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Abstract

We prove the first communication complexity lower
bound for constant-factor approximation of the sub-
modular welfare problem. More precisely, we show
that a (1− 1

2e+ε)-approximation (' 0.816) for welfare
maximization in combinatorial auctions with sub-
modular valuations would require exponential com-
munication. We also show NP-hardness of (1− 1

2e+ε)-
approximation in a computational model where each
valuation is given explicitly by a table of constant
size. Both results rule out better than (1 − 1

2e )-
approximations in every oracle model with a sepa-
rate oracle for each player, such as the demand oracle
model.

Our main tool is a new construction of monotone
submodular functions that we call multi-peak submod-
ular functions. Roughly speaking, given a family of
sets F , we construct a monotone submodular func-
tion f with a high value f(S) for every set S ∈ F (a
“peak”), and a low value on every set that does not
intersect significantly any set in F .

We also study two other related problems: max-
min allocation (for which we also get hardness of
(1− 1

2e+ε)-approximation, in both models), and com-
binatorial public projects (for which we prove hard-
ness of (3

4 + ε)-approximation in the communication
model, and hardness of (1− 1

e + ε)-approximation in
the computational model, using constant size valua-
tions).

1 Introduction

In a combinatorial auction there are k players and
a set of M items (|M | = m). Each player i has a
valuation function vi : 2M → R+. In this paper we
use the standard assumption that the valuation func-
tions are non-decreasing and that vi(∅) = 0. The goal
is to find an allocation of the items (S1, . . . , Sk) to
maximize the social welfare Σivi(Si). There is exten-
sive literature on combinatorial auctions, and the two

most popular lines of research in this area are the de-
sign of computationally efficient truthful mechanisms
for combinatorial auctions and the development of
(non-truthful) approximation algorithms (for various
restricted classes of valuations, such as subadditive
[13, 10] or submodular [21, 17]). This paper belongs
to the latter type.

Specifically, we consider the case where the val-
uation functions are submodular, and ask what is
the best approximation of the optimum social wel-
fare that is achievable in polynomial time. The case
of players with submodular valuations is unique be-
cause of two reasons. First, submodular valuations
have a natural economic interpretation of decreas-
ing marginal utilities. Second, the rich literature on
submodular optimization makes the study of com-
binatorial auctions with submodular valuations an
ideal midway point for the exchange of techniques
and ideas between algorithmic game theory and com-
binatorial optimization.

We would like our algorithms to run in time
that is polynomial in k and m. However, in a
naive representation of the valuation function we may
have to specify one number for each possible bundle,
so the total size is exponential in m. Algorithms
for combinatorial auctions usually assume that the
valuations are represented by oracles. The algorithm
is assumed to make only a polynomial number of
queries to the oracles. Popular queries include the
value query (given a set S, what is v(S)?) and
the stronger demand oracle (given prices p1, . . . , pm
return a bundle S ∈ arg max v(S) − Σi∈Spi). The
state of the art is a (1 − 1/e)-approximation that
uses value queries only [26] (which is optimal in the
value oracle model [19, 22]), and a (1 − 1/e + δ)-
approximation that uses demand queries [16] (where
δ > 0 is some small constant). As one can observe
from these results, different oracles may potentially
enable us to obtain different approximation ratios.



Our goal in this paper is to prove hardness results
that will hold for every oracle.

The literature contains two approaches to deal
with this issue:

• Communication complexity: Nisan and Se-
gal pioneered this approach [24, 25]. Players can
transmit any information and thus answer any
possible oracle query, but the number of bits
transmitted is polynomially bounded. The algo-
rithm and the players are conservatively assumed
to be computationally unbounded.

• Constant-size valuations: This approach was
introduced in [16]. Each player has a valuation
function that depends non-trivially only on a
constant number of items, and its full description
is available to the algorithm (so any query whose
answer depends only on the valuation can be
answered in constant time – see a discussion
in [17]). The algorithm is required to run in
polynomial time.

The two approaches are conceptually at two
opposite ends of the spectrum: either arbitrarily
complex valuations and unbounded computational
power limited only by the communication bottleneck,
or extremely succinct valuations and a polynomial-
time algorithm.

1.1 Our Main Result: The Hardness of Wel-
fare Maximization We prove the following hard-
ness result for welfare maximization, with the same
factor in both models.

Theorem 1.1. For welfare maximization with sub-
modular valuations, a (1− 1

2e + ε)-approximation for
any constant ε > 0 requires exponential communi-
cation. For constant-size submodular valuations, a
(1− 1

2e + ε)-approximation would imply P = NP .

We note that previously, only (1−o(1))-hardness
was known in the communication complexity model,
and we show the first constant-factor hardness in
this model (this question was open since the seminal
paper of Nisan and Segal [25]). In particular, this
settles affirmatively a conjecture of [10]. NP-hardness
of (1 − ρ)-approximation for some very small ρ > 0
was known for constant-size submodular valuations
[17].

Each of our results implies hardness of (1− 1
2e +

ε)-approximation in the demand oracle model, be-
cause demand queries can be simulated in polyno-
mial communication, and because demand queries

can be efficiently implemented for constant-size val-
uations. This improves the known NP-hardness of
( 15

16 + ε)-approximation in the demand oracle model
by Chakrabarty and Goel [8]. We stress that our re-
sults apply not just to the demand oracle model but
to any oracle model where queries are asked sepa-
rately about the valuation function of each player;
see also the discussion in [17].

We remark that the communication complexity
result holds even for a constant number of players, in
the sense that for every ε > 0 there is some fixed k ≥ 2
such that the hardness result holds for k players. For
the special case of 2 players, we get the following.

Theorem 1.2. For welfare maximization with 2
players with submodular valuations, a ( 17

18 + ε)-
approximation for any ε > 0 requires exponential
communication.

For 2 players with constant-size valuations, the
problem can be solved in constant time, so clearly we
cannot expect hardness in this model here.

1.2 Our Techniques At the heart of our hardness
proofs is a new construction of submodular functions,
which has been the stumbling block of previous
attempts to prove similar results. We call these
multi-peak submodular functions: given a family of
(possibly overlapping, exponentially many) sets F ,
we want a monotone submodular function with high
value f(S) for every set S ∈ F (a “peak”), and
a low value on every set that does not intersect
significantly any set in F . The precise parameters
depend on the family F , in particular how much the
sets in F are allowed to overlap. As an aside, this
construction goes in the opposite direction to the
(very different) construction of Balcan and Harvey
[4], where a submodular function is constructed that
has very low value on a given family of sets.

This construction is then leveraged in two possi-
ble ways: for communication complexity, we use the
general framework introduced by Nisan [24]. We use
the probabilistic method to prove the existence of
an exponentially large family F and show a reduc-
tion from the Set Disjointness problem. Each player
has a multi-peak submodular valuation correspond-
ing to a family Fi, where either there is a choice of
sets Si ∈ Fi that are “consistent” (disjoint/equal,
depending on the problem), or not - distinguishing
these two cases requires exponential communication.

For NP-hardness results, we start from Feige’s
proof of inapproximability of Max k-cover [12]. Then
we use the coverage system to construct an instance



with multi-peak submodular functions. In the YES
case, the instance contains matching sets, providing
high value for each player, while in the NO case, some
players are forced to receive low value. In addition,
Feige’s construction guarantees that the valuation
functions depend only on a constant (albeit large)
number of items. Hence the computational hardness
result applies even if the bidders have constant-size
valuations.

1.3 Other Results We use the new multi-peak
submodular functions to prove hardness results for
every oracle in two other related settings. One
is Combinatorial Public Projects (CPP), where we
seek a single set S of at most k items, maximizing∑n
i=1 vi(S). Another one is the Max-min Allocation

Problem, where we want to allocate disjoint sets of
items Si in order to maximize min1≤i≤k vi(Si).

Combinatorial Public Projects. For CPP
there is an (1 − 1/e)-approximation that can be
achieved using value queries only [23]. We show
that this is optimal in any arbitrarily powerful oracle
model even for constant size valuation, strengthening
a previous result that showed that this result can-
not be improved using demand queries [6]. We note
that the situation is different for welfare maximiza-
tion, where 1 − 1/e is optimal for value queries but
not optimal if demand queries are allowed [16]. No
constant-factor communication complexity hardness
was previously known for the CPP problem.

Theorem 1.3. For the CPP problem with submodu-
lar valuations, a ( 3

4 + ε)-approximation for any ε > 0
requires exponential communication. For 2 players
with submodular valuations, a ( 7

8 + ε)-approximation
for any ε > 0 requires exponential communication.
For constant-size submodular valuations, a (1− 1

e+ε)-
approximation would imply P = NP .

Max-min Allocation. Finally, our results for
Welfare Maximization also apply to the Submodular
Max-min Allocation problem. The problem of ob-
taining a max-min allocation was quite heavily stud-
ied recently [5, 3, 14, 2, 7], and most of the work
concentrated on cases where the valuations are spe-
cial cases of submodular valuations. It is known that
the Submodular Max-min Allocation problem admits
a (1− 1/e− ε)-approximation for any fixed ε > 0 and
any fixed number of players k [9], and this is optimal
in the value oracle model, if we want approximation
independent of k [22]. Our hardness results also hold
for a fixed number of players k (approaching 1 − 1

2e
for k fixed but large), and they are independent of a

particular oracle model. When the number of players
is not fixed, the problem is less understood, and the
best known approximation is O(m1/2+ε) [18, 7].

Theorem 1.4. For Max-min Allocation with sub-
modular valuations, a (1− 1

2e + ε)-approximation for
any ε > 0 requires exponential communication. For
constant-size submodular valuations, a (1 − 1

2e + ε)-
approximation would imply P = NP . For Max-min
Allocation with 2 players with submodular valuations,
a ( 17

18 + ε)-approximation for any ε > 0 requires expo-
nential communication.

The proof is obtained by a straightforward adap-
tion of the proof for Welfare Maximization, as we
explain in Section 4.4.

Organization. The rest of the paper is orga-
nized as follows. In Section 2, we give the necessary
preliminaries. In Section 3, we present the construc-
tion of multi-peak submodular functions, the main
technical ingredient of our proofs. In Section 4, we
present the proofs for Welfare Maximization, and we
also note why they apply to Max-min Allocation. In
Section 5, we present the proofs for Combinatorial
Public Projects.

2 Preliminaries

A function f : {0, 1}n → R is submodular if f(A) +
f(B) ≥ f(A ∪ B) + f(A ∩ B) for all A,B (and sets
are naturally identified with {0, 1} vectors). By call-
ing a function monotone, we mean non-decreasing,
i.e. f(A) ≤ f(B) for all A ⊆ B. We use the fol-
lowing connection between continuous and discrete
submodular functions (slightly modifying the condi-
tions used in [20] and [27], where “smooth submodu-
lar functions” were used).

Definition 2.1. We call a function F : [0, 1]n →
R continuous submodular, if all of the following
conditions hold for every i ∈ [n]:

• F is absolutely continuous1 on every line seg-
ment of direction ei.

• The partial derivative ∂F
∂xi

is defined almost ev-
erywhere on every line segment of direction ei.

• ∂F
∂xi

is non-increasing with respect to every coor-
dinate.

Lemma 2.1. If F : [0, 1]n → R is continuous sub-
modular, then its restriction to {0, 1}n is submodular.

1A function F : R→ R is absolutely continuous if for every
ε > 0 there is δ > 0 such that whenever

∑
i |xi − yi| < δ,∑

i |F (xi)− F (yi)| < ε.
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Problem Approximation CC hardness (2 players) CC hardness NP-hardness

submodular welfare 1− 1/e+ δ 17/18 1− 1/(2e) 1− 1/(2e)
submodular max-min∗ 1− 1/e 17/18 1− 1/(2e) 1− 1/(2e)

submodular CPP 1− 1/e 7/8 3/4 1− 1/e

Figure 1: Summary of our hardness results: “CC hardness” refers to communication complexity, or more precisely
inapproximability under polynomial communication, and “NP-hardness” refers to inapproximability for constant-size
valuation functions. The approximation results shown here are in the demand oracle model for submodular welfare
[16], in the value oracle model for submodular max-min allocation (∗for a constant number of players) [9], and in the
value oracle model for submodular CPP [23]. In the value oracle model, 1 − 1/e is optimal for all 3 problems.

Proof. Since F is absolutely continuous, we can ex-
press differences between point values by integrating
the partial derivatives: assuming that x ∈ {0, 1}n
and xi = xj = 0,

F (x + ei)− F (x) =

∫ 1

0

∂F

∂xi

∣∣∣
x+tei

dt.

Since ∂F
∂xi

is non-increasing with respect to every
coordinate, in particular xj , we get

F (x + ei + ej)− F (x + ej) ≤ F (x + ei)− F (x).

This means that F restricted to {0, 1}n is submodu-
lar.

In this paper, (x)+ = max{x, 0} denotes the
positive part of a number. We remark that when
we write (x)2

+, we mean (max{x, 0})2, i.e. for x < 0
this quantity is 0.

3 Construction of Multi-Peak Submodular
Valuations

In this section, we construct a new class of submodu-
lar functions. These functions are the main technical
ingredient of our hardness results. Given a family of
sets F , we would like to define a function that has a
high value on each set in F , and low value on every
set that does not overlap any set in F very much.
We call these functions multi-peak submodular valu-
ations.

The construction is inspired by the “continuous
point of view”, which has been used in previous work
on submodular optimization [22, 26, 27], and the con-
nection between continuous and discrete submodular
functions given by Lemma 2.1. Suppose we start from
a continuous submodular function F : [0, 1]M → R+

that depends only on the sum of coordinates
∑
xi,

in particular F (x) = 1− (1− a
∑
xi)

2
+. In addition,

we have a collection F of vertices of the hypercube
that should become the “peaks” of the function, i.e.
their value should be increased compared to F (x).

We define a region of the hypercube BA ⊂ [0, 1]M

around each vertex A ∈ F , such that these regions
are disjoint. Then if we modify the function F so
that it is continuous submodular on each region sep-
arately, and first partial derivatives are continuous on
the boundary of each region, then the resulting func-
tion is still continuous submodular. Crucially, we can
perform this operation on each region BA indepen-
dently, since there is no interaction between different
(disjoint) regions, due to the local nature of continu-
ous submodularity - we only have to ensure that first
partial derivatives are continuous on the boundary of
each region.

In particular, consider a region defined by BA =
{x ∈ [0, 1]M :

∑
i∈A xi−

∑
i/∈A xi > b}. We can define

FA(x) = 1−(1−a(2
∑
i∈A xi−b))+(1−a(2

∑
i/∈A xi+

b))+. This function is continuous submodular on BA.
Moreover, it agrees with F (x) on the boundary of
BA and also its first partial derivatives are the same.
Therefore, we can glue the two functions seamlessly
at the boundary of BA and the resulting function is
still continuous submodular. A formal description of
this idea follows.

Definition 3.1. A set S ⊆M is said to be b-close to
a set A, if |S∩A|−|S\A| > b. More generally, a point
x ∈ [0, 1]M is b-close to A, if

∑
i∈A xi−

∑
i/∈A xi > b.

Note that S being b-close to A is the same as the
characteristic vector 1S being b-close to A.

Proposition 3.1. Let A,A′ ⊆ M be two sets such
that |A ∩ A′| ≤ b. Then every point x ∈ [0, 1]M

is b-close to at most one of the two sets A,A′. In
particular, every set S ⊆M is b-close to at most one
of A,A′.

Proof. Suppose towards contradiction that x is b-
close to both A and A′. That is,

∑
i∈A xi−

∑
i/∈A xi >

b and
∑
i∈A′ xi−

∑
i/∈A′ xi > b. Adding up these two

inequalities, we get

2b < (
∑
i∈A

xi −
∑
i/∈A

xi) + (
∑
i∈A′

xi −
∑
i/∈A′

xi)



= (2
∑
i∈A

xi −
∑
i

xi) + (2
∑
i∈A′

xi −
∑
i

xi)

= 2
∑
i∈A

xi + 2
∑
i∈A′

xi − 2
∑
i

xi

= 2
∑

i∈A∩A′
xi + 2

∑
i∈A∪A′

xi − 2
∑
i

xi

≤ 2|A ∩A′| ≤ 2b.

We have reached a contradiction and therefore x is
close to at most one of the sets.

Definition 3.2. A family of sets F ⊂ 2M is called
b-intersecting if |A∩A′| ≤ b for all A,A′ ∈ F , A 6= A′.

Definition 3.3. Let F be a b-intersecting family
and a > 0 some constant. A function f is called
(F , a, b)-multi-peak function if it is defined as follows:

1. For a set S that is b-close to some A ∈ F (unique
by the above),

f(S) = 1−(1−a(2|S∩A|−b))+(1−a(2|S\A|+b))+.

2. For a set S that is not b-close to any A ∈ F ,

f(S) = 1− (1− a|S|)2
+.

Lemma 3.1. For every constant a > 0 and every b-
intersecting family F , the (F , a, b)-multi-peak func-
tion f (as defined in Definition 3.3) is monotone and
submodular.

Proof. We define the following function F : [0, 1]M →
R+:

F (x) = 1− (1− a
∑
i

xi)
2
+.

One can verify that this function is continuous sub-
modular, because it is absolutely continuous and its
partial derivatives are non-increasing. In addition,
for each A ∈ F , we define

FA(x) = 1−(1−a(2
∑
i∈A

xi−b))+(1−a(2
∑
i/∈A

xi+b))+

Again, it is easy to see that FA is continuous sub-
modular, by checking that its partial derivatives are
non-increasing.

Define BA = {x ∈ [0, 1]M :
∑
i∈A xi−

∑
i/∈A xi >

b}, i.e. the region b-close to A. We know that these
regions are disjoint for A ∈ F . We define a function
F̃ (x) to be equal to FA(x) for x ∈ BA, and equal to
F (x) when x /∈ BA for any A ∈ F .

We need to prove that F̃ is a continuous sub-
modular function. Since F and FA are continuous

submodular functions, we only have to verify that
they agree on the boundary of BA up to first partial
derivatives. Note that the boundary of BA intersects
any axis-parallel line segment in at most one point.
Therefore this will imply that on any line segment
parallel to ei, F̃ is absolutely continuous, ∂F

∂xi
is de-

fined almost everywhere, and it is non-increasing with
respect to every coordinate. Therefore, F̃ is continu-
ous submodular.

For each boundary point x of BA, we have
2
∑
i∈A xi − b = 2

∑
i/∈A xi + b =

∑
i xi. Therefore,

FA(x) = F (x). In addition, if 1 − a
∑
i xi ≤ 0, then

F (x) = FA(x) = 1 and all partial derivatives are 0.
Finally, assume that 1 − a

∑
i xi > 0. For j ∈ A we

have

∂FA
∂xj

= 2a(1−a(2
∑
i/∈A

xi+b)) = 2a(1−a
∑
i

xi) =
∂F

∂xj
.

Similarly, for j /∈ A, we have

∂FA
∂xj

= 2a(1−a(2
∑
i∈A

xi−b)) = 2a(1−a
∑
i

xi) =
∂F

∂xj
.

Hence F and FA agree on the boundary of BA up to
their first partial derivatives.

Therefore, F̃ is a continuous submodular func-
tion and also monotone (non-decreasing). By
Lemma 2.1, its restriction to {0, 1}M is monotone
submodular. This is the multi-peak submodular
function of Definition 3.3.

4 Welfare Maximization

In this section we prove our three results regard-
ing welfare maximization with submodular valua-
tions: for every constant ε > 0, a (1 − 1

2e + ε)-
approximation requires exponential communication,
is NP-hard even for constant-size valuations, and a
( 17

18 + ε)-approximation for 2 players requires expo-
nential communication . We then note why the same
proof implies a hardness result for max-min alloca-
tions (Theorem 1.4). All results share the same basic
ideas and use multi-peak submodular functions. The
multi-peak submodular functions are defined using a
special kind of a set system:

Definition 4.1. We call a collection of sets S ⊂ 2M

partitioned into groups S1, . . . ,Sk well structured if
all of the following holds:

• The total number of elements in the universe is
m = k · s.

• There is some number s such that for each set
S ∈ S, |S| = s.

5



• |S1| = . . . = |Sk|.

• There exists some b such that for every i ∈ [k]
and every S, S′ ∈ Si, we have |S ∩ S′| ≤ b.

Given a well structured collection, we identify the
k groups of sets with k players. The set of items is
M . For each player i, we define an (Si, a, b)-multi-
peak submodular valuation function vi : 2M → R+.
The precise choice of a, b is application specific and
will be given later.

We will say that an instance is a YES instance
if there exist k disjoint sets, one from each group Si,
whose union is M . An instance is a NO instance if for
any choice of ` ≤ k sets, their union covers at most
a (1 − (1 − 1/k)` + ε)m items. We show later how
such instances can be constructed for the two mod-
els we are interested in, communication complexity
and computational complexity for constant-size val-
uations. The inapproximability gap that we prove is
the result of the intractability of distinguishing be-
tween YES instances and NO instances. We start
with calculating the welfare in YES instances. The
more involved task is to upper bound the welfare in
NO instances.

Proposition 4.1. The optimal welfare in a YES
instance is at least k(1− (1− a(2s− b))+(1− ab)+).

Proof. In a YES instance, there is a set Si ∈ Si
for each bidder i such that the Si’s are disjoint and
cover the universe. A feasible allocation gives Si
to player i, and each player collects value vi(Si) =
1− (1− a(2s− b))+(1− ab)+. So the overall welfare
of this allocation is k(1− (1− a(2s− b))+(1− ab)+).

Consider now a NO instance. There is no such
choice of disjoint sets as in YES instances, and
moreover any selection of ` sets such that Ai ∈ Si
satisfies |

⋃`
i=1Ai| ≤ (1− (1− 1/k)` + ε)ks. Consider

any feasible allocation of disjoint sets (S1, . . . , Sk).
For each Si, let Ai ∈ Si be the set in Si closest to Si,
i.e. maximizing |Si ∩Ai| − |Si \Ai|. Our goal now is
to upper bound the maximum welfare such allocation
can achieve.

For each i, we define variables xi = 1
s |Si ∩

Ai|, yi = 1
s |Si \ Ai|. Without loss of generality,

x1 ≥ x2 ≥ x3 ≥ . . . ≥ xk. For every `, the first
` variables xi satisfy the constraint that

∑`
i=1 xi ≤

(1−(1−1/k)`+ε)k (arising from the properties of the
set system in NO instances). In addition, we have the

constraint
∑k
i=1(xi+yi) ≤ k, meaning that we cannot

allocate more than the total number of elements, ks.
The following technical lemma bounds the value that

can be obtained under these constraints. (We note
that the parameters α, β in the lemma are related to
a, b by α = a · s and β = b/s.)

Lemma 4.1. Let x1, y1, . . . , xk, yk ≥ 0 be such that

• x1 ≥ x2 ≥ . . . ≥ xk,

• for each ` ≤ k,
∑`
i=1 xi ≤ (1− (1− 1/k)` + ε)k,

•
∑k
i=1(xi + yi) ≤ k.

Let v(x, y) = 1 − (1 − α(2x − β))+(1 − α(2y + β))+

if x − β > y, and v(x, y) = 1 − (1 − α(x + y))2
+ if

x− β ≤ y. Then,

k∑
i=1

v(xi, yi) ≤ max
1≤k∗≤k

2αk+1− α2k2

k − k∗
(

(1− 1/k)
k∗ − ε

)2

Moreover, for k = 2 and β ≥ 1
4 + ε we have that

2∑
i=1

v(xi, yi) ≤ 2−
(

1− α
(

2− 1 + αβ

2α

))2

+

.

We defer the proof to Section 4.1. Given this
lemma, we obtain bounds on the ratio between YES
and NO instances.

Corollary 4.1. The ratio between the social wel-
fare in a NO instance and a YES instance is:

• 1 − 1
2e + O(ε) for α = as = 1

2 , β = b/s = ε and
k = Ω(1/ε).

• 17
18 +O(ε) for α = as = 2

3 , β = b/s = 1
2 + 2ε and

k = 2.

Proof. We show the first part by optimizing for the
best value of k∗ in the NO case, for α = 1

2 and β = ε
(see Lemma 4.1): Let z = k∗/k. For large k, we can
approximate (1 − 1/k)2k∗ ' e−2z (the error term is
O(ε) for k∗ ≤ k = Ω(1/ε)). Ignoring O(ε) terms, we
want to maximize the function φ(z) = k− k

4(1−z)e
−2z

over z ∈ (0, 1). By elementary calculus, φ(z) is
maximized at z = 1/2, and the maximum value is
φ( 1

2 ) = k(1 − 1
2e ). In other words, k∗ = k/2 is the

optimal choice, and gives

k∑
i=1

v(xi, yi) ≤ 2αk + 1− α2k2

k − k∗
((1− 1/k)2k∗ − ε)2

≤ k + 1− k

2
(e−1/2 −O(ε))2

=

(
1− 1

2e
+O(ε)

)
k.



In the YES case, the optimum is k(1 − (1 − α(2 −
β))+(1 − αβ)+) = k(1 − 1

2ε(1 −
1
2ε)) ≥ k(1 − ε).

Therefore, the ratio is 1− 1
2e +O(ε).

For the second part, we choose α = 2
3 and

β = 1
2 + 2ε, which gives by Lemma 4.1

2∑
i=1

v(xi, yi) ≤ 2−
(

1− 2

3
(1− ε)

)2

+

≤ 2− 1

9
.

In the YES case, as we argued, the optimum is
2(1− (1− α(2− β))+(1− αβ)+) = 2(1− (1− 2

3 (2−
1
2 − 2ε))(1− 2

3 ( 1
2 + 2ε)) = 2(1− 1

3ε(
2
3 −

1
3ε)) ≥ 2− ε.

Therefore, the ratio is 17
18 +O(ε).

4.1 Proof of Lemma 4.1 This section is devoted
to proving Lemma 4.1. We consider some optimal
solution (x1, y1, . . . , xk, yk) and massage it to get the
specified bounds. The following simple propositions
show several structural properties that an optimal
solution can be assumed to possess.

Proposition 4.2. The sequence x1 ≥ x2 ≥ . . . ≥ xk
is non-zero up to a certain index k∗, xi − β > yi for
i ≤ k∗ and then xi = 0 for i > k∗.

Proof. If xi − β ≤ yi, we can assume that xi = 0 (by
replacing yi by xi + yi and xi by 0, the value doesn’t
change).

Proposition 4.3. If xi = xj, i < j ≤ k∗ then
yi = yj = 0.

Proof. Suppose that xi = xj , i < j ≤ k∗ and suppose
yj ≤ yi 6= 0. The derivative ∂v

∂y at xi equals the
derivative at xk. So we can move some small amount
of mass from yi to yj , while making sure that still
xj − β > yj . Observe that the value of the solution
is the same. But once yi > yj , it is already more
profitable to increase xi. So the case where xi = xj
is not optimal, unless yi = yj = 0.

Proposition 4.4. All the variables yi for i > k∗ are
equal, and at most 1/α. We denote their value by y∗.

Proof. We already know that xi = 0 for i > k∗. If
we have yi > 1/α for any i > k∗, then note that
v(0, yi) = 1 − (1 − αyi)

2
+ = 1, and in fact we can

achieve the same value with yi = 1/α. Therefore, we
can move some amount of yi to another variable and
gain in the objective value. Secondly, if the variables
yi, i > k∗ are not equal, we can gain by making them
equal, due to the concavity of v(0, yi) = 1−(1−αyi)2

+.

Proposition 4.5. For all yi < k∗, yi = 0.

Proof. Consider some yi < k∗ with yi > 0. Notice
that xi > xk∗ (by Claim 4.3 if xi = xk∗ then yi = 0),
and hence the derivative ∂v

∂y at xi is smaller than the

derivative ∂v
∂y at xk∗ . So moving some mass from yi

to yk∗ improves the value of the optimal solution —
a contradiction.

4.1.1 The case of 2 players

Proposition 4.6. k∗ ≥ 1.

Proof. Suppose k∗ = 0. Then, by the previous claims
we have that x1 = x2 = 0 and y1 = y2 = 1. The value
of this solution is 2−2(1−α)2

+. However the solution
in which x1 = y2 = 1 and x2 = y1 = 0 has value
2− (1− α)2

+ − (1− α(2− β))+(1− αβ)+ which is no
smaller by the arithmetic-geometric means inequality.

Proposition 4.7. y1 = 0.

Proof. Suppose y1 > 0. It must be that k∗ = 1 (by
Claim 4.5). If 1−a(2x1−b) ≤ 0 then y1 does not bring
any benefit and moving all the mass of y1 to y2 can
only improve the value of the solution. Otherwise,
moving some mass from y1 to x1 (making sure we
still have 1−a(2x1−b) ≥ 0) will improve the optimal
solution — a contradiction.

Proposition 4.8. If β ≥ 1
2 + 2ε then k∗ = 1.

Proof. By the constraints of the lemma we have that
x1 +x2 +y1 +y2 ≤ 2 and x1 +x2 ≤ 2( 3

4 +ε). Without
loss of generality, x1 + x2 + y1 + y2 = 2, and hence
x1 +x2− y1− y2 = 2(x1 +x2)− (x1 +x2 + y1 + y2) ≤
1 + 4ε. But if k∗ = 2, summing up x1 − β > y1 and
x2 − β > y2 we get x1 + x2 − y1 − y2 > 2β ≥ 1 + 4ε.
This is a contradiction.

Proposition 4.9. x1 = 1+αβ
2α .

Proof. x1 = 1+αβ
2α is the point at which 1 − α(2x1 −

β) = 0, i.e. the first player is saturated and does not
benefit from any additional items. If 1−α(2x1−β) <
0, we can move some mass from x1 to y2 and improve
the optimal solution. If 1 − α(2x1 − β) > 0, we can
move some mass from x2 or y2 to x1 and improve the
optimal solution.

This implies that the following is an optimal
solution: x1 = 1+αβ

2α , y2 = 2 − 1+αβ
2α , x2 = y1 = 0.

The first player gets value 1, and the second player
1− (1− αy2)2

+; hence the optimum is

2∑
i=1

v(xi, yi) = 2−
(

1− α
(

2− 1 + αβ

2α

))2

+

.

This proves the second part of Lemma 4.1.
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4.1.2 The case of many players By the series
of claims we proved above, we have a sequence x1 ≥
x2 ≥ . . . ≥ xk∗ , yi = 0 for i < k∗, and then
yk∗+1 = yk∗+2 = . . . = yk = y∗, xi = 0 for i > k∗. We

aim to upper-bound the total value
∑k
i=1 v(xi, yi).

For i < k∗, we use the bound v(xi, 0) ≤ 2αxi, which
holds since the partial derivative ∂v

∂xi
is always at most

2α. We upper-bound the value of v(xk∗ , yk∗) simply
by 1. For i > k∗, we have v(xi, yi) = 1− (1− αy∗)2,
using the fact that y∗ ≤ 1/α (Proposition 4.4). Hence
we obtain:

k∑
i=1

v(xi, yi)

≤
k∗−1∑
i=1

2αxi + 1 +

k∑
i=k∗+1

(1− (1− αy∗)2).

We have the global constraint
∑k∗

i=1 xi +∑k
i=k∗+1 yi ≤ k, and also

∑k∗

i=1 xi ≤
k(1 − (1 − 1/k)k

∗
+ ε). Subject to these con-

straints, it is profitable to make the variables xi as
large as possible, because they bring more benefit
than the yi variables (see the formula above).
Therefore, we can assume that both constraints

are tight:
∑k∗

i=1 xi = k(1 − (1 − 1/k)k
∗

+ ε), and∑k
i=k∗+1 yi = (k − k∗)y∗ = ((1− 1/k)k

∗ − ε)k. Then

we have y∗ = k
k−k∗ ((1 − 1/k)k

∗ − ε). The objective
value is

k∑
i=1

v(xi, yi)

≤ 2α

k∗−1∑
i=1

xi + 1 + (k − k∗)(1− (1− αy∗)2)

= 2αk
(

1− (1− 1/k)
k∗

+ ε
)

+ 1 + (k − k∗) ·

·

(
1−

(
1− αk

k − k∗
(

(1− 1/k)
k∗ − ε

))2
)

= 2αk
(

1− (1− 1/k)
k∗

+ ε
)

+ 1

+(k − k∗) 2αk

k − k∗
(

(1− 1/k)k
∗
− ε
)

−(k − k∗) α2k2

(k − k∗)2

(
(1− 1/k)k

∗
− ε
)2

= 2αk + 1− α2k2

k − k∗
((1− 1/k)k

∗
− ε)2.

This proves the first part of Lemma 4.1.

4.2 Communication complexity of welfare
maximization Here we prove the first part of Theo-

rem 1.1, and Theorem 1.2: for every constant ε > 0, a
(1− 1

2e + ε)-approximation requires exponential com-
munication. For 2 players, a ( 17

18 + ε)-approximation
requires exponential communication. The basic idea,
as in earlier work on communication complexity of
combinatorial auctions [11], is to reduce from the Set
Disjointness problem. In the Set Disjointness prob-
lem there are k players, each player i holds a string
xi ∈ {0, 1}t. The following theorem establishes the
hardness of Set Disjointness.

Theorem 4.1. ([1]) It requires Ω( t
k4 ) bits of com-

munication to distinguish between the following two
cases:

1. There exists some j such that x1
j = . . . = xkj = 1.

2. For every j, there is at most one player i such
that xij = 1.

The lower bound holds also for randomized algo-
rithms.

Our plan is to reduce Set Disjointness to an in-
stance of combinatorial auctions with multi-peak sub-
modular functions (with t exponential in the number
of items m). Then we would like to show that a
good approximation algorithm will let us decide the
Set Disjointness problem. This will show that a good
approximation algorithm requires exponential com-
munication. The first step is to show the existence of
an exponential well-structured set system.

Lemma 4.2. For a universe M , |M | = ks = m and

for any δ > 0, there is a collection of t = 2Θ(δ2m/k3)

partitions Pj = (Cj1 , . . . , C
j
k) such that

• For each j ∈ [t],
⋃k
i=1 C

j
i = M .

• For each i ∈ [k], j ∈ [t], |Cji | = s.

• For any i ≤ i′ and any j, j′, |Cji ∩ C
j′

i′ | ≤
1+δ
k s.

• For every distinct i1, ...i` and any j1, . . . , j`, we
have |Cj1i1 ∪ . . . ∪ C

j`
i`
| ≤ (1− (1− 1

k )` + δ)ks.

Proof. This is a slight modification of the proba-
bilistic construction of [11]. Consider M partitioned
into s k-tuples (er1, . . . , e

r
k), 1 ≤ r ≤ s. We gener-

ate each partition Pj as follows: from each k-tuple
(er1, . . . , e

r
k), we include each element in exacly one of

the sets Cj1 , . . . , C
j
k, using an independently random

bijection {er1, . . . , erk} → {C
j
1 , . . . , C

j
k}. Thus the first

two conditions are satisfied by construction.

Consider any pair Cji , C
j′

i′ for i 6= i′. Each set
is generated by taking (independently) a random



element from each k-tuple (er1, . . . , e
r
k). Therefore,

the probability of taking the same element is 1/k
for each k-tuple and these events are independent.

The expected size of the intersection |Cji ∩ C
j′

i′ | is
s/k, and by the Chernoff bound, the probability

that the intersection is larger than Pr[|Cji ∩ C
j′

i′ | >
(1 + δ)s/k] < e−Ω(δ2s/k).

Similarly, consider any choice of distinct
(i1, . . . , i`) and any (j1, . . . , j`). Each element ap-
pears in Cj1i1 ∪ . . .∪C

j`
i`

with probability 1−(1−1/k)`,
and hence the expected cardinality of the union is
(1− (1− 1/k)`)ks. We can write |Cj1i1 ∪ . . . ∪ C

j`
i`
| =∑s

r=1Xr where Xr is the number of elements of the
r-th k-tuple that are contained in the union. The ran-
dom variables Xr are independent, in the range [0, k],
and hence by the Chernoff bound Pr[

∑s
r=1Xr >

(1 + δ)E[
∑s
r=1Xr]] < e−Ω(δ2s/k).

If the number of partitions is t, we have O(tk)
combinations of sets to consider. By the union bound,
the probability that any of the bad events above
occurs is O(tk)e−Ω(δ2s/k). For t = 2Θ(δ2s/k2), the
probability is smaller than 1 and hence there is a
collection of partitions satisfying the assumptions.

Given an instance of Set Disjointness, consider
the following well structured collection of sets: We
construct Cji using Lemma 4.2 and we include Cji
in Si if and only if xij = 1. Consider the k
multi-peak submodular functions that are based on
the well-structured collections of sets Si (with β =
b/s = 1+δ

k , which can be made at most ε with
k = Ω(1/ε)). Observe that if there exists some j
such that x1

j = . . . = xkj = 1 then this is a YES
instance. However, if for each two different players
i and i′ and every j it holds that if xij = 1 then

xi
′

j = 0 this is a NO instance. Hence it requires
exponential amount of communication to distinguish
between these two cases (even for 2 players) and
the hardness of approximation in the communication
model follows from Corollary 4.1.

4.3 Computational complexity of welfare
maximization We now prove the second part of
Theorem 1.1. The starting point of our reduction is
Feige’s inpproximability result for Max k-cover [12].
We summarize it here, with some additional useful
properties of the set system that arises from Feige’s
reduction (see also [15] and [17] for some comments
and explanations).

Hardness of Max k-cover. For any fixed ε >
0, it is NP-hard to distinguish the following two cases
for a given collection of sets S ⊂ 2M , partitioned into

groups S1, . . . ,Sk:

1. YES case: There exist k disjoint sets, one from
each group Si, whose union is the universe M .

2. NO case: For any choice of ` ≤ k sets, their
union covers at most a (1−(1−1/k)`+ε)-fraction
of M .

In addition, the set system can be assumed to have
the following properties:

• Every set has the same (constant) size s.

• Each group contains the same (constant) number
of sets g.

• Every element appears in the same (constant)
number of sets d.

• Any two sets intersect in at most εs elements.

We remark that the properties up to the last two
are discussed in [15, 17]. The last two properties
follow from the deterministic construction for max
k-cover in [12], as follows:

The sets are unions of (L− 1)-dimensional layers
in disjoint hypercubes [k′]L, where k′ is the number
of provers, and each hypercube corresponds to a
particular random string r generated by the verifier.
(Here, k′ and L are both constant.) Each set
corresponds to a triple (q, a, i) where q is a question,
a is an answer, and i is a prover. The direction
of the layer that a set uses in a certain hypercube
corresponds to the answer a, and the position (shift)
of the layer corresponds to the prover i. Given a
random string r and a prover i, the question q is
determined by r and i. Therefore different sets for
the same prover i, restricted to the same hypercube
r, must differ in their answer a. Hence, they are
orthogonal in the respective hypercube. In particular,
for each prover i there can be at most L different
sets participating in the same hypercube, one for
each dimension. As the number of provers and L
are constant, there is only a constant number of sets
participating in each hypercube. As shown in [15], it
can be arranged that the number of sets containing
any given element is the same, and by the above it
must be a constant.

For two different provers, the respective sets
restricted to one hypercube are layers indexed by
a different i, hence they are either orthogonal or
disjoint. Either way, any two different sets are either
disjoint or intersect in a 1/k′-fraction of their size in
each hypercube where they both participate. Overall,
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two different sets can intersect in at most a 1/k′-
fraction of their elements. The number of provers k′

can be chosen to be large enough so that 1/k′ ≤ ε
(in any case k′ has to increase as ε → 0, for other
reasons; see [12]).

Reduction. We describe a reduction from the
Max k-cover problem to a combinatorial auction with
submodular valuations which works as follows. Given
an instance of Max k-cover as above, we identify the
k groups of sets with k players. The set of items is the
universe M . For each player i, we define a multi-peak
submodular valuation function vi : 2M → R+. The
size of each set in Si is s (a constant), and the number
of sets is g, also a constant. Hence, the set system
Si covers only a constant number of elements ≤ sg,
and we apply the construction of Definition 3.3 only
to these elements (i.e. other elements have value 0
for player i). From the properties of the Max k-cover
instance, we know that any two sets in Si can overlap
in at most εs elements, hence the parameter b can be
set to b = εs. We also set a = 1

2s . This corresponds
to the parameters α = 1

2 and β = ε, as required by
Corollary 4.1 (here we only appeal to the first case,
with many players). From the hardness of Max k-
cover it follows now that it is NP-hard to distinguish
between the YES and NO instances. The ratio of
optimal values is 1− 1

2e +O(ε), due to Corollary 4.1.

4.4 Max-min allocation We note that the same
proofs apply to the Max-min Allocation problem
as well. This is because the reduction produces
instances such that in the YES case, all players
receive the same value. In the NO case, the minimum
value is upper-bounded by the average value over all
players. Therefore, the gap in terms of the objective
min1≤i≤k vi(Si) is at least as large as in terms of
welfare maximization. In fact the hardness factors
can be (slightly) improved for Max-min allocation,
but we defer this to the full version of the paper.

5 Combinatorial Public Projects

We prove Theorem 1.3 in two parts. Due to the
similarities with welfare maximization, we only point
out the necessary differences.

5.1 Communication complexity of CPP We
reduce from an instance of Set Disjointness to CPP
with submodular valuations as follows. We use
Lemma 4.2 to construct a collection of partitions
(Cj1 , . . . , C

j
k), 1 ≤ j ≤ t. The difference now is

that we use Cj1 for all k players, rather than Cji for

player i. We include Cj1 in collection Si if xij = 1

in the Set Disjointness instance. By Lemma 4.2,
Si is a well structured collection. The valuation vi
of player i is going to be the (Si, a, b)-multi-peak
submodular function of Definition 3.3, where a = 1

2s
and b = 1+ε

k s. The CPP instance is going to be

max{
∑k
i=1 vi(S) : |S| = s}.

In the YES case, all players share an index j
such that x1

j = x2
j = . . . = xkj = 1, and hence

Cj1 ∈ Si for all i ∈ [k]. Then Cj1 is a feasible solution

of value vi(S
j
1) = 1 − (1 − a(2s − b))+(1 − ab)+ =

1− 1+ε
2k (1− 1+ε

2k ) = 1−O(1/k) for each player.
In the NO case, for every index j there is at most

one player i such that xij = 1; hence Cj1 ∈ Si for

at most one player i. By Lemma 4.2, |Cj1 ∩ C
j′

1 | ≤
1+ε
k s = b. By Proposition 3.1, any set S can be b-close

to at most one set Cj1 . Therefore, for any feasible
set S, at most one player derives a value defined by
a b-close set, and all the remaining k − 1 players get
value defined by the formula vi(S) = 1−(1−a|S|)2

+ =
1 − (1 − as)2

+ = 3/4. One player may receive value
close to 1.

For a large number of players (k →∞), the value
per player tends to 1 in the YES case and 3/4 in
the NO case. Therefore, if we could approximate the
CPP problem within a factor better than 3/4, we
could solve the Set Disjointness problem.

For two players, we still use the construction
above, but only consider the first two players. In the
YES case, both players get value close to 1. In the
NO case, one player must get value close to 3/4, while
the other player can get value close to 1. Thus if we
could approximate the CPP problem for two players
within a factor better than 7/8, we could solve the
Set Disjointness problem.

5.2 Computational complexity of CPP Here
we prove the second part of Theorem 1.3. This is
quite simple and does not require our construction of
multi-peak submodular functions. The same reduc-
tion has been used in [6] to prove that CPP is hard to
approximation better than 1−1/e with unit-demand
valuations. The only new ingredient here is the obser-
vation that the valuation functions can be assumed
to depend only on a constant number of items. The
result of [6] already implies that the factor of 1− 1/e
for CPP with submodular valuations cannot be im-
proved in the demand oracle model; we strengthen
this to the case of constant-size valuation functions.

Proof. [Theorem 1.3, part 2] Consider an instance of
Max k-cover as above. Associate players with the
elements of the universe M , and items with the sets in



S. For each player e ∈M , define a valuation function
as follows: ve(T ) = 1 if T contains any set covering
element e, and 0 otherwise. Due to the properties of
the set system, this valuation function depends non-
trivially only on a constant number of items d. It is
a very special monotone submodular function (“unit
demand”) of the form ve(T ) = min{|T ∩De|, 1}.

The objective function of the CPP problem is
now

∑
e∈M ve(T ) which is the number of elements

covered by the sets in T . Subject to the condition
|T | ≤ k, this is NP-hard to maximize within a
1− 1/e+ ε factor.
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