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Abstract

In this paper, we consider the fault-tolerdntmedian problem and give thiegst constant factor
approximation algorithm for it. In the fault-tolerant geakzation of classicak-median problem, each
clientj needs to be assigned to at least> 1 distinct open facilities. The service costjis the sum of
its distances to the; facilities, and thei-median constraint restricts the number of open facilitteat
mostk. Previously, a constant factor was known only for the sp@cise when alt;s are the same, and
a logarithmic approximation ratio for the general case.ddition, we present the first polynomial time
algorithm for the fault-tolerant-median problem on a path or a HST by showing that the correfipg
LP always has an integral optimal solution.

We also consider the fault-tolerant facility location pier, where the service cost gfcan be
a weighted sum of its distance to the facilities. We give a simple constant factor approximation
algorithm, generalizing several previous results whicly @ork for nonincreasing weight vectors.
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1 Introduction

The k-median problem is one of the central problems in approdonatlgorithms and operation research.
The most basic version of tkemedian problem is defined as follows. We are given a set ditfes F and

a set of demands (or client$) in a metric space. We can open at mbdacilities, and then assign each
client 5 to the opened facility that is closest to it. Assigning detharto facility ¢ incurs an assignment cost
of d(7, j), whered(z, j) is the distance betweenandj. Our goal is to choose at moktfacilities so that
the sum of the assignment costs is minimized. Lin and Vidj pave a polynomial-time algorithm that,
for anye > 0, finds a solution of cost no more thant e times the optimum, while using at magt + )k
facilities. The first non-trivial approximation algoriththat produces a feasible solution (i.e., open at most
k facilities) achieves a logarithmic approximation ratiodgmbining the metric embedding results [6, 17]
and the fact thak-median can be solved in polynomial time in a tree metric. &g Guha, Tardos and
Shmoys [11] gave the first constant factor approximatioorgigm using LP rounding. This was improved
by a series of papers [10, 21, 4, 12] and the current best gippation ratio isl + /3 + ¢ for anye > 0
via pseudo approximation [32]. For tif@ult tolerantversion ofk-median ETMed), each clientj needs to
be assigned to at least > 1 distinct open facilities. The service cost pis the sum of its distances to the
r; facilities. A special case dfTMed is when all ther;s are the same. We call such instanceiiaiorm
FTMed (denoted byJni-FTMed). ForUni-FTMed, Swamy and Shmoys [40] developed-approximation
using the Lagrangian relaxation technique. However, tieeinnique does not work whemns are not same,
even whenr;s are eithet or 2. For generaFTMed, wherer;s can be non-uniform, the best known result
is a logarithmic factor approximation algorithm [2].

In the closely related uncapacitated facility locationlpeon (UFL), there is a facility opening cost
fi for each facility: and our objective is to minimize the sum of the facility opgnicost and the total
assignment cost. The first constant factor approximatigorithm for UFL was given by Shmoys, Tardos
and Aardal [38], using the filtering technique of Lin and ¥itf33]. Subsequently, a variety of techniques in
approximation algorithms has been successfully appliééHb ( see e.g., [14, 23, 4, 3, 21, 15, 10, 31]). The
current best approximation ratio is 1.488 by Li [31], whislguite close to the best known inapproximability
bound of 1.463 due to Guha and Khuller [18]. In this paper, iwdysthefault-tolerantversion of UFL where
each clientj needs to be assigned to at least> 1 distinct open facilities. Clienj is associated with a

weight vectorw; = {w§1),w§2), e ,w;fj}. The service cost of is the weighted sum of its distances to

ther; facilities, i.e.,> , wj(-i)d(hi,j) whereh; is theith closest open facility. It models the situation where
each client needs one or more “backup” facilities in caseldsest facility fails. The fault-tolerant facility
location FTFL) is a generalization of UFL in which; = 1 for each clientj. FTFL with nonincreasing

weight vectors 1@3(.1) > wj(?) > ... for each clientj) has been studied extensively. Jain and Vazirani gave
a primal-dual based algorithm achieving a logarithmic agjpnation factor [24]. The first constant factor
approximation algorithm with a factor @408 is due to Guha, Meyerson and Munagala [19]. This was
later improved t02.076 by Swamy and Shmoys [40] arid7245 by Byrka, Srinivasan and Swamy [7],
which is currently the best known ratio. However, nothingnswn for FTFL with general positive weight
vectors. Measuring service cost using general weight v&ésooften a natural choice. For example, in
the fault-tolerantk-center problem [25, 13], the service cost of a client is eno® be its distance to the
rth closest facility (this corresponds to the weight vecﬁto}l) =0,... ,wj(.r_l) = ij(r) = l,w](“l) =
0,...)). Further consider the following application in a wirelsensor network. We need to place hotspots
(facilities) to provide wireless services for a designaéeda. Each hotspot may fail independently with
probability p at every time slot. Each client is a sensor that needs to conmatie with one hotspot. To
ensure that the communication succeeds with probabilitgestt1 — § at each time slot, the transmission



radius (fixed all the time) of the client needs to be the digtafiom the client to itglog, §|th closest
hotspot. If the communication cost of a client scales lilyeaiith its transmission radius, the problem is
exactlyFTFL with weight vectors of the form0,...,0,1,0,...).

1.1 Our Results

Our main result is a constant factor approximation algaritbr generaFTMed. The current best approxi-
mation algorithm for generdlTMed achieves a logarithmic approximation ratio [2]. Note thatconstant
factor approximation algorithm is known even for the casemtthe demands are either 1 or 2 and no pre-
vious techniques fok-median or unifornrFTMed [11, 4, 22, 12, 40] seems to be generalizable easily to this
case. Our algorithm is built on solving the natural lineaxggamming (LP) relaxation dfTMed. Rounding

is involved and proceeds through stages. First, based obRlsolution, we classify the clients insafe
anddangerous The safe clients are those whose distance to the furtteetidnal facility assigned to it can
be bounded by a constant factor of the connection cost ddbyéte LP solution (for the precise definition,
see Section 2). Handling such clients is easy and well utw®tsn recent literature on the fault-tolerant
facility location problem [40, 7, 42]. In fact, in the faultderant facility location problem, by scaling up the
facility variables by a constant factor, one can transfolincleents to safe, making it easy to approximate.
However, inFTMed, we can not scale the facility variables since scaling watddate the constraint that
we can open at mogtfacilities.

Next, we apply the adaptive clustering algorithm in [42] toguce a family of disjoint sets of facilities
that we callbundles However in [42], one can select multiple copies of the saamcditfy. In order to avoid
that, we need to keep a new mapping. In the rounding step, arenhat each bundle contains exactly
1 open facility by randomly selecting an open facility iresitl (according to the probabilities suggested by
the LP), and we can show that the expected connection costafeeclient is bounded by a constant times
its connection cost in the LP solution. On the other handdliag the dangerous clients is significantly
challenging and requires new techniques.

We judiciously create a familyB;} of facility sets for each client choosing from the fractionally open
facilities serving; such thatB; is almost laminay that is the two sets are either nearly disjoint, or one is
almost contained in the other. This becomes technicall{lesiging primarily for the fact that demands
among the clients could be highly skewed. Once we have suttuetige, further refinements through
filtering and other manipulations, lead to a laminar famifysets of facilities that have the nice property
of y(B;) being very close te;. Herey(B;) is the expected number of fractional facilities #y. In the
randomized rounding step, in addition to guaranteeingygvendle contains exactly 1 facility, we can also
guarantee that every set in the laminar family containseeith(B;)| or [y(B;)| open facilities. Since
y(B,) is close tor;, the rounding procedure opensfacilities in B; with high probability and this suffices
to show a constant approximation for the expected serviseafg.

As our second result, we show there is a polynomial time #lgorthat can exactly solve general
FTMed in a line metric. Unlike the ordinark-median problem on a line, which can be easily solved in
polynomial time by dynamic programming, it is unclear hovgemeralize the dynamic programRd Med
(either uniform or non-uniform). Our algorithm is in factdsal on linear program. We show that the LP
always has an optimal solution that is integral. We rewhitltP based on any (fractional) optimal solution
and show the new LP matrix is totally unimodular. A similag@ment can be used to show that the LP of
generalFTMed on a hierarchically well separated tree (HST) also has agiat optimal solution. This
improves the result in [9] where they showed that the infégrgap of thek-median LP on HSTs is at most



2.1

We also consider the fault tolerant version of the facilitgdtion problemKTFL) where the service cost
of a client is a weighted sum of the distances to the closest taxility, the 2nd closest open facility and so
on. Our main result for this problem is a simple constantdiaapproximation algorithm foF TFL with a
general weight vector for each client. This generalizegisg\previous results [19, 40, 7], where the weight
vectors are nonincreasing. For general weight vectorsibst commonly used ILP formulation work
does not hold since the optimal integral LP solution may motespond to a feasible solution. To remedy
this, we use an extension of the ILP formulation for facilibzation proposed by Kolen and Tamir [26].
However, one can easily construct an example where the bBRatgbn for this formulation has an unbounded
integrality gap (see Section 4). Our approach is based onulating a strengthened LP relaxation for the
problem by adding “knapsack cover constraints” [8, 5].

1.2 Other Related Work

Facility location andc-median are central problems in approximation algorithiviany variants and gener-

alizations have been studied extensively in the literatm@uding capacitated facility location [36, 29, 39]
and k-median [16], multilevel facility location [1], universdhcility location [35, 30], matroid median

[20, 27, 12], knapsack median [28, 12], just to name a few. o5ealy related problem is the fault-tolerant
k-center problem which has also been studied and constédot fgaproximation algorithms are known for
several of its variants [25, 13]. Recently, Yan and Chrotiallied the fault-tolerant facility placement prob-
lem which is almost the same B3 FL except that we can open more than one copies of a facility laed t

gave a constant factor approximation algorithm based orouRding [42].

2 Fault Tolerant k-Median

We useZ = (k, F.C,d, {rj}jec) to denote &TMed instance. In the instancé, > 1 is an integerF is
the set of facilities(' is the set of clientsd is a metric overF’ U C andr; € [R] is the requirement of.
The solution off is a setS of £ facilities from F' and its cost is the sum, over all clients C, of the total

distance frony to its closest; facilities in S.
The following is the natural LP relaxation for tf@ Med:

min Z Z d(j,i)z; ; 1)

jeCieF
yi—xi7]’20 ViGF,jGC ZI’Z’J:M VJEC
S
Zyl:k xi,j,yie[(),l] Vie F,jeC

1€l

Throughout the paper, we lgidenote the/-vector obtained by solving the above LP. For a sulSsét
of facilities, define thevolumeof S to bey(S) := > ;. g v:- W.l.0.g., we assumg(F) = k.

We can assumg; < 1 andz;; € {0,y;} by the following splitting operation. Consider a facility
and a clientj such thatr;; < y;. We replace; with two facilities i,,i> and lety;, = x;,; = x5, 9, =
Yi — T4, Ti,; = 0. Of course, when we make such clones of a facility, we can opgn one of them.

11t is well known thatk-median on trees can be solved in polynomial time by combitetmethods (e.g., [41]).



Instead of usindy, z), we use({yz-}ieF , {Fj}jec,g> to denote an LP solution, whei€§ C F' and

y(F;) = r; for everyj € C, andg shall be defined later. In this solutiop; indicates whether to open
the facility i. We assumé® < y; < 1 for every: € F. Theni € Fj if and only if z; ; = y;. We also
assumer’; contains the closest; volume of facilities toj. That s, for anyj € C,i € F};,i’ ¢ Fj, we have
d(j,7) < d(j,7). For some non-empty sétC F, let

Zies d(]v Z)yz
y(S)

be the average distance frgio S. Let di.x(7,.5) be the maximum distance frognto any node inS, i.e.,
max;cgs d(7,1).

Notice that we can alway split a facilityinto 2 facility " and:” with y; = y;» + y;~ arbitrarily (replace
any F; > i with F; \ {:} U {¢’,4"}) without changing the value of the LP solution. This turns wube
convenient in the following scenario. Suppose we are giveeqmence of facilitie$z‘1,z‘2, -+ ,imy,) Such
thatZ " vi, > 7. We are interested in the integeisuch thaty "'~} 1 Ui <7 and > _ 1y28 > 7. |f
S i, > r, we can split, into two facilitiesi’ andi” with y; = r — Zi Ly andy = S0y —
By splitting, we assume we can always find the integsuch thatzs:1 yi, is exactlyr. Letj € C' be a
client andS be a set of facilities such thagtS) > r. Sort the facilities ofS according to their distances to
4, from the closest to the furthest. Le{resp.t) be the integer such that the firsfresp.t) facilities in the
order has volume exactly— 1 (resp.r). Then,S’ contains the-th facility in the sequence for evepyfrom
s+ 1tot. Soy(S’) = 1. If y is an integral solutionS’” would correspond to the-th closest facility toj.
Definedy, (j,S) = day(j,5") andd} .. (j,S) = dmax(j,S") whereS’ is the following set.

We observe some simple yet useful facts. et C be a client and' be a set of facilities withy(S) = r
for some integer. Then, we have that

dav(j> S) =

Lody (5, 8) < dinax (4, 5) V€ [1],

2. dfnax( S) < dl;-\ll-l(]’s) Vt € [7”— 1]'

3. dav(4,S) =130, dL, (4, 9).

For ease of notation, we omit the second parametdg\;oehnddmaLX ifitis F;. Thatis, we letd,,(j) =
dav(j>F ) dmax( ) - dmax(]» ) dr ( ) dr ( ' ) andd?nax( ) = drmax(jv FJ)

In several steps mentloned above, we may spllt one facility $everal copies. In the rounding step,
to avoid opening more than one copies for each facility, wedrte keep a mappingwhereg(i) indicates
the original facility co-located with from whichi is split. g(i) = i if ¢ itself is the original facility. Thus,
d(i,9(7)) = 0. Keep in mind that we need to make sure in the rounding stemthaost 1 facility is open
ing=1(i) :={i’ € F: g(i') =i} foranyi € F.

The high level idea of our algorithm is as follows. We solve (U to obtain a fractional solution
<{yi}ieF , {Fj}jec ,g). Our goal is to output a random s8t C F of size k such that the expected

connection cost of is O(r;da,y (7)) for each clientj. We first use the adaptive clustering algorithm of [42]
to construct a family/ of disjoint sets of volume 1. If we randomly open 1 facilityr feach setV € U,
we can show that the expected connection cost of each glien' is O(1)r;day(j) + dmax(j). This can
handle the clientg with smalldy,ax(7)/(7;dav(j)) (Which we callsafe clienth

The remaining task is to handle the dangerous clientstheglients with a larg,.. (j)/ds (j) value
(the exact definition will appear later). We first apply a filig step to select a subs&t' of dangerous
clients. For each € D', we create a seB’ of facilities such that the set familg = {B’ : j € D'} is

4



Algorithm 1 Create bundles

Input: A FT-k-median instance 7 = (k,F,C,d,{rj}jec) and a fractional solution

({yi}zeF ’ {F'}jEC 79) toZ
Output: A family ¢/ of disjoint bundles, and a s€t/;, t}te of r; different bundles froni/ for each
jel
1 U + 0, F] < Fj andqueue; « () for every clientj € C;
2: Whilethere exists a client such that the length efueue; is smaller thar;
3 Select such a clientwith the minimumd, (j, F}) + d}nax( , ),
4. LetU C Fj be the 1 volume of facilities such thal, (j, F]) = day(j,U) anddy,,. (4, F}) =
dmax(j, U); > one might clone facilities in obtaining the détandg is updated suitably to reflect this.
5 If there exists a bundlE€’ € U such that/’ N U # ()
6: thenaddU’to thequeue; and remove/’ N U from Fj’
7 elseaddU tol/, addU to queue;, and remove/ from FJ/
8

: return U and{U;} whereU; ; is thet-th bundle inqueue;.

jGC,tE[T]’} '

laminar. Using the laminar familig, we design a process to output a randomsSset facilities so that (1) at
most 1 facility is open inside ! (i) for anyi € F, (2) each facilityi is open with probability exactly;; (3)

exactly 1 facility in eaciV € U is open and (4) we open elth%g Bg. J or { (BM facilities inside each

B;- € B. With these properties, we can prove the constant apprdéiximéor FTMed.

The remainder of this section is organized as follows. Wevdinmw to construct/ andB respectively in
Section 2.1 and 2.2. Then, we show how to round the fractisolation based ot¥ and in Section 2.3.
Finally, we prove the constant approximation ratio in seti.4.

2.1 Construction of the Family U

Given ak-median instance defined by F’, C', d, {r;} ;. - and afractional solutiot{y; },c . {F; € F'} ;)
to the instance, the algorithm of [42] outputs a fanMyof disjoint sets of volume 1, which we cddundles
as well as a setUj i}, ) of r; different bundles frond/ for each;j € C. The algorithm is described in
Algorithm 1.

If someU is added td/ at Line 7 of Algorithm 1, we say thereator of U is j. It is easy to see that
the bundles iri/ are mutually disjoint. Moreover, for any € C, ther; bundles added tqueue; are all
different, since every time we add a bundieto thequeue;, we removed/ N F’ from F;.

Lemmal. For any clientj € C, for anyr € [r;], we haved,, (4, Uj») < 2d},.(4) + d5, (7).

Proof. We prove the following statement: when the lengthyafue; is » — 1, we haved], (7, FY) < dj,(4)
andd. . (j , 1) < dp.(d)- Notice that we only remove facilities fromi; if we added some sef to
queue;. Moreover, we remove at most 1 volume of facilities fl’d?j’\ Thus, when the length afueue; is
r1, we removed in total at most— 1 volume of facilities fromF]f. Itis easy to see that in order to maximize
dL, (7, FY) (d (4, F 1), resp.), itis the best to remove frofif ther — 1 volume of closest facilities of, in
which case we havéév(j,ij) = dl, () (dhax (G, F) = dlyaic(4), Tesp.). Thus, we proved the statement.
Suppose now the length qfieue; is 7 — 1. Clearly the volume oF]’ is at least 1. Consider the next
time when we selected this clieftand the correspondebt at Line 4. We knowd,, (7,U) < d.,(j7) and

dmax (7, U) < dhai (7). Ifthereis all’ € U such thall’ NU # 0, let ;' be the creator of/’. Then, we have

5



dav(§', U") + dimax (', U") < dav(4,U) + dmax (4, U), since we selectedd andU’ before we selectegand
U. Thus,d(j,7) < dmax(J,U) + dmax(j', U’) and

daV(j? U,) S d(j? ],) + dav(j,> U,) S dmax(j> U) + dmax(jla U/) + daV(j’? U,) é 2dmax(j> U) + daV(j? U)?
which is at mosed,, ... (7) + di, (7).

If suchU’ does not exist, we adddd to // andqueue; at Line 7, we havel,, (j,U) < dj,(j). O
2.2 Construction of the laminar Family B

We say a clienjj € C'is dangerousf
dnax(7) > 45d3, (7).

The rest of clients arsafe Let D denote the set of dangerous clients. In this section, weafaly a filtering
phase to obtain a subsBX C D of dangerous clients. Then, for eagke D’ we select a seB§ C Fj of
facilities so that3 = { B} : j € D'} form a laminar family.

Filtering: We say two distinct dangerous clientg’ € D conflictif r; = r; and

d(4,5") < 6max {day(j), dav(j) } -

In the filtering phase, we select a sub&¥t C D of dangerous clients such that no two clientsih
conflict each other. Algorithm 2 describes the filtering psx

Algorithm 2 Filtering
1. D'« 0
2: For r < 1to Rdo

33 J={jeD:rj=r}

4. WhileJ # () do

5 Let j be the client inJ with the minimumd,, (j);
6: Let .J’ be the set of clients id that conflictj;

7 LetJ « J\ J'\{j} andD’ + D' U {j};

8: return D’.

Fact 1. If j € D\ D', then there must be a clieft € D’ such thatr;, = r;, dav(j’) < dayv(j) and
d(j,j") < 6dav(j).

Building alaminar family for dangerousclients For any clientj € D', let B; := Ball(j, dmax(j)/15),
whereBall(j, L) = {i € F : d(i,j) < L} is the set of facilities that are within a distantefrom j. We
notice that with the definition oB;, if a copy of some facility: is in B; (recall a facility may be split into
several copies), all copies oare inB;. We first present a few properties Bf, then show how to construct
the laminar family5. The following lemma shows that the volumeBf is very close ta;.

Lemma2. Foraclientj € D withr; = r, we have

15d3, (j)
Amax () v(5;)

s
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Figure 1: There are five facilities in the graph. (1): Befdre filtering phase, 3 and 5 are in conflict and 5
is filtered out. (2)-(4): We build the laminar family in norcreasing order of;s.

(1) (2) (3)

Proof. Notice thatdmax(j)/15 > db,(4) > di-i(j); all clients inF; \ B, contribute tod,, (j). Thus we
have

dgv(]) > y(Fj \ Bj)dmax(j)/157
which implies

_ N\ R s, (5)
y(Bj) =r—y(F;\ Bj) > — T ()15

O

In particular, Lemma 2 implies that( 3;) > r — 15/45 = r — 1/3. The following lemma shows that
two distinct dangerous clients iR’ are necessarily far way. A corollary of the lemma which isfuisiater
is thatB; and B;, are disjoint.

Lemma 3. Letj andj’ be two distinct clients i’ such that; = r;; = r. Then
d(j,5") = dimax(5)/10 + dmax(5")/10.
Proof. Assume otherwise. Then, by triangle inequalities,
|dmax (7) = dmax(5)] < d(5,5") < dmax(5)/10 + dimax(5")/10.

Thus,

dpax () _ [1=1/10 141/107 _[9 11
dpvax (4) 1+1/10°1—1/10]  |117 9"

SinceB;: C Ball(j,d(j, ') + dumax(7')/15) and

.. ) 1 11 . 11/9 . )
d(j,]/) + dmax(]/)/15 S E <1 + §> dmax(]) + 1—édmax(]) < O-5dmax(])a

we haveB;, C Ball(j,0.5dmax(j)). Thus, we havé3;UB; C Ball(j,0.5dmax (j)), implying y(B;UB;/) <
r, which further implies

Wil



Then,day (j, BjNBjr) < rday(j)/(r—2/3) < 3day(4). Similarly,day (', BjNBj/) < 3day(j). By triangle
inequalityd(j, j') < 3(dav(j) + dav(j’)) < 6max{dav(j),dav(j)}. 7 @andj’ can not be both iD’ since
they conflict each other, leading to a contradiction. O

The following lemma shows that if two dangerous clients wiifferent demands are close to each other,
the ball for the client with the larger demand is necessanilich larger than the one for the other client.

Lemma 4. Let;j andj’ be two clients inD’ with r = r; > 7' = rj;. Supposel(j,j’) < dmax(j)/15 +
dimax(7)/10. Thendy.x (7)) < dmax()

Proof. Assume otherwise; thef},.x(j) < 6dmax(j’). Then, we have that

. . dmax (j) 6dmax (]/) dmax (]/) 6dmax (]/)
/

<
A7)+ — 5=~ =—15  +t—1 *t 15

= 0.9dmax (5")

andB; C Ball (j’ d(j, §') + d—“) Thus, we haveB; C Ball (5, 0.9dmax (j')). Sincey(B;) > r —
1/3 >r—1> 7', we havey(Ball(j',0.9dmax (")) > 7, contradicting the definition of,, .. O

In fact, if j and;’ satisfy the condition of Lemma 4, we can see that the distanoeevery point inB;
to j is at most

() < T () + 1omani) + g dmas(§) < (35 + 50)
Intuitively, this suggests thalB;, is almostcontained inB;. If the condition of Lemma 4 does not hold,
j andj’ are obviously disjoint. Therefore, we can see the farfy } ;c p/ is almost laminar In fact, by
slightly modifying the setd3;, we can form a laminar family.

Now, we present the algorithm for creating the laminar fgnfil For any client; € D’, we now
construct a new seB; O B;, which is B; plus a small volume set of facilities. Algorithm 3 descrilties
process. See Figure 1 for an illustration of our algorithne plbve thal{Bg.}jepz forms a laminar family.

IN

d(j,5") + dmax (J)-

Algorithm 3 building a laminar family3 = {B; 1j € D’} of sets

1: Forr=1to Rdo

2:  For each clientj € D’ such that; = r do

3 Let D" be the set of clientg’ such thatj; < r anng., N B; # 0;
4: B‘; < B] U Uj/eD// B;/.

Lemma5. The following properties hold foB = {B’};cpr:
1. B} C Ball(j, dmax(7)/10) for everyj € D;
2. B ={B}}jep forms alaminar family.

Proof. We prove both the statements together by induction. dVe proveB’;. C Ball(j, dmax(j)/10) for
any clientj such that-; < r; also, the familyB, = {B]}JeDf;rjgr form a laminar family. Ifr = 1, we have
B} = B; = Ball(j, dmax(j)/15) for everyj € D’ with r; = 1. Also, by Lemma 33’ anng., are disjoint
for two distinct clientsj andj’ in D" with r; = r;» = 1. Thus the statements are true for 1.

8



Suppose the statement is true for 1. Consider two clientg and;’ in D such that; = r,r;; < r and
B;NBj, # (. By the induction hypothesidz}, C Ball(j", dmax(j')/10), implying d(j. j') < dmax(j)/15+
dmax( / )/10 By Lemma 4|dmax(j,) S deax(j)- Then1d(]7j ) + dmax(j/)/lo é max( )/15 +

dmax(5)/60 4 dmax(5") /60 = dmax(7)/10. Thus,

Bj, C Ball(j,d(j,j) + dmax(5")/10) € Ball(j, dmax(5)/10).
This is true for any such client. By the definition ofB} at Line 4, we have that
B’ C Ball(j, dmax(7)/10).

Consider two distinct clientg, j/ € D’ such thatr; = rj = r. We claim that there is ng” such that
rj» < randBj, intersect bothB; and B;.. Assume there is such a cliefit. Then, we have that

oy Gmax(J) | dmax (") _ dmax(4)
R T R T

Similarly d(j', 7") < dmax(j")/12. Thus,d(j, j') < dmax(7)/12 + dmax(j’)/12. Contradicting Lemma 3.
Notice that in order to construdt’ at Line 4, it is enough to consider the sets8in, = {B’, | j" €
D', rj» <r — 1} that are inclusively maximal (those that are not properiytamed by other set if§, ;).
By the induction hypothesis, these inclusively maximaésee disjoint. Thus, for any cliengs;’ € D’
with r; = rj =r, B} anng., are disjoint. Moreover, for any’ € D’ with r;» < r, eitherB;.,, C B;. or
B!, N B} = 0. Thus, the family3, = {B; : j € D’,r; < r} is laminar. O

2.3 Rounding

After obtaining a LP solutior{{y; : i € F'} ,{F} : j € C}), we run the algorithm of [42] as described in
Section 2.1 to obtain a famill/ of disjoint bundles and the sef#/;, : j € C,t € [r;]}. We then create the
laminar family3 = {Bj : j € D'} of sets. Notice that by Lemma 5, we haBell(j, dmax ()/15) = B; C

B’ C Ball(j, dmax (J )/10) Thus,r; —1 < y(B’) < r;. Consider the polytope defined by the foIIowmg set
of constraints. The set of variables(is; : i € F}

1LY, u=1 YUel

Z'Tj_1§ZiEB’in§rj VjED/
J

3. Diegipy s <1 VieF

From the construction aB’, it is easy to see that eithgr! (i) C B; org=t(i)n B! = foranyi € F'and
je€ D . Thus,BU{F}U {g‘1 i):i€ F} forms a laminar famlly The constramts of the above polgtop
is defined by two laminar families of setdf:andB U {F} U {g~'(i) : i € F'}. Itis well known that such

a polytope defined by two laminar families is integral. Alswofice that they; = y; for everyi € F'is

a feasible solution. Thus, we can express our vegtas a convex combination of vertices of the above
polytope. Such a convex combination can be computed in patyal time. Treating the coefficients in the
convex combination as probabilities (note that the coeffits sum up td), we sample a random vertex.
Due to the last constraint, the vertex contains exagpen facilities. LetS be the set of facilities defined

by the vertex. We summarize the useful properties of ourdmgnstep as follows.
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1. The probability that each facilityc F'is open is exactly;;

2. For anyi € I/, we open at most 1 facility insidg ! (i);

3. We open exactly 1 facility inside ea€he U;

4. For eacty € D', we open either; — 1 or r; facilities in B;.. Moreover, we have that

Pr[r; facilities are open iB;] = y(B}) — (r; — 1) and

Pr[r; — 1 facilities are open iB;] = r; —y(B;)

24 Analysis

We now have every piece ready to prove a constant factor gippation forFTMed. Each of the following
lemmas deals with one type of clients. First, we consider shénts.

Lemma 6. For any clientj € C'\ D with r; = r, the expected connection costjaé at most3rd,, (7).

Proof. Notice that we always open 1 facility insidg ; for everyt € [r]. We connecy to ther facilities in
Usep Uje- Connecting; to the facility inU; ; costs at mos2d! .. () + d.,(j) in expectation, by Lemma 1.
Thus, the expected connection costj@$ at most

T

S (2(G) + () <zzdt+1 2 >+idzv<j>

t=1
< 3rday(j) + 2dmax(j) < 37“dav( ) 4+ 2 x 45d%,(7) < 937“da\,( ),

where the first inequality used the fact thif,. (7) < dii!(4). O
Lemma7. For any clientj € D’ with r; = r, the expected connection costjas at mosti6rd,, (7).

Proof. Notice that by Lemma 1, the distance frgimo its r-th closest open facility is always at most
3dmax(j). We can bound the expected connection cogtaé follows. If there are; open facilities inside
B;-, we connecj to ther open facilities; otherwise (they are- 1 open facilities), we connegtto ther — 1
open facilities inB’; and ar-th open facility outsideB’ whose distance tg can be bounded bYdax (7).
Thus, the expected connection costj@$ at most

Z d(j,7)y; + Pr[r; — 1 facilities are open imB}] x 3dwax(j) < rdav(j) + 3(r — y(B;))dmax (j)
ieB’,

< rday(j) + 3 x 15d%, () < 46rday(j),
where the second inequality follows from Lemma 2. O
Lemma 8. For any clientj € D\ D’ with r; = r, the expected connection costjaé at most:2rd,, (j).

Proof. Thereis g’ € D' suchthat; = ;s = r,day(j') < dav(j) @andd(y, j') < 6day(j). By Lemma 7, the
expected connection cost gfis at most46rdav( "). By triangle inequality, the expected connection cost of
jis atmost6rd,, (j') + rd(j,5") < 46rday(j) + 6rday(j) = 52rday(j). O

Combining Lemma 6, 7 and 8, the expected connection costyotlent j € C'is at most93rd,,(j),
leading to &3-approximation folF TMed.
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3 FTMed on Pathsand HSTs

We first consider the case where all the facilities and di@ng on a line.

Theorem 1. For the non-uniformFTMed on a line metric, the problem can be solved exactly in polyabm
time.

In fact, all we need is to show the linear program (1) has agiat optimal solution. Unlike in the usual
case, we can not show that the polytope defined by the LP eamistis integral. In fact, the polytope is the
same as that for the general NP-h&rchedian problem, thus not integral. The integral optimurdus to
the specialty of the cost coefficients, i.€(j, j).

Lemma 9. If d(¢,7)s are defined by a line metric, the linear progrdft) always has an integer optimal
solution.

Proof. We show for any fractional optimal solutiqt; ;, v;), we can construct an integral solution with the
same cost. By the splitting trick we can assume that ; = {0, y;}. Each client (fractionally) connects to
a consecutive segment of facilities. Suppogeneeded by demands sét

Now we can write another linear program withayt; variables as follows. We uséfor indexing the
facilities after the split and for original facility. We writei’ € sp(¢) to indicate that the new facility is
derived from the original facility. Let F; be the set of facilities serving (after the splitting process). The
facilities in F; form a consecutive segment in the path.

minimize > > d(i’, j)ys 2)
j iR
subjectto Y gy >1,Vj
i’EFj
Z Yir < 17VZ
i'€sp(2)
Z v < k,Vi
el

It is easy to see that the optimal solution for the new LP is rarerthan that for the original LP.
The constraint matrix of the new LP has the consecutive “ermdperty: in each row of the constraint
matrix, the “1”s appear in consecutive positions. Such izegrare known to be totally unimodular and the
corresponding linear program has an integral optimal swiut(See e.g.,[37]). Furthermore, it is easy to
see any integral feasible solution of (2) corresponds tcailide solution folFTMed with the same cost.
Therefore, the optimal integral solution of (2) has to beghme as that of (1). The above argument also
gives us an algorithm to construct an integral solution »bflthe optimal cost. O

Using the same idea, we can get a polynomial time algorithmmoHST metric where all facilities and
clients are located at leaves. We recall an HST (hierarlthiezell separated tree) is a tree where on any
root to leaf path, the edge lengths decrease by some fixeat factach step.

2Consider facilityi. Let J; be the set of clients on the left side ©fnd.J, the set of clients on the right side. Consider the
numbers{z; ;},cs, U{y: — zi;}ics,. These numbers split the intenjal y;] into several pieces, and for each piece, we create a
facility with fractional value equal to the length of thaepe.
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Lemma 10. The generaFTMed problem can be solved exactly in polynomial time on an HSTienehere
all facilities and clients are located at leaves.

Proof. We useLC A(j1, j2) to denote the least common ancestor of legyemndj». Suppose the leaves of
the HST are ordered according the preorder traversal. Genaiclientj and suppose the path frojrto the
rootis{j,p1,p2,...,r}. Inafractional optimal solutiofiz; ;, y;) of (1), clientj chooses to connect all the
facilities in the subtree rooted at, then those g2, and so on. For any leavegs, jo, js, if LCA(j1,72) =
LCA(j1,73), we can easily see thatr(j1,72) = dr(j1,73). Therefore, we can assunjeconnects to a
consecutive segment of facilities (in the preorder segrenthe facilities). Using almost the same argument
as in Lemma 9, we can show that the LP has an integral solutithntise optimal value. O

Note that combining this result with classic tree embeddesult [6, 17], we can easily get a sim-
ple O(log n)-approximation for generdf TMed on any metric. Since we have already shown a constant
approximation for generd TMed, we omit the detalils.

4 Fault Tolerant Facility L ocation

For FTFL problem with arbitrary weights, we have a gebf n facilities and a se’ of m clients. In the
following sections, the terms “demand” and “client” are diggterchangeably. For each clieptthere is a

nonnegative weight vector; = {wj(.l), e ,wj(.’”j)} for somer; < n. Assume that the set of open facilities
areiy,is, ..., for somel < h < n, sorted according to the nondecreasing order of theirriistdo .
The service cost of clientis Z;L w](.t)d(z't,j). If h < r;, the service cost of is infinity.

We focus on a special case of the above problem where onlyrined the vectorw ; is nonzero. For
ease of notation, we usg to denote the index of the nonzero coordinatesipandw; to denotew](.”),
ie., w§Tj) > 0 and w](.t) = 0 foranyt # r;. Indeed, considering this special case is without loss of
generality since we can create multiple copies for each ddmeadej, with the 1st copy associated with the
weight vector{w](.l), 0,...,0}, the2nd copy{0, w](.z), ...,0} and so on. ltis straightforward to establish the
equivalence and we omit the proof here. From now on, weFUdd. to denote this special case of the fault
tolerant facility location problem. Our main result is a stant factor approximation algorithm f&il FL.

First, we note that the most natural linear integer programgnformulation that was used for nonin-
creasing weight vectors in previous work does not work anyemo

Hence, we use a different linear integer programming foatiah as follows. We use boolean variaple
to denote whether facility is open,z;; to denote whether demarjds assigned to facility. We user(j, t)
to denote theth facility closest toj. Let N(j,t) = {n(j,1),7(4,2),...,7(4,t)} andcj; = d(j,7(4,1)).
Let cjo = O for all 5. We use indicator variable;; to denote the event whether demait satisfied by
N(j,t) (i.e., at least; facilities amongN (j, t) are opened).

minimize > fiyi + > w; > (1= 21)(¢je41) — Cit) 3)
i J

t>0
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s.t. Zwij > T, vj eC (4)

Z xij 2 T‘ijt \V/] S 07 Vt € [TL] (6)
1EN(4,t)
Yi, vij, 2t € {0,1}, Vi€ F,j € C,t € [n]U{0} (7)

First, we need to explain our objective function since it & the most frequently used objective for
facility location. It is easy to see that a feasible solutadrFTFL satisfies the IP formulation. For any
optimal solution of the IP, ifV (4, ¢) satisfiesj, N(j,t') also satisfieg for ¢’ > t. Thereforez;; > 2;;—1)
for all ¢. If ¢’ is the smallest such thatz;; = 1, we can see thab; > ,-,(1 — zjt)(cj41) — ¢jt) is equal
to w;c;y, which is exactly the service cost ¢f We setc;(,,4.1) = oco. Constraints 4 specify that clierit
must be connected tg facilities. Constraints 5 ensure that a client is conneotdy to open facilities and
constraints 6 imply that it;; = 1 then at least; facilities must be open itV (j,¢). The LP relaxation is
obtained by replacing last constraints fyyz;;, z;: € [0, 1].

However, we can not use the above LP directly to get a confatetar approximation algorithm since its
integrality gap is large and can be as largéXés). Consider the followind-TFL instance in a line metric.
There aren facilities and only one client. All facilities have cost resind the client have demand(i.e.,
r1 = n). Thex-coordinate of the client is 0. The-coordinate of théth facilityisOforall 1 <i <n —1
and thex-coordinate of thexth facility is n. The optimal integral solution opens all facilities and sieevice
cost isn. A feasible fractional solution opens all facilities too.omever, z;; can take fractional values
1 > ien(is) Tij = - The fractional service cost of the clientig! -0+...4+ 2.0+ 1 .n = 1. Therefore,
we obtain an integrality gap ét(n).

To strengthen the LP relaxation, we use the followkngpsack cover constraints replace constraints
(6):

Yo mi>(rj— Az, Vi€ Cten],ACN(j1) (8)

ieEN(j,t)\A

The constraints require that if, = 1, then for every subsed, at leastr; — |A| facilities from the set
N(j,t) \ A must be chosen to seryeWe can also see that there is a polynomial time separatarieofor
(8): Supposéz;;, z;;) is a solution. For fixed andj, we can test the feasibility of (8) for all with |A| = k
by checking whether the sum of the smallg$tj, t)| — k terms inN (j,t) is at leas{(r; — k)z;;. Therefore,
the relaxation can be solved optimally in polynomial timethg ellipsoid algorithm. Letz*, y*, z*) be the
optimal fractional solution of the linear program a@&T be the optimal value.

Now, we round the fractional solutiofx*, y*, z*) to an integral solution{z, y, z) as follows. Let us
consider a particular demaridLet o < 1 be a constant fixed later. Let be the smallest integersuch that
z;t > a.

Lemma 11. For everyj, it holds thatcjt; < 1# (1 — 25 (Cea1) — Cjt)-

“a 24t=0
Proof.
=,
1 —a ;(1 = 25)(Cj(t11) — ¢jt)
. th—1
Z 1" a ;(1 —a)(¢j(1) — ¢jt) = e
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*

Thefirstinequality follows becausg;, > =7, ) forall¢. This is true because if we sgt, = maxzj,, ..., 2},

it yields a feasible solution of no greater cost. O

Now, we create a set @f; values that we will round, based on thevalues, as follows.

1. For all facility 7 with y* > o, we round it up tal, i.e.,y; = 1.

2. For all facility i with y; < o, we lety; = Ly

Lemma 12. For each clientj, > _,c ;) Ui = 15
v

Proof. Consider a particular client Let A be the set of facility such that}; > « andi € N(j, t;). From
(8), we know that

dooow = Y, w2 2l 4D 2 aly —|A].
PEN(5,t5)\A PEN(5,t)\A
Therefore, we can see that

S iz Y szl

IEN(5,65)\A iEN(5,t7)\A
For each facilityi € A, we havey;, = 1. Hence,ZieN(j ) y; > r;, which completes the proof. O
]

Now, we round theg; values to integers. Our rounding scheme is a slight variatited one in [40].
Let F; = N(J, tj.). Let r;. be the residual requirement ¢f which is initially set to be-;. We iterate the
following steps until no client remains in the graph.

S1. We pick the clienj with the minimumcjt;.

S2. LetM C F; be the set of the cheapest facilities # (w.r.t. facility opening costs) such that

Yiem Vi = rg.. If > icar ¥i is strictly large tharr;, we replace the last facility, say facility by

two “clones”i; andiy. Sety;, = r;- — ZZEM\{Z.} y; andy;,, = y; — v;,. Included; in M. Hence,
Dimn Yi = 7";'-

S3. Open the’; cheapest facilities in/. For each client with F, N M # (), we use anynin(ry,, ;) of
the facilities we just opened to serkeand letr; = rj, — min(ry,7;). Delete facilities inM/ and all
clients with zero residual requirement from the input.

Lemma 13. The above rounding scheme returns a feasible solution. ®Were the following properties
hold.

1. The facility opening cost is at mast; f;y;.

2. For each clientj, at leastr; facilities in B(j, 3cjt;) are open.
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Proof. The proof is almost the same as the one in [40]. For complssgivee include it here. Consider a
particular iteration. It is easy to see the invari@;eFj i > 7‘; is maintained throughout the three steps.
So itis always possible to choose the A&t We also need to argue that no facility is opened twice sinee w
have made some clones. We argue that whenever a fadiditseplaced by two clones, the first clone never
gets opened: This is simply becauss the most expensive facility ifd and there are at Ieas} facilities
cheaper tham (otherwise, we do not have to make clones).

To bound the facility cost, just notice that the cost of oparilities in )/ is less thard _,_,, fiy;. This
proves (1). To bound the connection cost, consider a péaticlient ;. Any opened facility inF; is at most
Cjts distance away fronj. Notice thatj may be served by some facilities i), for some other clienk.
This only happens if; N Fj, # 0 and ey < Cjt (we process clienk first). A facility in Fy, is at most
2ck; + Cjtr < 3cjt;f away fromj. O

From Lemma 13, we know that the firsf copies of clientj are assigned within a distance 31fjt;.
Therefore, we have that the total cost of this integral smiut

1 ,
7 J
1 .3 ,
<= Sl =D wi ) (= (e — o)
i j t

where the second inequality holds because of Lemma 11.

Settinga = % gives us an approximation ratio df We can choose a randomto improve the ap-
proximation ratio as in [38, 19]. Lel;(«) bec;; for the minimalt such thatz;, > a. It is easy to see the
following.

Lemma 14.

1
/O Li(a)da = 31— 22 (€5 — o).

t

Choose a random uniformly distributed ovefh, 1]. Then, the expected cost is

1
E[SOL] < /h ﬁ(é g fiyf—i-?)g ijj(a))da
i J

11 N .
< g 2w g 2w 2= Z0(esen — i)
i J t

The above expression is minimizedrat= e~3, which gives an approximation ratib16.

Theorem 2. There is a polynomial time approximation approximationhaah approximation factoB.16
for FTFL.
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