
Learning Disjunctions:

Near-Optimal Trade-off between Mistakes and “I Don’t Know”s

Erik D. Demaine∗ Morteza Zadimoghaddam∗

Abstract

We develop polynomial-time online algorithms for learn-
ing disjunctions while trading off between the number
of mistakes and the number of “I don’t know” answers.
In this model, we are given an online adversarial se-
quence of inputs for an unknown function of the form
f(x1, x2, . . . , xn) =

∨
i∈S xi, and for each such input,

we must guess “true”, “false”, or “I don’t know”, af-
ter which we find out the correct output for that in-
put. On the algorithm side, we show how to make at
most εn mistakes while answering “I don’t know” at

most (1/ε)2O(1/ε)

n times, which is linear for any con-
stant ε > 0 and polynomial for some ε = c/ lg lg n.

Furthermore, we show how to make O
(
n log logn

logn

)
mis-

takes while answering “I don’t know” O(n2 log log n)
times. On the lower bound side, we show that any algo-
rithm making o(n/ log n) mistakes must answer “I don’t
know” a superpolynomial number of times. By contrast,
no previous lower bounds were known, and the best
previous algorithms (by Sayedi et al. who introduced
the model) either make at most 1

3n mistakes while an-
swering “I don’t know” O(n) times with linear running
time per answer, or make O(n/ log n) mistakes while
answering “I don’t know” O(n2) times with exponen-
tial running time per answer. Our lower bound estab-
lishes optimality of the latter mistake bound, assuming
a polynomial number of “I don’t know”s. The running

time of our algorithms (per answer) are (1/ε)2O(1/ε)

n
and Õ(n3), respectively, whereas the first previous al-
gorithm mentioned above makes many mistakes, and
the second one requires Θ(2n) time per answer. The
only previous polynomial-time algorithm with reason-
able number of mistakes achieves a mistake bound of
εn and an “I don’t know” bound of O(n1/ε) which is
super polynomial for any non-constant ε.

∗MIT Computer Science and Artificial Intelligence Laboratory,

32 Vassar St, Cambridge, MA 02139, USA. {edemaine,morteza}
@mit.edu

1 Introduction

Minimizing mistakes. Supervised learning of func-
tions is one of the central areas within machine learning
and computational learning theory. In general, there is
a hidden target function that maps an input vector to
an output, and an algorithm aims to predict the outputs
of various inputs. Specifically, the algorithm is given an
online sequence of inputs, and as each input arrives, the
algorithm makes a prediction of the output, and then
is told the actual output. The classic mistake bound
model of Littlestone [Lit88] counts the total number of
incorrect predictions, and the goal is to minimize that
number over a (typically infinite) adversarial input se-
quence.

In this setting, Littlestone studied the problem of
learning a disjunction, that is, a function with n Boolean
inputs x1, x2, . . . , xn and a Boolean output defined
by the disjunction (Boolean or) of a subset of these
variables and/or their negations. Such functions are our
focus in this paper. In general, n mistakes are necessary
and sufficient for learning disjunctions in the mistake
bound model. Littlestone’s WINNOW algorithm [Lit88]
achieves improved performance when the number r of
relevant features (variables) in the representation of the
target function is low: it makes O(r log n) mistakes.

Trading off with “I don’t know”s. Sayedi, Zadi-
moghaddam, and Blum [SZB10] introduced a new
model for supervised learning of functions that allows
the prediction algorithm to answer “I don’t know” (⊥),
instead of predicting an output, a limited number of
times. The idea is that the algorithm can make fewer
mistakes by trading off with this second parameter, and
such more-accurate predictions may be more useful in
certain applications. This model can be seen as a kind
of fusion between the mistake learning model and the
Knows What It Knows (KWIK) model of Li, Littman
and Walsh [LLW08], where the prediction algorithm
must not make any mistakes (with high probability) but
can instead say “I don’t know” (⊥) whenever it cannot
make an accurate prediction, and the goal is simply to
minimize the number of such answers.

In the hybrid model with both mistakes and “I

{edemaine,morteza}@mit.edu
{edemaine,morteza}@mit.edu

Algorithm Mistakes “I don’t know”s Time per query

[SZB10] n/3 3n/2 nO(1)

[SZB10, Proposition 1] n/ lg n O(n2) Θ(2n)
[SZB10, Proposition 2] n/2 n nO(1)

[SZB10, Proposition 2] modified εn n1/ε nO(1)

Algorithm 1 (§3) εn O
(

(1/ε)41+1/ε

n
)

O
(

(1/ε)41+1/ε

n
)

Algorithm 1 (§3) c n/ lg lg n O(n1+ε) O(n1+ε)

Algorithm 2 (§4) O
(
n log logn

logn

)
O(n2 log log n) Õ(n3)

Table 1: Summary of results from [SZB10] and this paper, for any ε > 0 and some constant c.

don’t know” answers, Sayedi et al. develop an online
algorithm for learning disjunctions that makes at most
n/3 mistakes and 3n/2 ⊥ answers. Can the number of
mistakes be further reduced? Using their ideas, it is
possible to further reduce the number of mistakes to at
most n/k mistakes at the cost of up to nk−1 ⊥ answers,
for any integer k > 0. Thus, a polynomial number of
⊥ answers enable bounding the number of mistakes by
εn, but only for constant ε > 0.

Stronger than this result, Sayedi et al. show that a
simple majority algorithm learns any Boolean function
on n variables while making at most n/ lg n mistakes
and O(n2) ⊥ answers. (Simply set k = n/ lg n in
[SZB10, Proposition 1].)

Unfortunately, their latter algorithm which achieves
the optimal trade-off between mistakes and ⊥ answers
requires exponential time to compute the prediction (as
mentioned in [SZB10]). For each query, they consider all
2n disjunction functions that might be the target, and
perform some O(1)-time processing on each. Sayedi et
al. also develop a polynomial-time algorithm for learning
disjunctions that makes at most n/2 mistakes and n ⊥
answers. Using their ideas, it is again possible to reduce
the number of mistakes to at most n/k, at the cost of
making up to nk−1 ⊥ answers, for any integer k > 0.

Our results. We present online algorithms for learning
disjunctions that are efficient in both a computational
sense (making predictions in polynomial time) and
an error sense (nearly optimally trading off between
mistakes and “I don’t know”s). Table 1 summarizes
our results and those in [SZB10].

In Section 3, for any constant ε > 0, we present an
algorithm that makes at most εn mistakes and at most

(1/ε)2O(1/ε)

n ⊥ answers, while running in (1/ε)2O(1/ε)

n
time per query. In particular, the ⊥ and time bounds
are linear for any constant ε > 0 and polynomial for
ε ≥ c/ lg lg n for a specific constant c. In particular,
for an appropriate ε = c/ lg lg n, we learn a disjunction
while making O(n/ log logn) mistakes and O(n1+ε′) ⊥

answers, while running in O(n1+ε′) time per query.
In Section 4, we present an algorithm that makes

O
(
n log logn

logn

)
mistakes and O(n2 log log n) ⊥ answers,

while running in Õ(n3) time per query.
These two algorithms are the first polynomial-

time learning algorithms making o(n) mistakes and a
polynomial number of ⊥ answers. Our algorithms work
even if the adversary has complete knowledge of the
algorithm, and designs the sequence of queries based on
that information.

In Section 5, we prove that, for some sequences
of queries, any learning algorithm must either make
Ω(n/ log n) mistakes or make a superpolynomial num-
ber of ⊥ answers. Thus, if the algorithm makes a poly-
nomial number of ⊥ answers, it must make at least
Ω(n/ log n) mistakes. Our hardness results hold even for
algorithms that have unbounded computational power,
such as algorithms with exponential running time per
query. Thus we prove the optimality of the mistake
bound in the (exponential-time) majority algorithm of
Sayedi et al. [SZB10] mentioned above. Our lower
bound also shows that the trade-off between mistakes
and “I don’t know”s obtained by our efficient learning
algorithms are nearly tight; in particular, our second al-
gorithm is within a Θ(log log n) factor from the optimal
mistake bound.

Techniques. In Section 3, we develop a learning algo-
rithm that makes at most εn mistakes by maintaining
a categorized knowledge base. We keep d1/εe collec-
tions of subsets of variables such that the label of every
subset in these collections is True, and the correlation
between these subsets is low in a certain sense. In this
way, we can answer new queries based on the new infor-
mation we can get out of them. We show how to update
these collections carefully to keep the desired properties
needed by our algorithm.

In Section 4, we show how to improve the number

of mistakes to O
(
n log logn

logn

)
. In this case, we use linear

constraints to represent the knowledge we have learned
so far, resulting in a convex polytope. Then we use the
algorithm of Lovász and Vempala [LV06] for estimating
the volume of this polytope, to estimate the knowledge
learned from a particular outcome.

In Section 5, we prove hardness results for algo-
rithms that learn disjunction functions by generating a
randomized sequence of queries, and set their correct an-
swers based on algorithm’s answers to ensure that the
algorithm can get rid of only a small fraction of vari-
ables. We keep the size of query sets logarithmic to be
able to set the labels of many queries to either True or
False. This approach allows us to force the algorithm
to make a mistake or say ⊥.

2 Model

Our goal is to learn a target function f known to
belong to the target concept class Hn, which con-
sists of all disjunction functions on n Boolean vari-
ables X = {x1, x2, . . . , xn}. A disjunction function
f : {True,False}n → {True,False} is the disjunction
(Boolean or) of a subset of the variables or their nega-
tions. In fact, we can assume that the function f is
monotone, meaning that f is the disjunction of a sub-
set of the variables (and not their negations). We can
make this assumption because we can consider the nega-
tions as n additional variables, and thereby view f as
monotone on at most 2n variables. This transformation
potentially doubles the value of n; all bounds we state
are in terms of the increased value of n in a monotone
disjunction.

Thus the target function f we aim to learn is defined
by a subset of variables, R ⊆ X, which we call relevant
variables, combined by a disjunction. In other words,
f(Q) measures whether any relevant variables are True
in the query q. Viewing R and Q as Boolean vectors
of length n, f is a Boolean dot product (with and
replacing multiplication and or replacing addition). On
the other hand, we can think of the query Q as a subset
of variables, Q ⊆ X, namely, which variables xi are set
to True. Then f(Q) is True if and only if Q ∩ R 6= ∅,
i.e., the value of at least one of the relevant variables is
True in the input query.

In our setting, a sequence of adversarial queries
arrive online, and for each query Q, we must predict
the label of Q, i.e., the function value f(Q), or we
can say ⊥ (“I don’t know”). Afterwards, we learn the
correct label f(Q) (and thus whether our prediction, if
we made one, was correct). Our goal is to minimize both
the number of mistakes and the number of ⊥ answers.
This bicriterion optimization can be modeled as being
given an upper bound given on the number of mistakes,
and subject to this constraint, we want to minimize the

Algorithm 1 — predicting the label of a query Q

1: if the label of Q can be inferred then return the
inferred label;

2: else if |Q ∩ P | > k then return True;
3: else if Q has some critical subset then return True;

4: else return ⊥.
5: In all cases, update maintained information accord-

ing to Q and its correct label.

number of ⊥ answers.

3 Algorithm based on Critical Subsets

We present a learning algorithm that is efficient in terms
of both error complexity and computational complexity:

Theorem 3.1. For any constant ε > 0, Algorithm 1
(presented below) learns the target disjunction function

while making at most εn mistakes and O((1/ε)41+1/ε

n)
⊥ answers. The algorithm’s running time per query is

O((1/ε)41+1/ε

n).

In particular, we obtain the first polynomial-time
learning algorithm for disjunctions that makes o(n)
mistakes and a polynomial number of ⊥ answers:

Corollary 3.1. For some ε = Θ(1/ log log n), Algo-
rithm 1 learns the target disjunction function with at
most O(n/ log log n) mistakes, and O(n1+ε′) ⊥ answers.
For this subconstant value of ε, the running time per
query is O(n1+ε′).

Proof: Set 1/ε = log4(ε′ lg n/ lg lg lg n) = Θ(log log n).
2

3.1 Overview. Algorithm 1 summarizes our learning
algorithm at a high level. We describe each of the steps
now, and follow up with specific implementation details,
data structures, etc., in Section 3.2.

Maintained information. Throughout the sequence
of queries, the algorithm maintains two disjoint subsets
P−, P+ ⊆ X of variables. We maintain the invariant
that every variable in P− is guaranteed irrelevant (P−∩
R = ∅), and every variable in P+ is guaranteed relevant
(P+ ⊆ R). Let P denote the remaining, undetermined
variables: P = X \ (P− ∪ P+).

The algorithm maintains additional information
about certain queries with True labels (i.e., for which
the disjunction is true). Let k = d1/εe. For each i
with 2 ≤ i ≤ k, the algorithm maintains a family Ai of
subsets of variables such that each subset S ∈ Ai has
size i and S∩R 6= ∅ (so the label for S is True for sure).

At the very beginning, the sets P−, P+, A2, A3,
. . . , Ak are all empty, and P = X.

Step 1: Inferable label. Now consider a query Q,
viewed as the set of variables with True values. First
the algorithm checks whether it can infer the label of
Q based on the maintained information listed above.
Formally, if Q∩P+ 6= ∅, or Q is a superset of one of the
subsets in families {Ai}ki=2, then we answer True; and
if Q ⊆ P−, then we answer False. In either case, we are
guaranteed to be correct by our invariants. Otherwise,
we proceed to the next step.

Step 2: Large sets. If the query Q has at least k
unknown variables, i.e., |Q∩P | ≥ k, then we can afford
to simply answer “True”. If this prediction turns out
to be incorrect (i.e., the correct answer is False), then
we learn that all (at least k) variables in Q ∩ P are
irrelevant, so we add them to P−.

Step 3: Critical subsets. The heart of our algorithm
is the notion (and handling) of critical subsets. For

each i with 2 ≤ i ≤ k, let `i = k4i

. Call a set
S critical with respect to family Aj , where j > |S|,
if there are `j−|S|+1 supersets of S in family Aj , i.e.,
|{T | T ∈ Aj , S ⊆ T}| = `j−|S|+1. We maintain
the invariant that the number of these supersets never
exceeds `j−|S|+1 (see Lemma 3.2 below) by detecting
and handling critical sets.

Specifically, let Q′ = Q \ P−. If Q′ has a critical
subset S ⊆ Q′ with respect to some family Ai, then we
answer True. If this prediction turns out to be incorrect
(i.e., the correct answer is False), then we update the
maintained information as follows. Let j = i− |S|+ 1,
and let T1, T2, . . . , T`j be the `j supersets of set S in
family Ai. (If Q′ has multiple critical subsets with
respect to different families, we choose an arbitrary
critical set S with respect to some family Ai.) For
1 ≤ x ≤ `j , let T ′x = Tx \S. Note that T ′x has size j− 1,
and the label for T ′x must be True because we know that
the label of Tx ∈ Ai is True, and all variables in S ⊆ Q
are definitely not in R. So we can potentially insert the
set T ′x into family Aj−1. We select a disjoint family of
these T ′x sets by the following greedy algorithm: select
any T ′k that has not been selected or discarded, discard
any T ′ms that have nonempty intersection with T ′k, and
repeat until every T ′k has been selected or discarded. If
j > 2, then we add these selected sets to the family
Aj−1. If j = 2, then each selected set contains a single
variable which must be a relevant variable, so we add
them to the set P+. In Lemma 3.3 of Section 3.3 below,
we prove that we always choose at least

√
`j/j sets to

add to Aj−1 (for j > 2) or P+ (for j = 2).

Step 4: Don’t know. If none of the above conditions
hold, we answer ⊥. If the correct label turns out to be
False, we add the variables of Q to P−. If the correct
label turns out to be True, then we add Q to the family
A|Q|.

3.2 Implementation Details. Next we explain how
to maintain P+, P−, P , and the families {Ai}ki=2 in a
data structure, and for each query, how to compute our
prediction and update the data structure. We maintain
P , P−, and P+ by storing, for each variable, to which of
the three sets it belongs. For each family Ai, 2 ≤ i ≤ k,
and for each Boolean variable xj , 1 ≤ j ≤ n, we
store a linked list of sets in the family Ai that contain
variable xj . We prove in Lemma 3.2 below that the size
of each of these linked lists is at most `i Because the
same set appears in multiple linked list, we add links
(pointers) from any copy of a set to the other copies.

When a query Q arrives, we can check in O(n)
time the three conditions: Q ∩ P+ 6= ∅, Q ⊆ P−, and
|Q ∩ P | > k. To check whether Q is a superset of some
subset in one of the families, we can take a variable
in Q and scan over all linked lists of this variable and
any family Aj , 2 ≤ j ≤ k. If none of these conditions
hold, we replace Q with Q′ = Q \ P− because we know
that the variables in P− or P+ are not in any of the
sets in the families. The new set Q′ has size at most k.
For any of the at most 2k subsets of Q, say S, and for
any family Ai with i > |S|, we need to check whether
S is critical with respect to Ai. We take an arbitrary
variable xj ∈ S, and check the linked list for variable xj
and family Ai. We can simply count the supersets of S
in this linked list to check the criticality condition.

We categorize the update operations as follows.
When we predict the label of a query correctly, we
do not need any updates. In other cases, we do the
following:

1. When a query contains a critical set S with respect
to family Ai and its correct label is False, we find
the `j supersets of S in family Ai by scanning the
linked list of some variable in S and family Ai. We
then remove S from these supersets, and in the new
`j sets, we take a greedy approach to select at least√
`j/j disjoint sets among them. Every time we

select one of them, we just need to check all other
sets to eliminate those that have some variables in
common with the selected set.

2. When we add a set S′ to some family Ai, we
should remove all of its supersets in higher families
Ai+1, Ai+2, . . . , Ak. This removal can be done by
taking an arbitrary variable in S′ and scanning the
linked lists of this variable and all families Aj with

i+ 1 ≤ j ≤ k.

3. Again when we add a set S′ to family Ai, we find
every subset S′′ ⊂ S′ that has become critical with
respect to family Ai after inserting S′ to family Ai.
There are at most 2k subsets for S′, and we can
check this criticality condition by scanning and
counting over the linked list of some variable in
S′′ and family Ai. If some set S′′ is critical with
respect to family Ai, we remove its supersets in
families Aj with i + 1 ≤ j ≤ k by scanning some
linked lists.

4. Whenever we add a variable to set P− or P+,
we remove all sets that contain this variable in all
families {Ai}ki=2. This is intended to simplify the
analysis.

Given these implementation details, we can analyze
the running time of our algorithm:

Lemma 3.1. The total running time (answering the
query and updating maintained information based on the

received correct label) is O((1/ε)41+1/ε

n).

Proof: As mentioned in Section 3.2, checking the three
conditions Q ∩ P+ 6= ∅, Q ⊆ P−, and |Q ∩ P | > k
can be done in O(n) time. Checking whether Q is a
superset of some subset in one of the families can be

done in time O(2k
∑k
j=2 `j) ≤ k4k+1

. To find a critical
subset of Q (if there exists any), we check all subsets of
Q \ P− (at most 2k subsets). For each of them we scan

at most k − 2 linked lists of total size at most
∑k
j=2 `j .

So the total running time of this operation is at most

2k
∑k
j=2 `j ≤ k4k+1

.
For updating our families, when we insert some

variable to P− and P+, we scan and remove at most∑k
j=2 j`j ≤ k4k+1

variables from various linked lists.
The total time over, all queries, we spend for these types

of update operations is at most nk4k+1

. When a query
contains a critical set S with respect to family Ai and
its correct label is False, we find the `j supersets of S in
family Ai by scanning the linked list of some variable in
S, and family Ai which takes `i time. We then remove
S from these supersets, and in the new `j sets, we take
a greedy approach to select at least

√
`j/j disjoint sets

among them. Every time we select one of them, we just
need to check all other sets to eliminate the ones that
have some variables in common with the selected set.
This operation takes time `2j ≤ k4k+1

.
The last update operation is when we add a set S

to some family Ai. We need to remove all its supersets.
It can be done by taking an arbitrary variable in S, and
scanning the linked lists of this variable and all families

{Aj}kj=i+1 which takes time
∑k
j=i+1 `j ≤j}kj=i+1. The

other operation, is to find every subset S′ ⊂ S that has
become critical with respect to family Ai after inserting
S to family Ai. There are at most 2k subsets for S, and
we can check this criticality condition by scanning and
counting over the linked list of some variable in S′ and

family Ai. This takes at most 2k`i ≤ k4k+1

time . In
case, some set S′ is critical with respect to family Ai, we
remove its supersets in families {Aj}kj=i+1 by scanning

some linked lists which takes time
∑k
j=i+1 `j ≤ k4k+1

.
2

3.3 Analysis. In this section, we prove some in-
variant structural properties about the families of sets
{Ai}ki=2. We then upper bound the number of mistakes
and ⊥ answers, by analyzing the number of sets in each
family. Because we might remove some sets from a fam-
ily, we count and upper bound the number of sets that
we ever insert into a family during the algorithm.

First we show that the critical sets represent the
maximum level of “density” in our families:

Lemma 3.2. After updating our families based on a
query and its label, for any set S and 2 ≤ i ≤ k, the
number of supersets of S in family Ai is not more than
`i−|S|+1.

Proof: There are two cases that we add sets into
families. The first case is when we answer ⊥ and the
correct label is True. In this case, every subset of the
query is noncritical; otherwise we would have answered
“True” instead of ⊥. Adding this query set to a family
might make some of its subsets critical. This insertion
does not violate anything because it is just one set.

In the other case, the query contains a critical set S
with respect to some family Ai, we answer “True”, and
the correct label is False. So we consider `i−|S|+1 = `j
sets containing S in family Ai, and remove S from them.
Then we select at least

√
`j/j disjoint sets among them,

and insert them into family Aj−1 (only for j > 2).
Because they are disjoint, we just need to prove that
there is no subset of the selected sets that is critical with
respect to family Aj−1 before the update operations.
Suppose not, and one of the selected sets T ′x contains
a set S′ which is critical with respect to family Aj−1

before we perform the update operations. But when
this set became critical, we removed all its supersets
with size more than j − 1. So there should not exist a
set Tx ⊃ T ′x ⊇ S′ in family Ai (note that i > j). So
the selected sets do not contain any critical subset with
respect to Aj . We conclude that inserting them does
not violate any desired property. 2

Now we have the right tool to prove that, when we

answer True for a query that contains some critical set,
we will always find at least

√
`j/j disjoint sets of size

j − 1:

Lemma 3.3. For any query Q that contains some crit-
ical subset S with respect to family Ai, if our predic-
tion is not correct, the number of selected sets of size
j − 1 = i − |S| from our greedy approach is always at
least

√
`j/j.

Proof: Let T1, T2, . . . , T`j be the `j supersets of set S
in family Ai. Define T ′x to be Tx \S for any 1 ≤ x ≤ `j .
First of all, we prove that there cannot be more than√
`j sets among these T ′ sets which share a common

variable xc for any 1 ≤ c ≤ n. Suppose there are more
than

√
`j ≥ `j−1 (this is implied from the definition

of `j ’s) sets in family {T ′x}
`j
x=1 which share a variable

xc in addition to all variables in S. These `j−1 + 1 sets
contradict with Lemma 3.2 because they all share |S|+1
variables and they are all in family Ai, and the number
of them is more than `i−|S|−1+1 = `j−1.

At each step, we select an arbitrary set among T ′

sets, and remove all sets in family {T ′x}
`j
x=1 that have

nonempty intersection with this selected set. Note that
each variable is shared by at most

√
`j sets, and each

selected set has j − 1 variables. So we remove at most
(j−1)

√
`j sets for each selected set. We can imply that

we select at least
`j

1+(j−1)
√
`j
≥
√
`j/j sets. 2

Now we are ready to upper bound the total number
of sets we insert into each family during algorithm. For
2 ≤ i ≤ k, let Di be the maximum sum of the numbers
of sets that we insert in total to families A2, A3, . . . , Ai
during algorithm.

Lemma 3.4. For 2 ≤ i ≤ k, the maximum total
number Di of sets inserted into {Aj}ij=2 is at most

Ui = 3n(i!
∏i
j=2 `j)/4.

Proof: We prove the lemma by induction on i. As
the induction base, we prove an upper bound of U2 =
3n`2/2 on D2. We consider the sets in family A2 in two
cases.

• The sets in family A2 that have been removed at
some point in the algorithm.

• The sets in family A2 that never have been re-
moved, and are present in A2 until the end of algo-
rithm.

Every time we add a variable xj to P− or P+, we remove
all sets in A2 that contain xj . There are at most `2
such sets, and we add at most n variables to P− or
P+. This means that there are at most n`2 sets in

A2 that we remove. On the other hand, every set that
has been inserted into A2, and never has been removed,
are present at the end of algorithm. By Lemma 3.2,
we know that for each variable xj there are at most
`2−1+1 = `2 sets in A2 containing it which means
that there are at most n`2

2 sets present in A2 at the
end of algorithm, i.e., the term 2 in the denominator
of the ratio comes from the fact that each set in A2

has two variables. We conclude that T2 is at most
n`2 + n`2/2 = 3n`2/2.

Now for any i > 2, the total number of sets that we
are present in family Ai at the end of the algorithm does
not exceed n`i/i because every set in Ai has i variables,
and every variable cannot be in more than `i−1+1 = `i
sets in family Ai, this is an implication of Lemma 3.2.
Now it suffices to bound the number of removed sets
from Ai in total. Every time a variable is inserted into
P− or P+, we might remove all sets containing it. Each
variable is contained in at most `i sets in Ai, and this
happens at most n times. So there are at most n`i
sets removed from A3 in this way. For every set S
we add to family Aj , we might remove some sets from
family Ai in two possible ways. We note that |S| = j is
less than i. We might remove a superset of S in Ai or
inserting S to family Aj might make some subset S′ ⊂ S
critical with respect to family Aj , and then we remove
all supersets of S′ in family Ai. In both cases, the
subsets we remove from family Ai should have at least
one common variable with set S. So the number of sets
we remove from Ai because of S does not exceed (i−1)`i.
Because each variable in S is contained in at most `i sets
in Ai (again by Lemma 3.2), and there are at most i−1
variables in S. We also know that the number of sets
S that we insert to families A2, A3, . . . , Ai−1 is at most
Ui−1 by induction. We conclude that Di is at most
n`i/i+n`i+ (i−1)`iUi−1 +Ui−1. By definition of Ui−1

and `i, we have that Di is at most i`iUi−1. So we can
show that Di is at most i!

2

i∏
j=3

`j

D2 =
3

4
i!n

i∏
j=2

`j

2

Finally we are ready to prove Theorem 3.1:

Proof of Theorem 3.1: We might make mistakes
in two situations: (1) when the query has more than
k variables in common with set P , and (2) when the
query contains a critical set with respect to some family.
In the first case, for every mistake we make, at least
k + 1 variables are added to P−, so there are at most
n/(k + 1) mistakes of this type. We just need to prove
that the number of mistakes of the second type is at
most n/k(k + 1).

We have k − 1 families A2, A3, . . . , Ak. We prove
that, for each 3 ≤ j ≤ k, the number of mistakes made
because of a critical set S with respect to family Ai
where j = i− |S| is at most n/(k − 1)k(k + 1) ≤ n/k3.
Therefore there are at most n/k(k + 1) mistakes of the
second type. Every time we make a mistake because of
a critical set S with respect to family Ai, there are at
least

√
`j/j sets added to family Aj−1 (for j > 2) by

Lemma 3.3 where j = i − |S|. Therefore we can make
at most jDj−1/

√
`j mistakes. By Lemma 3.4, we know

that Dj−1 is at most 3n((j − 1)!
∏j−1
j′=2 `j′)/4. Based

on definition of `js, we conclude that the number of
mistakes for this j = i− |S| ≥ 2 is at most

jDj−1/
√
`j =

3nj(j − 1)!
∏j−1
j′=2 `j′

4
√
`j

≤ nk
j+

∑j−1

j′=2
4j′

k4j/2
≤ nk

j+4j/3

k4j/2
≤ n/k3.

We also note that for cases with j = 2, we insert
at least

√
`2/2 ≥ k8/2 > k7 variables to P+ every time

we make a mistake. So the total number of mistakes of
this type (for j = 2) is at most n/k3 because we have
at most n variables to insert to P+. This completes the
claim that the total number of mistakes in n/k.

To bound the number of ⊥ answers, we just note
that for any ⊥ answer with label True, we insert a
set into one of the families. This means that the
number of these types of ⊥ answers is at most Uk =

3n(k!
∏k
j=2 `j)/4 ≤ nk

k+
∑k

j=2 4j

< n(k4k+1−1) which is
what we claim in this theorem. For each ⊥ answer with
label False, we insert some variable to P− which means
the number of them is at most n. This completes the
proof of the upper bound on the number of ⊥ answers.

The desired bound on the running time is proved
separately in Lemma 3.1. 2

4 Algorithm based on Polytope Sampling

In this section, we present a relatively simple algorithm
that makes fewer mistakes at the cost of more running
time per query.

Theorem 4.1. Algorithm 2 (presented below)
learns the target disjunction function while mak-

ing O
(
n log logn

logn

)
mistakes and O(n2 log log n) ⊥

answers. The algorithm’s running time per query is
Õ(n3).

Algorithm 2 tries to find the correct label of the
query if it can be implied based on previous queries.
Similar to Algorithm 1, we define sets of variables P
and P− (but not P+). In addition to these three sets, we

Algorithm 2 — predicting the label of a query Q

1: if the label of Q can be inferred
then return the inferred label;

2: else if |Q ∩ P | > lg n then return True;
3: else if adding constraint

∑
xi∈Q∩P zi ≥ 1 reduces

the volume of LP by a factor of at least n
then return False;

4: else if adding constraint
∑
xi∈Q∩P zi < 1 reduces

the volume of LP by a factor of at least n
then return True;

5: else return ⊥.
6: In all cases, perform updates according to Q and its

correct label.

maintain a linear program (convex polytope) LP , which
is the main new idea of this algorithm. The convex
polytope LP has n variables z1, z2, . . . , zn, one for each
boolean variable. We initialize the linear program with
n constraints zi ∈ [0, 1 + ε], where ε is defined to be
1/(2 lg n). We partition the queries into two types as
follows, and update this convex polytope LP (by adding
an extra linear constraint) only when a query of the
second type comes.

During our algorithm, we need subroutines to find
volumes of some parts of our convex polytope LP . We
can use any of the several available algorithms to find
the volume of or sample a random point from a convex
polytope, but that of Lovász and Vempala [LV06] seems
to be the fastest with running time Õ(n3). The running
time of our algorithm is essentially coming from this
sampling LP subroutine.

An input queryQ has one of the following two types,
each of which is processed in a specific way:

(a) If there are at least lg n variables in P ∩ Q, the
algorithm predicts the label of Q to be true. We do
not update the convex polytope LP in this case. If
we make a mistake, which means that the correct
label of Q is false, we remove the variables of Q∩P
from set P , and insert them into P−.

(b) If |P ∩ Q| ≤ lg n, we define Q′ to be P ∩ Q. We
have three possibilities in this case:

– If adding the linear constraint
∑
xi∈Q′ zi ≥ 1

reduces the volume of LP by at least a mul-
tiplicative factor of n, we predict the correct
label to be False. If this is the correct label,
we perform no update operation. Otherwise
the correct label is true, so we add the extra
linear constraint

∑
xi∈Q′ zi ≥ 1.

– If adding the linear constraint
∑
xi∈Q′ zi < 1

reduces the volume of LP by at least a mul-

tiplicative factor of n, we predict the correct
label to be True. If this is the correct label,
we perform no update operation. Otherwise
the correct label is False, so we add the extra
linear constraint

∑
xi∈Q′ zi < 1.

– If none of the above conditions hold (none
of the two linear constraints are restrictive
enough), we answer ⊥. If the correct label
is True, we add the extra linear constraint∑
xi∈Q′ zi ≥ 1. Otherwise the correct label

is False, so we add the extra linear constraint∑
xi∈Q′ zi < 1.

Any mistake for these type-b queries reduces the
volume of LP by a factor of at least n, and any ⊥
answer reduces the volume by a factor of 1/(1−1/n)
(multiplying the volume by at most 1− 1/n).

To upper bound the number of mistakes and ⊥
answers of our algorithm, we first prove bounds on the
volume of the LP at different stages of the algorithm
using the following lemma.

Lemma 4.1. The volume of LP is (1 + ε)n ≤ 2n at the
start of the algorithm, it never increases, and it never
falls below εn = 1/(2 lg n)n.

Proof: The starting volume is (1+ε)n because we only
have constraints zi ∈ [0, 1 + ε] for each 1 ≤ i ≤ n. The
volume never increases because our only operation is to
add extra constraints. The volume never goes below εn

because the following set of points with volume εn are
always feasible for LP .

We claim that LP has as a feasible solution every
vector z′ = (z′1, z

′
2, . . . , z

′
n) with z′i ∈ [1, 1 + ε] for every

xi ∈ R and z′j ∈ [0, ε] for every xj /∈ R, where R is
the set of relevant variables. We prove that z′ satisfies
all of the added constraints. We add a constraint∑
xi∈Q′ zi ≥ 1 for a set Q′ satisfying either Q′∩R 6= ∅ or

Q′ ∩R = ∅. In the first case, there exists some variable
xi′ ∈ R∩Q′, and we have that z′i′ is in range [1, 1+ε], so
z′ satisfies this constraint. In the second case, we have
that

∑
xi∈Q′ z

′
i ≤ ε|Q′| because none of the variables in

Q′ is in R. On the other hand, the size of Q′′ is at most
lg n because we are in a type-b query. We conclude that
the sum

∑
xi∈Q′′ z

′
i is at most ε lg n = 1

2 , which means
that z′ satisfies these kinds of constraints as well. 2

Now we can bound the total number of mistakes
and ⊥ answers as follows.

Lemma 4.2. The total number of mistakes is at most

n/ lg n + n(2 + lg lg n)/ lg n = O
(
n log logn

logn

)
, and the

number of ⊥ answers is at most O(n2 log log n).

Proof: At first we find an upper bound for the number
of mistakes. We have at most n/ lg n type-a mistakes as
we insert at least lg n variables into set P− by each
of these mistakes. Each type-b mistake reduces the
volume of LP by a factor of n. By Lemma 4.1, the
number of these mistakes should not be more than
logn

2n

εn = n lg(2/ε)/ lg n = n(2 + lg lg n)/ lg n, which
completes the claim of the lemma about the number of
mistakes.

For each ⊥ answer, we add an extra constraint that
chops off at least a 1/n fraction of the volume of LP ,
no matter what the correct label of the query is. This
means that, after every n ⊥ answers, the volume of LP
is reduced by at least a factor of (1 − 1/n)n ≤ 1/e. So
again, by Lemma 4.1, the total number of ⊥ answers
cannot be more than n loge

2n

εn = O(n2 log log n). 2

Finally we can prove our main result of the section:

Proof of Theorem 4.1: The sample complexity
bounds for the number of mistakes and ⊥ answers are
proved in Lemma 4.2. All the checks in our algorithm
can be done in O(n) time. To compute the fraction of
volume eliminated by an extra linear constraint, we just
need to sample lg n random points from the current LP
via lg n calls to the Hit-and-Run algorithm in [LV06],
which takes Õ(n3) amortized time. This completes the
proof of our main result. 2

5 Hardness Result

In this section, we prove that any algorithm for learning
disjunction functions that makes at most a polynomial
number of ⊥ answers must make at least Ω(n/ log n)
mistakes.

We use the following framework to construct hard
instances in order to obtain this hardness result. Pa-
rameters C and k have constant values chosen below.
We construct m = nk queries Q1, Q2, . . . , Qm as fol-
lows. We use only the positive forms of the n variables
X = {x1, x2, . . . , xn} in our queries and in the disjunc-
tion function. To construct a query Qi, 1 ≤ i ≤ m,
we sample C lg n variables uniformly at random from
X with replacement. Let Qi be the set of these C lg n
samples, so that |Qi| ≤ C lg n. (The size is smaller than
C lg n when a variable gets sampled more than once.)

If the answer to query Qi is implied from the correct
answers to the previous queries Q1, Q2, . . . , Qi−1, then
we have no choice but to evaluate the algorithm’s answer
by comparing it to the implied answer. Formally, if
Qi is a superset of one of the previous queries with
label True, then the label of Qi must also be True. On
the other hand, if Qi is a subset of the union of the
previous queries with label False, then the label of Qi
must also be False. In all other cases, the correct label

of query Qi is not implied, i.e., it could be either True
or False; then we wait for the algorithm to answer. If
the algorithm answers ⊥, we choose the correct label to
be True. Otherwise, if the algorithm answers True, we
choose the correct label to be False; and if the algorithm
answers False, we choose the correct label of True; thus
forcing the algorithm to make a mistake.

Now we prove that any algorithm must make either
Ω(n/ log n) mistakes or a superpolynomial number of
⊥ answers. Because our hardness result is information
theoretic, we do not need to assume anything about
the running time of the learning algorithm. Indeed, our
results hold for randomized algorithms as well.

Theorem 5.1. For some C > 10, and for any k ≤
C/2, any learning algorithm for disjunctions (allowing
randomization and unbounded computational power),
after facing the m = nk queries Q1, Q2, . . . , Qm above,
either makes more than n/(10C lg n) mistakes, or an-
swers ⊥ for at least nk−2 times, with probability 1 −
1/nΘ(logn). In other words, any learning algorithm that
makes o(n/ log n) mistakes must answer ⊥ a superpoly-
nomial (more than nk

′
for any constant k′) number of

times in the worst case.

In fact, we prove a stronger claim: the theorem
holds even if we let the algorithm know our strat-
egy, and inform the algorithm about all m queries
Q1, Q2, . . . , Qm in advance. Note that the algorithm
must still work for every sequence of queries, i.e., it
should work with probability 1 over the query distribu-
tion.

Let P− be the set of variables that are not in
the disjunction function based on the information the
algorithm has. In other words, P− is the union of
all query sets whose correct label is False up to now.
The set P− is empty at the beginning, and it grows
gradually.

We claim that P− always has at most n/10 vari-
ables, e.g., after all m queries have been answered. The
algorithm might predict the label True for query Qi to
make us say that the correct label of query Qi is False.
In this case, the algorithm makes a mistake and at most
C lg n variables are added to P−. The only other case
in which we say that the correct label of Qi is False is by
implication, when Qi is already a subset of P−, in which
case no variable gets added to P−. So assuming the al-
gorithm makes at most n/(10C lg n) mistakes, we can
conclude that P− has at most n/10 variables through-
out.

Now we prove that, for many of these queries, the
answer is not implied by the correct answers to the
previous queries. Consequently, the algorithm should
answer ⊥ or make a mistake for many queries, which

gives us the desired result. We use the following two
lemmas:

Lemma 5.1. With probability 1− 1/nΘ(logn), there are
not more than lg n variables in the intersection of two
queries Qi and Qj for every pair of queries i and j.

Proof: Note that there are at most C lg n variables
in Qi, so every time we sample a variable to add
to query Qj , this variable is also in query Qi with
probability |Qi|/n ≤ (C lg n)/n. So the expected
number of variables in both sets Qi and Qj is at most
(C2 lg2 n)/n. By Lemma B.1 in Appendix B, we can
prove that the probability of event |Qi ∩ Qj | > lg n is

at most e(lgn)(1−ln(n/(C2 lgn))) < n− ln(n/(C2 lgn)). On
the other hand, there are

(
m
2

)
< n2l pairs of queries

Qi and Qj . By a union bound, the probability of
existing two queries Qi and Qj with |Qi ∩ Qj | > lg n

is at most n2ln− ln(n/(C2 lgn)) = 1/nΘ(logn) ≤ 1/nα for
any constant α. Because k, C, and α are just some
constants, we can assume that n is sufficiently large so
the desired inequalities hold. 2

The property in the above lemma is independent
of the algorithm’s responses, so it holds with high
probability anyway. The next lemma depends on the
algorithm’s choices, but we prove that it holds with
high probability no matter what decisions the algorithm
makes.

Lemma 5.2. The number of queries Qi for which |Qi \
P−| ≤ lg n is at most n/C with probability 1− 1/nΘ(n)

(no matter how the algorithm answers).

Proof: The query set Qi contains C lg n random
samples from the variable set X. Because P− has
at most n/10 variables, each of these C lg n samples
is also in P− with probability at most 1/10. So the
expected size of Qi ∩ P− is at most (C lg n)/10. So
the probability of event |Qi ∩ P−| ≥ (C − 1) lg n is
less than e0.8C lgn−0.8C lgn ln(1+8) < e−0.95C lgn < n−C

by Lemma B.1. There are m = nk queries so in
expectation, there are nk−C ≤ n−C/2 queries Qi with
|Qi \ P−| ≤ lg n. The probability that there are
more than n/C queries with this property is at most

e(n/C)(1−ln(1+(n/C)/n−C/2)) < e(n/C)(−C/2) lnn = n−n/2

again by Lemma B.1. So the probability that the
number of violating queries exceeds n/C is extremely
small. But the algorithm can choose different answers
to reach different choices for set P−. We note that P−

has at most n/10 variables so there are less than nn/10

choices for P−. By a union bound, we conclude that
the number of violating queries is at most n/C with
probability at least 1−n−n/2+n/10 ≥ 1−n−0.4n for any
set of decisions the algorithm makes. 2

Finally we have all the building blocks needed to
prove Theorem 5.1:

Proof of Theorem 5.1: If the answer to query Qi
cannot be implied based on the previous queries and
their correct answers, the algorithm either makes a
mistake or answers ⊥. So we just need to prove that
for many of the input queries, the correct label of the
query cannot be implied. We can imply the label of Qi
is False if Qi is a subset of P−. In this case, |Qi \ P−|
should be equal to 0. Using Lemma 5.2, we know that
the number of these queries is at most n/C � m = nk.

We are also able to imply the correct label of Qi
when there exists a previous query Qj whose correct
label is True, and Qj \ P− is a subset of Qi. First of
all, we note that Qj \ P− cannot be a subset of Qi, if
there are more than lg n variables in Qj \ P−. Because
there would be more than lg n variables in Qi ∩ Qj in
this case which contradicts Lemma 5.1.

So Qj is one of at most n/C violating queries of
Lemma 5.2. For each Qj with 0 < |Qj \ P−| ≤ lg n,
we pick a variable in Qj \ P− arbitrarily and put it in
set T . So there are at most n/C variables in set T . We
note that if query Qi has empty intersection with set T ,
its label cannot be implied. According to the way we
make Qi, the probability that Qi does not intersect T
is at least (1 − 1/C)C lgn ≥ n−1.5. So in expectation,
there are at least m · n−1.5 − n/C = nk−1.5 − n/C
queries whose labels cannot be implied, and with high
probability the number of such queries is not less than
nk−2 + n/(10C lg n).

We formalize this argument as follows. For large
enough n and k, we know that nk−1.5 − n/C is at
least nk−1.5/2, and nk−2 + n/(10C lg n) is at most
(4/n) ·nk−1.5/2. By applying Lemma B.1, we can prove
that the probability that the number of such queries is
less than nk−2 + n/(10C lg n) is upper bounded by

e−(1−4/n)2·nk−1.5/2 ≤ e−Θ(n).

To conclude all the error probability arguments,
we remind that the claims of Lemmas 5.1, 5.2, and
the above claim hold with probabilities 1− 1/nΘ(logn),
1−1/nΘ(n), and 1−1/eΘ(n) respectively. Using a union
bound, we conclude that the claim of this theorem holds
with probability 1 − 1/nΘ(logn). In other words, the
number of ⊥ answers should be at least nk−2 unless
the algorithm wants to make more than n/(10C lg n)
mistakes. 2

6 Future Directions

I want to highlight three possible streams of future work:

• What is the optimal solution? There are three

main factors in algorithms for learning disjunction
functions studied here:

– Mistake Bound: the maximum total number
of mistakes the algorithm makes.

– ⊥ Bound: the maximum number of times the
algorithm answers with ⊥.

– Query Complexity: The running time per
answer.

It would be ideal to find an algorithm with
O(n/ log(n)) mistakes, O(n) ⊥ answers, and O(n)
running time per query. But is it possible? Even
finding a polynomial time (per query) algorithm
with polynomial number of ⊥ answers and mistake
bound O(n/ log(n)) seems very challenging and in-
teresting. One possible approach is to construct
and update a Markov Chain on the set of target
functions consistent up to now during the algo-
rithm that has two main properties. Its steady-
state distribution is close to uniform, i.e. the ratio
of maximum and minimum probability is at most
a polynomial in n, the number of variables. It has
a polynomial mixing time. This way one can adapt
the idea of halving algorithm, and achieves the de-
sired optimal mistake bound.

• Studying other learning problems in this model:
It would be interesting to see how much one can
reduce the number of mistakes in learning other
concept classes using a polynomial number of ⊥
answers. One good candidate is the set of linear
threshold functions which are a generalization of
disjunctions.

• Alternatives and Generalizations of the model: The
interesting part of this model is to allow answering
with different levels of confidence. In this model,
we have two extreme ends, the algorithm either
answers and make a mistake in the worst case, or
skips the query and answers with ⊥. We could
allow the algorithm to choose between several levels
of confidence (instead of two) and answer. Making
a mistake in each level can have its own cost.

7 Acknowledgement

The second author wants to thank Avrim Blum and
Adam Tauman Kalai for the helpful and insightful
discussions throughout this work.

References

[AS00] N. Alon and J. Spencer. The Probabilistic Method.
John Wiley, 2000.

[CBGZ06] Nicolò Cesa-Bianchi, Claudio Gentile, and Luca
Zaniboni. Worst-case analysis of selective sampling
for linear classification. J. Mach. Learn. Res., 7:1205–
1230, December 2006.

[CBO11] Nicolò Cesa-Bianchi and Francesco Orabona. Bet-
ter algorithms for selective sampling. In Lise Getoor
and Tobias Scheffer, editors, Proceedings of the 28th In-
ternational Conference on Machine Learning (ICML-
11), ICML ’11, pages 433–440, New York, NY, USA,
June 2011. ACM.

[DJ03] Robert P. W. Duin and Piotr Juszczak. Selective
sampling methods in one-class classification problems.
In Proceedings of the 2003 joint international confer-
ence on Artificial neural networks and neural informa-
tion processing, ICANN/ICONIP’03, pages 140–148,
Berlin, Heidelberg, 2003. Springer-Verlag.

[FSST97] Yoav Freund, H. Sebastian Seung, Eli Shamir,
and Naftali Tishby. Selective sampling using the query
by committee algorithm. Mach. Learn., 28:133–168,
September 1997.

[HP97] D. Helmbold and S. Panizza. Some label efficient
learning results. In Proceedings of the tenth annual
conference on Computational learning theory, pages
218–230. ACM, 1997.

[Lit88] N. Littlestone. Learning quickly when irrelevant
attributes abound: A new linear-threshold algorithm.
Machine learning, 2(4):285–318, 1988.

[LLW08] L. Li, M.L. Littman, and T.J. Walsh. Knows
what it knows: a framework for self-aware learning.
In Proceedings of the 25th International Conference on
Machine Learning, pages 568–575. ACM, 2008.

[LV06] László Lovász and Santosh Vempala. Hit-and-run
from a corner. SIAM J. Comput., 35(4):985–1005,
2006.

[RS88] R.L. Rivest and R. Sloan. Learning complicated
concepts reliably and usefully. In Proceedings AAAI-
88, pages 635–639, 1988.

[SZB10] Amin Sayedi, Morteza Zadimoghaddam, and
Avrim Blum. Trading off mistakes and don’t-know
predictions. In J. Lafferty, C. K. I. Williams, J. Shawe-
Taylor, R.S. Zemel, and A. Culotta, editors, Proceed-
ings of the 24th Advances in Neural Information Pro-
cessing Systems (NIPS 2010), pages 2092–2100, Van-
couver, Canada, 2010.

A More Related Work

The idea of having both mistakes and ⊥ answers was
investigated by Helmbold and Panizza [HP97] before
the KWIK framework was introduced. They allow the
algorithm to make some mistakes, and also request some
labels (in our case the answer to some queries). They
study the trade-off between these two types of costs.
An ⊥ answer can also be seen as requesting the answer
to the query. Rivest and Sloan [RS88] also studied a
framework in which the learner algorithm has to make
accurate predictions or says ⊥. In fact, reliable learning

in that setting means that the algorithm cannot make
any wrong predictions which is similar to the KWIK
model.

It is also worth noting that there exists some
interesting connection between our setting and Selective
Sampling methods used in Active Learning. Selective
sampling, as an active learning method, reduces the
cost of labeling supplementary training data by asking
only for the labels of the most informative, unlabeled
examples [DJ03]. In particular, if the algorithm is very
unsure about the label of an example, it means that
the example and its label are very informative, and
therefore the selective sampling algorithm asks for its
label. In our framework, a learning algorithm should
detect these kinds of informative examples, and for
them it should answer ⊥. Because no matter what
label we receive for the example, we will gain lots of
information (and there is no need to risk to make a
mistake). On the other hand, if the algorithm is pretty
sure about the label of an example, the example is not
very informative, and therefore in selective sampling the
algorithm does not ask for the label. In our setting, for
these examples, the algorithm should answer with the
label we are pretty sure about, and in case we make a
mistake, we will receive a huge amount of information.
For more works on selective sampling algorithms, we
refer to [CBGZ06, CBO11, FSST97] .

B Concentration Bounds

We need the following version of Chernoff bound as
appears in [AS00, page 267, Corollary A.1.10 and
Theorem A.1.13]. We change the notation a bit to avoid
confusion with our notation.

Lemma B.1. Suppose Z1, Z2, . . . , Zn are independent
binary random variables, such that Pr{Zi = 1} = pi.
Let µ =

∑n
i=1 pi, and Z =

∑n
i=1 Zi. For any a > 0, we

have that

Pr{Z − µ ≥ a} ≤ ea−(a+µ) ln (1+a/µ)

and Pr{Z − µ ≤ −a} ≤ e−a
2/µ.

	Introduction
	Model
	Algorithm based on Critical Subsets
	Overview
	Implementation Details
	Analysis

	Algorithm based on Polytope Sampling
	Hardness Result
	Future Directions
	Acknowledgement
	More Related Work
	Concentration Bounds

