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Abstract

We show that most algorithms from the literature on
listing the triangles of a graph have a common ab-
straction. Our unifying framework highlights that these
seemingly different algorithms are in fact instantiations
of a single generic procedure, and even suggests some
additional variants. More importantly, it yields parsi-
monious implementations that are in general more ef-
ficient than those described in the original works. In
addition, we show that the running time of nearly every
triangle listing variant is in O(a(G)m), where a(G) is
the arboricity of the graph and m the number of edges.
So far this bound has been proven only for Chiba and
Nishizeki’s (SIAM J. Computing, 1985) triangle listing
algorithm. Finally, algorithmic experimentation reveals
that an improved implementation of this algorithm out-
performs all subsequently proposed algorithms.

1 Introduction

Interest in analyzing the triangles of a graph has in-
creased considerably because of several important con-
cepts in network science, the most prominent examples
being the clustering coefficient [24] and the triad cen-
sus [11]. The latter is an essential ingredient in statisti-
cal network modeling [19, 23], where it needs to be de-
termined repeatedly. We focus on algorithms for listing
all triangles; although there are fast matrix methods for
counting triangles [1], using such methods for the triad
census does not appear to be beneficial [17].

One of the first efficient algorithms for listing all
triangles of a graph G was proposed by Chiba and
Nishizeki [6] and runs in O(a(G)m) time, where m is the
number of edges and a(G) the arboricity of the graph.
Several other algorithms have been proposed (e.g.,
[13, 14, 20, 21]) and proclaimed to be more efficient.
However, these claims have never been substantiated
convincingly.

The theoretical contribution of this paper is the de-
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scription of a unifying framework for triangle listing al-
gorithms. This makes it easy to spot the differences be-
tween various instances, despite their largely differing
original presentation. As a byproduct, the framework
yields even more variant algorithms, and provides sim-
ple proofs that almost all of the known algorithms actu-
ally have a worst-case running time bound ofO(a(G)m).
The practical contribution is an experimental analysis
showing that our variant implementation of Chiba and
Nishizeki’s algorithm is by far the fastest in-memory al-
gorithm to list all triangles of a graph.

2 Triangle Listing Framework

We consider finite simple undirected graphs G = (V,E)
and denote the number of vertices by n = n(G) = |V |
and the number of edges by m = m(G) = |E|. The
neighborhood of a vertex v ∈ V is the set N(v) =
{w : {v, w} ∈ E} of all adjacent vertices, its cardinality
deg(v) = |N(v)| is called the degree of v, and ∆(G) =
maxv∈V {deg(v)} denotes the maximum degree of G.

For finite simple directed graphs G = (V,E) we de-
note the outgoing neighborhood of a vertex v ∈ V by
N+(v) = {w : (v, w) ∈ E}, the outdegree of vertex v
by deg+(v) = |N+(v)| and the maximum outdegree by
∆+(G) = maxv∈V {deg+(v)}. The incoming neighbor-
hood N−(v), indegree deg−(v) and maximum indegree
∆−(G) are defined analogously.

A triad is an induced subgraph on three vertices,
and a triangle is a triad, where each pair of vertices is
connected.

2.1 Algorithm of Chiba and Nishizeki In 1985,
Chiba and Nishizeki proposed an algorithm to list all
triangles of a graph by intersecting the neighborhoods
of adjacent vertices. We will refer to this algorithm as
K3. For efficiency, the intersections are performed in
a certain order which ensures that for each intersection
only the neighborhood of the vertex with smaller degree
needs to be scanned. This is made precise in Alg. 2.1
and is motivated by the following theorem.
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ALGORITHM 2 .1. K3 (Chiba and Nishizeki [6]) 

1. sort vertices such that deg(v1) 2: ... 2: deg(vn); 
2. for u = v1 , ... , Vn-2 do { 
3. for each v E N(u) do mark v; 
4. for each v E N(u) do { 
5. for each w E N(v) do { 
6. if w is marked then { 
7. output triangle { u, v, w}; 
8. } 
9. } 
10. unmark v ; 
11. } 
12. G +- G - u; 
13. } 

THEOREM 2 .1. ( [6]) Foragraph G = (V, E), 

L rnin{deg(u) , deg(v)} :::; 2a(G)m E O(m312
) , 

{u ,v}EE 

where a(G) is the arboricity of G, i.e. , the minimum 
number of forests needed to cover E. 

Since arboricity is related to edge density via 

a(G) = max:H~G { n{Jf~1 } [18], it is rather small in 

sparse graphs which in turn are typical for empirical 
network analysis [9]. 

After intersecting their neighborhood with those of 
their neighbors, vertices are deleted from the graph 
in the last line of the algorithm to avoid intersecting 
the same pairs of neighborhoods again by scanning the 
larger neighborhood. Chiba and Nishizeki propose to 
represent the graph with doubly-linked adjacency lists 
and mutual references between the two stubs of an edge 
to ensure constant time deletion of edges. Since the 
number of triangles in a graph is bounded by a( G)m, 
K3 is worst-case optimal. 

While Chiba and Nishzeki were most likely inter­
ested only in proving that the asymptotic running time 
of Alg. 2.1 is in O(a(G)m), it seems that the rather in­
volved data structures have hampered adoption of the 
algorithm [20]. We show below that substantial im­
provements are possible and that double linkage and 
vertex deletion can be avoided altogether. 

2.2 Othe r A lgorithms Subsequently proposed al­
gorithms for triangle listing can be assigned to one of 
two categories. The first category consists of those that 
intersect, like K3, the neighborhoods of adjacent ver­
tices. Algorithms in the other category turn this view 
around: for each pair of incident edges, the other two 
vertices are tested for adjacency. 
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Figure 1: In a transitive triad, each vertex and edge 
has a unambiguous role. Vertices come first , second, or 
t hird, and edges serve either as the long edge, or as the 
first or second short edge 

N e ighborhood intersection. Algorithms in t his 
category include edge-iterator [20], forward [21], and 
compact-forward [14]. T hey iterate over all edges and 
intersect the neighborhoods of the two a.dja.cent vertices 
using a procedure called sorted-merge-join [5]. While 
t his requires 0( deg( u) + deg( v)) per edge { u, v} , and 
thus more time than K3, it does not require additional 
space for vertex marks. The two variants edge-iterator­
hashed and forward-hashed [20] utilize O(m) extra space 
to represent neighborhoods in hash sets and thus carry 
out the intersection in O(rnin{deg(u), deg(v)}) t ime. A 
combination of K3 and edge-iterator has been termed 
new-listing [14]. 

Adjacency t esting. The complementary ap­
proach is to iterate over all vertices and, for each pair 
of incident edges, test whether the two neighbors are 
also adjacent to each other. Algorithms of this kind 
have been termed node-iterator and node-iterator-core 
in [20]. Both use hash sets to test pairs of vertices 
for adja.cency in constant time, and thus also require 
O(m) extra space. Since adjacency lists are ordered in 
these algorithms, binary search can be used to trade 
space for running t ime. A related technique called t ree­
lister [13] determines a spanning forest, tests whether 
non-tree edges complete a triangle with two incident 
tree edges, removes the forest , and iterates. 

Asymptotic running times of these algorithms have 
not been analyzed in detail. We give Straightforward 
bounds derived from their description in Tab. 1. T hese 
bounds depend on the enumeration order of vertices and 
edges. By choosing a suitable such order we can make 
them match the bound of K3; see Tab. 2 below. 

2.3 Unify ing Fra m ework lt turns out that many 
triangle listing algorithms are best described by aligning 
t he execution with an acyclic orientation of the input 
graph. Let us fix a vertex ordering 1r : V --+ { 1, .. . , n} 
and orient the edges from the lower-numbered vertex 
to the higher-numbered vertex. Let G[1r] = (V, E [1r]) 



strategy extra space variant running time related algorithm
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(
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O(1)
T1+1 O

(
log ∆+/− (G)

∑
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(
deg+(v)
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))
T2+1 O

(
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(
log ∆+/− (G)
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v∈V

(
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∑
v∈V

(
deg+(v)
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node-iterator-core

T2+m O
(
m+

∑
v∈V deg− (v) deg+ (v)

)
node-iterator, tree-lister

T3+m O
(
m+

∑
v∈V

(
deg−(v)

2

))
tree-lister

Table 1: Algorithms and running times by operation count

denote the resulting DAG.
Then, each triangle of G yields a transitive triad in

G[π] relative to which vertices and edges assume unique
roles. Shorthand names for these roles are assigned
as shown in Fig. 1. We refer to an algorithm by the
basic element from which triangles are supposed to be
constructed (edge or vertex with a given role) with the
amount of extra space used by the algorithm (constant
or linear in n or m).

To list each triangle exactly once, intersection-based
algorithms may iterate over all edges and intersect
incoming or outgoing neighborhoods of its vertices
based on the role (L, S1, S2) that the edge is assumed
to play in the triad. The resulting algorithms are listed
and put in relation to previous algorithms in Tab. 1. In
variant L’+n, for example, an edge (u, v) is considered to
be the transitive (long) edge, i.e. (t1, t3), and utilized to
identify triads {t1, t2, t3} by fixing N+(u) and scanning
N−(v) for vertices t2 ∈ N+(u)∩N−(v). Indeed, variant
S1+n also fixes N+(u), but (u, v) is considered to be
edge S1 so that N+(v) is processed instead. With
an appropriate ordering, the combination of these two
variants corresponds to K3, although each variant is
sufficient by itself to list all triangles.

Adjacency-testing algorithms, on the other hand,
iterate over all vertices and examine incident pairs of
edges based on the role (t1, t2, t3) that the vertex is
assumed to play in the triad.

2.4 Orderings As summarized in Tab. 1, the run-
ning time of each variant algorithm hinges on the vertex
ordering π. The ordering employed in K3 is determined
by non-increasing vertex degrees in the input graph. For
ease of exposition, we consider the reverse of this order
and refer to it as degree ordering.

The rationale of this ordering was to reduce the
number of neighbors tested for membership in the
intersection. Since the degree in the input graph is only
an upper bound on the remaining degree after several
vertices have been processed and deleted, a potential
improvement is to dynamically select the next vertex
based on the remaining degree.

Orderings determined by iteratively removing ver-
tices of minimum induced degree in the remaining sub-
graph are called smallest-first ordering [4, 16]. The max-
imum value encountered when eliminating all vertices is
known as the degeneracy [15], width [10], or core num-
ber [22], core(G), of a graph. Since this number equals
arboricity up to a constant factor [25], we obtain easy
bounds on the running time of all instantiations of the
above framework (see Tab. 2). Note that there exists
no vertex ordering π with ∆+(G[π]) strictly less than
core(G) [8].

2.5 Running Times From the explanations given in
Sect. 2.3, the running times presented in Tab. 1 can be
derived as follows.
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variant suffix ordering running time previous results

S1, S2
+1 smallest-first O(a (G)m) S2+1 ≈ (compact)-forward: O(m3/2)
+n degree O(a(G)m) S1+n ≈ K3: O(a (G)m)
+m any O(a (G)m) S2+m ≈ forward-hashed: O(

∑
(u,v)∈E min{deg−(u),deg−(v)})

L, L’
+1 smallest-first O (m (a (G) + ∆−(G))) edge-iterator: O(∆(G)m)
+n degree O(a (G)m) L’+n ≈ K3: O(a(G)m)

+m any O(a (G)m) edge-iterator-hashed: O
(∑

(u,v)∈E min{deg(u),deg(v)}
)

T1, T2, T3
+1 smallest-first O (log (a (G)) a (G)m)

+m smallest-first O(a (G)m)
T1+m ≈ node-iterator-core: O(core(G)m)

T2+m ≈ node-iterator: O(∆(G)2n)

Table 2: Asymptotic running times relative to vertex ordering. These running times derive directly from Tab. 1,
Thm. 2.1 and the characteristics of the smallest-first ordering. Note that smallest-first always applies and in some
cases the ordering has to be reversed, e.g. T3+1 and T3+m

The algorithms based on adjacency testing strat-
egy generate all pairs of outgoing, incoming, or mixed
neighbors of a given vertex v. Consequently, the opera-

tion count of both T1 variants is in O(
∑

v∈V
(
deg+(v)

2

)
),

where each operation consists of an adjacency test.
Given that adjacency testing can be done in constant
time using hash sets, this is also the total running time.
If the extra space is to be avoided, however, binary
search can be used instead at an additional cost of
O(log ∆+/−(G)) time per operation. Running times of
the T2 and T3 variants can be derived analogously.

For the algorithms based on the intersection strat-
egy, we only give the idea of the proof for the example
of L+n. Recall that this variant marks all w ∈ N−(v),
where v is the currently processed vertex, and com-
putes intersections with the outgoing neighborhood of
each w. From the construction of G[π] it is known that
{u ∈ N+(w)|π(u) ≥ π(v)} ∩ N−(v) = ∅. Since the
adjacency lists are ordered, these entries can be omit-
ted from N+(w). Therefore, between two consecutive
intersections with N+(w), the number of relevant en-
tries differs exactly by one, resulting in the presented
running time. Keeping in mind that some entries can
be omitted, the running times of the other variants are
obtained.

The transition from Tab. 1 to Tab. 2 for smallest-
first ordering is obtained by replacing deg+/−(v) with

∆+/−(G) and using the inequality
∑

v∈V
(
deg+/−(v)

2

)
≤∑

v∈V deg+/−(v)2. Since ∆+/−(G) ∈ O(a(G)) for
smallest-first ordering the presented running times di-
rectly derive. For the algorithms running in O(a(G)m)
on an ordering other than smallest-first ordering this
bound is the result of an armortized running time analy-
sis based on Thm. 2.1. Recall that the time to intersect
two hash sets H1 and H2 is in O(min{|H1|, |H2|}).

3 Experimental Study

We have seen that asymptotic analysis does not dis-
criminate between the different instantiations of our al-
gorithmic framework. Algorithmic experimentation is
thus needed to shed more light on practical and relative
performance. All comparable algorithms from above
were implemented and tested on both collected and gen-
erated data. Instead of reporting repetitive details, we
focus on the main findings and the evidence supporting
them.

3.1 Setup All framework instantiations and original
versions of all previous algorithms listed in Tab. 1 except
tree-lister have been implemented by the same person in
C++ using the Standard Template Library and the g++
version 4.6.3 compiler set to the highest optimization
level.

For the algorithms using O(m) additional space, we
used the hash set implementation provided in the C++

Technical Report 1 library extension. We implemented
counting sort to sort vertices by degree in O(n) time,
and used the std::sort routine to sort adjacency lists.
For smallest-first ordering and related orderings, we used
a slight variant of the linear-time algorithm of [4].

The code was executed on a 64-bit machine with
a quad-core 3.40 GHz Intel Core i7-2600K CPU and
16 GB RAM, running Ubuntu 12.04.1 LTS, in a single
thread on a single CPU. Elapsed CPU time is measured
using the gettimeofday command with a precision of
10−6 seconds.

Generated Data. The experimental region is de-
fined by two graph generators with two parameter se-
lection schemes. The generators can be controlled for
the expected number of triangles they contain and differ
strongly in the degree sequences produced.
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network n m #triangles time (sec)
ca-AstroPh 18, 772 198, 050 1, 351, 441 0.011
ca-CondMat 23, 133 93, 439 173, 361 0.004
ca-GrQc 5, 242 14, 484 48, 260 0.001
ca-HepPh 12, 0008 118, 489 3, 358, 499 0.008
ca-HepTh 9, 877 25, 973 28, 339 0.001
cit-HepPh 34, 546 420, 877 1, 276, 868 0.025
cit-HepTh 27, 770 352, 285 1, 478, 735 0.021
cit-Patents 3, 774, 768 16, 518, 947 7, 515, 023 2.425
com-LiveJournal 3, 997, 962 34, 681, 189 177, 820, 130 5.691
com-Orkut 3, 072, 441 117, 185, 083 633, 319, 568 32.433
com-Youtube 1, 134, 890 2, 987, 624 3, 056, 386 0.285
com-DBLP 317, 080 1, 049, 866 2, 224, 385 0.083
com-Amazon 334, 863 925, 872 667, 129 0.080
email-Enron 36, 692 183, 832 727, 044 0.001
email-EuAll 265, 214 364, 481 267, 313 0.025
loc-Brightkite 58, 228 214, 079 494, 728 0.011
loc-Gowalla 196, 591 950, 329 2, 273, 138 0.066
soc-Epinions1 75, 879 405, 740 1, 624, 481 0.027
soc-LiveJournal1 4, 847, 571 42, 851, 237 285, 730, 264 7.469
soc-Slashdot0811 77, 360 469, 180 551, 724 0.030
soc-Slashdot0922 82, 168 504, 230 602, 592 0.032
wiki-Talk 2, 394, 385 4, 659, 565 9, 203, 519 0.407
wiki-Vote 7, 115 100, 762 608, 389 0.006

Table 3: Running times of L+n with degree ordering on data from the Stanford Large Network Dataset Collection,
http://snap.stanford.edu/data/

Small worlds [24]: Given parameters n, 0 < r � n,
and 0 ≤ p ≤ 1, we first create a 2r-regular graph
({1, . . . , n}, {{v, w} : |v − w| ≤ r}) and then add
random noise by flipping each dyad independently
with probability p. This process yields graphs in
which the expected degree and number of triangles
can be controlled via r and the degrees are concen-
trated around 2r.

Preferential attachment with triadic closure [12]:
Given parameters n, 0 < r � n, 0 ≤ p ≤ 1,
we create an n-vertex graph one vertex at a time.
Each new vertex v is made adjacent with r exist-
ing vertices, each of which selected either prefer-
entially according to its degree or randomly from⋃

u∈N(v)N(u). The second case is applied with
probability p. While the number of triangles is con-
trolled via p, the degree sequence follows a power
law.

For both classes sampling is performed using adapta-
tions of the algorithms in [2]. After sampling, vertices
and adjacency lists are permuted randomly via Fisher-
Yates shuffle to prevent potential systematic biases.

We generated graphs from both models using two
families of parameters that are motivated by the empir-
ical data described below (see also Fig. 2). In the first
family, the number of vertices is fixed to n = 250, 000
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Figure 2: Average degree for graphs of Tab. 3. With
the exception of instance com-Orkut, two clusters are
apparent. One with fixed order and increasing edge
density, the other with correlated increases. Dashed
lines indicate these clusters

and r is varied to obtain graphs with an average de-
gree of 6, 12, . . . , 66. In the second family, the number
of vertices and the average degree grow simultaneously
from n = 500, 000 and deg(G) = 6 to n = 5, 000, 000
and deg(G) = 36 in proportional increments of 900, 000
vertices and 6 degrees. Further variance is introduced
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Figure 3: Paired comparisons of running times on generated graphs (in seconds, excl. vertex ordering). Each dot
represents one of four graphs sampled for each of the 17 parameter combinations and two generators; coordinates
are determined from five runs each for two algorithms on the same graph. Dots below (above) the diagonal
indicate that the algorithm on the x-axis is slower (faster)

by choosing p such that the ratio of the number of edges
in the regular graph and the expected number of flips
is 0.5, 1, and 2, and the percentage of attachments that
yield a triangle edge is 25%, 50%, and 75%. For each
of the 17 parameter combinations we sampled 4 graphs;
reported running times are averages over five repetitions
for each generated graph.

Collected Data. We used data downloaded from
the Stanford Large Network Dataset Collection1 which
includes mostly bibliometric, email, and online social
networks. The networks described in Tab. 3 are not
representative of anything, but provide realistic exam-
ples of large network for which clustering coefficients or
triad census may be of interest.

3.2 Findings We present the most interesting con-
clusions from our experiments together with tailored
summaries. Note that in the remainder L denotes L+n.

The first finding relates K3, the implementation
proposed by Chiba and Nishizeki [6], to subsequently
proposed algorithms.

Finding 3.1. K3 is outperformed by subsequently pro-
posed algorithms.

Figure 3(a) compares the running time (excl. time
needed for the orderings) of K3 with the best running

1http://snap.stanford.edu/data/

times observed for other algorithms from the literature.2

It thus shows that an approximately 5-fold improve-
ment has indeed been achieved. In fact, algorithms for-
ward [21] and compact-forward [14] are fastest on every
instance which is consistent with [14, 20]. We note, how-
ever, that K3 is not dominated this clearly by the other
algorithms.

As it turns out, the reasons for the relative ineffi-
ciency of K3 are not in the design of the algorithm, but
in the proposed implementation with doubly-linked lists
and vertex and edge deletions.

Finding 3.2. L with smallest-first ordering, our variant
implementation of K3, outperforms all other algorithms
and framework instantiations.

Figure 3(b) shows that running times are reduced
substantially by our streamlined implementation of the
K3 approach. In fact, L with smallest-first ordering
consistently outperforms all previous algorithms and
nearly always all other instantiations of our framework,
and is roughly 7× faster than the original, cf. Fig.3(a).
On com-Orkut we observe a speedup of about 28×.

Finding 3.3. Running times are affected substantially
by the input vertex ordering. Yet, the extra running
time to determine smallest-first ordering as compared to
degree ordering does not pay off. As a consequence L with
degree ordering outperforms L with smallest-first ordering.

2For the graph family with static (changing) n the algorithms
have been stopped after 5 (25) seconds
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Overall, the theoretical argument that the smallest­
fi rst ordering is the superior ordering because of its 
lower outcome for L v EV (deg;(u)) and therefore for 
algorithm L, cf. Tab. 1, is confirmed3 . Yet the advantage 
is insufficient to compensate for the additional efforts 
during vertex ordering. In Fig. 4(a) it can also be 
seen that while the smallest-first ordering is strongly 
beneficial for regular graphs, such as small worlds, the 
gain rapidly drops with increasing random noise and is 
rather negligible for a skewed degree distribution. As a 
result, L with degree ordering essentially outperforms all 
other algorithms and instantiations of our framework, 
as illustrated in Fig. 4(b). 

FINDING 3.4. The previous findings are reinforced on 
collected data, and the dominant combination of L with 
degree ordering is practical even for large graphs. 

All experiments were repeated on collected data, 
but did not provide any a.dditional insight. As can be 
seen in Tab. 3, concrete running times are negligible 
except for the largest and densest networks. 

4 Conclusion 

We have presented a generic framework for t riangle 
listing algorithms which makes the strategies of known 
algorithms comparable and introduces several other 
possible variants. From this framework, running time 

~ experiments expose that removing the vertex with the 
highest degree in the remain ing subgraph yields always the 
best results for I:vEV deg+(v) deg-(v) and thus is beneficial for 
variants 51, 52, and T2 in many cases 
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bounds for previous algorithms are Straightforward to 
obtain, and several superfluous steps can be avoided in 
implementations. 

The most important findings are that, given an 
appropriate ordering, nearly all algorithms have a worst­
case running time bound of O(a(G)m), and that our 
improved implementation of one of the oldest algorithms 
for triangle listing, K3 [6], is actually the fastest. 

In our experiments, we also observed that the num­
ber of elementary operations is not always indicative 
of the actual running time, mostly due to cache misses 
when switching between a.djacency lists of different ver­
tices. Future work on the most practical variant will 
have to study the consequences of these effects in more 
detaiL 

We finally note that any of these triangle listing 
algorithms, when combined with the Tricode routine 
in [3] and the system of linear equations from Eppstein 
et aL [7],4 can be used to compute the triad census. 
As the running time of the resulting algorithms is 
dominated by the time to list all triangles, the full 
tria.d census can also be determined in O(a(G)m) time. 
This is an improvement on the O(t..(G)m) running time 
of what appears to be the most common approach to 
date [3]. 
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