. Therefore,
we choose 2/δ2 − 2/δ + 1 integral values i2/δ, . . . , i2/δ2 out of 1/δ4 · δ4 · n = n, so that
ij · δ4 ≤ h(Ww

j ) < (ij + 1)δ4 holds for all j ∈ {2/δ, . . . , 2/δ2}. Consequently, we have the
structure of all sets of wide rectangles and we have to assign the wide rectangles into them.

Note that (i0+1)δ4+
∑2/δ2

z1=2/δ(iz1+1)δ4 is larger than the total height of all wide rectangles
in the instance.

Assigning the Rectangles We sort the wide rectangles according to non-increasing widths.
Let rw be a wide rectangle. rw is a candidate for the set Ww

j , if rw has a width of ww ∈ ((j −
1)δ2/2, jδ2/2], for j ∈ {2/δ + 1, . . . , 2/δ2} and a candidate for Ww

2/δ if ww = δ. Furthermore,
this rectangle is a candidate for W h

j , if ww ∈ [wcj , wcj+1
], for j ∈ {1, . . . , 1/δ2 − 1} or for

W h
1/δ2 if δ ≤ ww ≤ wc1/δ2 .

First, we assign the wide rectangles greedily to the set Ww
2/δ2 . Therefore, we take the widest

candidates for this set until the total height exceeds (i2/δ2 + 1) · δ4, i.e. the total height of
these rectangles is at most (i2/δ2 + 1) · δ4 + δ4. If we run out of candidates before we reach
this height, we take the widest candidates for Ww

2/δ2−1 and so on. This is repeated for all sets
Ww

2/δ2−1, . . . ,W
w
2/δ. We selected the widest candidates for these sets (cf. Figure 29). The

remaining wide rectangles are greedily assigned in the same way into the sets W h
1 , . . . ,W

h
1/δ2 .

Lemma 25. For the right guess of the values i0, i2/δ, . . . , i2/δ2 and for the right guess of the
rectangles rc1 , . . . , rc1/δ2 we assign each wide rectangle to one of the sets Ww

2/δ, . . . ,W
w
2/δ2 and

W h
1 , . . . ,W

h
1/δ2 .

Proof. Suppose by contradiction that there are rectangles that can not be assigned to one set
for the right guess of the values i0, i2/δ, . . . , i2/δ2 and for the right guess of the rectangles
rc1 , . . . , rc1/δ2 . Let the rectangle rw be the widest rectangle among them. Suppose that rw
is a candidate for Ww

i and a candidate for W h
j , for the largest possible j if rw is a candidate for

several sets. All rectangles that have a width of at least ww, including rw, have to fit fractionally
into the sets Ww

2/δ2 , . . . ,W
w
i and the sets W h

1 , . . . ,W
h
j . Let X denote the set of wide rectangles

that have a width of at least ww, including rw. Consequently, we have

h(X) ≤
2/δ2∑
z1=i

h(Ww
z1
) +

j∑
z2=1

h(W h
z2
) ≤

2/δ2∑
z1=i

(iz1 + 1)δ4 +

j∑
z2=1

(i0 + 1)δ4 · δ2

On the other hand, the sets have to be completely full, since we are not able to pack rw into
one of these sets, i.e. the total height of the rectangles of Ww

z1
is larger than (iz1 + 1)δ4 and the

total height of the rectangles in W h
z2

is larger than (i0 + 1)δ4 · δ2, for all z1 ∈ {i, . . . , 2/δ2} and
z2 ∈ {1, . . . , j}. It follows that h(X) >

∑2/δ2

z1=i
(iz1 + 1)δ4 +

∑j
z2=1(i0 + 1)δ4 · δ2 which is a

contradiction.

Consequently, all rectangles have to fit into these sets. Afterwards, we remove the shortest
rectangles in each set Ww

2/δ, . . . ,W
w
2/δ2 and W h

1 , . . . ,W
h
1/δ2 , in order to secure that the total

height is at most ijδ4 and i0δ4 · δ2, respectively. Therefore, we have to remove wide rectangles
of a total height of at most 3δ4 for each set since we have to reduce the total height by at most
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Figure 29: A greedy assignment of wide rectangles; sort the rectangles by their widths, pack
them into the sets Ww

2/δ2 , . . . ,W
w
2/δ until the last rectangle exceeds (ij + 1)δ4; afterwards pack

the remaining rectangles into the sets W h
1 , . . . ,W

h
1/δ2 .

2δ4 and we have to remove the wide rectangle of height δ4 that is cut by the new height. In
total, we have wide rectangles of a total height of (2/δ2 − 2δ + 1 + 1/δ2) · 3δ4 ≤ 9δ2. These
rectangles fit into one additional bin by packing them on top of each other. The same steps are
done to assign the long rectangles to the sets Lw1 , . . . , L

w
1/δ2 and Lh2/δ, . . . , L

h
2/δ2 and we need

one additional bin.
To conclude, we guess 2 · (1/δ2 +1+ 2/δ2− 2/δ+1) ≤ 6/δ2 rectangles and values out of

n values and need two additional bins to transform the wide and long rectangles.

Transform Long and Wide Rectangles with Rotations In the version that allows rotation,
we rotate each long rectangle in order to have only wide rectangles. We assign them to the sets
Ww

2/δ, . . . ,W
w
2/δ2 and Lw1 , . . . , L

w
1/δ2 . As above, we guess approximately the total width of Lw

and the total height of the sets Ww
2/δ, . . . ,W

w
2/δ2 . Furthermore, we guess the heights of the cut-

rectangles, in order to get the structure of the sets Lw1 , . . . , L
w
1/δ2 . Therefore, we choose 1/δ2

rectangles and take the widths of the selected rectangles as the heights of the cut-rectangles,
i.e. we rotate the selected rectangles. Afterwards, we greedily assign the wide rectangles to
the sets Ww

2/δ2 , . . . ,W
w
2/δ. The remaining rectangles are rotated and they are assigned to the

sets Lw1 , . . . , L
w
1/δ2 . The rectangles that have to be removed fit into one additional bin. These

are the only algorithmic differences between the version with and without rotations and the
remaining steps work for both versions. However, in the following we continue to state the
minor differences to improve the additive constant.
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3.1.3 Construct the Containers

We do the following steps for the long and wide containers that are packed in the bins of Type 1,
the construction of the containers in the bins of Type 2 is analogous. Each wide container of
Cw
W has a height of a multiple of δ4 and a width of a multiple of δ2/2 (cf. Lemma 24). Hence,

there are at most 1/δ4 ·2/δ2 = 2/δ6 different types of wide containers in the solution. We guess
the number nwi,j of the wide containers of each width iδ2/2 and each height jδ4 by choosing
2/δ6 values out of n (we suppose, that each wide container contains at least one wide or small
rectangle).

There are at most 1/δ2 different types of long containers in Cw
L since all long containers

have the same width and we rounded their heights to at most 1/δ2 values. Each height is either
a combination of the rounded heights of the long rectangles or a multiple of δ4 (cf. Lemma 24).
There are at most (1/δ2 +1)1/δ possibilities for the combinations of the rounded heights, since
we have to choose at most 1/δ values out of 1/δ2 different heights. The additional 1 represents
a dummy rectangle to choose less than 1/δ values. We guess the heights of the long containers
by choosing 1/δ2 values out of 1/δ4 + (1/δ2 + 1)1/δ. In a next step we guess the number n`i of
long containers of the `th height by choosing 1/δ2 values out of n.

This is also done for the long and wide containers that are packed in the bins of Type 2. In
total, we have to guess 2 · (2/δ6 + 1/δ2) = 4/δ6 + 2/δ2 values out of n and 2/δ2 values out of
1/δ4 + (1/δ2)1/δ. Note that each wide container has a width of at least δ2/2, no matter if it is
packed in a bin of Type 1 or in a bin of Type 2. Furthermore, we can assume that ((3/2+22δ) ·
OPT+53) ≤ n, since otherwise we can pack each rectangle in a separate bin. Hence, the total
height of the wide containers is bounded by 2/δ2 ·k ≤ 2/δ2 ·((3/2+22δ)·OPT+53) ≤ 2/δ2 ·n.
The same holds for the total width of all long containers.

3.2 Packing the Rectangles
We assigned the rectangles to their corresponding sets. It remains to pack the small, wide and
long rectangles into the containers and to pack the containers and the big rectangles into the
bins.

3.2.1 Packing Wide and Long Rectangles into the Containers

For packing the wide and long rectangles into the containers we use four similar linear pro-
grams. We explain the next steps for packing the wide rectangles into the wide containers,
the packing for the long rectangles is analogous. A similar linear program formulation can be
found in the AFPTAS by Kenyon & Rémila [19]. First, we focus on the wide containers
of Cw

W that are packed in the bins of Type 1. Remember that all wide rectangles of Ww fit
fractionally into the wide containers of Cw

W . There are at most t := 2/δ2 different widths of
wide containers. We pack all containers of the same width ` · δ2/2, for ` ∈ {1, . . . , t}, on
top of each other and treat them as one target region T` of height h(T`) = h(Cw

W`
) and width

w(T`) = ` · δ2/2. The linear program will divide the target regions into slots of a certain width
in which we will pack wide rectangles of the same width. Therefore, let m := 2/δ2 − 2/δ + 1
be the number of different slots that have a width of (i− 1) · δ2/2 + δ, for i ∈ {1, . . . ,m}. For
each target region T` we define a set of configurations C(`)

j . A configuration in C
(`)
j consists of

a set of at most 1/δ slots that have a total width of at most w(T`) = ` · δ2/2. The total number
of possibilities to select at most 1/δ slots out of m different types is (m+ 1)1/δ. Therefore, the
total number of configurations q(`) for target region T` is bounded by the number (m + 1)1/δ.
The value a(i,C(`)

j ) gives the number of slots of width (i− 1) · δ2/2 + δ in configuration C
(`)
j .
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We solve the following feasibility linear program, where the variable x(`)j describes the height
of configuration C

(`)
j .

q(`)∑
j=1

x
(`)
j = h(T`) ` ∈ {1, . . . , t}

t∑
`=1

q(`)∑
j=1

a(i,C
(`)
j ) · x(`)j ≥ h(Ww

i ) i ∈ {1, . . . ,m}

x
(`)
j ≥ 0 j ∈ {1, . . . , q`}, ` ∈ {1, . . . , t}

The first t constraints ensure that the total heights of the configurations do not exceed the
total height of the target regions. We pack the wide rectangles of width (i− 1) · δ2/2 + δ into
the slots of the same width. To this end, the following m constraints ensure that the total height
of the slots is large enough to occupy the wide rectangles (cf. Figure 30). For the right guess of
the values above, this linear program computes a feasible solution. The corresponding matrix
of the linear program has t+m ≤ 4/δ2 rows and q :=

∑t
`=1 q

(`) ≤ t · (m+1)1/δ ≤ (2/δ2)2/δ+1

columns. Each entry of the matrix is bounded by 1/δ. Since the total height of all containers
is bounded by 2/δ2 · n the entries on the right side are bounded by 2/δ2 · n. It follows that
the encoding length of the input is bounded by L := (t + m) · (q + 1) · log(2/δ2 · n) ≤
4/δ2 · ((2/δ2)2/δ+1 + 1) · log(2/δ2 · n) ≤ 4 · (2/δ2)2/δ+2 · log(2/δ2 · n). We can solve this
linear program with a result of Vaidya [22], that computes a feasible basic solution in time
O((((t + m) + q)q2 + ((t + m) + q)3/2q)L) = O(q3 · L) = O((2/δ2)6/δ+3 · (2/δ2)2/δ+2 ·
log(2/δ2 · n)) = O((2/δ2)8/δ+5 · log(2/δ2 · n))

(a) The slots in the configurations computed by the
linear program

(b) Packing the rectangles into the slots

Figure 30: Packing the wide rectangles into the containers

The rank of the matrix is bounded by the number of constraints which is at most m + t =
2/δ2 − 2/δ + 1 + 2/δ2 < 4/δ2. It follows that the feasible basic solution contains less than
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4/δ2 non-zero variables x`j and thus we have less than 4/δ2 configurations. We pack the wide
rectangles of Ww

2/δ, . . . ,W
w
2/δ2 greedily into the configurations, by packing them on top of each

other into a slot of the same width until the last rectangle exceeds the height of the configuration.
Since the rectangles fit fractionally into the slots, there is no rectangle unpacked. Afterwards,
we remove the uppermost rectangles that exceed the height of the configuration. Therefore
we pack the removed rectangles of one configuration next to each other into an additional bin.
Thus, we need a total height of δ4 · 4/δ2 = 4δ2 to pack all rectangles into one additional bin.

We sort the slots in each configuration by non-increasing packing heights, i.e. the leftmost
slot occupies rectangles of the largest total height and the rightmost slot occupies rectangles
of the smallest total height. The free space on the right of the configurations is separated
into rectangular regions in order to pack small rectangles into it. This is done by drawing
a horizontal line on the topmost rectangle in each slot. We have at most 1/δ slots in each
configuration and hence at most 1/δ + 1 different rectangular regions. In total, there are less
than (4/δ2) · (1/δ + 1) = 4/δ3 + 4/δ2 ≤ 5/δ3 different rectangular regions (cf. Figure 31).

Figure 31: Rectangular regions for the small rectangles

We use the same linear program for the wide rectangles that are packed in wide containers
in the bins of Type 2. The difference is that there are only t = 1/δ2 different target regions and
that there are only m = 1/δ2 different widths of the rectangles and slots. Hence, we have only
m + t = 2/δ2 constraints and therefore only 2/δ2 different configurations. We pack the wide
rectangles of W h

1 , . . . ,W
h
2/δ2 greedily into the configurations and we remove again the topmost

rectangles. The removed rectangles are packed on top of the wide rectangles in the additional
bin above. They need an additional space of height δ4 · 2/δ2 = 2δ2. This results into a total
packing height of at most 4δ2 + 2δ2 = 6δ2. On the right side of these configurations we have
at most 2/δ2 · (1/δ + 1) ≤ 3/δ3 rectangular regions.

We do the same steps for packing the long rectangles into the long containers by packing
some remaining long rectangles into a second additional bin. Consequently, we have at most
2 · (5/δ3 + 3/δ3) = 2 · 8/δ3 free rectangular regions for small rectangles. In the version that
allows rotations we only use one additional bin for occupying the wide and the rotated long
rectangles.

Solving the Linear Programs Approximately We give now a short description how to solve
the linear programs approximately in order to reduce the running time. However, for the sake
of readability we assume in the following sections that we have solved the linear programs
exactly, as mentioned above. We solve each linear program approximately with an algorithm
for the max-min resource sharing problem [11, 14] as explained in [3]. For a precision of δ4

the algorithm stops after O(m(1/δ8 + lnm)) = O(1/δ10) iterations. In each iteration a block
problem has to be solved approximately with precision δ4/6. In our case the block problem
consists of t knapsack problems with m unbounded variables. The t knapsack problems can
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be solved in time O(t · (m log(1/δ4) + 1/δ16)) = O(1/δ18) [20]. The total running time is
therefore O(1/δ28). We obtain variables x(`)j that satisfies

t∑
`=1

q(`)∑
j=1

a(i,C
(`)
j ) · x(`)j ≥ (1− δ4)h(Ww

i ) i ∈ {1, . . . ,m}

q(`)∑
j=1

x
(`)
j = h(T`) ` ∈ {1, . . . , t}

x
(`)
j ≥ 0 j ∈ {1, . . . , q`}, ` ∈ {1, . . . , t}.

The number of configurations is bounded by the number of iterations multiplied with t by
O(t·1/δ10) = O(1/δ12). We reduce the number of configurations to t+m by solvingO(1/δ12)
systems of t+m linear equalities with t+m+1 variables in timeO((t+m)3·1/δ10) = O(1/δ16)
as explained in [14].

In order to secure the covering constraints we extend each configuration by setting x(`)j :=

(1 + 2δ4)x
(`)
j . Since δ4 ≤ 1/2 we have for each i ∈ {1, . . . ,m}

t∑
`=1

q(`)∑
j=1

a(i,C
(`)
j ) · x(`)j ≥ (1 + 2δ4)(1− δ4)h(Ww

i ) = (1 + δ4 − 2δ8)h(Ww
i ) ≥ h(Ww

i ).

The heights of the configurations are extended for each target region T` to
∑q(`)

j=1 x
(`)
j =

(1 + 2δ4)h(T`).
We approximately solve also the linear program for packing the wide rectangles into the

bins of Type 2 and pack all wide rectangles as described above. Afterwards we have to remove
the rectangles in the uppermost strips of each target region. There are 2/δ2 + 1/δ2 = 3/δ2

target regions for the wide rectangles that are packed in bins of both types. We remove strips
of wide rectangles of the total height at most 2δ4h(T`) + δ4 from each target region. The total
height of all target regions is bounded by 2/δ2 · ((3/2 + 22δ) ·OPT + 53) (each target region
has a width of at least 2/δ2). Therefore, we remove strips of wide rectangles of the total height

2δ4 · 2/δ2 · ((3/2 + 22δ) ·OPT + 53) + δ4 · 3/δ2 =
4δ2 · ((3/2 + 22δ) ·OPT + 53) + 3δ2 ≤

(6δ2 + 88δ3)OPT + 215δ2 ≤
(6δ2 + 88δ2/48)OPT + 215/482 ≤

8δ2OPT + 1

We pack these strips on top of each other and cut the packing on each integral height in order
to pack the rectangles in d8δ2OPT+1e additional bins. We remove the rectangles that are split
by these cutting lines and pack them separately. We are able to pack rectangles of 1/δ4 cutting
lines on top of each other into one bin. Therefore, we need dδ4 ·(8δ2OPT+1)e ≤ dδ2OPT+1e
additional bins. In total we need less than 9δ2OPT + 4 additional bins. The same holds for
packing the long rectangles into the target regions.

3.2.2 Packing Small Rectangles into Rectangular Regions

We pack the small rectangles into the rectangular regions defined above. Remember that they
fit fractionally into these regions. We have at most 2 · 8/δ3 different rectangular regions for the
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small rectangles. We use Next Fit Decreasing Height by Coffman et al. [7] to pack them into
these regions. Since these rectangles are small we are able to cover almost the whole region
with small rectangles.

We give a short description of this algorithm for the sake of completeness. Next Fit Decreas-
ing Height sorts the rectangles according to non-increasing heights. In this order the algorithm
packs the rectangles left-justified on a level, until there is insufficient space at the right to ac-
commodate the next rectangle. This level is closed and the algorithm packs no further rectangle
on it. If this is the first level, the algorithm packs the level on the ground of the target region, in
any other case, we place this level on top of the first rectangle of the previous level. Then the
algorithm proceeds packing on the next level, until it runs out of rectangles, or the next level
does not fit into the target region.

We obtain the following Theorem by Coffman et al. [7]:

Lemma 26. Let A be a rectangular region of width wA and height hA. We are able to pack
small rectangles into A with a total area of at least wA · hA − (wA + hA) · δ4.

Proof. Let t be the number of levelsL1, . . . , Lt that are packed with Next Fit Decreasing Height
into region A. We suppose that we have enough small rectangles and the algorithm stops,
because the next level does not fit into A. Let ri be the first rectangle on the level Li and let
ri′ be the last rectangle on the level Li. The height of the level Li is the height hi of the first
rectangle on this level. Additionally, let ht+1 = hA −

∑t
i=1 hi be the free space on top of the

level Lt. Consequently, we have
∑t+1

i=1 hi = hA. It holds hi′ ≥ hi+1 since the rectangles are
sorted according to non-increasing heights. Furthermore, let w(Li) be the total width of the
rectangles on level Li. We have w(Li) > wA − δ4 since the next small rectangle of width
at most δ4 does not fit on this level. The total area of the rectangles on level Li is hence
a(Li) ≥ hi′ · w(Li) ≥ hi+1 · w(Li) > hi+1 · (wA − δ4). Thus, the total area of the packed
rectangles is at least

t∑
i=1

a(Li) >
t∑
i=1

hi+1 · (wA − δ4) = (hA − h1) · (wA − δ4) >

(hA − δ4) · (wA − δ4) > wA · hA − (wA + hA) · δ4.

The total height of the wide containers in the bins of Type 1 and Type 2 is bounded by
2/δ2 · ((3/2 + 22δ) · OPT + 53) (each wide container has a width of at least δ2/2). Thus,
the sum of the heights of the rectangular regions on the right side of the configurations with
the wide rectangles is bounded by 2/δ2 · ((3/2 + 22δ) · OPT + 53). The width of each wide
container is at most 1 and hence the sum of the widths of the at most 8/δ3 rectangular regions
is bounded by 8/δ3. Therefore, in all target regions A for the wide rectangles there is only a
free total area of at most∑

A

(wA + hA) · δ4 = δ4 · (
∑
A

wA +
∑
A

hA)

≤ δ4 · (8/δ3 · 1 + 2/δ2 · ((3/2 + 22δ) ·OPT + 53))

= 8δ + 2δ2 · ((3/2 + 22δ) ·OPT + 53)

= 3δ2 ·OPT + 44δ3 ·OPT + 8δ + 106δ2

≤ 3δ2 ·OPT + 44δ2/48 ·OPT + 8δ + 106δ/48

< 4δ2 ·OPT + 11δ
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left. The same bound holds also for the target areas for the long rectangles and we obtain a total
free area of at most 2 · (4δ2 · OPT + 11δ) ≤ 8δ2 · OPT + 22δ. Since all small rectangles fit
fractionally into the containers, it follows that the total area of the unpacked small rectangles is
bounded by this value.

These small rectangles fit with Lemma 26 into δOPT+1 additional bins, since we are able
to pack small rectangles of a total area at least 1− (1 + 1) · δ4 = 1− 2δ4 into one bin and we
have

(1− 2δ4) · (δOPT + 1) = δOPT− 2δ5OPT + 1− 2δ4

≥ 48δ2OPT− 2δ5OPT + 48δ − 2δ4 ≥ 8δ2OPT + 22δ.

3.2.3 Cutting Out Containers

We treated all wide containers of the same width and all long containers of the same height as
one target region. The total number of containers is bounded in Lemma 24 by 6/δ3 · p1 + 2 +
2/δ3 ·(k−p1)+2/δ2 wide containers and 6/δ3 ·(k−p1)+2+2/δ3 ·p1+2/δ2 long containers. It
is left to cut the containers out of the target regions. We cut hereby wide and small rectangles of
height δ4 or long and small rectangles of width δ4. Hence, we are able to pack the cut rectangles
of 1/δ4 horizontal or vertical cut lines into one additional bin. Consequently, we need

dδ4 · (6/δ3 · p1 + 2 + 2/δ3 · (k − p1) + 2/δ2)e+
dδ4 · (6/δ3 · (k − p1) + 2 + 2/δ3 · p1 + 2/δ2)e ≤

δ4 · (8/δ3 · k + 4/δ2 + 4) + 2 ≤
δ4 · (8/δ3 · ((3/2 + 5δ)OPT + 37) + 4/δ2 + 4) + 2 =

8δ · ((3/2 + 5δ)OPT + 37) + 4δ2 + 4δ4 + 2 =

8δ · (3/2 + 5δ)OPT + 8δ · 37 + 4δ2 + 4δ4 + 2 =

(12δ + 40δ2)OPT + 296δ + 4δ2 + 4δ4 + 2 ≤
(12δ + 40δ/48)OPT + 296/48 + 4/482 + 4/484 + 2 ≤

13δOPT + 7 + 2 =

13δOPT + 9

additional bins.

Cutting Out Containers with Rotations The number of wide containers and long containers
in the version that allows rotation is bounded in Lemma’ 24 by 6/δ3 ·k′+2 and 2/δ3 ·k′+2/δ2,
respectively. Therefore, we have 6/δ3 · k′ + 2+ 2/δ3 · k′ + 2/δ2 = 8/δ3 · k′ + 2/δ2 + 2 cutting
lines. We rotate the rectangles that are cut by the construction of the long containers. Thus, we
have only horizontal cutting lines and thus cut rectangles of height δ4. Consequently, we need
dδ4 · (8/δ3 · k′ + 2/δ2 + 2)e ≤ δ4 · (8/δ3 · k′ + 2/δ2 + 2) + 1 bins. We obtain

δ4 · (8/δ3 · k′ + 2/δ2 + 2) + 1 ≤
δ4 · (8/δ3 · ((3/2 + 5δ)OPT + 21) + 2/δ2 + 2) + 1 ≤

8δ · (3/2 + 5δ)OPT + 8δ · 21 + 2δ2 + 2δ4 + 1 ≤
13δOPT + 168δ + 2δ2 + 2δ4 + 1 ≤

13δOPT + 168/48 + 2/482 + 2/484 + 1 ≤
13δOPT + 4 + 1 =

13δOPT + 5
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additional bins.

3.2.4 Packing Big Rectangles and Containers

The last remaining step is to pack the big rectangles and the long and wide containers into
the bins. Therefore, we use almost the same linear program as above. Again, we explain the
following steps for the bins of Type 1. One configuration Cj , for j ∈ {1, . . . , q}, consists of a
packing into one bin. There are at most 2/δ2 · 1/δ2 = 2/δ4 different types of big rectangles,
2/δ6 different types of wide containers and 1/δ2 different types of long container. In each
bin/configuration there are at most 1/δ2 big rectangles, 6/δ3 wide containers and 2/δ3 long
containers (see description above Lemma 24). Therefore, there are at most (2/δ4 + 1)1/δ

2

possibilities to select at most 1/δ2 big rectangles out of 2/δ4 different types. The additional 1
represents a dummy rectangle and is needed for selecting less than k big rectangles. There are
at most (2/δ6 + 1)6/δ

3 possibilities to select at most 6/δ3 wide containers out of 2/δ6 different
types and (1/δ2+1)2/δ

3 possibilities to select at most 2/δ3 long containers out of 1/δ2 different
types. All together, the number q of different configurations is therefore bounded by

q ≤ (2/δ4 + 1)1/δ
2 · (2/δ6 + 1)6/δ

3 · (1/δ2 + 1)2/δ
3

< (4/δ4)1/δ
2 · (4/δ6)6/δ3 · (2/δ2)2/δ3

= (1/δ)4/δ
2 · (1/δ)36/δ3 · (1/δ)4/δ3 · 22/δ2 · 212/δ3 · 22/δ3

≤ (1/δ)41/δ
3 · 215/δ3 .

We have to verify, if a candidate for a configuration fits into a bin. Each wide and long
container and each big rectangle has a width of a multiple of δ2/2. Therefore, we are able to
pack them with its x-coordinate on a multiple of δ2/2. For each candidate we guess the x-
coordinates of all containers and big rectangles by choosing 1/δ2 +6/δ3 +2/δ3 ≤ 9/δ3 values
out of 2/δ2. Consequently, we have for each multiple of δ2/2 one set of big rectangles and con-
tainers that starts on the corresponding x-coordinate or intersect this x-coordinate completely.
It remains to find an order of these containers and big rectangles to find a packing. Since there
are at most 1/δ4 objects in each set, there are at most 1/δ4! possible permutations. In total we
have to try 2/δ2 · 1/δ4! ≤ 2/δ2 · (1/δ4)1/δ4 permutations to find a packing of this configuration.
If we do not find a packing at all, then there exists no packing of this configuration and we
delete it.

Afterwards, we select the configurations that have to be packed into the bins. We need for
each configuration one bin. To select these configurations we employ an integer linear program.
Therefore, denote with b(i, j, Ck) the number of big rectangles in the set Bw

i,j in configuration
Ck. With w(i, j, Ck), we denote the number of wide containers of width iδ2/2 and height jδ4

and with `(i, Ck) we denote the number of long containers of the ith height in configuration
Ck. The total number of big rectangles in the set Bw

i,j is denoted by nbi,j , the total number of
wide containers of the width iδ2/2 and of the height jδ4 is denoted by nwi,j and the number of
long containers of the ith height by n`i .
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The integer linear program is defined as follows:

min

q∑
k=1

xk

s.t.

q∑
k=1

b(i, j, Ck) · xk ≥ nbi,j i ∈ {2/δ, . . . , 2/δ2}, j ∈ {1, . . . , 1/δ2}

q∑
k=1

w(i, j, Ck) · xk ≥ nwi,j i ∈ {2/δ, . . . , 2/δ2}, j ∈ {1, . . . , 1/δ4}

q∑
k=1

`(i, Ck) · xk ≥ n`i i ∈ {1, . . . , 1/δ2}

xk ∈ N k ∈ {1, . . . , q}

This integer linear program can be solved with the algorithm of Kannan [18] in time qO(q) ·s,
while s is the input size. We have (2/δ2 − 2/δ) · 1/δ2 + (2/δ2 − 2/δ) · 1/δ4 + 1/δ2 ≤ 3/δ6

constraints. Each coefficient in the matrix is bounded by 6/δ3 and the values nbi,j, n
w
i,j and n`i

are bounded by n. It follows, that s ≤ (q + 1) · 3/δ6 · log(n).
Thus, the the total running time, including the construction of the configurations, is bounded

byO(log(n)·qO(q)). We can improve the running-time with a result of Eisenbrand & Shmonin [9]:

Theorem 7. Let X ⊂ Zd be a finite set of integer vectors and let b ∈ {
∑t

i=1 λixi|t ≥
0;x1, . . . , xt ∈ X;λ1, . . . λt ∈ Z≥0}. Then there exists a subset X̃ ⊆ X such that b ∈
{
∑t

i=1 λixi|t ≥ 0;x1, . . . , xt ∈ X̃;λ1, . . . λt ∈ Z≥0} and |X̃| ≤ 2d log(4dM) with M =
maxx∈X‖x‖∞.

In our case, the set X belongs to the configurations. We have at most 3/δ6 constraints, thus
d ≤ 3/δ6. The coefficients of the matrix are bounded by M = 6/δ3. Theorem 7 states that
there are at most q′ := 2d log(4dM) ≤ 2 · 3/δ6 log(4 · 3/δ6 · 6/δ3) ≤ 6/δ6 log(62/δ9) non-
zero variables in any solution b of our integer linear program. We enumerate all configurations
of cardinality at most q′ and have at most (q + 1)q

′ possibilities. For each set of at most q′

configurations we solve the reduced integer linear program with the algorithm of Kannan [18]
in time q′O(q′) · s′ while s′ is the input size of the reduced integer linear program. We bound s′

by (q′+1) ·d · log(n). Hence, the total running time is bounded byO((q+1)q
′ · log(n) ·q′O(q′)).

The same integer linear program is solved for the bins of Type 2. Since we know that there
is a packing into (3/2 + 24δ) · OPT + 53, these integer linear programs compute for the right
guess of all above described values a solution with at most (3/2 + 24δ) ·OPT + 53 bins.

3.3 Résumé of the Algorithm
A compressed version of our algorithm is given in Algorithm 1.

The running time of the steps are given as follows. The binary search takes O(log n) time.
To find δ, we have to compute 2/ε′ sets and check whether their value is at most ε′ ·OPT. This
takes time O(n · 2/ε′) = O(n/ε).

We pack the 3ε′OPT + 2 sets with the algorithm of Steinberg that has a running time of
O((n log2 n)/ log log n). Since OPT ≤ n and ε′ < 1, we obtain a total running time for this
step of O((n2 log2 n)/ log log n). The value of δ is at least δ ≥ ε′4·2/ε

′ . For the structure of
the sets for the big rectangles we have to guess 4/δ2 + 4/δ4 values out of n. We obtain the
structure of the sets of the wide and long rectangles by guessing at most 6/δ3 values out of n.
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Algorithm 1 Algorithm for Two-Dimensional Bin Packing
1: set ε′ := min{ε/39, 1/48}
2: Find OPT′ ≤ OPT with binary search so that algorithm computes feasible solution for

each guess do
3: Compute δ and pack medium rectangles with Steinberg’s Theorem 5
4: Find structure of the set of big, long and wide rectangles and of the set of wide and

long containers for each guess do
5: Solve flow network with the algorithm of Dinic [8]
6: Greedy assignment of long and wide rectangles into groups
7: Pack the long and wide rectangles into containers with linear programs that are

solved by the algorithm of Vaidya [22]
8: Pack the small rectangles with Next Fit Decreasing Height by Coffman et al. [7]
9: Pack containers and big rectangles with integer linear programs that are solved

by the algorithm of Kannan [18]

We compute the structure of the wide and long containers by guessing 4/δ6 + 2/δ2 values out
of n and 2/δ2 values out of 1/δ4 + (1/δ2)1/δ. In total we have to choose less than 5/δ6 values
out of n and 2/δ2 values out of 1/δ4 + (1/δ2)1/δ. This takes time O(n5/δ6 · (1/δ)2/δ). To solve
the flow network, we need timeO(n3/δ2+n2/δ6+n/δ10+1/δ14). The assignment of the long
and wide rectangles into the groups is done in linear time. We solve the four linear programs
to pack the wide and long rectangles into the containers in time O((2/δ2)8/δ+5 · log(2/δ2 · n)).
The packing of the small rectangles and to cut out the containers afterwards is done in less than
O(n log n/δ3) time. The integer linear programs are solved in timeO((q+1)q

′ · log(n) ·q′O(q′)),
with q ≤ (1/δ)41/δ

3 · 215/δ3 and q′ ≤ 6/δ6 log(62/δ9).
To conclude, the running time is bounded byO(nf(1/ε) ·g(1/ε)) for some functions f and g.

We obtain the following result for the two-dimensional bin packing problem with and without
rotations:

Theorem 1. For any ε > 0, there is an approximation algorithm A which produces a packing
of a list I of n rectangles in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT(I) + 69.

The running time of A is polynomial in n.

Proof. The integer linear programs packs the big rectangles and the containers in at most (3/2+
22δ) ·OPT+ 53 bins. The medium rectangles are packed into 3ε′OPT+ 2 bins. To transform
the wide and long rectangles we need 2 additional bins. We pack the wide and long rectangles
with the linear programs into the target regions. Therefore, we need also 2 additional bins.
The small rectangles are packed into the target regions and into δOPT + 1 additional bins.
Afterwards, we cut the containers out of the target regions and need 13δOPT + 9 additional
bins. It follows that we need

(3/2 + 22δ) ·OPT + 53 + 3ε′OPT + 2 + 2 + 2 + δOPT + 1 + 13δOPT + 9 ≤
(3/2 + 39ε′) ·OPT + 69

bins. Since ε′ ≤ ε/39 we obtain (3/2 + ε)OPT + 69 bins in total.

54



Résumé of the Algorithm with Rotations In the version that allows rotation, the integer
linear program packs the rectangles into k′ ≤ (3/2 + 22δ) · OPT + 30 bins. The medium
rectangles are packed into 3ε′ ·OPT+1 additional bins. To assign the long and wide rectangles
to the groups and to pack them into the target regions we need in total 2 additional bins. To
pack the small rectangles we need δOPT+1 additional bins and to cut the containers out of the
target regions we need 13δOPT + 5 additional bins. Consequently, the total number of used
bins is at most

(3/2 + 22δ) ·OPT + 30 + 3ε′ ·OPT + 1 + 2 + δOPT + 1 + 13δOPT + 5 ≤
(3/2 + 39ε′) ·OPT + 39 ≤ (3/2 + ε) ·OPT + 39

bins. We obtain the following result:

Theorem’ 1. For any ε > 0, there is an approximation algorithm A which produces a packing
of a list I of n rectangles that are allowed to be rotated in A(I) bins such that

A(I) ≤ (3/2 + ε) ·OPT(I) + 39.

The running time of A is polynomial in n.

4 Conclusion
We presented a technique that allows us to modify any solution of the two-dimensional bin
packing problem into a solution that consists of a simpler structure. This enables our algorithm
to compute a solution into (3/2 + ε) · OPT + 69 bins and an improved solution of (3/2 +
ε) · OPT + 39 in the version that allows rotation for any fixed ε > 0 and any instance that
fits optimally into OPT bins. The current lower bound is given by Chlebík & Chlebíková [5]
with values 1+1/3792 and 1+1/2196 for the version with and without rotations, respectively.
An open question is to close the gap between the current lower bounds and our presented
asymptotic approximation ratios. Therefore, it is of interest to find an approximation algorithm
with an asymptotic approximation ratio of 4/3, if there is any. Maybe there is a way to adopt our
techniques by modifying an optimal solution so that the rectangles are rounded up. However,
there would be only one additional bin for each sequence of three bins, instead of one additional
bin for each sequence of two bins. Therefore. it would be necessary to do a much more sensitive
and complex case analysis.

References
[1] N. Bansal, A. Caprara, and M. Sviridenko. A new approximation method for set cov-

ering problems, with applications to multidimensional bin packing. SIAM Journal on
Computing, 39(4):1256–1278, 2009.

[2] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko. Bin packing in multiple dimen-
sions: Inapproximability results and approximation schemes. Mathematics of Operations
Research., 31(1):31–49, 2006.

[3] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and D. Trystram. Approximation al-
gorithms for multiple strip packing and scheduling parallel jobs in platforms. Discrete
Mathematics, Algorithms and Applications, 3(4):553–586, 2011.

55



[4] A. Caprara. Packing d-dimensional bins in d stages. Mathematics of Operations Research,
33:203–215, February 2008.

[5] M. Chlebík and J. Chlebíková. Hardness of approximation for orthogonal rectangle pack-
ing and covering problems. Journal of Discrete Algorithms, 7(3):291–305, 2009.

[6] F. R. K. Chung, M. R. Garey, and D. S. Johnson. On packing two-dimensional bins. SIAM
Journal of Algebraic Discrete Methods, 3:66–76, 1982.

[7] E. G. Coffman Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan. Performance bounds
for level-oriented two-dimensional packing algorithms. SIAM Journal on Computing,
9(4):808–826, 1980.

[8] E.A. Dinic. An algorithm for solution of a problem of maximum flow in a network with
power estimation. Soviet Mathematics Doklady, 11(5):1277–1280, 1970.

[9] F. Eisenbrand and G. Shmonin. Carathéodory bounds for integer cones. Operations
Research Letters, 34(5):564–568, 2006.

[10] W. Fernandez de la Vega and G. S. Lueker. Bin packing can be solved within 1 + ε in
linear time. Combinatorica, 1(4):349–355, 1981.

[11] M. D. Grigoriadis, L. G. Khachiyan, L. Porkolab, and J. Villavicencio. Approximate max-
min resource sharing for structured concave optimization. SIAM Journal on Optimization,
11(4):1081–1091, 2001.

[12] R. Harren and R. van Stee. Absolute approximation ratios for packing rectangles into
bins. Journal of Scheduling, pages 1–13, 2009.

[13] R. Harren and R. van Stee. Improved absolute approximation ratios for two-dimensional
packing problems. In Proceedings of the 12th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX 2009), LNCS 5687,
pages 177–189, 2009.

[14] K. Jansen. Efficient Approximation and Online Algorithms, chapter Approximation al-
gorithms for min-max and max-min resource sharing problems and applications, LNCS
3484, pages 156–202. Springer, 2006.

[15] K. Jansen, L. Prädel, and U. M. Schwarz. Two for one: Tight approximation of 2d bin
packing. In Proceedings of the 11th International Symposium on Algorithms and Data
Structures (WADS 2009), LNCS 5664, pages 399–410, 2009.

[16] K. Jansen and R. Solis-Oba. Rectangle packing with one-dimensional resource augmen-
tation. Discrete Optimization, 6(3):310–323, 2009.

[17] K. Jansen and R. van Stee. On strip packing with rotations. In Proceedings of the thirty-
seventh annual ACM symposium on Theory of computing (STOC 2005), pages 755–761,
2005.

[18] R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of Operations Research, 12(3):415–440, 1987.

56



[19] C. Kenyon and E. Rémila. A near-optimal solution to a two-dimensional cutting stock
problem. Mathematics of Operations Research, 25(4):645–656, 2000.

[20] E. L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4:339–356, 1979.

[21] A. Steinberg. A strip-packing algorithm with absolute performance bound 2. SIAM Jour-
nal on Computing, 26(2):401–409, 1997.

[22] P. M. Vaidya. An algorithm for linear programming which requiresO(((m+n)n2+(m+
n)1.5n)L) arithmetic operations. Mathematical Programming, 47:175–201, 1990.

[23] G. Zhang. A 3-approximation algorithm for two-dimensional bin packing. Operations
Research Letters, 33(2):121–126, 2005.

57


	Introduction
	Modifying a Packing
	Classify the Bins
	Case Analysis
	Intervals in the Middle
	Last Remaining Case
	Résumé of the Case Analysis 

	Rounding the Other Side
	Rounding Big and Long Rectangles
	Containers for the Wide and Long Rectangles
	Rounding the Wide and Long Containers


	Algorithm
	Transform an Instance I
	Transform Big Rectangles
	Transform Wide and Long Rectangles
	Construct the Containers

	Packing the Rectangles
	Packing Wide and Long Rectangles into the Containers
	Packing Small Rectangles into Rectangular Regions
	Cutting Out Containers
	Packing Big Rectangles and Containers

	Résumé of the Algorithm

	Conclusion

