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Abstract

Computational knot theory and 3-manifold topology have seen significant breakthroughs
in recent years, despite the fact that many key algorithms have complexity bounds that are
exponential or greater. In this setting, experimentation is essential for understanding the
limits of practicality, as well as for gauging the relative merits of competing algorithms.

In this paper we focus on normal surface theory, a key tool that appears throughout
low-dimensional topology. Stepping beyond the well-studied problem of computing vertex
normal surfaces (essentially extreme rays of a polyhedral cone), we turn our attention to
the more complex task of computing fundamental normal surfaces (essentially an integral
basis for such a cone). We develop, implement and experimentally compare a primal and
a dual algorithm, both of which combine domain-specific techniques with classical Hilbert
basis algorithms. Our experiments indicate that we can solve extremely large problems
that were once though intractable. As a practical application of our techniques, we fill gaps
from the KnotInfo database by computing 398 previously-unknown crosscap numbers of
knots.

Keywords Computational topology, knot theory, normal surfaces, Hilbert basis, algo-
rithms, crosscap number

1 Introduction

Efficient computation in knot theory and 3-manifold topology remains a significant challenge,
with important implications for mathematical research in these fields.

Theoretically, many algorithms in these fields are highly complex and appear to be infeasibly
slow. For instance, the algorithm to test whether two 3-manifolds are homeomorphic (topolog-
ically equivalent) has never been implemented, and explicit bounds on its running time have
never been computed; see [33] for just some of some of its highly intricate components.

Practically, however, the right blend of topology, algorithms and heuristics can yield sur-
prising results. Well known examples include the software packages SnapPea [20, 44], Regina
[10], and the 3-Manifold Recogniser [34], which are extremely effective for solving geometric,
decomposition and recognition problems. This is despite the fact that there are often no proofs
to guarantee the efficiency (or in some cases even the termination) of the underlying algorithms.

Obtaining practical algorithms such as these—even without theoretical guarantees—is im-
portant for mathematicians. A striking example was the resolution after 30 years of Thurston’s
long-standing question on the Weber-Seifert dodecahedral space [15], in part due to surprisingly
effective heuristic improvements to an algorithm that had been known since the 1980s [28], and
whose best theoretical complexity bound remains doubly-exponential even today [11].
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This is a typical pattern: where theoretical bounds do exist in low-dimensional topology,
they are often extremely large—sometimes exponential, sometimes tower-of-exponential—and
they often bear little relation to practical running times. In this setting, experimentation plays
two crucial roles:

• It is necessary for understanding the practical boundary between what is and is not feasible;

• It is essential when comparing competing algorithms, since algorithms with smaller theo-
retical bounds do not always performs better in practice.

In this paper we focus on algorithms that enumerate normal surfaces. Normal surfaces are
ubiquitous in algorithmic 3-manifold topology and knot theory, which gives such algorithms
widespread topological applications. We show one such application at the end of this paper,
where we apply our techniques to compute previously-unknown invariants of knots.

The main idea of normal surface theory is to reduce difficult topological searches to discrete
problems on integer points in rational cones [23, 33]. A typical topological algorithm that uses
normal surfaces might run as follows:

• We present the input to our problem as a 3-manifold triangulation T (so, if the input is a
knot, we triangulate the knot complement [23]), and we frame our topological problem as
a search for some embedded surface in T with a particular property (e.g., for the unknot
recognition problem we search for an embedded disc with non-trivial boundary [23]).

• We prove that we can restrict this search to normal surfaces in T , which are properly
embedded surfaces that intersect the tetrahedra of T in a well-behaved fashion. We encode
normal surfaces arithmetically as integer points in the normal surface solution cone C ,
which is a pointed rational cone in R7n where n is the number of tetrahedra in T .

• We prove that there is a finite list L of points in this cone for which, if T has a surface with
the desired property, then some such surface is described by a point in our list L . The
algorithm now builds the cone C , constructs the finite list L , rebuilds the corresponding
surfaces, and tests each for the desired property.

For different topological algorithms, the list L takes on different forms:

(i) For some algorithms, L contains the smallest integer point on each extremal ray of the
cone C . The corresponding surfaces are called vertex normal surfaces.

Topological algorithms of this type include unknot recognition [22, 23], 3-sphere recognition
[29, 39], connected sum decomposition [29], and Hakenness testing [28, 31].

(ii) For some algorithms, L is the Hilbert basis for the cone C ; that is, all integer points
in C that cannot be expressed as a non-trivial sum of other integer points in C . The
corresponding surfaces are called fundamental normal surfaces.

Algorithms of this type include JSJ decomposition [33], computing knot genus in arbitrary
3-manifolds [2, 40], computing the crosscap number of a knot [12], and determining which
Dehn fillings of a knot complement are Haken [30].

(iii) For some algorithms, the list L is much larger again: typically one must first enumerate
all fundamental normal surfaces, and then (often at great expense) extend this list in some
way.
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We emphasise that not all integer points in C correspond to normal surfaces: there are
additional combinatorial constraints called the quadrilateral constraints that such points must
satisfy. As a result, normal surfaces only represent a very small subset of the integer points in
C . This is a powerful observation that underpins much of this paper.

Enumerating vertex surfaces—case (i) above—is a “best case scenario”, and is now a well-
studied problem with highly effective solutions [8, 13]. The running time remains exponential,
but this is unavoidable since the output size is known to be exponential for some families of
inputs [7, 14].

Enumerating fundamental surfaces—case (ii)—is now the next major step to be made in
“practical” normal surface theory, and this is what we address in this paper. We emphasise that,
because of the high dimensionality of the cone and the potential for super-exponentially many
solutions [23], “out-of-the-box” Hilbert basis algorithms such as those found in the excellent
software package Normaliz [3, 4] are impractically slow for all but the simplest inputs. Instead
we must marry classical Hilbert basis algorithms with the structure and constraints of normal
surface theory. The result of this marriage, as described in this paper, is the first practical
software for enumerating fundamental normal surfaces.

It is widely noted that no one algorithm for Hilbert basis enumeration is superior in all
settings [3, 19, 37]. For this reason, we develop and experimentally compare two algorithms,
which at their core are based upon two modern Hilbert basis algorithms:

• Our primal algorithm draws upon the primal Hilbert basis algorithm described by Bruns,
Ichim and Koch [3, 4]. In brief, we (i) enumerate all vertex normal surfaces; (ii) use these
to build a piecewise-convex representation of the non-convex portion of C that satisfies
the quadrilateral constraints; and then (iii) run the Bruns-Ichim-Koch algorithm over each
convex piece and combine the results.

• Our dual algorithm is based on the dual Hilbert basis algorithm of Bruns and Ichim [3],
based on earlier work by Pottier [38]. This is an inductive algorithm that generalises the
double description method for enumerating extreme rays of a polyhedron [8, 21, 35]. Our
algorithm closely follows the general Bruns-Ichim method, with an additional “filtering”
step that enforces the quadrilateral constraints at each intermediate stage.

Through detailed experimentation over a census of 10,986 triangulations whose cones have
up to 245 dimensions, we find that the primal algorithm is both faster and more consistent in
performance. As well as comparing the primal and dual algorithms, we use our experiments to
study the bottlenecks of the primal algorithm, and thereby identify avenues for future improve-
ment.

As an illustration of its applicability, we use the primal algorithm to compute 398 previously-
unknown crosscap numbers of knots. The crosscap number is a knot invariant that is related to,
but offers distinct information from, the knot genus [18, 36]. There is still no general algorithm
known for computing crosscap numbers, and our results go a significant way towards filling in
the 2640 missing crosscap numbers from the online KnotInfo database of knot invariants.

All implementations use the freely-available software package Regina [5, 10], and the primal
algorithm also incorporates portions of Normaliz 2.10.1. The primal and dual algorithms are
now built directly into Regina, and the additional code for computing crosscap numbers can be
downloaded from http://www.maths.uq.edu.au/~bab/code/.

2 Preliminaries

Here we give a very brief overview of triangulations and normal surfaces. In keeping with the
focus of this paper, we concentrate on the algebraic formulation at the expense of geometric
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insight; for further information the reader is referred to the excellent summary in [23].
Throughout this paper, the input for a topological problem is a 3-manifold triangulation

T , built from n tetrahedra by affinely identifying (or “gluing together”) some or all of the 4n
tetrahedron faces in pairs so that the resulting topological space is a 3-manifold (possibly with
boundary).

Such triangulations are more general than simplicial complexes: as a result of the face gluings,
different edges of the same tetrahedron might be identified together, and likewise with vertices.
Two faces of the same tetrahedron may even be glued together. This general definition allows us
to express rich topological structures using few tetrahedra, which is important for computation.

A normal surface in T is a properly embedded surface that meets each tetrahedron in
a (possibly empty) disjoint union of normal discs, each of which is a curvilinear triangle or
quadrilateral. Each triangle separates one vertex of the tetrahedron from the others, and each
quadrilateral separates two vertices from the others, as illustrated in Figure 1(a). Normal
surfaces may be disconnected or empty.

(a) Examples of normal discs (b) The seven disc types in a tetrahedron

Figure 1: Normal triangles and quadrilaterals

There are seven types of disc in each tetrahedron, defined by which edges of the tetrahedron a
normal disc meets. These include four triangle types and three quadrilateral types, all illustrated
in Figure 1(b). The vector representation of a normal surface S is a vector v(S) ∈ Z7n, where
the 7n elements of v(S) count the number of discs of each type in each tetrahedron. Given
v(S), it is simple to reconstruct the surface S (up to an isotopy that preserves the simplices of
T ).

For each normal surface S, v(S) satisfies the matching equations. These are 3f linear ho-
mogeneous equations derived from T , where f is the number of non-boundary faces of T . We
express these equations as A ·v(S) = 0, where A is a 3f ×7n matching matrix. In essence, these
equations ensure that triangles and quadrilaterals in adjacent tetrahedra can be joined together.
The matching matrix A is sparse with small integer entries. The normal surface solution cone
C is the rational cone C = {x ∈ R7n |Ax = 0, x ≥ 0}, which is a pointed cone with vertex at
the origin.

No normal surface S can have two different types of quadrilateral in the same tetrahedron,
since these would necessarily intersect (contradicting the requirement that S be properly embed-
ded). We say that a vector x ∈ R7n satisfies the quadrilateral constraints if, for each tetrahedron
∆ of T , at most one of the three coordinates of x that counts quadrilaterals in ∆ is non-zero.
Running through all n tetrahedra, this gives us n distinct constraints of the form “at most one
of xi, xj , xk is non-zero”. The quadrilateral constraints are non-linear, and their solution set is
non-convex.

A point x ∈ R7n is called admissible if it lies in the cone C and satisfies the quadrilateral
constraints. By a theorem of Haken [22], an integer vector x ∈ Z7n represents a normal surface
if and only if x is admissible. The admissible region of C is the set of all admissible points in
C .

Let P ⊂ Rd be any pointed rational cone with vertex at the origin, and let P ∩ Zd denote
all integer points in P. Then the Hilbert basis of P∩Zd, denoted Hilb(P∩Zd) or just Hilb(P)
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for convenience, is the minimal set of integer points that generates all of P ∩Zd under addition.
Equivalently, Hilb(P) is the set of all x ∈P∩Zd for which, if x = y+z with y, z ∈P∩Zd, then
either y = 0 or z = 0. Hilbert bases are finite and unique [24, 43], and have many applications
[17]. They can be defined more generally, but for this paper the definition above will suffice.

A fundamental normal surface is a normal surface S for which, if v(S) = v(T ) + v(U) for
normal surfaces T and U , then either v(T ) = 0 or v(U) = 0. The fundamental normal surfaces
are represented by the admissible points in Hilb(C ), i.e., those points of Hilb(C ) that satisfy
the quadrilateral constraints.

A vertex normal surface is a normal surface S for which v(S) lies on an extremal ray of C
and the elements of v(S) have no common factor.1 It is clear that every vertex normal surface
is also a fundamental normal surface, but in general the converse is not true.

3 The primal algorithm

We begin this section by outlining the primal algorithm described by Bruns, Ichim and Koch
[3, 4] for enumerating Hilbert bases in general. Following this, we embed this into a larger
algorithm tailored for enumerating fundamental surfaces that exploits the structure provided by
normal surface theory.

The Bruns-Ichim-Koch algorithm comes in several forms [3, 4]; here we describe the variant
most relevant to us. Let P ⊂ Rd be a pointed rational cone with vertex at the origin. The
Bruns-Ichim-Koch algorithm takes as input the extremal rays of P, and computes the Hilbert
basis Hilb(P). The following is an overview of the procedure; full details can be found in [3].

1. Use a variant of Fourier-Motzkin elimination to compute the supporting hyperplanes for
P, and triangulate P into simplicial subcones (cones whose extremal rays are linearly
independent).

2. For each simplicial subcone S , build the semi-open parallelotope spanned by the small-
est integer vector on each extremal ray of S , as shown in Figure 2(a). Specifically, if
the extremal rays are defined by integer vectors v1, . . . ,vk, we build the parallelotope
{
∑
λivi | 0 ≤ λi < 1}.

(a) Building a semi-open parallelotope (b) All integer points in the parallelotope

Figure 2: Building parallelotopes in the primal algorithm

3. Identify all integer points within each semi-open parallelotope, as illustrated in Figure 2(b),
and combine these into a single list, which generates all of P ∩ Zd. Reduce both the
intermediate and final lists by removing redundant generators (i.e., vectors that can be
expressed as non-trivial sums of others in the lists). The final reduced list is the Hilbert
basis Hilb(P).

1There are several definitions of vertex normal surface in the literature; others allow common factors [6, 29],
or use the double cover if S is one-sided in T [15, 42]. Our definition here follows that of Jaco and Oertel [28].
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In our setting, we could run the Bruns-Ichim-Koch algorithm directly over the normal surface
solution cone C ⊂ R7n, but this is typically infeasible given the high dimensionality of C .
Moreover, it is wasteful: our aim is to enumerate fundamental normal surfaces, and so we do
not need all of Hilb(C ), but just its admissible points.

Our algorithm, instead of triangulating all of C , triangulates only the (non-convex) admis-
sible region of C . We call a face F ⊆ C admissible if every point x ∈ F is admissible. In
particular, note that the vertex normal surfaces correspond precisely to the admissible extremal
rays of C . A maximal admissible face of C is an admissible face that is not a strict subface of
another admissible face.

One can show that the admissible region of C is precisely the union of all maximal admissible
faces [9, 28]; in essence this decomposes the non-convex admissible region of C into a union of
convex subcones. Note that maximal admissible faces may have different dimensions, and if
we truncate the origin (which is common to all faces) then the admissible region may even be
disconnected.

Our strategy is to enumerate all maximal admissible faces of C , and then use the Bruns-
Ichim-Koch algorithm to triangulate and compute the Hilbert basis for each. This has the
advantage that maximal admissible faces are often significantly simpler than the full cone C :
they have lower dimension [9], and are often generated by very few admissible extremal rays [7].
This can significantly reduce the burden on the general Hilbert basis enumeration procedure.
The overall algorithm is as follows:

Algorithm 1 (Primal algorithm for fundamental normal surfaces). To enumerate all funda-
mental normal surfaces in a given triangulation:

1. Enumerate all vertex normal surfaces—that is, all admissible extremal rays of C —using
the algorithms in [6] and [13], which are optimised specifically for normal surface theory.
Let V be the resulting set of admissible extremal rays.

2. Using V as input, enumerate all maximal admissible faces of C (see Algorithm 3 below).

3. For each maximal admissible face F ⊆ C , identify which rays in V are subfaces of F , and
pass these rays as input to the Bruns-Ichim-Koch algorithm which will then enumerate
Hilb(F ). The union

⋃
Hilb(F ) over all maximal admissible faces F is is precisely the set

of all vector representations of fundamental normal surfaces.

The correctness of the algorithm follows from the following observation:

Lemma 2. A vector x ∈ R7n represents a fundamental normal surface if and only if there is
some maximal admissible face F ⊆ C for which x ∈ Hilb(F ).

Proof. Let x = v(S) where S is a fundamental normal surface. Since x is an admissible point
of C , it must belong to some maximal admissible face F ⊆ C . If x /∈ Hilb(F ) then there are
non-zero integer vectors y, z ∈ F for which x = y + z. Since F is an admissible face of C
it follows that y = v(T ) and z = v(U) for some normal surfaces T and U , contradicting the
fundamentality of S.

Conversely, suppose that x ∈ Hilb(F ) for some maximal admissible face F ⊆ C . Then x
is an admissible integer vector of C , and so x = v(S) for some normal surface S. If S is not
fundamental then v(S) = v(T ) + v(U) for normal surfaces T and U with v(T ),v(U) 6= 0.
Since they represent normal surfaces, both v(T ),v(U) ∈ C , and so any face of the cone C
that contains v(S) must contain both summands v(T ) and v(U) as well. In particular we have
v(T ),v(U) ∈ F , contradicting the assumption that x = v(T ) + v(U) ∈ Hilb(F ).
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In the remainder of this section we expand upon steps 2 and 3 of Algorithm 1.
We represent faces F ⊆ C using zero sets [21]. For each face F ⊆ C , the zero set of F is a

subset of {1, . . . , 7n} indicating which coordinate positions are zero throughout F . We denote
this zero set by Z(F ), and define it formally as Z(F ) = {k |xk = 0 for all x ∈ F}.

Because C is of the form {x ∈ R7n |Ax = 0, x ≥ 0}, zero sets effectively encode the support
hyperplanes for each face: it is then clear that for any two faces F,G ⊆ C we have Z(F ) = Z(G)
if and only if F = G, and Z(F ) ⊆ Z(G) if and only if G ⊆ F . Zero sets can be stored and
manipulated efficiently in code using bitmasks of length 7n.

The enumeration of maximal admissible faces makes use of admissible zero sets, which cor-
respond to admissible faces of C . We call a set z ⊆ {1, . . . , 7n} admissible if the corresponding
zero/non-zero coordinate pattern satisfies the quadrilateral constraints in R7n; that is, for each
tetrahedron ∆ of our triangulation, at most one of the three coordinate positions that counts
quadrilaterals in ∆ does not appear in z.

Algorithm 3 (Maximal admissible face decomposition). Given the set V of all admissible
extremal rays of C , the following algorithm enumerates all maximal admissible faces of C .

1. Build zero sets for all rays R ∈ V and store these in the set S1. Initialise an empty output
set M, which will eventually contain the zero sets for all maximal admissible faces of C .

2. Inductively build sets S2,S3, . . . as follows. To build the set Sk:

(a) For each zero set z ∈ Sk−1, find all v ∈ S1 for which z * v and z ∩ v is admissible.
For each such v, insert z ∩ v into Sk. If no such v exists, insert z into the output set
M.

(b) Reduce Sk to its maximal elements by set inclusion. That is, remove all z ∈ Sk for
which there exists some strict superset z′ ∈ Sk.

(c) If Sk is empty, terminate the algorithm and return the output set M.

The key observation is that each set Si, once constructed, contains precisely the zero sets
for all admissible faces of dimension i. A full proof of correctness and termination will be given
shortly.

First, however, we make a simple observation regarding zero sets. Recall from standard
polytope theory that, for any two faces F and G of a polyhedron P, the join F ∨ G is the
unique smallest-dimensional face of P that contains both F and G, and that for any face
H ⊆P with F,G ⊆ H we have F ∨G ⊆ H [45].

Lemma 4. For any two faces F and G of the normal surface solution cone C , we have Z(F ∨
G) = Z(F ) ∩ Z(G).

Proof. Since F ∨ G ⊇ F,G, any coordinate position that takes a non-zero value in either F or
G also takes a non-zero value somewhere in F ∨G. Therefore Z(F ∨G) ⊆ Z(F ) ∩ Z(G).

Let H be the face of C obtained by intersecting C with the supporting hyperplanes {xi = 0}
for all i ∈ Z(F )∩Z(G). It is clear that Z(F )∩Z(G) ⊆ Z(H). Moreover, F,G ⊆ H since every
point in F or G lies on all of the supporting hyperplanes listed above. Therefore F ∨ G ⊆ H,
and so Z(F ) ∩ Z(G) ⊆ Z(H) ⊆ Z(F ∨G).

We now have Z(F ∨G) ⊆ Z(F ) ∩ Z(G) ⊆ Z(F ∨G), and so Z(F ∨G) = Z(F ) ∩ Z(G).

We can now move on to the full proof of correctness and termination for Algorithm 3.

Proof of correctness and termination. We first prove by induction that, once constructed, each
set Si contains precisely the zero sets for all admissible faces of C of dimension i.
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This is clearly true for i = 1, since the 1-dimensional faces of C are precisely the extremal
rays, and we use all admissible extremal rays of C to fill S1 in step 1 of the algorithm.

Consider now some i > 1. We assume our inductive hypothesis for both Si−1 and S1, and
prove it for Si in three stages:

(i) Every y ∈ Si is the zero set Z(F ) for some admissible face F ⊆ C of dimension ≥ i.
Suppose that y is constructed in step 2(a) of the algorithm as y = z∩v, where z ∈ Si−1 and
v ∈ S1. By the inductive hypothesis we have z = Z(G) and v = z(R) for some admissible
faces G,R ⊆ C with dim(G) = i− 1 and dim(R) = 1.

By Lemma 4 we have y = Z(G ∨ R). Because step 2(a) of the algorithm only constructs
admissible zero sets y = z ∩ v, it follows that G ∨ R must be an admissible face. Because
step 2(a) only considers pairs for which z * v, it follows that R * G and therefore G ∨R
has strictly higher dimension than G; that is, dim(G ∨R) ≥ i.

(ii) For every admissible i-dimensional face F ⊆ C , we have Z(F ) ∈ Si.
Let G ⊆ F be any (i− 1)-dimensional subface of F , and let R ⊆ F be any extremal ray of
F not contained in G. Since F ⊇ G,R we have F ⊇ G ∨ R, and since i − 1 = dim(G) <
dim(G ∨ R) ≤ dim(F ) = i it follows that dim(F ) = dim(G ∨ R), and hence F = G ∨ R.
By Lemma 4 we then have Z(F ) = Z(G) ∩ Z(R).

Since F is admissible, so are G and R, and it follows from the inductive hypothesis that
Z(G) ∈ Si−1 and Z(R) ∈ S1. Because R * G we have Z(G) * Z(R), and we already know
from F that Z(F ) = Z(G) ∩ Z(R) is admissible. Therefore the set Z(F ) = Z(G) ∩ Z(R)
is inserted into Si in step 2(a) of the algorithm.

Furthermore, Z(F ) is not removed from Si in step 2(b) of the algorithm. This is because,
by stage (i) above, any strict superset z′ ⊃ Z(F ) that appears in Si must correspond to a
strict subface F ′ ⊂ F of dimension ≥ i. This is impossible, since F itself has dimension i.

(iii) For every admissible j-dimensional face F ⊆ C with j > i, we have Z(F ) /∈ Si.
For any such F , let G ⊆ F be any i-dimensional subface of F . Because F is admissible, G
is also, and by stage (ii) above it follows that Z(G) ∈ Si. Since G is a strict subface of F ,
Z(G) is a strict superset of Z(F ), and so even if Z(F ) is constructed in step 2(a) of the
algorithm, it will be subsequently removed in step 2(b).

Together these three stages establish our inductive claim.
From here it is simple to see that Algorithm 3 terminates: since the cone C has finitely

many faces, there are only finitely many non-empty sets Sk. Note also that Algorithm 3 does
not terminate until all non-empty sets Sk have been constructed, since if Sk is empty then there
are no admissible k-faces, which means there can be no admissible i-faces for any i ≥ k.

To finish, we show that the output of Algorithm 3 is correct. Let F ⊆ C be any maximal
admissible face of dimension i; by our induction above we have Z(F ) ⊆ Si. Suppose there is
some v ∈ S1 for which Z(F ) * v and for which Z(F )∩ v is admissible. Following the argument
in stage (i) above, Z(F )∩ v must be the zero set for some admissible face of dimension ≥ i+ 1.
Moreover, this must be a strict superface of F , which contradicts the maximality of F . Therefore
there can be no such v ∈ S1, and so we include Z(F ) in the output set M as required.

Conversely, consider any output z ∈M. We must have z ∈ Si for some i, and so z = Z(G) for
some admissible i-dimensional face G ⊆ C . If G is not maximal, there must be some admissible
(i + 1)-dimensional superface F ⊃ G, and some admissible extremal ray R ⊆ F not contained
in G. Following the argument in stage (ii) above, for the pair Z(G) ∈ Si and Z(R) ∈ S1 we
have Z(G) * Z(R) and Z(G)∩Z(R) is admissible, which means we would not insert z into the
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output set M in step 2(a) of the algorithm. Therefore z = Z(G) for some maximal admissible
face G ⊆ C .

In Algorithm 3, note that each zero set in step 1 can be built by examining any non-zero
representative of the corresponding ray R. In step 2(a), a set might be constructed from many
different (z, v) pairs, and so it is important when inserting z∩v into Sk to avoid duplicates. Each
Sk is only required for the following inductive step (building Sk+1), and can then be discarded.

Returning to Algorithm 1, in step 3 we can use zero sets to quickly identify which rays are
subfaces of F : a ray R ∈ V is a subface of F if and only if Z(R) ⊇ Z(F ). The Bruns-Ichim-Koch
algorithm does enumerate Hilb(F ) as described, since each extremal ray of F is admissible, and
so the rays in V that are subfaces of F (which we give Bruns-Ichim-Koch as input) are indeed
the extremal rays of F .

4 The dual algorithm

We now outline the dual algorithm of Bruns and Ichim [3] for general Hilbert basis enumeration,
which is based on earlier work of Pottier [38], and then show how this can be seamlessly modified
to yield a dual algorithm for enumerating fundamental normal surfaces.

The Bruns-Ichim-Pottier dual algorithm has several variants, and we describe the variant
most relevant to us. Consider the cone P = {x ∈ Rd |Ax = 0, x ≥ 0}, where A is some rational
m× d matrix. The dual algorithm takes as input the matrix A, and computes the Hilbert basis
Hilb(P).

It constructs a series of cones P(0), . . . ,P(m), beginning with the non-negative orthant
P(0) = Rd

≥0, and finishing with the target cone P(m) = P. In general, P(k) is defined as for
P above but using only the first k rows of the matrix A. At each stage, the dual algorithm
uses the previous basis Hilb(P(k−1)) to inductively compute the next basis Hilb(P(k)). In this
sense, the dual algorithm generalises the double description method for enumerating extremal
rays [21, 35].

The key inductive step of the dual algorithm is the following [3].

Algorithm 5 (Bruns-Ichim-Pottier inductive step). Let P ⊂ Rd be a pointed rational cone
with vertex at the origin, let h ∈ Rd be a rational vector, and define the cones P+ = {x ∈
P |h ·x ≥ 0}, P− = {x ∈P |h ·x ≤ 0}, and P0 = {x ∈P |h ·x = 0}. Then, given the input
basis B = Hilb(P), the following algorithm computes the Hilbert bases Hilb(P+), Hilb(P−)
and Hilb(P0).

1. Initialise candidate bases B+ = {x ∈ B |h · x ≥ 0} and B− = {x ∈ B |h · x ≤ 0}.

2. Expand these candidate bases: for all pairs x ∈ B+ and y ∈ B− with h · x > 0 > h · y,
insert the sum x + y into B+ and/or B− according to whether h · (x + y) ≥ 0 and/or
h · (x + y) ≤ 0.

3. Reduce the candidate bases: remove all b ∈ B+ for which there exists some different
b′ ∈ B+ with b− b′ ∈P+. Reduce B− in a similar fashion.

4. If B+ and B− are both unchanged after the most recent round of expansion and reduction
(steps 2 and 3), terminate with Hilb(P+) = B+, Hilb(P−) = B−, and Hilb(P0) =
B+ ∩B−. Otherwise return to step 2 for a new round of expansion and reduction.

In essence, step 2 expands the set of integer points that are generated under addition by
each individual set B+ and B−, and step 3 removes redundant vectors from each generating set.
See [3] for full proofs of correctness and termination, both of which are non-trivial results.
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There are many ways to optimise this algorithm. In practice, one can split B+ and B− into
three sets according to whether h · x > 0, h · x < 0 or h · x = 0, to avoid duplication along
the common hyperplane h · x = 0. The expansion and reduction steps can be partially merged,
so that we first test each new sum x + y for reduction before inserting it into B+ and/or B−.
Several other optimisations are possible: see [3, Remark 16], and the “darwinistic reduction” in
[3, Section 3].

As with the primal method, running the dual algorithm of Bruns, Ichim and Pottier directly
over the normal surface solution cone C ⊂ R7n can be extremely slow. Like the double descrip-
tion method for vertex enumeration, one significant problem is combinatorial explosion: even
if the final Hilbert basis Hilb(P) is small, the intermediate bases Hilb(P(k)) can be extremely
large. The high dimension of the normal surface solution cone C exacerbates this problem.

Our solution, as with the primal algorithm, is to restrict our attention to just the admissible
region of C . This time we do not decompose the admissible region into maximal admissible
faces; instead we can embed the quadrilateral constraints seamlessly into the algorithm itself.
In this way, a single run through the dual algorithm can compute all admissible Hilbert basis
elements for C .

The idea is simple: when expanding candidate bases, ignore sums x + y that do not satisfy
the quadrilateral constraints. This mirrors Letscher’s filter for the double description method
[8].

Algorithm 6 (Dual algorithm for fundamental normal surfaces). To enumerate all fundamental
normal surfaces in a triangulation with the 3f × 7n matching matrix A:

1. Reorder the rows of A using a good heuristic (as discussed further below).

2. Initialise the candidate basis B(0) with all unit vectors in R7n.

3. Inductively construct candidate bases B(1), . . . , B(3f) as follows. For each i = 1, . . . , 3f ,
run a modified Algorithm 5 with input basis B(i−1), using the vector h ∈ R7n defined by
the ith row of A. The specific modifications to Algorithm 5 are:

• In step 2, only consider pairs x,y for which x + y satisfies the quadrilateral con-
straints.

• In step 3, instead of testing for b−b′ ∈P+, test for b−b′ ≥ 0 and h · (b−b′) ≥ 0.
Instead of testing for b− b′ ∈P−, test for b− b′ ≥ 0 and h · (b− b′) ≤ 0.

When this modified Algorithm 5 terminates with output B+ and B−, set B(i) = B+ ∩B−.

4. The final set B(3f) is then the set of all vector representations of fundamental normal
surfaces.

Although we use the Bruns-Ichim-Pottier inductive process in step 3 of our algorithm, we
never identify any explicit cone P ⊂ R7n for which the input set B(i−1) is the Hilbert basis
(this is because we only ever track admissible basis elements). This is why we modify step 3 of
Algorithm 5: we must remove any reference to the unknown cone P.

The key invariant in this dual algorithm is that each candidate basis B(i) contains precisely
those Hilbert basis elements for the cone defined by the first i rows of the matching matrix A
that satisfy the quadrilateral constraints. See the appendix for full proofs of correctness and
termination.

The order in which we process the rows of A can have a significant effect on performance, by
affecting the severity of the combinatorial explosion [3, 21]. In step 1 of Algorithm 6, we reorder
the rows using position vectors [8], which essentially favours rows that begin with long strings of

10



zeroes. Position vectors help optimise our quadrilateral constraint filter, and have been found to
perform well as a sorting heuristic for the related double description method; see [8] for details.

We can prove correctness and termination for Algorithm 6 as follows.

Proof of correctness and termination. Let A(k) denote the k × 7n submatrix of A obtained by
taking the first k rows (after the reordering in step 1 of the algorithm), and let P(k) = {x ∈
R7n |A(k)x = 0, x ≥ 0}. We prove by induction that each candidate basis B(k) constructed in
Algorithm 6 consists of all elements of Hilb(P(k)) that satisfy the quadrilateral constraints.

The initial case is simple: P(0) is just the non-negative orthant R7n
≥0, whose Hilbert basis

consists of the unit vectors in R7n, all of which satisfy the quadrilateral constraints. This
matches the initialisation of B(0) in step 2 of the algorithm.

Assume now that B(i−1) contains all elements of Hilb(P(i−1)) that satisfy the quadrilateral
constraints, and consider the construction of B(i) in step 3 of Algorithm 6. This involves running
a modified Algorithm 5 (the Bruns-Ichim-Pottier inductive step), with input basis B(i−1) and
with the vector h ∈ R7n defined by the ith row of the (sorted) matrix A.

Let P+ = {x ∈P(i−1) |h · x ≥ 0}, P− = {x ∈P(i−1) |h · x ≤ 0}, and P0 = P+ ∩P− =
{x ∈ P(i−1) |h · x = 0}. We claim that the modified Algorithm 5 terminates with output
sets B+ and B− containing those elements of Hilb(P+) and Hilb(P−) respectively that satisfy
the quadrilateral constraints. If this is true, then setting B(i) = B+ ∩ B− will fill B(i) with
those elements of Hilb(P0) = Hilb(P(i)) that satisfy the quadrilateral constraints, as required.
This will complete our induction, and the final output B(3f) will then consist of all admissible
elements of Hilb(P(3f)) = Hilb(C ); that is, all vector representations of fundamental normal
surfaces.

It remains to prove our claim above, i.e., that the modified Algorithm 5 terminates with
output sets B+ and B− containing those elements of Hilb(P+) and Hilb(P−) respectively that
satisfy the quadrilateral constraints.

Consider running the modified Algorithm 5 and the original Algorithm 5 side-by-side, where
in the original algorithm we use the full basis Hilb(P(i−1)) as input. Let Bm

+ and Bm
− denote

the working sets B+ and B− in our modified algorithm, and let Bo
+ and Bo

− denote the working
sets B+ and B− in the original algorithm. From Bruns and Ichim [3], we know that the original
algorithm terminates with Bo

+ = Hilb(P+) and Bo
− = Hilb(P−).

We claim that, for as long as both algorithms are running side-by-side, the working sets Bm
+

and Bm
− contain precisely those elements of Bo

+ and Bo
− respectively that satisfy the quadrilateral

constraints. We show this again using induction:

• It is true when the algorithms begin, since we assume from our “outer induction” on B(i)

that the input basis B(i−1) for the modified algorithm contains precisely those elements
that satisfy the quadrilateral constraints from the input basis Hilb(P(i−1)) for the original
algorithm.

• We now show that, if at some point Bm
+ and Bm

− contain the elements of Bo
+ and Bo

−
that satisfy the quadrilateral constraints, then this remains true after a single round of
expansion (step 2 of Algorithm 5).

It is clear from our modification in step 3 of Algorithm 6 that we do not insert any new
sums x + y into Bm

+ or Bm
− that break the quadrilateral constraints. Moreover, in the

original algorithm, any sum x + y that does satisfy the quadrilateral constraints must
have summands x ∈ Bo

+ and y ∈ Bo
− that satisfy them also (since x,y ≥ 0); therefore

x ∈ Bm
+ and y ∈ Bm

− , and the sum x + y is also considered in the modified algorithm.

11



• Likewise, we can show that if at some point Bm
+ and Bm

− contain the elements of Bo
+ and

Bo
− that satisfy the quadrilateral constraints, then this remains true after a single round

of reduction (step 3 of Algorithm 5).

First, we note that our modification to the reduction step is sound: for any b,b′ ∈ Bm
+ ,

we have b− b′ ∈P+ if and only if b− b′ ≥ 0 and h · (b− b′) ≥ 0, since we already have
A(i−1)b = A(i−1)b′ = 0 from our outer induction. Next, we observe that a vector b ∈ Bm

+

is removed in step 3 of the modified Algorithm 5 if and only if it is removed in the original
algorithm: this is because b satisfies the quadrilateral constraints, and so any b′ for which
b− b′ ≥ 0 must satisfy them also, and therefore b′ ∈ Bm

+ if and only if b′ ∈ Bo
+. Similar

arguments apply to P− and Bm
− .

By induction, Bm
+ and Bm

− contain precisely those elements of Bo
+ and Bo

− that satisfy the
quadrilateral constraints for as long as both algorithms are running.

It follows that the modified algorithm terminates no later than the original algorithm, since if
Bo

+ andBo
− are unchanged under some round of expansion and reduction, then their elementsBm

+

and Bm
− that satisfy the quadrilateral constraints are unchanged also. The modified algorithm

might terminate earlier, but this will not change the final output: if Bm
+ and Bm

− are unchanged
under some earlier round of expansion and reduction, then running any additional rounds will
leave them unchanged.

Either way, we see that the final output sets Bm
+ and Bm

− from the modified Algorithm 5
contain precisely those elements of the final output sets Bo

+ = Hilb(P+) and Bo
− = Hilb(P−)

that satisfy the quadrilateral constraints, thus establishing our original claim.

5 Experimentation

For our experiments, we implement both the primal and dual algorithms directly in the software
package Regina [5, 10]. The primal algorithm uses the tree traversal method [13] for step 1
(enumerating vertex surfaces), and calls Normaliz 2.10.1 [3, 4] for step 3 (the Bruns-Ichim-Koch
algorithm). The dual algorithm incorporates optimisations described by Bruns and Ichim [3].
All implementations use arbitrary-precision integer arithmetic.

Our experimental data set is the closed hyperbolic census of Hodgson and Weeks [26], which
consists of 10,986 3-manifold triangulations with sizes from n = 9 to n = 35 tetrahedra. This
census was chosen because (i) it contains “real-world” triangulations with properties and struc-
tures that one might encounter in a typical topological algorithm; and (ii) the triangulations
are large enough to make the problems difficult and the results mathematically interesting.

The triangulations were sorted by increasing n, and then each algorithm was run over the
census on a cluster, processing triangulations in parallel until a fixed walltime limit was reached.
For the primal algorithm, the limit was 4 days walltime with 15 slave processes (each of which
could process one triangulation at a time). For the dual algorithm it became clear early on
that the results would be severely limited (as discussed below), and so it was rerun with 4 days
walltime and 31 slave processes to increase the number of triangulations for which the two
algorithms could be compared. All processes ran on 2.93GHz Intel Xeon X5570 CPUs.

The primal algorithm completed 9951 of the 10986 test cases, and the dual algorithm com-
pleted just 421. Figure 3 summarises the input and output sizes for these cases, with output size
on a log scale. Figure 4 compares running times for the 421 cases that were completed by both
algorithms (there were no cases that the dual algorithm completed but the primal algorithm did
not). Each point on the plot represents an individual triangulation, and here both axes use log
scales.
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The 9951 cases completed by the primal algorithm
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The 421 cases completed by the dual algorithm
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Figure 3: Input and output sizes for test cases that were completed
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Figure 4: Comparison of running times for the cases solved by both algorithms

It is clear from the figure that the primal algorithm runs significantly faster. This contrasts
with the enumeration of vertex normal surfaces, where the corresponding double description
is fast for problems of this size (but becomes inferior when the problems become larger) [13].
The primal method is also more consistent in its performance: for n = 13 (the largest amongst
these 421 cases), the primal algorithm ranges from 0.44 to 3.36 seconds (spanning a single order
of magnitude), whereas the dual algorithm ranges from 4.02 to 322 544 seconds (spanning five
orders of magnitude).

We now drill more deeply into the primal algorithm, to find where its bottlenecks lie. For
this we use all 9951 cases that it completed, so that we can study how the algorithm behaves for
larger and more difficult problems. Figure 5 shows how the running time is divided amongst the
three main steps of (i) enumerating vertex surfaces; (ii) constructing maximal admissible faces;
and (iii) running the Bruns-Ichim-Koch algorithm over each. For each plot, the horizontal axis
measures total running time (on a log scale), as an indicator of how difficult overall each test
case was found to be.
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Step 1: Vertex surface enumeration
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Step 2: Maximal admissible face decomposition
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Figure 5: Division of time for the primal algorithm

We see that, as the running time grows, it is the enumeration of maximal admissible faces
that consumes the bulk of the running time. Significant gains could therefore be made by
incorporating more sophisticated algorithms and data structures into this step. One promising
approach could be to adapt the Kaibel-Pfetsch algorithm for general polytopes [32] to the setting
of normal surface theory.

6 Application to crosscap numbers

To illustrate the practicality of the primal algorithm, we use it to compute previously-unknown
crosscap numbers of knots. Related to the genus of a knot, the crosscap number C(K) of a knot
K is an invariant describing the smallest-genus non-orientable surface that the knot bounds.

Crosscap numbers are difficult to compute: of the 2977 non-trivial prime knots with ≤
12 crossings, 2640 crosscap numbers are still unknown (in contrast, the genus is known for
all of these knots) [16]. Although there are specialised methods for certain classes of knots
[1, 25, 27, 41], there is no algorithm known for computing crosscap numbers in general. However,
we can come close: by enumerating fundamental normal surfaces, it is possible to either compute
the crosscap number of a knot precisely or else reduce it to one of two possible values [12].
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Due to space limitations we only give a very brief summary of the computational results
here. See [12] for more information on crosscap numbers and the underlying algorithm.

The crosscap number algorithm [12, Algorithm 4.4] works with triangulated knot comple-
ments: these are triangulated 3-manifolds with boundary, obtained by removing a small regular
neighbourhood of a knot from the 3-sphere. The algorithm requires the triangulation T to have
specific properties (an “efficient suitable triangulation”), which can be tested by enumerating
vertex normal surfaces. It then enumerates all fundamental normal surfaces in T , runs some
simple tests over each (such as whether the knot bounds the surface, and computing the ori-
entable or non-orientable genus), and then either determines C(K) precisely or declares that
C(K) ∈ {t, t+ 1} for some t.

We process our knot complements in order by increasing number of tetrahedra, and stop at
the point where the computations become infeasibly slow; our longest computation ran for 1.61
days. In total, we were able to run the algorithm over 585 knots, whose number of tetrahedra
n ranged from 5 to 27 (mean and median n ' 22.7 and 24). The mean and median running
times were ' 258 and ' 52 minutes respectively, which is extremely pleasing given that these
enumeration problems involve up to 7 × 27 = 189 dimensions. When this crosscap number
algorithm was developed [12], such computations were believed to be beyond practical possibility
for all but the very simplest of knots.

The final outcomes are also pleasing. We are able to compute 398 of the unknown crosscap
numbers precisely, which goes a significant way towards filling in the 2640 missing crosscap
numbers from the KnotInfo database. For the remaining 187 calculations that completed, we
obtain information that is already known. All results, both new and known, are consistent with
exiting KnotInfo data.2 A detailed table of results can be found at http://www.maths.uq.

edu.au/~bab/code/.
It should be noted that the paper [12] also computes new crosscap numbers, but using integer

programming methods instead. Our techniques here require knots whose complements do not
have too many tetrahedra; in contrast, the integer programming techniques of [12] can work
with very large knot complements, but only where good lower bounds on C(K) are already
known. In this sense, the two methods complement each other well.
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