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A Constant Factor Approximation Algorithm for Fault-Tolerant
k-Median
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Abstract

In this paper, we consider the fault-tolerantk-median problem and give thefirst constant factor
approximation algorithm for it. In the fault-tolerant generalization of classicalk-median problem, each
client j needs to be assigned to at leastrj ≥ 1 distinct open facilities. The service cost ofj is the sum of
its distances to therj facilities, and thek-median constraint restricts the number of open facilitiesto at
mostk. Previously, a constant factor was known only for the special case when allrjs are the same, and
a logarithmic approximation ratio for the general case. In addition, we present the first polynomial time
algorithm for the fault-tolerantk-median problem on a path or a HST by showing that the corresponding
LP always has an integral optimal solution.

We also consider the fault-tolerant facility location problem, where the service cost ofj can be
a weighted sum of its distance to therj facilities. We give a simple constant factor approximation
algorithm, generalizing several previous results which only work for nonincreasing weight vectors.
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1 Introduction

Thek-median problem is one of the central problems in approximation algorithms and operation research.
The most basic version of thek-median problem is defined as follows. We are given a set of facilities F and
a set of demands (or clients)D in a metric space. We can open at mostk facilities, and then assign each
client j to the opened facility that is closest to it. Assigning demand j to facility i incurs an assignment cost
of d(i, j), whered(i, j) is the distance betweeni andj. Our goal is to choose at mostk facilities so that
the sum of the assignment costs is minimized. Lin and Vitter [34] gave a polynomial-time algorithm that,
for anyǫ > 0, finds a solution of cost no more than2 + ǫ times the optimum, while using at most(1 + ǫ)k
facilities. The first non-trivial approximation algorithmthat produces a feasible solution (i.e., open at most
k facilities) achieves a logarithmic approximation ratio bycombining the metric embedding results [6, 17]
and the fact thatk-median can be solved in polynomial time in a tree metric. Charikar, Guha, Tardos and
Shmoys [11] gave the first constant factor approximation algorithm using LP rounding. This was improved
by a series of papers [10, 21, 4, 12] and the current best approximation ratio is1 +

√
3 + ǫ for any ǫ > 0

via pseudo approximation [32]. For thefault tolerantversion ofk-median (FTMed), each clientj needs to
be assigned to at leastrj ≥ 1 distinct open facilities. The service cost ofj is the sum of its distances to the
rj facilities. A special case ofFTMed is when all therjs are the same. We call such instance asuniform
FTMed (denoted byUni-FTMed). ForUni-FTMed, Swamy and Shmoys [40] developed a4-approximation
using the Lagrangian relaxation technique. However, theirtechnique does not work whenrjs are not same,
even whenrjs are either1 or 2. For generalFTMed, whererjs can be non-uniform, the best known result
is a logarithmic factor approximation algorithm [2].

In the closely related uncapacitated facility location problem (UFL), there is a facility opening cost
fi for each facility i and our objective is to minimize the sum of the facility opening cost and the total
assignment cost. The first constant factor approximation algorithm for UFL was given by Shmoys, Tardos
and Aardal [38], using the filtering technique of Lin and Vitter [33]. Subsequently, a variety of techniques in
approximation algorithms has been successfully applied toUFL ( see e.g., [14, 23, 4, 3, 21, 15, 10, 31]). The
current best approximation ratio is 1.488 by Li [31], which is quite close to the best known inapproximability
bound of 1.463 due to Guha and Khuller [18]. In this paper, we study thefault-tolerantversion of UFL where
each clientj needs to be assigned to at leastrj ≥ 1 distinct open facilities. Clientj is associated with a

weight vectorwj = {w(1)
j , w

(2)
j , . . . , w

rj
j }. The service cost ofj is the weighted sum of its distances to

therj facilities, i.e.,
∑

iw
(i)
j d(hi, j) wherehi is theith closest open facility. It models the situation where

each client needs one or more “backup” facilities in case itsclosest facility fails. The fault-tolerant facility
location (FTFL) is a generalization of UFL in whichrj = 1 for each clientj. FTFL with nonincreasing

weight vectors (w(1)
j ≥ w

(2)
j ≥ . . . for each clientj) has been studied extensively. Jain and Vazirani gave

a primal-dual based algorithm achieving a logarithmic approximation factor [24]. The first constant factor
approximation algorithm with a factor of2.408 is due to Guha, Meyerson and Munagala [19]. This was
later improved to2.076 by Swamy and Shmoys [40] and1.7245 by Byrka, Srinivasan and Swamy [7],
which is currently the best known ratio. However, nothing isknown forFTFL with general positive weight
vectors. Measuring service cost using general weight vectors is often a natural choice. For example, in
the fault-tolerantk-center problem [25, 13], the service cost of a client is chosen to be its distance to the
rth closest facility (this corresponds to the weight vector(w

(1)
j = 0, . . . , w

(r−1)
j = 0, w

(r)
j = 1, w

(r+1)
j =

0, . . .)). Further consider the following application in a wirelesssensor network. We need to place hotspots
(facilities) to provide wireless services for a designatedarea. Each hotspot may fail independently with
probability p at every time slot. Each client is a sensor that needs to communicate with one hotspot. To
ensure that the communication succeeds with probability atleast1 − δ at each time slot, the transmission
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radius (fixed all the time) of the client needs to be the distance from the client to its⌈logp δ⌉th closest
hotspot. If the communication cost of a client scales linearly with its transmission radius, the problem is
exactlyFTFL with weight vectors of the form(0, . . . , 0, 1, 0, . . .).

1.1 Our Results

Our main result is a constant factor approximation algorithm for generalFTMed. The current best approxi-
mation algorithm for generalFTMed achieves a logarithmic approximation ratio [2]. Note that no constant
factor approximation algorithm is known even for the case where the demands are either 1 or 2 and no pre-
vious techniques fork-median or uniformFTMed [11, 4, 22, 12, 40] seems to be generalizable easily to this
case. Our algorithm is built on solving the natural linear programming (LP) relaxation ofFTMed. Rounding
is involved and proceeds through stages. First, based on theLP solution, we classify the clients intosafe
anddangerous. The safe clients are those whose distance to the furthest fractional facility assigned to it can
be bounded by a constant factor of the connection cost definedby the LP solution (for the precise definition,
see Section 2). Handling such clients is easy and well understood in recent literature on the fault-tolerant
facility location problem [40, 7, 42]. In fact, in the fault-tolerant facility location problem, by scaling up the
facility variables by a constant factor, one can transform all clients to safe, making it easy to approximate.
However, inFTMed, we can not scale the facility variables since scaling wouldviolate the constraint that
we can open at mostk facilities.

Next, we apply the adaptive clustering algorithm in [42] to produce a family of disjoint sets of facilities
that we callbundles. However in [42], one can select multiple copies of the same facility. In order to avoid
that, we need to keep a new mapping. In the rounding step, we ensure that each bundle contains exactly
1 open facility by randomly selecting an open facility inside it (according to the probabilities suggested by
the LP), and we can show that the expected connection cost of asafe client is bounded by a constant times
its connection cost in the LP solution. On the other hand, handling the dangerous clients is significantly
challenging and requires new techniques.

We judiciously create a family{Bj} of facility sets for each clientj choosing from the fractionally open
facilities servingj such thatBj is almost laminar, that is the two sets are either nearly disjoint, or one is
almost contained in the other. This becomes technically challenging primarily for the fact that demands
among the clients could be highly skewed. Once we have such a structure, further refinements through
filtering and other manipulations, lead to a laminar family of sets of facilities that have the nice property
of y(Bj) being very close torj . Herey(Bj) is the expected number of fractional facilities inBj . In the
randomized rounding step, in addition to guaranteeing every bundle contains exactly 1 facility, we can also
guarantee that every set in the laminar family contains either ⌊y(Bj)⌋ or ⌈y(Bj)⌉ open facilities. Since
y(Bj) is close torj, the rounding procedure opensrj facilities inBj with high probability and this suffices
to show a constant approximation for the expected service cost of j.

As our second result, we show there is a polynomial time algorithm that can exactly solve general
FTMed in a line metric. Unlike the ordinaryk-median problem on a line, which can be easily solved in
polynomial time by dynamic programming, it is unclear how togeneralize the dynamic program toFTMed

(either uniform or non-uniform). Our algorithm is in fact based on linear program. We show that the LP
always has an optimal solution that is integral. We rewrite the LP based on any (fractional) optimal solution
and show the new LP matrix is totally unimodular. A similar argument can be used to show that the LP of
generalFTMed on a hierarchically well separated tree (HST) also has an integral optimal solution. This
improves the result in [9] where they showed that the integrality gap of thek-median LP on HSTs is at most
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2. 1

We also consider the fault tolerant version of the facility location problem (FTFL) where the service cost
of a client is a weighted sum of the distances to the closest open facility, the 2nd closest open facility and so
on. Our main result for this problem is a simple constant factor approximation algorithm forFTFL with a
general weight vector for each client. This generalizes several previous results [19, 40, 7], where the weight
vectors are nonincreasing. For general weight vectors, themost commonly used ILP formulation work
does not hold since the optimal integral LP solution may not correspond to a feasible solution. To remedy
this, we use an extension of the ILP formulation for facilitylocation proposed by Kolen and Tamir [26].
However, one can easily construct an example where the LP relaxation for this formulation has an unbounded
integrality gap (see Section 4). Our approach is based on formulating a strengthened LP relaxation for the
problem by adding “knapsack cover constraints” [8, 5].

1.2 Other Related Work

Facility location andk-median are central problems in approximation algorithms.Many variants and gener-
alizations have been studied extensively in the literature, including capacitated facility location [36, 29, 39]
and k-median [16], multilevel facility location [1], universalfacility location [35, 30], matroid median
[20, 27, 12], knapsack median [28, 12], just to name a few. A closely related problem is the fault-tolerant
k-center problem which has also been studied and constant factor approximation algorithms are known for
several of its variants [25, 13]. Recently, Yan and Chrobak studied the fault-tolerant facility placement prob-
lem which is almost the same asFTFL except that we can open more than one copies of a facility and they
gave a constant factor approximation algorithm based on LP rounding [42].

2 Fault Tolerant k-Median

We useI =
(
k, F,C, d, {rj}j∈C

)
to denote aFTMed instance. In the instance,k ≥ 1 is an integer,F is

the set of facilities,C is the set of clients,d is a metric overF ∪ C andrj ∈ [R] is the requirement ofj.
The solution ofI is a setS of k facilities fromF and its cost is the sum, over all clientsj ∈ C, of the total
distance fromj to its closestrj facilities inS.

The following is the natural LP relaxation for theFTMed:

min
∑

j∈C

∑

i∈F

d(j, i)xi,j (1)

yi − xi,j ≥ 0 ∀i ∈ F, j ∈ C
∑

i∈F

xi,j = ri ∀j ∈ C

∑

i∈F

yi = k xi,j, yi ∈ [0, 1] ∀i ∈ F, j ∈ C

Throughout the paper, we lety denote they-vector obtained by solving the above LP. For a subsetS ⊆ F
of facilities, define thevolumeof S to bey(S) :=

∑
i∈S yi. W.l.o.g., we assumey(F ) = k.

We can assumeyi ≤ 1 andxi,j ∈ {0, yi} by the following splitting operation. Consider a facilityi
and a clientj such thatxij < yi. We replacei with two facilities i1, i2 and letyi1 = xi1j = xij, yi2 =
yi − xi,j, xi2j = 0. Of course, when we make such clones of a facility, we can onlyopen one of them.

1It is well known thatk-median on trees can be solved in polynomial time by combinatorial methods (e.g., [41]).
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Instead of using(y, x), we use
(
{yi}i∈F , {Fj}j∈C , g

)
to denote an LP solution, whereFj ⊆ F and

y(Fj) = rj for everyj ∈ C, andg shall be defined later. In this solution,yi indicates whether to open
the facility i. We assume0 < yi ≤ 1 for every i ∈ F . Theni ∈ Fj if and only if xi,j = yi. We also
assumeFj contains the closestrj volume of facilities toj. That is, for anyj ∈ C, i ∈ Fj , i

′ /∈ Fj , we have
d(j, i) ≤ d(j, i′). For some non-empty setS ⊆ F , let

dav(j, S) =

∑
i∈S d(j, i)yi

y(S)

be the average distance fromj to S. Let dmax(j, S) be the maximum distance fromj to any node inS, i.e.,
maxi∈S d(j, i).

Notice that we can alway split a facilityi into 2 facility i′ andi′′ with yi = yi′ + yi′′ arbitrarily (replace
anyFj ∋ i with Fj \ {i} ∪ {i′, i′′}) without changing the value of the LP solution. This turns out to be
convenient in the following scenario. Suppose we are given asequence of facilities(i1, i2, · · · , im) such
that

∑m
s=1 yis ≥ r. We are interested in the integert such that

∑t−1
s=1 yis < r and

∑t
s=1 yis ≥ r. If∑t

s=1 yis > r, we can splitit into two facilitiesi′ andi′′ with yi′ = r−∑t−1
s=1 yis andyi′′ =

∑t
s=1 yis − r.

By splitting, we assume we can always find the integert such that
∑t

s=1 yis is exactlyr. Let j ∈ C be a
client andS be a set of facilities such thaty(S) ≥ r. Sort the facilities ofS according to their distances to
j, from the closest to the furthest. Lets (resp.t) be the integer such that the firsts (resp.t) facilities in the
order has volume exactlyr− 1 (resp.r). Then,S′ contains thep-th facility in the sequence for everyp from
s + 1 to t. Soy(S′) = 1. If y is an integral solution,S′ would correspond to ther-th closest facility toj.
Definedr

av
(j, S) = dav(j, S

′) anddrmax(j, S) = dmax(j, S
′) whereS′ is the following set.

We observe some simple yet useful facts. Letj ∈ C be a client andS be a set of facilities withy(S) = r
for some integerr. Then, we have that

1. dt
av
(j, S) ≤ dtmax(j, S) ∀t ∈ [r],

2. dtmax(j, S) ≤ dt+1
av

(j, S) ∀t ∈ [r − 1],

3. dav(j, S) = 1
r

∑r
t=1 d

t
av
(j, S).

For ease of notation, we omit the second parameter ofdav anddmax if it is Fj . That is, we letdav(j) =
dav(j, Fj), dmax(j) = dmax(j, Fj), d

r
av
(j) = dr

av
(j, Fj) anddrmax(j) = drmax(j, Fj).

In several steps mentioned above, we may split one facility into several copies. In the rounding step,
to avoid opening more than one copies for each facility, we need to keep a mappingg whereg(i) indicates
the original facility co-located withi from which i is split. g(i) = i if i itself is the original facility. Thus,
d(i, g(i)) = 0. Keep in mind that we need to make sure in the rounding step that at most 1 facility is open
in g−1(i) := {i′ ∈ F : g(i′) = i} for anyi ∈ F .

The high level idea of our algorithm is as follows. We solve LP(1) to obtain a fractional solution(
{yi}i∈F , {Fj}j∈C , g

)
. Our goal is to output a random setS ⊆ F of size k such that the expected

connection cost ofj is O(rjdav(j)) for each clientj. We first use the adaptive clustering algorithm of [42]
to construct a familyU of disjoint sets of volume 1. If we randomly open 1 facility for each setU ∈ U ,
we can show that the expected connection cost of each clientj ∈ C is O(1)rjdav(j) + dmax(j). This can
handle the clientsj with smalldmax(j)/(rjdav(j)) (which we callsafe clients).

The remaining task is to handle the dangerous clients, i.e.,the clients with a largedmax(j)/d
rj
av(j) value

(the exact definition will appear later). We first apply a filtering step to select a subsetD′ of dangerous
clients. For eachj ∈ D′, we create a setB′

j of facilities such that the set familyB = {B′
j : j ∈ D′} is

4



Algorithm 1 Create bundles

Input: A FT-k-median instance I =
(
k, F,C, d, {rj}j∈C

)
and a fractional solution

(
{yi}i∈F , {Fj}j∈C , g

)
to I

Output: A family U of disjoint bundles, and a set{Uj,t}t∈[rj ] of rj different bundles fromU for each
j ∈ C

1: U ← ∅, F ′
j ← Fj andqueuej ← ∅ for every clientj ∈ C;

2: While there exists a clientj such that the length ofqueuej is smaller thanrj
3: Select such a clientj with the minimumd1

av
(j, F ′

j) + d1max(j, F
′
j);

4: Let U ⊆ F ′
j be the 1 volume of facilities such thatd1

av
(j, F ′

j) = dav(j, U) and d1max(j, F
′
j) =

dmax(j, U); ⊲ one might clone facilities in obtaining the setU andg is updated suitably to reflect this.
5: If there exists a bundleU ′ ∈ U such thatU ′ ∩ U 6= ∅
6: then addU ′ to thequeuej and removeU ′ ∩ U from F ′

j ;
7: else addU to U , addU to queuej, and removeU from F ′

j ;
8: return U and{Uj,t}j∈C,t∈[rj]

, whereUj,t is thet-th bundle inqueuej .

laminar. Using the laminar familyB, we design a process to output a random setS of facilities so that (1) at
most 1 facility is open insideg−1(i) for anyi ∈ F , (2) each facilityi is open with probability exactlyyi; (3)

exactly 1 facility in eachU ∈ U is open and (4) we open either
⌊
y(B′

j)
⌋

or
⌈
y(B′

j)
⌉

facilities inside each

B′
j ∈ B. With these properties, we can prove the constant approximation for FTMed.

The remainder of this section is organized as follows. We show how to constructU andB respectively in
Section 2.1 and 2.2. Then, we show how to round the fractionalsolution based onU andB in Section 2.3.
Finally, we prove the constant approximation ratio in section 2.4.

2.1 Construction of the Family U
Given ak-median instance defined byk, F,C, d, {rj}j∈C and a fractional solution({yi}i∈F , {Fj ⊆ F}

j∈C)
to the instance, the algorithm of [42] outputs a familyU of disjoint sets of volume 1, which we callbundles,
as well as a set{Uj,t}t∈[rj ] of rj different bundles fromU for eachj ∈ C. The algorithm is described in
Algorithm 1.

If someU is added toU at Line 7 of Algorithm 1, we say thecreator of U is j. It is easy to see that
the bundles inU are mutually disjoint. Moreover, for anyj ∈ C, therj bundles added toqueuej are all
different, since every time we add a bundleU to thequeuej, we removedU ∩ F ′

j from Fj .

Lemma 1. For any clientj ∈ C, for anyr ∈ [rj ], we havedav(j, Uj,r) ≤ 2drmax(j) + dr
av
(j).

Proof. We prove the following statement: when the length ofqueuej is r − 1, we haved1
av
(j, F ′

j) ≤ dr
av
(j)

andd1max(j, F
′
j) ≤ drmax(j). Notice that we only remove facilities fromF ′

j if we added some setB to
queuej. Moreover, we remove at most 1 volume of facilities fromF ′

j . Thus, when the length ofqueuej is
r1, we removed in total at mostr− 1 volume of facilities fromF ′

j . It is easy to see that in order to maximize
d1
av
(j, F ′

j) (d1max(j, F
′
j), resp.), it is the best to remove fromF ′

j ther− 1 volume of closest facilities ofj, in
which case we haved1

av
(j, F ′

j) = dr
av
(j)(d1max(j, Fj) = drmax(j), resp.). Thus, we proved the statement.

Suppose now the length ofqueuej is r − 1. Clearly, the volume ofF ′
j is at least 1. Consider the next

time when we selected this clientj and the correspondentU at Line 4. We knowdav(j, U) ≤ dr
av
(j) and

dmax(j, U) ≤ drmax(j). If there is aU ′ ∈ U such thatU ′ ∩U 6= ∅, let j′ be the creator ofU ′. Then, we have
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dav(j
′, U ′) + dmax(j

′, U ′) ≤ dav(j, U) + dmax(j, U), since we selectedj′ andU ′ before we selectedj and
U . Thus,d(j, j′) ≤ dmax(j, U) + dmax(j

′, U ′) and

dav(j, U
′) ≤ d(j, j′) + dav(j

′, U ′) ≤ dmax(j, U) + dmax(j
′, U ′) + dav(j

′, U ′) ≤ 2dmax(j, U) + dav(j, U),

which is at most2drmax(j) + dr
av
(j).

If suchU ′ does not exist, we addedU to U andqueuej at Line 7, we havedav(j, U) ≤ dr
av
(j).

2.2 Construction of the laminar Family B
We say a clientj ∈ C is dangerousif

dmax(j) ≥ 45d
rj
av(j).

The rest of clients aresafe. LetD denote the set of dangerous clients. In this section, we firstapply a filtering
phase to obtain a subsetD′ ⊆ D of dangerous clients. Then, for eachj ∈ D′ we select a setB′

j ⊆ Fj of
facilities so thatB = {B′

j : j ∈ D′} form a laminar family.

Filtering: We say two distinct dangerous clientsj, j′ ∈ D conflict if rj = rj′ and

d(j, j′) ≤ 6max
{
dav(j), dav(j

′)
}
.

In the filtering phase, we select a subsetD′ ⊆ D of dangerous clients such that no two clients inD′

conflict each other. Algorithm 2 describes the filtering process.

Algorithm 2 Filtering
1: D′ ← ∅;
2: For r ← 1 to R do
3: J = {j ∈ D : rj = r};
4: While J 6= ∅ do
5: Let j be the client inJ with the minimumdav(j);
6: Let J ′ be the set of clients inJ that conflictj;
7: Let J ← J \ J ′ \ {j} andD′ ← D′ ∪ {j};
8: return D′.

Fact 1. If j ∈ D \ D′, then there must be a clientj′ ∈ D′ such thatrj′ = rj , dav(j′) ≤ dav(j) and
d(j, j′) ≤ 6dav(j).

Building a laminar family for dangerous clients For any clientj ∈ D′, letBj := Ball(j, dmax(j)/15),
whereBall(j, L) = {i ∈ F : d(i, j) ≤ L} is the set of facilities that are within a distanceL from j. We
notice that with the definition ofBj , if a copy of some facilityi is in Bj (recall a facility may be split into
several copies), all copies ofi are inBj. We first present a few properties ofBj , then show how to construct
the laminar familyB. The following lemma shows that the volume ofBj is very close torj .

Lemma 2. For a clientj ∈ D with rj = r, we have

r − 15dr
av
(j)

dmax(j)
≤ y(Bj) < r.

6
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Figure 1: There are five facilities in the graph. (1): Before the filtering phase, 3 and 5 are in conflict and 5
is filtered out. (2)-(4): We build the laminar family in non-decreasing order ofrjs.

Proof. Notice thatdmax(j)/15 ≥ dr
av
(j) ≥ dr−1

max(j); all clients inFj \ Bj contribute todr
av
(j). Thus we

have
dr
av
(j) ≥ y(Fj \Bj)dmax(j)/15,

which implies

y(Bj) = r − y(Fj \Bj) ≥ r − dr
av
(j)

dmax(j)/15
.

In particular, Lemma 2 implies thaty(Bj) ≥ r − 15/45 = r − 1/3. The following lemma shows that
two distinct dangerous clients inD′ are necessarily far way. A corollary of the lemma which is useful later
is thatBj andBj′ are disjoint.

Lemma 3. Let j andj′ be two distinct clients inD′ such thatrj = rj′ = r. Then

d(j, j′) ≥ dmax(j)/10 + dmax(j
′)/10.

Proof. Assume otherwise. Then, by triangle inequalities,
∣∣dmax(j)− dmax(j

′)
∣∣ ≤ d(j, j′) < dmax(j)/10 + dmax(j

′)/10.

Thus,
drmax(j

′)

drmax(j)
∈
[
1− 1/10

1 + 1/10
,
1 + 1/10

1− 1/10

]
=

[
9

11
,
11

9

]
.

SinceBj′ ⊆ Ball(j, d(j, j′) + dmax(j
′)/15) and

d(j, j′) + dmax(j
′)/15 ≤ 1

10

(
1 +

11

9

)
dmax(j) +

11/9

15
dmax(j) < 0.5dmax(j),

we haveBj′ ⊆ Ball(j, 0.5dmax(j)). Thus, we haveBj∪Bj′ ⊆ Ball(j, 0.5dmax(j)), implyingy(Bj∪Bj′) <
r, which further implies

y(Bj ∩Bj′) = y(Bj) + y(Bj′)− y(Bj ∪Bj′) ≥ r − 2

3
.
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Then,dav(j,Bj ∩Bj′) ≤ rdav(j)/(r−2/3) ≤ 3dav(j). Similarly,dav(j′, Bj∩Bj′) ≤ 3dav(j
′). By triangle

inequalityd(j, j′) ≤ 3(dav(j) + dav(j
′)) ≤ 6max {dav(j), dav(j′)}. j andj′ can not be both inD′ since

they conflict each other, leading to a contradiction.

The following lemma shows that if two dangerous clients withdifferent demands are close to each other,
the ball for the client with the larger demand is necessarilymuch larger than the one for the other client.

Lemma 4. Let j and j′ be two clients inD′ with r = rj > r′ = rj′. Supposed(j, j′) ≤ dmax(j)/15 +
dmax(j

′)/10. Thendmax(j
′) ≤ 1

6dmax(j).

Proof. Assume otherwise; thendmax(j) < 6dmax(j
′). Then, we have that

d(j, j′) +
dmax(j)

15
≤ 6dmax(j

′)

15
+

dmax(j
′)

10
+

6dmax(j
′)

15
= 0.9dmax(j

′)

andBj ⊆ Ball
(
j′, d(j, j′) + dmax(j)

15

)
. Thus, we haveBj ⊆ Ball (j′, 0.9dmax(j

′)). Sincey(Bj) ≥ r −
1/3 > r − 1 ≥ r′, we havey(Ball(j′, 0.9dmax(j

′)) ≥ r′, contradicting the definition ofdmax.

In fact, if j andj′ satisfy the condition of Lemma 4, we can see that the distancefrom every point inBj′

to j is at most

d(j, j′) +
1

15
dmax(j

′) ≤ 1

15
dmax(j) +

1

10
dmax(j

′) +
1

15
dmax(j

′) ≤ (
1

15
+

1

36
)dmax(j).

Intuitively, this suggests thatBj′ is almostcontained inBj . If the condition of Lemma 4 does not hold,
j andj′ are obviously disjoint. Therefore, we can see the family{Bj}j∈D′ is almost laminar. In fact, by
slightly modifying the setsBj, we can form a laminar family.

Now, we present the algorithm for creating the laminar family B. For any clientj ∈ D′, we now
construct a new setB′

j ⊇ Bj, which isBj plus a small volume set of facilities. Algorithm 3 describesthe
process. See Figure 1 for an illustration of our algorithm. We prove that{B′

j}j∈D′ forms a laminar family.

Algorithm 3 building a laminar familyB =
{
B′

j : j ∈ D′
}

of sets

1: For r = 1 to R do
2: For each clientj ∈ D′ such thatrj = r do
3: LetD′′ be the set of clientsj′ such thatrj′ < r andB′

j′ ∩Bj 6= ∅;
4: B′

j ← Bj ∪
⋃

j′∈D′′ B′
j′ ;

Lemma 5. The following properties hold forB = {B′
j}j∈D′ :

1. B′
j ⊆ Ball(j, dmax(j)/10) for everyj ∈ D′;

2. B = {B′
j}j∈D′ forms a laminar family.

Proof. We prove both the statements together by induction orr. We proveB′
j ⊆ Ball(j, dmax(j)/10) for

any clientj such thatrj ≤ r; also, the familyBr = {B′
j}j∈D′:rj≤r form a laminar family. Ifr = 1, we have

B′
j = Bj = Ball(j, dmax(j)/15) for everyj ∈ D′ with rj = 1. Also, by Lemma 3,B′

j andB′
j′ are disjoint

for two distinct clientsj andj′ in D′ with rj = rj′ = 1. Thus the statements are true forr = 1.
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Suppose the statement is true forr− 1. Consider two clientsj andj′ in D′ such thatrj = r, rj′ < r and
Bj∩B′

j′ 6= ∅. By the induction hypothesis,B′
j′ ⊆ Ball(j′, dmax(j

′)/10), implying d(j, j′) ≤ dmax(j)/15+

dmax(j
′)/10. By Lemma 4,dmax(j

′) ≤ 1
6dmax(j). Then, d(j, j′) + dmax(j

′)/10 ≤ dmax(j)/15 +
dmax(j)/60 + dmax(j

′)/60 = dmax(j)/10. Thus,

B′
j′ ⊆ Ball(j, d(j, j′) + dmax(j

′)/10) ⊆ Ball(j, dmax(j)/10).

This is true for any such clientj′. By the definition ofB′
j at Line 4, we have that

B′
j ⊆ Ball(j, dmax(j)/10).

Consider two distinct clientsj, j′ ∈ D′ such thatrj = rj′ = r. We claim that there is noj′′ such that
rj′′ < r andB′

j′′ intersect bothBj andBj′ . Assume there is such a clientj′′. Then, we have that

d(j, j′′) ≤ dmax(j)

15
+

dmax(j
′′)

10
≤ dmax(j)

12
.

Similarly d(j′, j′′) ≤ dmax(j
′)/12. Thus,d(j, j′) ≤ dmax(j)/12 + dmax(j

′)/12. Contradicting Lemma 3.
Notice that in order to constructB′

j at Line 4, it is enough to consider the sets inBr−1 = {B′
j′′ | j′′ ∈

D′, rj′′ ≤ r − 1} that are inclusively maximal (those that are not properly contained by other set inBr−1).
By the induction hypothesis, these inclusively maximal sets are disjoint. Thus, for any clientsj, j′ ∈ D′

with rj = rj′ = r, B′
j andB′

j′ are disjoint. Moreover, for anyj′′ ∈ D′ with rj′′ < r, eitherB′
j′′ ⊆ B′

j or
B′

j′′ ∩B′
j = ∅. Thus, the familyBr = {B′

j : j ∈ D′, rj ≤ r} is laminar.

2.3 Rounding

After obtaining a LP solution({yi : i ∈ F} , {Fj : j ∈ C}), we run the algorithm of [42] as described in
Section 2.1 to obtain a familyU of disjoint bundles and the sets{Uj,t : j ∈ C, t ∈ [rj ]}. We then create the
laminar familyB = {B′

j : j ∈ D′} of sets. Notice that by Lemma 5, we haveBall(j, dmax(j)/15) = Bj ⊆
B′

j ⊆ Ball(j, dmax(j)/10). Thus,rj − 1 ≤ y(B′
j) ≤ rj. Consider the polytope defined by the following set

of constraints. The set of variables is{zi : i ∈ F}:

1.
∑

i∈U zi = 1 ∀U ∈ U

2. rj − 1 ≤∑
i∈B′

j
zi ≤ rj ∀j ∈ D′

3.
∑

i′∈g−1(i) zi′ ≤ 1 ∀i ∈ F

4.
∑

i∈F zi = k

From the construction ofB′
j, it is easy to see that eitherg−1(i) ⊆ B′

j or g−1(i) ∩B′
j = ∅ for anyi ∈ F and

j ∈ D′. Thus,B ∪ {F} ∪
{
g−1(i) : i ∈ F

}
forms a laminar family. The constraints of the above polytope

is defined by two laminar families of sets :U andB ∪ {F} ∪
{
g−1(i) : i ∈ F

}
. It is well known that such

a polytope defined by two laminar families is integral. Also,notice that thezi = yi for every i ∈ F is
a feasible solution. Thus, we can express our vectory as a convex combination of vertices of the above
polytope. Such a convex combination can be computed in polynomial time. Treating the coefficients in the
convex combination as probabilities (note that the coefficients sum up to1), we sample a random vertex.
Due to the last constraint, the vertex contains exactk open facilities. LetS be the set ofk facilities defined
by the vertex. We summarize the useful properties of our rounding step as follows.
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1. The probability that each facilityi ∈ F is open is exactlyyi;

2. For anyi ∈ F , we open at most 1 facility insideg−1(i);

3. We open exactly 1 facility inside eachU ∈ U ;

4. For eachj ∈ D′, we open eitherrj − 1 or rj facilities inB′
j . Moreover, we have that

Pr[rj facilities are open inB′
j ] = y(B′

j)− (rj − 1) and

Pr[rj − 1 facilities are open inB′
j ] = rj − y(B′

j)

2.4 Analysis

We now have every piece ready to prove a constant factor approximation forFTMed. Each of the following
lemmas deals with one type of clients. First, we consider safe clients.

Lemma 6. For any clientj ∈ C \D with rj = r, the expected connection cost ofj is at most93rdav(j).

Proof. Notice that we always open 1 facility insideUj,t for everyt ∈ [r]. We connectj to ther facilities in⋃
t∈[r] Uj,t. Connectingj to the facility inUj,t costs at most2dtmax(j)+ dt

av
(j) in expectation, by Lemma 1.

Thus, the expected connection cost ofj is at most

r∑

t=1

(
2dtmax(j) + dt

av
(j)

)
≤ 2

r−1∑

t=1

dt+1
av

(j) + 2dmax(j) +

r∑

t=1

dt
av
(j)

≤ 3rdav(j) + 2dmax(j) ≤ 3rdav(j) + 2× 45dr
av
(j) ≤ 93rdav(j),

where the first inequality used the fact thatdtmax(j) ≤ dt+1
av

(j).

Lemma 7. For any clientj ∈ D′ with rj = r, the expected connection cost ofj is at most46rdav(j).

Proof. Notice that by Lemma 1, the distance fromj to its r-th closest open facility is always at most
3dmax(j). We can bound the expected connection cost ofj as follows. If there arerj open facilities inside
B′

j, we connectj to ther open facilities; otherwise (they arer− 1 open facilities), we connectj to ther− 1
open facilities inB′

j and ar-th open facility outsideB′
j whose distance toj can be bounded by3dmax(j).

Thus, the expected connection cost ofj is at most
∑

i∈B′
j

d(j, i)yi + Pr[rj − 1 facilities are open inB′
j ]× 3dmax(j) ≤ rdav(j) + 3(r − y(Bj))dmax(j)

≤ rdav(j) + 3× 15dr
av
(j) ≤ 46rdav(j),

where the second inequality follows from Lemma 2.

Lemma 8. For any clientj ∈ D \D′ with rj = r, the expected connection cost ofj is at most52rdav(j).

Proof. There is aj′ ∈ D′ such thatrj = rj′ = r, dav(j
′) ≤ dav(j) andd(j, j′) ≤ 6dav(j). By Lemma 7, the

expected connection cost ofj′ is at most46rdav(j′). By triangle inequality, the expected connection cost of
j is at most46rdav(j′) + rd(j, j′) ≤ 46rdav(j) + 6rdav(j) = 52rdav(j).

Combining Lemma 6, 7 and 8, the expected connection cost of any client j ∈ C is at most93rdav(j),
leading to a93-approximation forFTMed.
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3 FTMed on Paths and HSTs

We first consider the case where all the facilities and clients are on a line.

Theorem 1. For the non-uniformFTMed on a line metric, the problem can be solved exactly in polynomial
time.

In fact, all we need is to show the linear program (1) has an integral optimal solution. Unlike in the usual
case, we can not show that the polytope defined by the LP constraints is integral. In fact, the polytope is the
same as that for the general NP-hardk-median problem, thus not integral. The integral optimum isdue to
the specialty of the cost coefficients, i.e.,d(i, j).

Lemma 9. If d(i, j)s are defined by a line metric, the linear program(1) always has an integer optimal
solution.

Proof. We show for any fractional optimal solution(xi,j, yi), we can construct an integral solution with the
same cost. By the splitting trick2, we can assume thatxi,j = {0, yi}. Each client (fractionally) connects to
a consecutive segment of facilities. Supposei is needed by demands setJ .

Now we can write another linear program withoutxi,j variables as follows. We usei′ for indexing the
facilities after the split andi for original facility. We writei′ ∈ sp(i) to indicate that the new facilityi′ is
derived from the original facilityi. LetFj be the set of facilities servingj (after the splitting process). The
facilities inFj form a consecutive segment in the path.

minimize
∑

j

∑

i′∈Fj

d(i′, j)yi′ (2)

subject to
∑

i′∈Fj

yi′ ≥ r,∀j

∑

i′∈sp(i)

yi′ ≤ 1,∀i

∑

i′∈F

yi′ ≤ k,∀i

It is easy to see that the optimal solution for the new LP is no more than that for the original LP.
The constraint matrix of the new LP has the consecutive “one”s property: in each row of the constraint
matrix, the “1”s appear in consecutive positions. Such matrices are known to be totally unimodular and the
corresponding linear program has an integral optimal solution. (See e.g.,[37]). Furthermore, it is easy to
see any integral feasible solution of (2) corresponds to a feasible solution forFTMed with the same cost.
Therefore, the optimal integral solution of (2) has to be thesame as that of (1). The above argument also
gives us an algorithm to construct an integral solution of (1) of the optimal cost.

Using the same idea, we can get a polynomial time algorithm onan HST metric where all facilities and
clients are located at leaves. We recall an HST (hierarchically well separated tree) is a tree where on any
root to leaf path, the edge lengths decrease by some fixed factor in each step.

2Consider facilityi. Let Jl be the set of clients on the left side ofi andJr the set of clients on the right side. Consider the
numbers{xi,j}j∈J1

∪ {yi − xi,j}j∈J2
. These numbers split the interval[0, yi] into several pieces, and for each piece, we create a

facility with fractional value equal to the length of that piece.
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Lemma 10. The generalFTMed problem can be solved exactly in polynomial time on an HST metric where
all facilities and clients are located at leaves.

Proof. We useLCA(j1, j2) to denote the least common ancestor of leavesj1 andj2. Suppose the leaves of
the HST are ordered according the preorder traversal. Consider a clientj and suppose the path fromj to the
root is{j, p1, p2, . . . , r}. In a fractional optimal solution(xi,j, yi) of (1), clientj chooses to connect all the
facilities in the subtree rooted atp1, then those atp2, and so on. For any leavesj1, j2, j3, if LCA(j1, j2) =
LCA(j1, j3), we can easily see thatdT (j1, j2) = dT (j1, j3). Therefore, we can assumej connects to a
consecutive segment of facilities (in the preorder sequence of the facilities). Using almost the same argument
as in Lemma 9, we can show that the LP has an integral solution with the optimal value.

Note that combining this result with classic tree embeddingresult [6, 17], we can easily get a sim-
ple O(log n)-approximation for generalFTMed on any metric. Since we have already shown a constant
approximation for generalFTMed, we omit the details.

4 Fault Tolerant Facility Location

For FTFL problem with arbitrary weights, we have a setF of n facilities and a setC of m clients. In the
following sections, the terms “demand” and “client” are used interchangeably. For each clientj, there is a

nonnegative weight vectorwj = {w(1)
j , . . . , w

(rj )
j } for somerj ≤ n. Assume that the set of open facilities

arei1, i2, . . . , ih for some1 ≤ h ≤ n, sorted according to the nondecreasing order of their distance toj.
The service cost of clientj is

∑rj
t=1 w

(t)
j d(it, j). If h < rj , the service cost ofj is infinity.

We focus on a special case of the above problem where only one entry of the vectorwj is nonzero. For

ease of notation, we userj to denote the index of the nonzero coordinate inwj andwj to denotew
(rj )
j ,

i.e., w
(rj)
j > 0 andw

(t)
j = 0 for any t 6= rj . Indeed, considering this special case is without loss of

generality since we can create multiple copies for each demand nodej, with the1st copy associated with the
weight vector{w(1)

j , 0, . . . , 0}, the2nd copy{0, w(2)
j , . . . , 0} and so on. It is straightforward to establish the

equivalence and we omit the proof here. From now on, we useFTFL to denote this special case of the fault
tolerant facility location problem. Our main result is a constant factor approximation algorithm forFTFL.

First, we note that the most natural linear integer programming formulation that was used for nonin-
creasing weight vectors in previous work does not work any more.

Hence, we use a different linear integer programming formulation as follows. We use boolean variableyi
to denote whether facilityi is open,xij to denote whether demandj is assigned to facilityi. We useπ(j, t)
to denote thetth facility closest toj. Let N(j, t) = {π(j, 1), π(j, 2), . . . , π(j, t)} andcjt = d(j, π(j, t)).
Let cj0 = 0 for all j. We use indicator variablezjt to denote the event whether demandj is satisfied by
N(j, t) (i.e., at leastrj facilities amongN(j, t) are opened).

minimize
∑

i

fiyi +
∑

j

wj

∑

t≥0

(1− zjt)(cj(t+1) − cjt) (3)
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s.t.
∑

i

xij ≥ rj , ∀j ∈ C (4)

yi ≥ xij , ∀i, j ∈ C (5)
∑

i∈N(j,t)

xij ≥ rjzjt ∀j ∈ C,∀t ∈ [n] (6)

yi, xij, zjt ∈ {0, 1}, ∀i ∈ F, j ∈ C, t ∈ [n] ∪ {0} (7)

First, we need to explain our objective function since it is not the most frequently used objective for
facility location. It is easy to see that a feasible solutionof FTFL satisfies the IP formulation. For any
optimal solution of the IP, ifN(j, t) satisfiesj, N(j, t′) also satisfiesj for t′ ≥ t. Therefore,zjt ≥ zj(t−1)

for all t. If t′ is the smallestt such thatzjt = 1, we can see thatwj

∑
t≥0(1 − zjt)(cj(t+1) − cjt) is equal

to wjcjt′ , which is exactly the service cost ofj. We setcj(n+1) = ∞. Constraints 4 specify that clientj
must be connected torj facilities. Constraints 5 ensure that a client is connectedonly to open facilities and
constraints 6 imply that ifzjt = 1 then at leastrj facilities must be open inN(j, t). The LP relaxation is
obtained by replacing last constraints byyi, xij , zjt ∈ [0, 1].

However, we can not use the above LP directly to get a constantfactor approximation algorithm since its
integrality gap is large and can be as large asΩ(n). Consider the followingFTFL instance in a line metric.
There aren facilities and only one client. All facilities have cost zero and the client have demandn (i.e.,
r1 = n). Thex-coordinate of the client is 0. Thex-coordinate of theith facility is 0 for all 1 ≤ i ≤ n − 1
and thex-coordinate of thenth facility isn. The optimal integral solution opens all facilities and theservice
cost isn. A feasible fractional solution opens all facilities too. However,zjt can take fractional values
1
n

∑
i∈N(j,t) xij =

t
n

. The fractional service cost of the client isn−1
n
· 0+ . . .+ 2

n
· 0+ 1

n
·n = 1. Therefore,

we obtain an integrality gap ofΩ(n).
To strengthen the LP relaxation, we use the followingknapsack cover constraintsto replace constraints

(6):
∑

i∈N(j,t)\A

xij ≥ (rj − |A|)zjt, ∀j ∈ C, t ∈ [n], A ⊆ N(j, t) (8)

The constraints require that ifzjt = 1, then for every subsetA, at leastrj − |A| facilities from the set
N(j, t) \ A must be chosen to servej. We can also see that there is a polynomial time separation oracle for
(8): Suppose(xij , zjt) is a solution. For fixedt andj, we can test the feasibility of (8) for allA with |A| = k
by checking whether the sum of the smallest|N(j, t)|− k terms inN(j, t) is at least(rj − k)zjt. Therefore,
the relaxation can be solved optimally in polynomial time bythe ellipsoid algorithm. Let(x∗, y∗, z∗) be the
optimal fractional solution of the linear program andOPT be the optimal value.

Now, we round the fractional solution(x∗, y∗, z∗) to an integral solution(x̂, ŷ, ẑ) as follows. Let us
consider a particular demandj. Letα < 1 be a constant fixed later. Lett∗j be the smallest integert such that
z∗jt ≥ α.

Lemma 11. For everyj, it holds thatcjt∗j ≤
1

1−α

∑n−1
t=0 (1− z∗jt)(cj(t+1) − cjt).

Proof.

1

1− α

n−1∑

t=0

(1− z∗jt)(cj(t+1) − cjt)

≥ 1

1− α

t∗j−1∑

t=0

(1− α)(cj(t+1) − cjt) = cjt∗j .
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The first inequality follows becausez∗jt ≥ z∗
j(t−1) for all t. This is true because if we setz∗j,t = maxz∗j,1, ..., z

∗
j,t,

it yields a feasible solution of no greater cost.

Now, we create a set of̃yi values that we will round, based on they∗i values, as follows.

1. For all facility i with y∗i ≥ α, we round it up to1, i.e., ỹi = 1.

2. For all facility i with y∗i < α, we letỹi = 1
α
y∗i .

Lemma 12. For each clientj,
∑

i∈N(j,t∗
j
) ỹi ≥ rj.

Proof. Consider a particular clientj. LetA be the set of facilityi such thatx∗ij ≥ α andi ∈ N(j, t∗j ). From
(8), we know that

∑

i∈N(j,t∗j )\A

y∗i ≥
∑

i∈N(j,t∗j )\A

x∗ij ≥ z∗jt∗j (rj − |A|) ≥ α(rj − |A|).

Therefore, we can see that

∑

i∈N(j,t∗j )\A

ỹi ≥
∑

i∈N(j,t∗j )\A

1

α
y∗i ≥ rj − |A|.

For each facilityi ∈ A, we havẽyi = 1. Hence,
∑

i∈N(j,t∗j )
ỹi ≥ rj , which completes the proof.

Now, we round thẽy values to integers. Our rounding scheme is a slight variant of the one in [40].
Let Fj = N(j, t∗j ). Let r′j be the residual requirement ofj, which is initially set to berj . We iterate the
following steps until no client remains in the graph.

S1. We pick the clientj with the minimumcjt∗j .

S2. LetM ⊆ Fj be the set of the cheapest facilities inFj (w.r.t. facility opening costs) such that∑
i∈M ỹi ≥ r′j. If

∑
i∈M ỹi is strictly large thanr′j, we replace the last facility, say facilityi, by

two “clones” i1 andi2. Setỹi1 = r′j −
∑

i∈M\{i} ỹi and ỹi2 = ỹi − ỹi1. Includei1 in M . Hence,∑
i=M yi = r′j .

S3. Open ther′j cheapest facilities inM . For each clientk with Fk ∩M 6= ∅, we use anymin(r′k, r
′
j) of

the facilities we just opened to servek and letr′k = r′k −min(r′k, r
′
j). Delete facilities inM and all

clients with zero residual requirement from the input.

Lemma 13. The above rounding scheme returns a feasible solution. Moreover, the following properties
hold.

1. The facility opening cost is at most
∑

i fiỹi.

2. For each clientj, at leastrj facilities inB(j, 3cjt∗j ) are open.
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Proof. The proof is almost the same as the one in [40]. For completeness, we include it here. Consider a
particular iteration. It is easy to see the invariant

∑
i∈Fj

ỹi ≥ r′j is maintained throughout the three steps.
So it is always possible to choose the setM . We also need to argue that no facility is opened twice since we
have made some clones. We argue that whenever a facilityi is replaced by two clones, the first clone never
gets opened: This is simply becausei is the most expensive facility inM and there are at leastr′j facilities
cheaper thani (otherwise, we do not have to make clones).

To bound the facility cost, just notice that the cost of open facilities inM is less than
∑

i∈M fiỹi. This
proves (1). To bound the connection cost, consider a particular clientj. Any opened facility inFj is at most
cjt∗j distance away fromj. Notice thatj may be served by some facilities inFk for some other clientk.
This only happens ifFj ∩ Fk 6= ∅ andckt∗

k
≤ cjt∗j (we process clientk first). A facility in Fk is at most

2ckt∗
k
+ cjt∗j ≤ 3cjt∗j away fromj.

From Lemma 13, we know that the firstrj copies of clientj are assigned within a distance of3cjt∗j .
Therefore, we have that the total cost of this integral solution

SOL ≤ 1

α

∑

i

fiy
∗
i + 3

∑

j

wjcj(t∗j )

≤ 1

α

∑

i

fiy
∗
i +

3

1− α

∑

j

wj

∑

t

(1− z∗jt)(cj(t+1) − cjt)

where the second inequality holds because of Lemma 11.
Settingα = 1

4 gives us an approximation ratio of4. We can choose a randomα to improve the ap-
proximation ratio as in [38, 19]. LetLj(α) becjt for the minimalt such thatzjt > α. It is easy to see the
following.

Lemma 14. ∫ 1

0
Lj(α)dα =

∑

t

(1− z∗jt)(cj(t+1) − cjt).

Choose a randomα uniformly distributed over[h, 1]. Then, the expected cost is

E[SOL] ≤
∫ 1

h

1

1− h

( 1

α

∑

i

fiy
∗
i + 3

∑

j

wjLj(α)
)
dα

≤ 1

1− h
ln

1

h

∑

i

fiy
∗
i +

3

1− h

∑

j

wj

∑

t

(1− z∗jt)(cj(t+1) − cjt)

The above expression is minimized ath = e−3, which gives an approximation ratio3.16.

Theorem 2. There is a polynomial time approximation approximation with an approximation factor3.16
for FTFL.
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