
Efficient Computation of Representative Sets with Applications
in Parameterized and Exact Algorithms∗

Fedor V. Fomin† Daniel Lokshtanov† Fahad Panolan†

Saket Saurabh‡ †

Abstract
Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size p.

A subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q, if there is
a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y with
X̂ ∪ Y ∈ I. By the classical result of Bollobás, in a uniform matroid, every family of sets of size p
has a q-representative family with at most

(
p+q
p

)
sets. In his famous “two families theorem” from

1977, Lovász proved that the same bound also holds for any matroid representable over a field F.
As observed by Marx, Lovász’s proof is constructive. In this paper we show how Lovász’s proof can
be turned into an algorithm constructing a q-representative family of size at most

(
p+q
p

)
in time

bounded by a polynomial in
(
p+q
p

)
, t, and the time required for field operations.

We demonstrate how the efficient construction of representative families can be a powerful
tool for designing single-exponential parameterized and exact exponential time algorithms. The
applications of our approach include the following.

• In the Long Directed Cycle problem the input is a directed n-vertex graph G and the
positive integer k. The task is to find a directed cycle of length at least k in G, if such a
cycle exists. As a consequence of our 6.75k+o(k)nO(1) time algorithm, we have that a directed
cycle of length at least log n, if such cycle exists, can be found in polynomial time. As it was
shown by Björklund, Husfeldt, and Khanna [ICALP 2004], under an appropriate complexity
assumption, it is impossible to improve this guarantee by more than a constant factor. Thus
our algorithm not only improves over the best previous log n/ log log n bound of Gabow and
Nie [SODA 2004] but also closes the gap between known lower and upper bounds for this
problem.

• In the Minimum Equivalent Graph (MEG) problem we are seeking a spanning subdigraph
D′ of a given n-vertex digraph D with as few arcs as possible in which the reachability
relation is the same as in the original digraph D. The existence of a single-exponential cn-
time algorithm for some constant c > 1 for MEG was open since the work of Moyles and
Thompson [JACM 1969].

• To demonstrate the diversity of applications of the approach, we provide an alternative proof
of the results recently obtained by Bodlaender, Cygan, Kratsch and Nederlof for algorithms
on graphs of bounded treewidth, who showed that many “connectivity” problems such as
Hamiltonian Cycle or Steiner Tree can be solved in time 2O(t)n on n-vertex graphs
of treewidth at most t. We believe that expressing graph problems in “matroid language”
shed light on what makes it possible to solve connectivity problems single-exponential time
parameterized by treewidth.

For the special case of uniform matroids on n elements, we give a faster algorithm to compute a
representative family. We use this algorithm to provide the fastest known deterministic parame-
terized algorithms for k-Path, k-Tree, and more generally, for k-Subgraph Isomorphism, where
the k-vertex pattern graph is of constant treewidth. For example, our k-Path algorithm runs in
time O(2.619kn log n log W) on weighted graphs with maximum edge weight W .

∗Preliminary versions of this paper appeared in the proceedings of SODA 2014 and ESA 2014. Supported by
Rigorous Theory of Preprocessing, ERC Advanced Investigator Grant 267959 and Parameterized Approximation,
ERC Starting Grant 306992.
†University of Bergen, Norway. {fomin|daniello}@ii.uib.no
‡Institute of Mathematical Sciences, India. saket@imsc.res.in

ar
X

iv
:1

30
4.

46
26

v4
 [

cs
.D

S]
 2

2
Fe

b
20

16

Contents
1 Introduction 2

2 Preliminaries 7
2.1 Randomized Algorithms . 8
2.2 Matroids . 8
2.3 Linear Matroids and Representable Matroids . 8
2.4 Direct Sum of Matroids. 9
2.5 Uniform and Partition Matroids . 9
2.6 Graphic Matroids . 10
2.7 Truncation of a Matroid. 10

3 Fast Computation for Representative Sets for Linear Matroids 10

4 Fast Computation for Representative Sets for Uniform Matroids 14
4.1 Representative Sets using Lopsided Universal Sets 14
4.2 Representative Sets using Separating Collections 16

5 Applications 33
5.1 Long Directed Cycle . 33
5.2 Faster Long Directed Cycle . 37
5.3 Minimum Equivalent Graph . 39
5.4 Dynamic Programming over graphs of bounded treewidth 43

5.4.1 Treewidth . 43
5.4.2 Steiner Tree parameterized by treewidth 44

5.5 Path, Trees and Subgraph Isomorprhism . 49
5.5.1 k-Path . 49
5.5.2 k-Tree and k-Subgraph Isomorphism 50

5.6 Other Applications . 56

6 Conclusion and Recent Developments 56

1 Introduction
The theory of matroids provides a deep insight into the tractability of many fundamental prob-
lems in Combinatorial Optimizations like Minimum Weight Spanning Tree or Perfect
Matching. Marx in [42] was the first to apply matroids to design fixed-parameter tractable al-
gorithms. The main tool used by Marx was the notion of representative families. Representative
families for set systems were introduced by Monien in [44].

Let M = (E, I) be a matroid and let S = {S1, . . . , St} be a family of subsets of E of size p.
A subfamily Ŝ ⊆ S is q-representative for S if for every set Y ⊆ E of size at most q, if there is
a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is a set X̂ ∈ Ŝ disjoint from Y and
X̂ ∪ Y ∈ I. In other words, if a set Y of size at most q can be extended to an independent set
of size |Y | + p by adding a subset from S, then it also can be extended to an independent set
of size |Y |+ p by adding a subset from Ŝ as well.

The Two-Families Theorem of Bollobás [9] for extremal set systems and its generalization to
subspaces of a vector space of Lovász [38] (see also [25]) imply that every family of sets of size p
has a q-representative family with at most

(p+q
p

)
sets. These theorems are the corner-stones in

extremal set theory with numerous applications in graph and hypergraph theory, combinatorial

2

geometry and theoretical computer science. We refer to Section 9.2.2 of [31], surveys of Tuza
[54, 55], and Gil Kalai’s blog1 for more information on the theorems and their applications.

For set families, or equivalently for uniform matroids, Monien provided an algorithm com-
puting a q-representative family of size at most ∑q

i=0 p
i in time O(pq ·∑q

i=0 p
i · t) [44]. Marx in

[41] provided another algorithm, also for uniform matroids, for finding q-representative families
of size at most

(p+q
p

)
in time O(pq · t2). For linear matroids, Marx [42] has shown how Lovász’s

proof can be transformed into an algorithm computing a q-representative family. However, the
running time of the algorithm given in [42] is f(p, q)(||AM ||t)O(1), where f(p, q) is a polynomial
in (p+ q)p and

(p+q
p

)
, that is, f(p, q) = 2O(p log(p+q)) ·

(p+q
p

)O(1), and AM is the matroid’s repre-
sentation matrix. Thus, when p is a constant, which is the way this lemma has been recently
used in the kernelization algorithms [36], we have that f(p, q) = (p + q)O(1). However, for
unbounded p (for an example when p = q = k

2) the running time of this algorithm is bounded
by 2O(k log k)(||AM ||t)O(1).

Our results. We give two faster algorithms computing representative families and show how
they can be used to obtain improved parameterized and exact exponential algorithms for several
fundamental and well studied problems.

Our first result is the following

Theorem 1. Let M = (E, I) be a linear matroid of rank p + q = k given together with its
representation matrix AM over a field F. Let S = {S1, . . . , St} be a family of independent sets
of size p. Then a q-representative family Ŝ ⊆ S for S with at most

(p+q
p

)
sets can be found

in O
((p+q

p

)
tpω + t

(p+q
q

)ω−1) operations over F. Here, ω < 2.373 is the matrix multiplication
exponent.

Actually, we will prove a variant of Theorem 1 which allows sets to have weights. This
extension will be used in several applications. This theorem uses the notion of weighted repre-
sentative families and computes a weighted q-representative family of size at most

(p+q
p

)
within

the running time claimed in Theorem 1. The proof of Theorem 1 relies on the exterior algebra
based proof of Lovász [38] and exploits the multi-linearity of the determinant function.

For the case of uniform matroids, we provide the following theorem

Theorem 2. Let S = {S1, . . . , St} be a family of sets of size p over a universe of size n
and let 0 < x < 1. For a given q, a q-representative family Ŝ ⊆ S for S with at most
x−p(1− x)−q · 2o(p+q) sets an be computed in time O((1− x)−q · 2o(p+q) · t · logn).

As in the case of Theorem 1, we prove a more general version of Theorem 2 for weighted sets.
The proof of Theorem 2 is essentially an algorithmic variant of the “random permutation” proof
of Bollobás Lemma (see [31, Theorem 8.7]). A slightly weaker variant of Bollobás Lemma can be
proved using random partitions instead of random permutations, the advantage of the random
partitions proof being that it can be de-randomized using efficient constructions of universal
sets [47]. To obtain our results we define separating collections and give efficient constructions
of them.

Separating collections can be seen as a variant of universal sets. In its simplest form, an
n-p-q-separating collection C is a pair (F , χ), where F is a family of sets over a universe U of
size n and χ is a function from

(U
p

)
to 2F such that the following two properties are satisfied;

(a) for every A ∈
(U
p

)
and every F ∈ χ(A), A ⊆ F , (b) for every A ∈

(U
p

)
and B ∈

(U\A
q

)
, there

is an F ∈ χ(A) such that A ⊆ F and F ∩ B = ∅. The size of (F , χ) is |F|, whereas the max
1http://gilkalai.wordpress.com/2008/12/25/lovaszs-two-families-theorem/

3

degree of (F , χ) is maxA∈(Up) |χ(A)|. Here 2S for a set S is the family of all subsets of S while(S
p

)
is the family of all subsets of S of size p.
An efficient construction of separating collections is an algorithm that given n, p and q

outputs the family F of a separating collection (F , χ) and then allows queries χ(A) for A ∈
(U
p

)
.

We give constructions of separating collections of optimal (up to subexponential factors in p+q)
size and degree, and construction and query time which is linear (up to subexponential factors
in p+ q) in the size of the output.

In the conference version of the paper [24], we only proved Theorem 2 for x = p
p+q . That is,

let S = {S1, . . . , St} be a family of sets of size p over a universe of size n. Then, for a given q, a
q-representative family Ŝ ⊆ S for S with at most

(p+q
p

)
· 2o(p+q) · logn sets can be computed in

time O((p+qq)q · 2o(p+q) · t · logn). Later we observed that our proof works for every 0 < x < 1
and allows an interesting trade-off between the size of the computed representative families and
the time taken to compute them [22], and that this trade-off can be exploited algorithmically to
speed up “representative families based” algorithms. Theorem 2 improves over the one in [24]
by shaving off a multiplicative factor of logn from the upper bound on the output family size.
Independently, at the same time, Shachnai and Zehavi [53] also observed that our initial proof
could be generalized in essentially the same way as what is stated in Theorem 2, and that this
generalization used to speed up some of the algorithms given in the preliminary version of the
paper [24]. In particular they obtain the same dependence on k in the running time bounds as
in this paper for k-Path and Long Directed Cycle.

Applications. Here we provide the list of main applications that can be derived from our
algorithms that compute representative families together with a short overview of previous
work on each application.

Reference Randomized Deterministic
Monien [44] - O(k!nm)

Bodlaender [7] - O(k!2kn)
Alon et al. [2] O(5.44kn) O(ckn logn) for a large c
Kneis at al. [33] O∗(4k) O∗(16k)
Chen et al. [12] O(4kk2.7m) 4k+O(log3 k)nm

Koutis [34] O∗(2.83k) -
Williams [56] O∗(2k) -

Björklund et al. [5] O∗(1.66k) -
Conference version - O(2.851kn log2 n)

This paper - O(2.619kn logn)

Table 1: Results for k-Path. We use O∗() notation that hides factors polynomial in the
number of vertices n and the parameter k in cases when the authors do not specify the power
of polynomials.

k-Path. In the k-Path problem we are given an undirected n-vertex graph G and integer k.
The question is if G contains a path of length k. k-Path was studied intensively within the
parameterized complexity paradigm [18]. For n-vertex graphs the problem is trivially solvable in
time O(nk). Monien [44] and Bodlaender showed that the problem is fixed parameter tractable.
Monien used representative families for set systems for his k-Path algorithm [44] and Plehn
and Voigt extended this algorithm to Subgraph Isomorphism in [51]. This led Papadimitriou
and Yannakakis [49] to conjecture that the problem is solvable in polynomial time for k = logn.

4

This conjecture was resolved in a seminal paper of Alon et al. [2], who introduced the method
of color-coding and obtained the first single exponential algorithm for the problem. Actually,
the method of Alon et al. can be applied for more general problems, like finding a k-path in
directed graphs, or to solve the Subgraph Isomorphism problem in time 2O(k)nO(t), when the
treewidth of the pattern graph is bounded by t. There has been a lot of efforts in parameterized
algorithms to reduce the base of the exponent of both deterministic as well as the randomized
algorithms for the k-Path problem, see Table 1. After the work of Alon et al. [2], there were
several breakthrough ideas leading to faster and faster randomized algorithms. Concerning
deterministic algorithms, no improvements occurred since 2007, when Chen et al. [13] showed
a clever way of applying universal sets to reduce the running time of color-coding algorithm to
O∗(4k+o(k)).

k-Path is a special case of the k-Subgraph Isomorphism problem, where for given n-vertex
graph G and k-vertex graph F , the question is whether G contains a subgraph isomorphic to
F . In addition to k-Path, parameterized algorithms for two other variants of k-Subgraph
Isomorphism, when F is a tree, and more generally, a graph of treewidth at most t, were
studied in the literature. Alon et al. [2] showed that k-Subgraph Isomorphism, when the
treewidth of the pattern graph is bounded by t, is solvable in time 2O(k)nO(t). Cohen et al. gave
a randomized algorithm that for an input digraph D decides in time 5.704knO(1) if D contains a
given out-tree with k vertices [14]. They also showed how to derandomize the algorithm in time
6.14knO(1). Amini et al. [3] introduced an inclusion-exclusion based approach in the classical
color-coding and gave a randomized 5.4knO(t) time algorithm and a deterministic 5.4k+o(k)nO(t)

time algorithm for the case when F has treewidth at most t. Koutis and Williams [35] gener-
alized their algebraic approach for k-Path to k-Tree and obtained a randomized algorithm
running in time 2knO(1) for k-Tree. A superset of the authors in [23], extended this result by
providing a randomized algorithm for k-Subgraph Isomorphism running in time 2k(nt)O(t),
when the treewidth of F is at most t. However, the fastest known deterministic algorithm for
this problem prior to this paper, was the time 5.4k+o(k)nO(t) algorithm from [3]. In this paper
we give deterministic algorithms for k-Path and k-Tree that run in time O(2.619kn logn) and
O(2.619knO(1)). The algorithm for k-Tree can be generalized to k-Subgraph Isomorphism
for the case when the pattern graph F has treewidth at most t. This algorithm will run in time
O(2.619knO(t)). Our approach can also be applied to find directed paths and cycles of length k
in time O(2.619km logn) and O(2.619knO(1)) respectively.

Another interesting feature of our approach is that due to using weighted representative
families, we can handle the weighted version of the problem as well. The weighted version of
k-Path is known as Short Cheap Tour. Let G be a graph with maximum edge cost W ,
then the problem is to find a path of length at least k where the total sum of costs on the
edges is minimized. The algorithm of Björklund et al. [5] can be adapted to solve Short
Cheap Tour in time O(1.66knO(1)W), however, their approach does not seem to be applicable
to obtain algorithms with polylogarithmic dependence on W . Williams in [56] observed that
a divide-and-color approach from [12] can be used to solve Short Cheap Tour in time
O(4knO(1) logW). No better algorithm for Short Cheap Tour was known prior to our work.
As it was noted by Williams, the O(2knO(1)) algorithm of his paper does not appear to extend
to weighted graphs. Our approach provides deterministic O(2.619knO(1) logW) time algorithm
for Short Cheap Tour and partially resolves an open question asked by Williams.

Long Directed Cycle. In the Long Directed Cycle problem we are interested in finding a
cycle of length at least k in a directed graph. For this problem we give an algorithm of running
time O(6.75k+o(k)mn2 logn).

While at the first glance the problem is similar to the problem of finding a cycle or a path
of length exactly k, it is more tricky. The reason is that the problem of finding a cycle of

5

length ≥ k may entail finding a much longer, potentially even a Hamiltonian cycle. This is why
color-coding, and other techniques applicable to k-Path do not seem to work here. Even for
undirected graphs color-coding alone is not sufficient, and one needs an additional clever trick to
make it work. The first fixed-parameter tractable algorithm for Long Directed Cycle is due
to Gabow and Nie [26], who gave algorithms with expected running time k2k2O(k)nm and worst-
case times O(k2k2O(k)nm logn) or O(k3knm). These running times allow them to find a directed
cycle of length at least logn/ log logn in expected polynomial time, if it exists. Let us note, that
our algorithm implies that one can find in polynomial time a directed cycle of length at least
logn if there is such a cycle. On the other hand, Björklund et al. [6] have shown that assuming
Exponential Time Hypothesis (ETH) of Impagliazzo et al. [30], there is no polynomial time
algorithm that finds a directed cycle of length Ω(f(n) logn), for any nondecreasing, unbounded,
polynomial time computable function f that tends to infinity. Thus, our work closes the gap
between the upper and lower bounds for this problem.

Minimum Equivalent Graph. Our next application is from exact exponential time algo-
rithms, we refer to [21] for an introduction to the area of exact algorithms. In the Minimum
Equivalent Graph (MEG) problem we are seeking a spanning subdigraph D′ of a given di-
graph D with as few arcs as possible in which the reachability relation is the same as in the
original digraph D. In other words, for every pair of vertices u, v, there is a path from u to v in
D′ if and only if the original digraph D has such a path. We show that this problem is solvable
in time O(24ωnmn), where n is the number of vertices and m is the number of arcs in D.

MEG is a classical NP-hard problem generalizing the Hamiltonian Cycle problem, see
Chapter 12 of the book [4] for an overview of combinatorial and algorithmic results on MEG.
The algorithmic studies of MEG can be traced to the work of Moyles and Thompson [45] from
1969, who gave a (non-trivial) branching algorithm solving MEG in time O(n!). In 1975, Hsu
in [29] discovered a mistake in the algorithm of Moyles and Thompson, and designed a different
branching algorithm for this problem. Martello [39] and Martello and Toth [40] gave another
branching based algorithm with running time O(2m). No single-exponential exact algorithm,
i.e. of running time 2O(n), for MEG was known prior to our work.

As it was already observed by Moyles and Thompson [45] the hardest instances of MEG are
strong digraphs. A digraph is strong if for every pair of vertices u 6= v, there are directed paths
from u to v and from v to u. MEG restricted to strong digraphs is known as the Minimum
SCSS (strongly connected spanning subgraph) problem. It is known that the MEG problem
reduces in linear time to Minimum SCSS, see e.g. [15].

Treewidth algorithms. We show that efficient computation of representative families can
be used to obtain algorithms solving “connectivity” problems like Hamiltonian Cycle or
Steiner Tree in time 2O(t)n, where t is the treewidth of the input n-vertex graph. It is
well known that many intractable problems can be solved efficiently when the input graph
has bounded treewidth. Moreover, many fundamental problems like Maximum Independent
Set or Minimum Dominating Set can be solved in time 2O(t)n. On the other hand, it was
believed until very recently that for some “connectivity” problems such as Hamiltonian Cycle
or Steiner Tree no such algorithm exists. In their breakthrough paper, Cygan et al. [17]
introduced a new algorithmic framework called Cut&Count and used it to obtain 2O(t)nO(1)

time Monte Carlo algorithms for a number of connectivity problems. Very recently, Bodlaender
et al. [8] obtained the first deterministic single exponential algorithms for these problems.
Bodlaender et al. presented two approaches, one based on rank estimations in specific matrices
and the second based on matrix-tree theorem and computation of determinants. Our approach,
based on representative families in matroids, can be seen as an alternate path to obtain similar
results. The main idea behind our approach is that all the relevant information about “partial

6

solutions” in bags of the tree decomposition, can be encoded as an independent set of a specific
matroid. Here efficient computation of representative families comes into play.

In all our applications we first define a specific matroid and then show a combinatorial
relation between solution to the problem and independent sets of the matroid. Then we compute
representative families using Theorem 1 or Theorem 2 and use them to obtain a solution to
the problem. We believe that expressing graph problems in “matroid language” is a generic
technique explaining why certain problems admit single-exponential parameterized and exact
exponential algorithms. Finally, for completeness we would like to add that in the conference
version of the paper, the running time for k-Path and k-Tree were O(2.815knO(1)); for k-
Subgraph Isomorphism for the case when the pattern graph F has treewidth at most t was
O(2.815knO(t)) and for Long Directed Cycle was 8k+o(k)nO(1).

Organization of the paper. In Section 2 we give the necessary definitions and state some
of the known results that we will use. In Section 3 we prove Theorem 1 by giving an efficient
algorithm for the computation of representative families for linear matroids. In Section 4 we
prove Theorem 2 by giving an efficient algorithm for the computation of representative families
for uniform matroids. In Section 5 we give all our applications of Theorems 1 and 2. Concluding
remarks and new developments can be found in Section 6. The proofs of Theorem 1 and
Theorem 2 are independent of each other and may be read independently. All of our applications
use Theorems 1 and 2 as black boxes, and thus may be read independently of the sections
describing the efficient computation of representative families.

2 Preliminaries
In this section we give various definitions which we make use of in the paper.

Graphs. Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is a subgraph
of G if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). The subgraph G′ is called an induced subgraph of G
if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)}, in this case, G′ is also called the subgraph induced
by V (G′) and denoted by G[V (G′)]. For a vertex set S, by G \ S we denote G[V (G) \ S].
By N(u) we denote (open) neighborhood of u, that is, the set of all vertices adjacent to u.
Similarly, by N [u] = N(u) ∪ {u} we define the closed neighborhood. The degree of a vertex v
in G is |NG(v)| and is denoted by d(v). For a subset S ⊆ V (G), we define N [S] = ∪v∈SN [v]
and N(S) = N [S] \ S. By the length of the path we mean the number of edges in it.

Digraphs. Let D be a digraph. By V (D) and A(D) we represent the vertex set and arc set
of D, respectively. Given a subset V ′ ⊆ V (D) of a digraph D, let D[V ′] denote the digraph
induced by V ′. A digraph D is strong if for every pair x, y of vertices there are directed paths
from x to y and from y to x. A maximal strongly connected subdigraph of D is called a strong
component. A vertex u of D is an in-neighbor (out-neighbor) of a vertex v if uv ∈ A(D)
(vu ∈ A(D), respectively). The in-degree d−(v) (out-degree d+(v)) of a vertex v is the number
of its in-neighbors (out-neighbors). We denote the set of in-neighbors and out-neighbors of a
vertex v by N−(v) and N+(v) correspondingly. A closed directed walk in a digraph D is a
sequence v0v1 · · · v` of vertices of D, not necessarily distinct, such that v0 = v` and for every
0 ≤ i ≤ `− 1, vivi+1 ∈ A(D).

Sets, Functions and Constants. We use the following notations: [n] = {1, . . . , n} and([n]
i

)
= {X | X ⊆ [n], |X| = i}.
We use the following operations on families of sets.

Definition 2.1. Given two families of sets A and B, we define

7

(•) A•B = {X ∪ Y | X ∈ A and Y ∈ B and X ∩ Y = ∅}. Let A1, . . . ,Ar be r families. Then

•∏
i∈[r]
Ai = A1 • · · · • Ar.

(◦) A ◦ B = {A ∪B : A ∈ A and B ∈ B}.

(+) For a set X, we define A+X = {A ∪X : A ∈ A}.

The first and second derivatives of a function f(x) of a variable x is denoted by f ′(x) and
f ′′(x) respectively. Throughout the paper we use ω to denote the exponent in the running time
of matrix multiplication, the current best known bound for which is ω < 2.373 [57]. We use e
to denote the base of natural logarithm.

2.1 Randomized Algorithms

We follow the same notion of randomized algorithms as described in [42, Section 2.3]. That
is, some of the algorithms presented in this paper are randomized, which means that they can
produce incorrect answer, but the probability of doing so is small. We assume that the algorithm
has an integer parameter P given in unary, and the probability of incorrect answer is 2−P .

2.2 Matroids

In the next few subsections we give definitions related to matroids. For a broader overview on
matroids we refer to [48].

Definition 2.2. A pair M = (E, I), where E is a ground set and I is a family of subsets
(called independent sets) of E, is a matroid if it satisfies the following conditions:

(I1) φ ∈ I.

(I2) If A′ ⊆ A and A ∈ I then A′ ∈ I.

(I3) If A,B ∈ I and |A| < |B|, then there is e ∈ (B \A) such that A ∪ {e} ∈ I.

The axiom (I2) is also called the hereditary property and a pair (E, I) satisfying only (I2)
is called hereditary family. An inclusion wise maximal set of I is called a basis of the matroid.
Using axiom (I3) it is easy to show that all the bases of a matroid have the same size. This size
is called the rank of the matroid M , and is denoted by rank(M).

2.3 Linear Matroids and Representable Matroids

Let A be a matrix over an arbitrary field F and let E be the set of columns of A. For A, we
define matroid M = (E, I) as follows. A set X ⊆ E is independent (that is X ∈ I) if the
corresponding columns are linearly independent over F. The matroids that can be defined by
such a construction are called linear matroids, and if a matroid can be defined by a matrix
A over a field F, then we say that the matroid is representable over F. That is, a matroid
M = (E, I) of rank d is representable over a field F if there exist vectors in Fd corresponding to
the elements such that linearly independent sets of vectors correspond to independent sets of
the matroid. A matroid M = (E, I) is called representable or linear if it is representable over
some field F.

8

2.4 Direct Sum of Matroids.

Let M1 = (E1, I1), M2 = (E2, I2), . . . , Mt = (Et, It) be t matroids with Ei ∩ Ej = ∅ for all
1 ≤ i 6= j ≤ t. The direct sum M1 ⊕ · · · ⊕Mt is a matroid M = (E, I) with E := ⋃t

i=1Ei and
X ⊆ E is independent if and only if X ∩ Ei ∈ Ii for all i ≤ t. Let Ai be the representation
matrix of Mi = (Ei, Ii). Then,

AM =

A1 0 0 · · · 0
0 A2 0 · · · 0
...

...
...

...
...

0 0 0 · · · At

is a representation matrix of M1 ⊕ · · · ⊕Mt. The correctness of this construction is proved
in [42].

Proposition 2.1 ([42, Proposition 3.4]). Given representations of matroids M1, . . . ,Mt over
the same field F, a representation of their direct sum can be found in polynomial time.

2.5 Uniform and Partition Matroids

A pair M = (E, I) over an n-element ground set E, is called a uniform matroid if the family of
independent sets is given by I = {A ⊆ E | |A| ≤ k}, where k is some constant. This matroid is
also denoted as Un,k. Every uniform matroid is linear and can be represented over a finite field
by a k × n matrix AM where the AM [i, j] = ji−1.

AM =

1 1 1 · · · 1
1 2 3 · · · n
1 22 32 · · · n2

...
...

...
...

...
1 2k−1 3k−1 · · · nk−1

Matrix AM is called Vandermonde matrix. Observe that for Un,k to be representable over

a finite field F, we need that the determinant of each k × k submatrix of AM must not vanish
over F. Observe that any k columns corresponding to xi1 , . . . , xik itself form a Vandermonde
matrix, whose determinant is given by ∏

1≤j<`≤k
(xij − xi`).

Combining this with the fact that x1, . . . , xn are n distinct elements of F, we conclude that
every subset of size at most k of the ground set is independent, while clearly each larger subset
is dependent. Thus, choosing a field F of size larger than n suffices. Note that this means that
a representation of the uniform matroid Un,k can be stored using O(logn) bits.

A partition matroidM = (E, I) is defined by a ground set E being partitioned into (disjoint)
sets E1, . . . , E` and by ` non-negative integers k1, . . . , k`. A set X ⊆ E is independent if and
only if |X ∩ Ei| ≤ ki for all i ∈ {1, . . . , `}. Observe that a partition matroid is a direct sum of
uniform matroids U|E1|,k1 , · · · , U|E`|,k` . Thus, by Proposition 2.1 and the fact that a uniform
matroid Un,k is representable over a field F of size larger than n, we have that.

Proposition 2.2 ([42, Proposition 3.5]). A representation over a field of size O(|E|) of a
partition matroid can be constructed in polynomial time.

9

2.6 Graphic Matroids

Given a graph G, a graphic matroidM = (E, I) is defined by taking elements as edge of G (that
is E = E(G)) and F ⊆ E(G) is in I if it forms a spanning forest in the graph G. The graphic
matroid is representable over any field of size at least 2. Consider the matrix AM with a row for
each vertex i ∈ V (G) and a column for each edge e = ij ∈ E(G). In the column corresponding
to e = ij, all entries are 0, except for a 1 in i or j (arbitrarily) and a −1 in the other. This is
a representation over reals. To obtain a representation over a field F, one simply needs to take
the representation given above over reals and simply replace all −1 by the additive inverse of 1

Proposition 2.3 ([48]). Graphic matroids are representable over any field of size at least 2.

2.7 Truncation of a Matroid.

The t-truncation of a matroid M = (E, I) is a matroid M ′ = (E, I ′) such that S ⊆ E is
independent in M ′ if and only if |S| ≤ t and S is independent in M (that is S ∈ I).

Proposition 2.4 ([42, Proposition 3.7]). Given a matroid M with a representation A over a
finite field F and an integer t, a representation of the t-truncationM ′ can be found in randomized
polynomial time.

3 Fast Computation for Representative Sets for Linear Ma-
troids

In this section we give an algorithm to find a q-representative family of a given family. We start
with the definition of a q-representative family.

Definition 3.1 (q-Representative Family). Given a matroid M = (E, I) and a family S of
subsets of E, we say that a subfamily Ŝ ⊆ S is q-representative for S if the following holds: for
every set Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪Y ∈ I, then
there is a set X̂ ∈ Ŝ disjoint from Y with X̂ ∪ Y ∈ I. If Ŝ ⊆ S is q-representative for S we
write Ŝ ⊆qrep S.

In other words if some independent set in S can be extended to a larger independent set by q
new elements, then there is a set in Ŝ that can be extended by the same q elements. A weighted
variant of q-representative families is defined as follows. It is useful for solving problems where
we are looking for objects of maximum or minimum weight.

Definition 3.2 (Min/Max q-Representative Family). Given a matroid M = (E, I), a
family S of subsets of E and a non-negative weight function w : S → N, we say that a subfamily
Ŝ ⊆ S is min q-representative (max q-representative) for S if the following holds: for every set
Y ⊆ E of size at most q, if there is a set X ∈ S disjoint from Y with X ∪ Y ∈ I, then there is
a set X̂ ∈ Ŝ disjoint from Y with

1. X̂ ∪ Y ∈ I; and

2. w(X̂) ≤ w(X) (w(X̂) ≥ w(X)).

We use Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) to denote a min q-representative (max q-representative)
family for S.

10

We say that a family S = {S1, . . . , St} of sets is a p-family if each set in S is of size p.
We start by three lemmata providing basic results about representative sets. These lemmata

will be used in Section 5, where we provide algorithmic applications of representative families.
We prove them for unweighted representative families but they can be easily modified to work
for weighted variant.

Lemma 3.1. Let M = (E, I) be a matroid and S be a family of subsets of E. If S ′ ⊆qrep S and
Ŝ ⊆qrep S ′, then Ŝ ⊆qrep S.

Proof. Let Y ⊆ E of size at most q such that there is a set X ∈ S disjoint from Y with
X ∪ Y ∈ I. By the definition of q-representative family we have that there is a set X ′ ∈ S ′
disjoint from Y with X ′ ∪ Y ∈ I. Now the fact that Ŝ ⊆qrep S ′ yields that there exists a X̂ ∈ Ŝ
disjoint from Y with X̂ ∪ Y ∈ I.

Lemma 3.2. LetM = (E, I) be a matroid and S be a family of subsets of E. If S = S1∪· · ·∪S`
and Ŝi ⊆qrep Si, then ∪`i=1Ŝi ⊆qrep S.

Proof. Let Y ⊆ E of size at most q such that there is a set X ∈ S disjoint from Y with
X ∪ Y ∈ I. Since S = S1 ∪ · · · ∪ S`, there exists an i such that X ∈ Si. This implies that there
exists a X̂ ∈ Ŝi ⊆ ∪`i=1Ŝi disjoint from Y with X̂ ∪ Y ∈ I.

Lemma 3.3. Let M = (E, I) be a matroid of rank k and S1 be a p1-family of independent sets,
S2 be a p2-family of independent sets, Ŝ1 ⊆k−p1

rep S1 and Ŝ2 ⊆k−p2
rep S2. Then Ŝ1 • Ŝ2 ⊆k−p1−p2

rep

S1 • S2.

Proof. Let Y ⊆ E of size at most q = k − p1 − p2 such that there is a set X ∈ S1 • S2 disjoint
from Y with X ∪ Y ∈ I. This implies that there exist X1 ∈ S1 and X2 ∈ S2 such that
X1 ∪X2 = X and X1 ∩X2 = ∅. Since Ŝ1 ⊆k−p1

rep S1, we have that there exists a X̂1 ∈ Ŝ1 such
that X̂1 ∪X2 ∪Y ∈ I and X̂1 ∩ (X2 ∪Y) = ∅. Now since Ŝ2 ⊆k−p2

rep S2, we have that there exists
a X̂2 ∈ Ŝ2 such that X̂1∪ X̂2∪Y ∈ I and X̂2∩ (X̂1∪Y) = ∅. This shows that X̂1∪ X̂2 ∈ Ŝ1 • Ŝ2
and X̂1 ∪ X̂2 ∪ Y ∈ I thus Ŝ1 • Ŝ2 ⊆k−p1−p2

rep S1 • S2.

The main result of this section is that given a representable matroid M = (E, I) of rank
k = p + q with its representation matrix AM , a p-family of independent sets S, and a non-
negative weight function w : S → N, we can compute Ŝ ⊆qminrep S and Ŝ ⊆qmaxrep S of size(p+q
p

)
deterministically in time O

((p+q
p

)
tpω + t

(p+q
q

)ω−1). The proof for this result is obtained
by making the known exterior algebra based proof of Lovász [38, Theorem 4.8] algorithmic.
Although our proof is based on exterior algebra and is essentially the same as the proof given
in [38], we give a proof here which avoids the terminology from exterior algebra.

For our proof we also need the following well-known generalized Laplace expansion of de-
terminants. For a matrix A = (aij), the row set and the column set are denoted by R(A) and
C(A) respectively. For I ⊆ R(A) and J ⊆ C(A), A[I, J] =

(
aij | i ∈ I, j ∈ J

)
means the

submatrix (or minor) of A with the row set I and the column set J . For I ⊆ [n] let Ī = [n] \ I
and ∑ I = ∑

i∈I i.

Proposition 3.1 (Generalized Laplace expansion). For an n×n matrix A and J ⊆ C(A) = [n],
it holds that

det(A) =
∑

I⊆[n],|I|=|J |
(−1)

∑
I+
∑

J det(A[I, J]]) det(A[Ī , J̄])

11

We refer to [46, Proposition 2.1.3] for a proof of the above identity. We always assume
that the number of rows in the representation matrix AM of M over a field F is equal to
rank(M)=rank(AM). Otherwise, using Gaussian elimination we can obtain a matrix of the
desired kind in polynomial time. See [42, Proposition 3.1] for details. We do not give the proof
for Theorem 1 but rather for the following generalization.

Theorem 3. Let M = (E, I) be a linear matroid of rank p + q = k, S = {S1, . . . , St} be
a p-family of independent sets and w : S → N be a non-negative weight function. Then
there exists Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size

(p+q
p

)
. Moreover, given a representation

AM of M over a field F, we can find Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size at most
(p+q
p

)
in

O
((p+q

p

)
tpω + t

(p+q
q

)ω−1) operations over F.

Proof. We only show how to find Ŝ ⊆qminrep S in the claimed running time. The proof for
Ŝ ⊆qmaxrep S is analogous, and for that case we only point out the places where the proof
differs. If t ≤

(k
p

)
, then we can take Ŝ = S. Clearly, in this case Ŝ ⊆qminrep S. So from now

onwards we always assume that t >
(k
p

)
. For the proof we view the representation matrix AM as

a vector space over F and each set Si ∈ S as a subspace of this vector space. For every element
e ∈ E, let xe be the corresponding k-dimensional column in AM . Observe that each xe ∈ Fk.
For each subspace Si ∈ S, i ∈ {1, . . . , t}, we associate a vector ~si = ∧

j∈Si xj in F(kp) as follows.
In exterior algebra terminology, the vector ~si is a wedge product of the vectors corresponding
to elements in Si. For a set S ∈ S and I ∈

([k]
p

)
, we define s[I] = det(AM [I, S]).

We also define
~si = (si[I])

I∈([k]
p) .

Thus the entries of the vector ~si are the values of det(AM [I, Si]), where I runs through all the
p sized subsets of rows of AM .

LetHS = (~s1, . . . , ~st) be the
(k
p

)
×tmatrix obtained by taking ~si as columns. Now we define a

weight function w′ : C(HS)→ R+ on the set of columns of HS . For the column ~si corresponding
to Si ∈ S, we define w′(~si) = w(Si). Let W be a set of columns of HS that are linearly
independent over F, the size ofW is equal to the rank(HS) and is of minimum total weight with
respect to the weight function w′. That is, W is a minimum weight column basis of HS . Since
the row-rank of a matrix is equal to the column-rank, we have that |W| =rank(HS)≤

(k
p

)
. We

define Ŝ = {Sα | ~sα ∈ W}. Let |Ŝ| = `. Because |W| = |Ŝ|, we have that ` ≤
(k
p

)
. Without

loss of generality, let Ŝ = {Si | 1 ≤ i ≤ `} (else we can rename these sets) and W = {~s1 . . . , ~s`}.
The only thing that remains to show is that indeed Ŝ ⊆qminrep S.

Let Sβ ∈ S be such that Sβ /∈ Ŝ. We show that if there is a set Y ⊆ E of size at most q such
that Sβ ∩Y = ∅ and Sβ ∪Y ∈ I, then there exists a set Ŝβ ∈ Ŝ disjoint from Y with Ŝβ ∪Y ∈ I
and w(Ŝβ) ≤ w(Sβ). Let us first consider the case |Y | = q. Since Sβ ∩ Y = ∅, it follows that
|Sβ ∪ Y | = p+ q = k. Furthermore, since Sβ ∪ Y ∈ I, we have that the columns corresponding
to Sβ ∪ Y in AM are linearly independent over F; that is, det(AM [R(AM), Sβ ∪ Y]) 6= 0.

Recall that, ~sβ = (sβ[I])
I∈([k]

p) , where sβ[I] = det(AM [I, Sβ]). Similarly we define y[L] =
det(AM [L, Y]) and

~y = (y[L])
L∈([k]

q) .

Let ∑ J = ∑
j∈Sβ j. Define

γ(~sβ, ~y) =
∑

I∈([k]
p)

(−1)
∑

I+
∑

Jsβ[I] · y[Ī].

12

Since
(k
p

)
=
(k
k−p
)

=
(k
q

)
the above formula is well defined. Observe that by Proposition 3.1, we

have that γ(~sβ, ~y) = det(AM [R(AM), Sβ ∪ Y]) 6= 0. We also know that ~sβ can be written as a
linear combination of vectors in W = {~s1, ~s2, . . . , ~s`}. That is, ~sβ = ∑`

i=1 λi~si, λi ∈ F, and for
some i, λi 6= 0. Thus,

γ(~sβ, ~y) =
∑
I

(−1)
∑

I+
∑

Jsβ[I] · y[Ī]

=
∑
I

(−1)
∑

I+
∑

J

(∑̀
i=1

λisi[I]
)
y[Ī]

=
∑̀
i=1

λi

(∑
I

(−1)
∑

I+
∑

Jsi[I]y[Ī]
)

=
∑̀
i=1

λi det(AM [R(AM), Si ∪ Y]) (by Proposition 3.1)

Define
sup(Sβ) =

{
Si
∣∣∣ Si ∈ Ŝ, λi det(AM [R(AM), Si ∪ Y])) 6= 0

}
.

Since γ(~sβ, ~y) 6= 0, we have that (∑`
i=1 λi det(AM [R(AM), Si ∪ Y])) 6= 0 and thus sup(Sβ) 6= ∅.

Observe that for all S ∈ sup(Sβ) we have that det(AM [R(AM), S ∪Y]) 6= 0 and thus S ∪Y ∈ I.
We now show that w(S) ≤ w(Sβ) for all S ∈ sup(Sβ).

Claim 3.1. For all S ∈ sup(Sβ), w(S) ≤ w(Sβ).

Proof. For a contradiction assume that there exists a set Sj ∈ sup(Sβ) such that w(Sj) > w(Sβ).
Let ~sj be the vector corresponding to Sj and W ′ = (W ∪ {~sj}) \ { ~sβ}. Since w(Sj) > w(Sβ),
we have that w(~sj) > w(~sβ) and thus w′(W) > w′(W ′). Now we show that W ′ is also a column
basis of HS . This will contradict our assumption that W is a minimum weight column basis of
HS . Recall that ~sβ = ∑`

i=1 λi~si, λi ∈ F. Since Sj ∈ sup(Sβ), we have that λj 6= 0. Thus ~sj can
be written as linear combination of vectors in W ′. That is,

~sj = λβ~sβ +
∑̀

i=1,i 6=j
λ′i~si. (1)

Also every vector ~sγ /∈ W can be written as a linear combination of vectors in W

~sγ =
∑̀
i=1

δi~si, δi ∈ F. (2)

By substituting (1) into (2), we conclude that every vector can be written as linear combination
of vectors in W ′. This shows that W ′ is also a column basis of HS , a contradiction proving the
claim.

Claim 3.1 and the discussions preceding above it show that we could take any set S ∈ sup(Sβ)
as the desired Ŝβ ∈ Ŝ. Also, since det(AM [R(AM), S ∪ Y]) 6= 0, we have that S ∩ Y = ∅. This
shows that indeed Ŝ ⊆qminrep S for each Y of size q. This completes the proof for the case
|Y | = q.

Suppose that |Y | = q′ < q. Since M is a matroid of rank k = p+ q, there exists a superset
Y ′ ∈ I of Y of size q such that Sβ ∩ Y ′ = ∅ and Sβ ∪ Y ′ ∈ I. This implies that there exists

13

a set Ŝ ∈ Ŝ such that det(AM [R(AM), Ŝ ∪ Y ′]) 6= 0 and w(Ŝ) ≤ w(S). Thus the columns
corresponding to Ŝ ∪ Y are linearly independent.

We now consider the running time of the algorithm. To make the above proof algorithmic
we need to

(a) compute determinants and
(b) apply fast Gaussian elimination to find a minimum weight column basis.

It is well known that one can compute the determinant of a n × n matrix in time O(nω) [11].
For a rectangular matrix A of size d × n (with d ≤ n), Bodlaender et al. [8] outline an algo-
rithm computing a minimum weight column basis in time O(ndω−1). Thus given a p-family
of independent sets S we can construct the matrix HS as follows. For every set Si, we first
compute ~si. To do this we compute det(AM [I, Si]) for every I ∈

([k]
p

)
. This can be done in time

O(
(p+q
p

)
pω). Thus, we can obtain the matrix HS in time O(

(p+q
p

)
tpω). Given matrix HS we can

find a minimum weight column basis W of HS in time O(t
(p+q
p

)ω−1). Given W, we can easily
recover Ŝ. Thus, we can compute Ŝ ⊆qminrep S in O

((p+q
p

)
tpω + t

(p+q
q

)ω−1) field operations.
This concludes the proof for finding Ŝ ⊆qminrep S. To find Ŝ ⊆qmaxrep S, the only change we
need to do in the algorithm for finding Ŝ ⊆qminrep S is to find a maximum weight column basis
W of HS . This concludes the proof.

In Theorem 3 we assumed that rank(M)= p + q. However, one can obtain a similar result
even when rank(M)> p + q in lieu of randomness. To do this we first need to compute the
representation matrix of a k-restriction ofM = (E, I). For that we make use of Proposition 2.4.
This step returns a representation of a k-restriction of M = (E, I) with high probability. Given
this matrix, we apply Theorem 3 and arrive at the following result.

Theorem 4. Let M = (E, I) be a linear matroid, S = {S1, . . . , St} be a p-family of indepen-
dent sets and w : S → N be a non-negative weight function. Then there exists Ŝ ⊆qminrep S
(Ŝ ⊆qmaxrep S) of size

(p+q
p

)
. Furthermore, given a representation AM of M over a field F,

there is a randomized algorithm computing Ŝ ⊆qminrep S (Ŝ ⊆qmaxrep S) of size at most
(p+q
p

)
in

O
((p+q

p

)
tpω + t

(p+q
q

)ω−1) operations over F.

4 Fast Computation for Representative Sets for Uniform Ma-
troids

In this section we show that for uniform matroids one can avoid matrix multiplication computa-
tions in order to compute representative families. The section is organized as follows. We start
(Section 4.1, Theorem 5) from a relatively simple algorithm computating representative families
over a uniform matroid. This algorithm is already faster than the algorithm of Theorem 1 for
general matroids. In Section 4.2, Theorem 6, we give an even faster, but more complicated
algorithm. Throughout this section a subfamily A′ ⊆ A of the family A is said to q-represent
A if for every set B of size q such that there is an A ∈ A and A ∩B = ∅, there is a set A′ ∈ A′
such that A′ ∩B = ∅.

4.1 Representative Sets using Lopsided Universal Sets

Our aim in this subsection is to prove the following theorem.

14

Theorem 5. There is an algorithm that given a family A of p-sets over a universe U of size
n and an integer q, computes in time |A| ·

(p+q
p

)
· 2o(p+q) · logn a subfamily A′ ⊆ A such that

|A′| ≤
(p+q
p

)
· 2o(p+q) · logn and A′ q-represents A.

The main tool in our proof of Theorem 5 is a generalization of the notion of n-k-universal
families. A family F of sets over a universe U is an n-k-universal family if for every set A ∈

(U
k

)
and every subset A′ ⊆ A there is some set F ∈ F whose intersection F ∩ A is exactly A′.
Naor et al. [47] show that given n and k one can construct an n-k-universal family F of size
2k+o(k) · logn in time 2k+o(k) · n logn.

We tweak the notion of universal families as follows. We will say that a family F of sets over
a universe U of size n is an n-p-q-lopsided-universal family if for every A ∈

(U
p

)
and B ∈

(U\A
q

)
there is an F ∈ F such that A ⊆ F and B ∩F = ∅. An alternative definition that is easily seen
to be equivalent is that F is n-p-q-lopsided-universal if for every subset A ∈

(U
p+q
)
and every

subset A′ ∈
(A
p

)
, there is an F ∈ F such that F ∩A = A′. From the second definition it follows

that a n-(p+ q)-universal family is also n-p-q-lopsided-universal. Thus the construction of Naor
et al. [47] of universal set families also gives an construction of n-p-q-lopsided universal family
of size 2p+q+o(p+q) · logn, running in time 2p+q+o(p+q) · n logn. It turns out that by slightly
changing the construction of Naor et al. [47], one can prove the following result.

Lemma 4.1. There is an algorithm that given n, p and q constructs an n-p-q-lopsided-universal
family F of size

(p+q
p

)
· 2o(p+q) · logn in time O(

(p+q
p

)
· 2o(p+q) · n logn).

We do not give a stand-alone proof of Lemma 4.1, however Lemma 4.1 is a direct corollary of
Lemma 4.2 proved in Section 4.2. We will now show how to use the lemma to prove Theorem 5.

Proof of Theorem 5. The algorithm starts by constructing an n-p-q-lopsided universal family F
as guaranteed by Lemma 4.1. If |A| ≤ |F| the algorithm outputs A and halts. Otherwise it
builds the set A′ as follows. Initially A′ is equal to ∅ and all sets in F are marked as unused.
The algorithm goes through every A ∈ A and unused sets F ∈ F . If an unused set F ∈ F is
found such that A ⊆ F , the algorithm marks F as used, inserts A into A′ and proceeds to the
next set in A. If no such set F is found the algorithm proceeds to the next set in A without
inserting A into A′.

The size of A′ is upper bounded by |F| ≤
(p+q
p

)
·2o(p+q) · logn since every time a set is added

to A′ an unused set in F is marked as used. For the running time analysis, constructing F takes
time

(p+q
p

)
· 2O(p+q

log log(p+q)) · n logn. Then we run through all of F for each set A ∈ A, spending
time |A| · |F| · (p+ q)O(1), which is at most |A| ·

(p+q
p

)
· 2o(p+q) · logn. Thus in total the running

time is bounded by |A| ·
(p+q
p

)
· 2o(p+q) · logn.

Finally we need to argue that A′ q-represents A. Consider any set A ∈ A and B such that
|B| = q and A∩B = ∅. If A ∈ A′ we are done, so assume that A /∈ A′. Since F is n-p-q-lopsided
universal there is a set F ∈ F such that A ⊆ F and F ∩ B = ∅. Since A /∈ A′ we know that
F was already marked as used when A was considered by the algorithm. When the algorithm
marked F as used it also inserted a set A′ into A′. For the insertion to be made, F must satisfy
A′ ⊆ F . But then A′ ∩B = ∅, completing the proof.

One of the factors that drive up the running time of the algorithm in Theorem 5 is that
one needs to consider all of F for each set A ∈ A. Doing some computations it is possible
to convince oneself that in an n-p-q-lopsided universal family F the number of sets F ∈ F
containing a fixed set A of size p should be approximately |F| ·

(p
p+q

)p. Thus, if we could only
make sure that this estimation is in fact correct for every A ∈ A, and we could make sure that
for a given A ∈ A we can list all of the sets in F that contain A without having to go through

15

the sets that don’t, then we could speed up our algorithm by a factor
(p+q

p

)p. This is exactly
the strategy behind the main theorem of Section 4.2.

4.2 Representative Sets using Separating Collections

In this section we design a faster algorithm to find q-representative family. Our main technical
tool is a construction of n-p-q-separating collection. We start with the formal definition of
n-p-q-separating collection.

Definition 4.1. An n-p-q-separating collection C is a tuple (F , χ, χ′), where F is a family of
sets over a universe U of size n, χ is a function from ⋃

p′≤p

(U
p′
)
to 2F and χ′ is a function from⋃

q′≤q

(U
q′
)
to 2F such that the following properties are satisfied

1. for every A ∈ ⋃
p′≤p

(U
p′
)
and F ∈ χ(A), A ⊆ F ,

2. for every B ∈ ⋃
q′≤q

(U
q′
)
and F ∈ χ′(B), F ∩B = ∅,

3. for every pairwise disjoint sets A1 ∈
(U
p1

)
, A2 ∈

(U
p2

)
, · · · , Ar ∈

(U
pr

)
and B ∈

(U
q

)
such that

p1 + · · ·+ pr = p, ∃F ∈ χ(A1) ∩ χ(A2) . . . χ(Ar) ∩ χ′(B).

The size of (F , χ, χ′) is |F|, the (χ, p′)-degree of (F , χ, χ′) for p′ ≤ p is

max
A∈(Up′)

|χ(A)|,

and the (χ′, q′)-degree of (F , χ, χ′) for q′ ≤ q is

max
B∈(Uq′)

|χ′(B)|.

We must remark that the definition of an n-p-q-separating collection in the preliminary ver-
sion of this paper [24] was slightly more restricted than the one given here. This new definition
has already been used recently to obtain faster algorithms for computing representative sets for
product families [22].

A construction of separating collections is a data structure, that given n, p and q initializes
and outputs a family F of sets over the universe U of size n. After the initialization one can
query the data structure by giving it a set A ∈ ⋃p′≤p (Up′) or B ∈ ⋃q′≤q (Uq′), the data structure
then outputs a family χ(A) ⊆ 2F or χ′(B) ⊆ 2F respectively. Together the tuple C = (F , χ, χ′)
computed by the data structure should form a n-p-q-separating collection.

We call the time the data structure takes to initialize and output F the initialization time.
The (χ, p′)-query time, p′ ≤ p, of the data structure is the maximum time the data structure
uses to compute χ(A) over all A ∈

(U
p′
)
. Similarly, the (χ′, q′)-query time, q′ ≤ q, of the data

structure is the maximum time the data structure uses to compute χ′(B) over all B ∈
(U
q′
)
.

The initialization time of the data structure and the size of C are functions of n, p and q. The
initialization time is denoted by τI(n, p, q), size of C is denoted by ζ(n, p, q). The (χ, p′)-query
time and (χ, p′)-degree of C, p′ ≤ p, are functions of n, p′, p, q and is denoted by Q(χ,p′)(n, p, q)
and ∆(χ,p′)(n, p, q) respectively. Similarly, the (χ′, q′)-query time and (χ′, q′)-degree of C, q′ ≤ q,
are functions of n, q′, p, q and are denoted by Q(χ′,q′)(n, p, q) and ∆(χ′,q′)(n, p, q) respectively.
We are now ready to state the main technical tool of this subsection.

16

Lemma 4.2. Given 0 < x < 1, there is a construction of n-p-q- separating collection with the
following parameters

• size, ζ(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) · logn

• initialization time, τI(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) · n logn

• (χ, p′)-degree, ∆(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p+ q)O(1) · logn

• (χ, p′)-query time, Q(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p+ q)O(1) · logn

• (χ′, q′)-degree, ∆(χ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p+ q)O(1) · logn

• (χ′, q′)-query time, Q(χ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p+ q)O(1) · logn

We first give the road map that we take to prove Lemma 4.2. The proof of Lemma 4.2 uses
three auxiliary lemmata.

(a.) Existential Proof (Lemma 4.3). This lemma shows that there is indeed a n-p-q-
separating collection with the required sizes, degrees and query time. Essentially, it shows
that if we form a family F = {F1, . . . , Ft} of sets of U such that each Fi is a random
subset of U where each element is inserted into Fi with probability x, then F has the
desired sizes, degrees and query time. Thus, this also gives a brute force algorithm to
design the family F by just guessing the family of desired size and then checking whether
it is indeed a n-p-q-separating collection.

(b.) Universe Reduction (Lemma 4.4). The construction obtained in Lemma 4.3 has
only one drawback that the initialization time is much larger than claimed in Lemma 4.2.
To overcome this lacuna, we do not apply the construction in Lemma 4.3 directly. We
first prove a Lemma 4.4 which helps us in reducing the universe size to (p + q)2. This
is done using the known construction of k-perfect hash families of size (p + q)O(1) logn.
However, Lemma 4.4 alone can not reduce the universe size sufficiently, that we can apply
the construction of Lemma 4.3.

(c.) Splitting Lemma (Lemma 4.5). We give a splitter type construction in Lemma 4.5
that when applied with Lemma 4.4 makes the universe and other parameters small enough
that we can apply the construction given in Lemma 4.3. In this construction we consider
all the “consecutive partitions” of the universe into t parts, assume that the sets A ∪ B,
A = ∪ri=1Ai, are distributed uniformly into t parts and then use this information to obtain
a construction of separating collections in each part and then take the product of these
collections to obtain a collection for the original instance.

We start with the existential proof.

Lemma 4.3. Given 0 < x < 1, there is a construction of n-p-q-separating collections with

• size ζ(n, p, q) = O
(

1
xp(1−x)q · (p

2 + q2 + 1) logn
)

• initialization time τI(n, p, q) = O(
(2n
ζ(n,p,q)

)
· 1
xp(1−x)q · n

O(p+q))

• (χ, p′)-degree for p′ ≤ p, ∆(χ,p′)(n, p, q) = O
(

1
xp−p′

· (p2+q2+1)
(1−x)q · logn

)
• (χ, p′)-query time Q(χ,p′)(n, p, q) = O(1

xp(1−x)q · n
O(1))

• (χ′, q′)-degree ∆(χ′,q′)(n, p, q) = O
(

1
xp(1−x)q−q′ · (p

2 + q2 + 1) · logn
)

17

• (χ′, q′)-query time Q(χ′,q′)(n, p, q) = O(1
xp(1−x)q · n

O(1))

Proof. We start by giving a randomized algorithm that with positive probability constructs a
n-p-q-separating collection C = (F , χ, χ′) with the desired size and degree parameters. We will
then discuss how to deterministically compute such a C within the required time bound. Set
t = 1

xp(1−x)q ·(p
2 +q2 +1) logn and construct the family F = {F1, . . . , Ft} as follows. Each set Fi

is a random subset of U , where each element of U is inserted into Fi with probability x. Distinct
elements are inserted (or not) into Fi independently, and the construction of the different sets
in F is also independent. For each A ∈ ⋃p′≤p (Up′) we set χ(A) = {F ∈ F : A ⊆ F} and for
each B ∈ ⋃q′≤q (Uq′) we set χ′(B) = {F ∈ F : F ∩B = ∅}.

The size of F is within the required bound by construction. We now argue that with positive
probability (F , χ, χ′) is indeed a n-p-q-separating collection, and that the degrees of C is within
the required bounds as well. For fixed sets A ∈

(U
p

)
, B ∈

(U\A
q

)
, and integer i ≤ t, we consider

the probability that A ⊆ Fi and B ∩ Fi = ∅. This probability is xp(1 − x)q. Since each Fi is
constructed independently from the other sets in F , the probability that no Fi satisfies A ⊆ Fi
and B ∩ Fi = ∅ is

(1− xp(1− x)q)t ≤ e−(p2+q2+1) logn = 1
np2+q2+1 .

For a fixed A1, . . . , Ar and B (choices in condition 3), the probability that no Fi in χ(A1) ∩
χ(A2)∩· · ·∩χ(Ar)∩χ′(B) is equal to the probability that no Fi is in χ(A1∪A2 · · ·∪Ar)∩χ′(B)
(since χ(A′) contains all the sets in F that contains A′ and χ′(B) contains all the sets in F that
are disjoint from B). Hence the probability that condition 3 fails is upper bounded by

Y · 1
np2+q2+1

where Y is the number of choices for A1, . . . , Ar and B in condition 3. We upper bound Y
as follows. There are

(n
p

)
choices for A1 ∪ · · · ∪ Ar and

(n
q

)
choices for B. For each choice of

A1 ∪ · · · ∪Ar there are at most rp choices of making A1, . . . , Ar with some of them being empty
as well. Note that r ≤ p. Therefore the number of possible choices of sets A1, A2, . . . , Ar and
B in condition 3 is upper bounded by

(n
p

)(n
q

)
pp ≤ n2p+q ≤ np

2+q2 . Hence the probability that
condition 3 in Definition 4.1 fails is at most 1

n .
We also need to upper bound the maximum degree of C. For every A ∈

(U
p′
)
, |χ(A)| is a

random variable. For a fixed A ∈
(U
p′
)
and i ≤ t the probability that A ⊆ Fi is exactly xp

′ .
Hence |χ(A)| is the sum of t independent 0/1-random variables that each take value 1 with
probability xp′ . Hence the expected value of |χ(A)| is

E[|χ(A)|] = t · xp′ = 1
xp−p′(1− x)q · (p

2 + q2 + 1) logn

For every B ∈
(U
q′
)
, |χ′(B)| is also a random variable. For a fixed B ∈

(U
q′
)
and i ≤ t the

probability that A ∩ Fi = ∅ is exactly (1− x)q′ . Hence the expected value of |χ′(B)| is,

E[|χ′(B)|] = t · (1− x)q′ = 1
xp(1− x)q−q′ · (p

2 + q2 + 1) logn.

Standard Chernoff bounds [43, Theorem 4.4] show that the probability that for any A ∈
(U
p′
)
,

|χ(A)| is at least 6E[|χ(A)|] is upper bounded by 2−6E[|χ(A)|] ≤ 1
np2+q2+1 . Similarly the proba-

bility that for any B ∈
(U
q′
)
, |χ′(B)| is at least 6E[|χ′(B)|] is upper bounded by 2−6E[|χ′(B)|] ≤

18

1
np2+q2+1 . There are ∑p′≤p

(n
p′
)
≤ np

2 choices for A ∈ ⋃p′≤p (Up′) and ∑q′≤q
(n
q′
)
≤ nq

2 choices
for B ∈

⋃
q′≤q

(U
q′
)
. Hence the union bound yields that the probability that there exists

an A ∈
⋃
p′≤p

(U
p′
)
such that |χ(A)| > 6E[|χ(A)|] or there exists B ∈ ⋃

q′≤q
(U
q′
)
such that

|χ′(B)| > 6E[|χ′(B)|] is upper bounded by 1
n . Thus C is a family of n-p-q-separating collections

with the desired size and degree parameters with probability at least 1− 2
n > 0. The degenerate

case that 1− 2
n ≤ 0 is handled by the family F containing all (at most four) subsets of U .

To construct F within the stated initialization time bound, it is sufficient to try all families F
of size t and for each of the

(2n
ζ(n,p,q)

)
guesses, test whether it is indeed a family of n-p-q-separating

collections in time O(t · nO(p+q)) = O(1
xp(1−x)q · n

O(p+q)).
For the queries, we need to give an algorithm that given A, computes χ(A) (or χ′(A)), under

the assumption that F has already has been computed in the initialization step. This is easily
done within the stated running time bound by going through every set F ∈ F , checking whether
A ⊆ F (or A ∩ F = ∅), and if so, inserting F into χ(A) (χ′(A)). This concludes the proof.

We will now work towards improving the time bounds of Lemma 4.3. To that end we will
need a construction of k-perfect hash functions by Alon et al. [2]

Definition 4.2. A family of functions f1, . . . , ft from a universe U of size n to a universe of
size r is a k-perfect family of hash functions if for every set S ⊆ U such that |S| = k there exists
an i such that the restriction of fi to S is injective.

Alon et al. [2] give very efficient constructions of k-perfect families of hash functions from a
universe of size n to a universe of size k2.

Proposition 4.1 ([2]). For any universe U of size n there is a k-perfect family f1, . . . , ft of
hash functions from U to [k2] with t = O(kO(1) · logn). Such a family of hash functions can be
constructed in time O(kO(1)n logn).

Lemma 4.4. If there is a construction of n-p-q-separating collections (F̂ , χ̂, χ̂′) with initializa-
tion time τI(n, p, q), size ζ(n, p, q), (χ̂, p′)-query time Q(χ̂,p′)(n, p, q), (χ̂′, q′)-query time Q(χ̂′,q′)(n, p, q),
(χ̂, p′)-degree ∆(χ̂,p′)(n, p, q), and (χ̂′, q′)-degree ∆(χ̂′,q′)(n, p, q) then there is a construction of
n-p-q-separating collections with following parameters.

• ζ ′(n, p, q) ≤ ζ
(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn,

• τ ′I(n, p, q) = O
(
τI
(
(p+ q)2, p, q

)
+ ζ

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n logn

)
,

• ∆′(χ,p′)(n, p, q) ≤ ∆(χ̂,p′)
(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn,

• Q′(χ,p′)(n, p, q) = O
((
Q(χ̂,p′)

(
(p+ q)2, p, q

)
+ ∆(χ̂,p′)

(
(p+ q)2, p, q

))
· (p+ q)O(1) · logn

)
,

• ∆′(χ′,q′)(n, p, q) ≤ ∆(χ̂′,q′)
(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn,

• Q′(χ′,q′)(n, p, q) = O
((
Q(χ̂′,q′)

(
(p+ q)2, p, q

)
+ ∆(χ̂′,q′)

(
(p+ q)2, p, q

))
· (p+ q)O(1) · logn

)
Proof. We give a construction of n-p-q-separating collections with initialization time, query
time, size and degree τ ′I , Q′, ζ ′ and ∆′ respectively using the construction with initialization
time, query time, size and degree τI , Q, ζ and ∆ as a black box.

We first describe the initialization of the data structure. Given n, p, and q, we construct
using Proposition 4.1 a (p+ q)-perfect family f1, . . . ft of hash functions from the universe U to
[(p+ q)2]. The construction takes time O((p+ q)O(1)n logn) and t ≤ (p+ q)O(1) · logn. We will
store these hash functions in memory. We use the following notations.

19

• For a set S ⊆ U and T ⊆ [(p+ q)2],
fi(S) = {fi(s) : s ∈ S} and f−1

i (T) = {s ∈ U : f(s) ∈ T}.

• For a family Z of sets over U and family W of sets over [(p+ q)2],
fi(Z) = {fi(S) : S ∈ Z} and f−1

i (W) = {f−1
i (T) : T ∈ W}.

We first use the given black box construction for (p+q)2-p-q-separating collections (F̂ , χ̂, χ̂′)
over the universe [(p + q)2]. We run the initialization algorithm of this construction and store
the family F̂ in memory. We then set

F =
⋃
i≤t

f−1
i (F̂).

We spent O((p+ q)O(1)n logn) time to construct a (p+ q)-perfect family of hash functions,
O(τI((p+ q)2, p, q)) to construct F̂ of size ζ((p+ q)2, p, q), and O(ζ((p+ q)2, p, q) · (p+ q)O(1) ·
n logn) time to construct F from F̂ and the family of perfect hash functions. Thus the upper
bound on τ ′I(n, p, q) follows. Furthermore, |F| ≤ |F̂| · (p + q)O(1) · logn, yielding the claimed
bound for ζ ′.

We now define χ(A) for every A ∈ ⋃p′≤p (Up′) and describe the query algorithm. For every
A ∈

⋃
p′≤p

(U
p′
)
we let

χ(A) =
⋃
i≤t

|fi(A)|=|A|

f−1
i (χ̂(fi(A))).

Since for every F̂ ∈ χ̂(fi(A)), fi(A) ⊆ F̂ , it follows that A ⊆ F for every F ∈ χ(A). Furthermore
we can bound |χ(A)| for any A ∈ ⋃p′≤p (Up′), as follows

|χ(A)| ≤
∑
i≤t

|fi(A)|=|A|

|χ̂(fi(A))| ≤ ∆(χ̂,p′)((p+ q)2, p, q) · (p+ q)O(1) · logn.

Thus the claimed bound for ∆′(χ,p′) follows. Similarly, way can define χ′(B) for every B ∈⋃
q′≤q

(U
q′
)
as

χ′(B) =
⋃
i≤t

|fi(A)|=|A|

f−1
i (χ̂′(fi(A))).

|χ′(B)| ≤
∑
i≤t

|fi(A)|=|A|

|χ̂′(fi(A))| ≤ ∆(χ̂′,q′)((p+ q)2, p, q) · (p+ q)O(1) · logn.

To compute χ(A) for any A ∈ ⋃p′≤p (Up′), we go over every i ≤ t and check whether fi is injective
on A. This takes time O((p+q)O(1) · logn). For each i such that fi is injective on A, we compute
fi(A) and then χ̂(fi(A)) in time O(Q(χ̂,p′)((p + q)2, p, q)). Then we compute f−1

i (χ̂(fi(A))) in
time O(| ˆ̂χ(fi(A))| · (p+ q)O(1)) = O(∆(χ̂,p′)((p+ q)2, p, q) · (p+ q)O(1)) and add this set to χ(A).
As we need to do this O((p + q)O(1) · logn) times, the total time to compute χ(A) is upper
bounded by O((Q(χ̂,p′)((p + q)2, p, q) + ∆(χ̂,p′)((p + q)2, p, q)) · (p + q)O(1) · logn), yielding the
claimed upper bound on Q′(χ,p′). Similar way we can bound Q′(χ′,q′).

It remains to argue that (F , χ, χ′) is in fact a n-p-q-separating collection. For any r, consider
pairwise disjoint sets A1 ∈

(U
p1

)
, . . . , Ar ∈

(U
pr

)
, and B ∈

(U
q

)
such that p1 + . . .+pr = p. We need

20

to show that there is F ∈ χ(A1)∩ · · ·∩χ(Ar)∩χ′(B). Since f1, . . . , ft is a (p+ q)-perfect family
of hash functions, there is an i such that fi is injective on A1∪ · · ·∪Ar ∪B. Since (F̂ , χ̂, χ̂′) is a
(p+q)2-p-q-separating collection, ∃F̂ ∈ χ̂(fi(A1))∩· · · χ̂(fi(Ar))∩χ̂′(fi(B)). Since fi is injective
on A1, . . . , Ar and B, f−1

i (F̂) ∈ χ(A1) ∩ · · ·χ(Ar) ∩ χ′(B). This concludes the proof.

We now give a splitting lemma, which allows us to reduce the problem of finding n-p-q-
separating collections to the same problem, but with much smaller values for p and q.

A partition of U is a family UP = {U1, U2, . . . Ut} of sets over U such that Ui ∩ Uj = ∅
for every i 6= j and U = ⋃

i≤t Ui. Each of the sets Ui are called the parts of the partition. A
consecutive partition of {1, . . . , n} is a partition UP = {U1, U2, . . . Ut} of {1, . . . , n} such that
for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui and z ∈ Ui then y ∈ Ui as well. In
other words, in a consecutive partition each part is a consecutive interval of integers. For every
integer t, let Pn

t denote the collection of all consecutive partitions of {1, . . . , n} with exaclty
t parts. We do not demand that all of the parts in a partition in Pt are non-empty. Simple
counting arguments show that for every t, |Pn

t | =
(n+t−1
t−1

)
.

We will denote by Zps,t the set of all t-tuples (p1, p2, . . . , pt) of integers such that ∑i≤t pi = p

and 0 ≤ pi ≤ s for all i. Clearly |Zps,t| ≤
(p+t−1
t−1

)
, since this counts all the ways of writing p as a

sum of t non-negative integers, without considering the upper bound on each one. For an ease
of convenience we summarize the above in the next definition and the proposition.

Definition 4.3. A partition of U is a family UP = {U1, U2, . . . Ut} of sets over U such that
∀i 6= j, Ui ∩ Uj = ∅ and U = ⋃

i≤t Ui. Each of the sets Ui are called the parts of the partition.
A consecutive partition of {1, . . . , n} is a partition UP = {U1, U2, . . . Ut} of {1, . . . , n} such that
for every integer i ≤ t and integers 1 ≤ x ≤ y ≤ z, if x ∈ Ui and z ∈ Ui then y ∈ Ui as well.

Proposition 4.2. Let Pn
t denote the collection of all consecutive partitions of {1, . . . , n} with

exactly t parts. Let Zps,t be the set of all t-tuples (p1, p2, . . . , pt) of integers such that ∑i≤t pi = p

and 0 ≤ pi ≤ s for all i. Then for every t, |Pn
t | =

(n+t−1
t−1

)
and |Zps,t| ≤

(p+t−1
t−1

)
.

Lemma 4.5. For any p, q let s = b(log(p + q))2c and t = dp+qs e. If there is a construction of
n-p-q-separating collections (Fp, χp, χ′p)

• with size ζ(n, p, q) and initialization time τI(n, p, q),
• (χp, p′)-degree ∆(χp,p′)(n, p, q) and (χ′p, q′)-degree ∆(χ′p,q′)(n, p, q), and
• query times Q(χp,p′)(n, p, q) and Q(χ′p,q′)(n, p, q),

then there is a construction of n-p-q-separating collection with following parameters

•
ζ ′(n, p, q) ≤ |Pn

t | ·
∑

(p1,...,pt)∈Zps,t

∏
i≤t

ζ(n, pi, s− pi),

•
τ ′I(n, p, q) = O

((∑
p̂≤s,p
s−p̂≤q

τI(n, p̂, s− p̂)
)

+ ζ ′(n, p, q) · nO(1)
)
,

•

∆′(χ,p′)(n, p, q) ≤ ∆∗(χ,p′)(n, p, q) = |Pn
t | · |Z

p
s,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+···+p′t=p′

∏
i≤t

∆(χpi ,p
′
i)(n, pi, s− pi),

21

•

Q′(χ,p′)(n, p, q) = O
(
∆∗(χ,p′)(n, p, q) ·nO(1) + |Pn

t | · |Z
p
s,t| · t ·

(
max
p̂′≤p̂≤s

p̂−p̂′≤p−p′
s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s− p̂)
))
,

•

∆′(χ′,q′)(n, p, q) ≤ ∆∗(χ′,q′)(n, p, q) = |Pn
t | · |Z

p
s,t| · max

(p1,...,pt)∈Zps,t
q′1≤s−p1,...,q′t≤s−pt

q′1+...+q′t=q′

∏
i≤t

∆(χ′pi ,q
′
i)(n, pi, s− pi),

•

Q′(χ′,q′)(n, p, q) = O
(
∆∗(χ′,q′)(n, p, q)·nO(1)+|Pn

t |·|Z
p
s,t|·t·

(
max
q̂′≤q̂≤s

q̂−q̂′≤q−q′
s−q̂≤p

Q(χ′s−q̂ ,q̂′)(n, s−q̂, q̂)
))
.

Proof. Set s = b(log(p + q))2c and t = dp+qs e. We will give a construction of n-p-q-separating
collections with initialization time, query time, size and degree within the claimed bounds above.
In this construction we will use the given construction as a black box. We may assume without
loss of generality that U = {1, . . . , n}. Our algorithm first runs for every p̂, 0 ≤ p̂ ≤ s, p̂ ≤
p, s− p̂ ≤ q, and initializes n-p̂-(s− p̂)-separating collections,

(Fp̂, χp̂, χ′p̂).

These will be be the building blocks of our construction.
We need to define a few operations on families of sets. For families of sets A, B over U and

subset U ′ ⊆ U we define

A u U ′ = {A ∩ U ′ : A ∈ A}
A ◦ B = {A ∪B : A ∈ A ∧B ∈ B}

We now define F as follows.

F =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that
∀i : s−pi≤q

(Fp1 u U1) ◦ (Fp2 u U2) ◦ . . . ◦ (Fpt u Ut) (3)

It follows directly from the definition of F that |F| is within the claimed bound for ζ ′(n, p, q).

For the initialization time, the algorithm spends O
(∑

p̂≤s,p
s−p̂≤q

τI(n, p̂, s− p̂)
)

time to initialize

the constructions of the n-p̂-(s − p̂)-separating collections for all p̂ ≤ s such that p̂ ≤ p and
s − p̂ ≤ q together. Now the algorithm can output the entries of F one set at a time by using
Equation (3), spending nO(1) time per output set. Hence the time bound for τ ′I(n, p, q) follows.

For every set A ∈ ⋃p′≤p (Up′) we define χ(A) as follows.

χ(A) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that
∀Ui : |Ui∩A|≤pi,s−pi≤q

[
(χp1(A ∩ U1) u U1) ◦ (χp2(A ∩ U2) u U2) ◦ . . . (4)

... ◦ (χpt(A ∩ Ut) u Ut)
]

22

Now we show that χ(A) ⊆ F . From the definition of n-pi-(s − pi)-separating collections
(Fpi , χpi , χ′pi), each family χpi(A ∩ Ui) in Equation (4) is a subset of Fpi . This implies that
χpi(A∩Ui)uUi ⊆ FpiuUi. Hence χ(A) ⊆ F . Similarly we can define χ′(B) for any B ∈ ⋃q′≤q (Uq′)
as

χ′(B) =
⋃

{U1,...,Ut}∈Pn
t

(p1,...,pt)∈Zps,t such that
∀Ui : |Ui∩B|≤s−pi≤q

[
(χ′p1(B ∩ U1) u U1) ◦ (χ′p2(B ∩ U2) u U2) ◦ · · · (5)

· · · ◦ (χ′pt(B ∩ Ut) u Ut)
]

Similar to the proof of χ(A) ⊆ F , we can show that χ′(B) ⊆ F . It follows directly
from the definition of χ(A) and χ′(B) that |χ(A)| and |χ′(B)| is within the claimed bound
for ∆′(χ,p′)(n, p, q) and ∆′(χ′,q′)(n, p, q) respectively. We now describe how queries χ(A) can
be answered, and analyze how much time it takes. Given A we will compute χ(A) using
Equation (4). Let |A| = p′. For each {U1, . . . , Ut} ∈ Pn

t and (p1, . . . , pt) ∈ Zps,t such that
p′i = |Ui ∩A| ≤ pi, s− pi ≤ q for all i ≤ t, we proceed as follows. First we compute χpi(A ∩ Ui)
for each i ≤ t, spending in total O(∑i≤tQ(χpi ,p

′
i)(n, pi, s− pi)) time. Now we add each set in

(χp1(A ∩ U1) u U1) ◦ (χp2(A ∩ U2) u U2) ◦ . . . ◦ (χpt(A ∩ Ut) u Ut)

to χ(A), spending nO(1) time per set, yielding the bound below,

Q′(χ,p′)(n, p, q) ≤ O
(
∆∗(χ,p′)(n, p, q) · nO(1) +

∑
{U1,...,Ut}∈Pt

(p1,...,pt)∈Zps,t such that
∀Ui : p′i=|Ui∩A|≤pi,s−pi≤q

[∑
i≤t

Q(χpi ,p
′
i)(n, pi, s− pi)

])

≤ O
(
∆∗(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z
p
s,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,··· ,p′t≤pt such that
p′1+···+p′t=p′,∀i:s−pi≤q

(∑
i≤t

Q(χpi ,p
′
i)(n, pi, s− pi)

))

≤ O
(
∆∗(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z
p
s,t| · t · max

(p1,...,pt)∈Zps,t
p′1≤p1,··· ,p′t≤pt such that
p′1+···+p′t=p′,∀i:s−pi≤q

(
Q(χpi ,p

′
i)(n, pi, s− pi)

))

≤ O
(
∆∗(χ,p′)(n, p, q) · nO(1) + |Pn

t | · |Z
p
s,t| · t ·

(
max
p̂′≤p̂≤s

p̂−p̂′≤p−p′
s−p̂≤q

Q(χp̂,p̂′)(n, p̂, s− p̂)
))

For any (p1, . . . , pt) ∈ Zps,t and p′1 ≤ p1, . . . , p
′
t ≤ pt such that ∑t

i=1 p
′
i = p′, we have that∑t

i=1 pi − p′i = p − p′ and so pi − p′i ≤ p − p′ for all i. This shows the correctness of the last
inequality in the above query time analysis.

By doing similar analysis, we get required bound for Q′(χ′,q′). We now need to argue that
(F , χ, χ′) is in fact a n-p-q-separating collection. For any r, consider pairwise disjoint sets
A1 ∈

(U
b1

)
, . . . , Ar ∈

(U
br

)
and B ∈

(U
q

)
such that b1 + · · ·+ br = p. Let A = A1 ∪ · · · ∪Ar. There

exists a consecutive partition {U1, . . . , Ut} ∈ Pn
t of U such that for every i ≤ t we have that

|(A ∪ B) ∩ Ui| ≤ dp+qt e = s. For each i ≤ t set pi = |A ∩ Ui| and qi = |B ∩ Ui| = s − pi. Note
that pi ≤ p and qi ≤ q for all i. For every i ≤ t the tuple (Fpi , χpi , χ′pi) form a n-pi-qi-separating
collection. Hence there exists a Fi ∈ χpi(A1 ∩ Ui) ∩ · · · ∩ χpi(Ar ∩ Ui) ∩ χ′pi(B ∩ Ui) because
|A1 ∩Ui|+ · · ·+ |Ar ∩Ui| = pi, |B ∩Ui| = qi and (Fpi , χpi , χ′pi) is a n-pi-qi-separating collection.

23

That is Fi ∈ χpi(Aj∩Ui) for all j ≤ r and Fi ∈ χ′pi(B∩Ui). Let F = ⋃
i≤t Fi∩Ui. By construction

of χ and χ′, F ∈ χ(Aj) for all j ≤ r and F ∈ χ′(B). Hence F ∈ χ(A1) ∩ · · · ∩ χ(Ar) ∩ χ′(B).
This completes the proof

Now we are ready to prove Lemma 4.2. We restate the lemma for easiness of presentation.
Lemma 4.2 Given 0 < x < 1, there is a construction of n-p-q- separating collection with

the following parameters

• size: ζ(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) · logn

• initialization time: τI(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) · n logn

• (χ, p′)-degree: ∆(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p+ q)O(1) · logn

• (χ, p′)-query time: Q(χ,p′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp−p′ (1−x)q · (p+ q)O(1) · logn

• (χ′, q′)-degree: ∆(χ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p+ q)O(1) · logn

• (χ′, q′)-query time: Q(χ′,q′)(n, p, q) ≤ 2O(p+q
log log(p+q)) · 1

xp(1−x)q−q′ · (p+ q)O(1) · logn

Proof. We first explain a brute force construction of n-p-q-separating collection when the value
of x is close to 0 or close to 1. These are discussed in Cases 1 and 2 and the result for all other
values of x is explained in Case 3. Let U be the universe.
Case 1: x ≤ 1

n . In this case the algorithm will output all subset of size p of the universe
as the family F of sets in the n-p-q- separating collection. That is F = {F ⊆ U | |F | = p}.
We define χ and χ′ as follows. For any A ∈ ⋃p′≤p (Up′), χ(A) = {F ∈ F | A ⊆ F}. For any
B ∈

⋃
q′≤q

(U
q′
)
, χ′(B) = {F ∈ F | B ∩ F = ∅}. It is easy to see that (F , χ, χ′) is a n-p-q-

separating collection. Note that |F| =
(n
p

)
≤ np. Since n ≤ 1

x , the size of the n-p-q- separating
collection is upperbound by the claimed bound. Since we can list all the elements in F in np
time, the initialization time is upper bounded by the claimed bound. For any A ⊆ U , |A| = p′,
the cardinality of χ(A) is exactly equal to

(n
p−p′

)
which is upper bounded by 1

xp−p′
. Thus the

(χ, p′)-degree and (χ, p′)-query time is bounded by the claimed bound. For any B ⊆ U , |B| = q′,
the cardinality of χ′(B) is at most |F|, which is upper bounded by 1

xp . Thus the (χ′, q′)-degree
and (χ′, q′)-query time is bounded by the claimed bound.
Case 2: 1−x ≤ 1

n . In this case the algorithm will output all subset of size n−q of the universe
as the family F of sets in the n-p-q- separating collection. That is F = {F ⊆ U | |F | = n− q}.
We define χ and χ′ as follows. For any A ∈ ⋃p′≤p (Up′), χ(A) = {F ∈ F | A ⊆ F}. For any
B ∈

⋃
q′≤q

(U
q′
)
, χ′(B) = {F ∈ F | B ∩ F = ∅}. It is easy to see that (F , χ, χ′) is a n-p-q-

separating collection. Note that |F| =
(n
n−q

)
≤ nq. Since n ≤ 1

1−x , the size of the n-p-q-
separating collection is upperbound by the claimed bound. Since we can list all the elements in
F in nq time, the initialization time is upper bounded by the claimed bound. For any A ⊆ U ,
|A| = p′, the cardinality of χ(A) is is at most |F| which is upper bounded by 1

(1−x)q . Thus
the (χ, p′)-degree and (χ, p′)-query time is bounded by the claimed bound. For any B ⊆ U ,
|B| = q′, the cardinality of χ′(B) is exactly equal to

(n
q−q′

)
, which is upper bounded by 1

(1−x)q−q′ .
Thus the (χ′, q′)-degree and (χ′, q′)-query time is bounded by the claimed bound.
Case 3: x, 1 − x > 1

n . The structure of the proof in this case is as follows. We first create
a collection using Lemma 4.3. Then we apply Lemma 4.4 and obtain another construction.

24

From here onwards we keep applying Lemma 4.5 and Lemma 4.4 in phases until we achieve the
required bounds on size, degree, query and intializitaion time.

We first apply Lemma 4.3 and get a construction of n-p-q-separating collections with the
following parameters.

• size, ζ1(n, p, q) = O
(

1
xp(1−x)q · (p

2 + q2 + 1) logn
)
,

• initialization time, τ1
I (n, p, q) = O(

(2n
ζ(n,p,q)

)
· 1
xp(1−x)q · n

O(p+q)),

• (χ1, p
′)-degree for p′ ≤ p, ∆1

(χ1,p′)(n, p, q) = O
(

1
xp−p′

· (p2+q2+1)
(1−x)q · logn

)
• (χ1, p

′)-query time Q1
(χ1,p′)(n, p, q) = O(1

xp(1−x)q · n
O(1)) = O(2nnO(1))

• (χ′1, q′)-degree for q′ ≤ q, ∆1
(χ′1,q′)

(n, p, q) = O
(

1
xp(1−x)q−q′ · (p

2 + q2 + 1) · logn
)

• (χ′1, q′)-query time, Q1
(χ′1,q′)

(n, p, q) = O(1
xp(1−x)q · n

O(1)) = O(2nnO(1))

We apply Lemma 4.4 to this construction to get a new construction with the following param-
eters.

• size, ζ2(n, p, q) = O
(

1
xp(1−x)q · (p+ q)O(1) · logn

)
• initialization time,

τ2
I (n, p, q) = O

(
τ1
I

(
(p+ q)2, p, q

)
+ ζ1

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n logn

)
= O

 22(p+q)2

xp(1− x)q · (p+ q)O(p+q) +
(1
xp(1− x)q · (p+ q)O(1) · n logn

)
= O

(
(p+ q)O(p+q)

xp(1− x)q
(

22(p+q)2
+ n logn

))

• (χ2, p
′)-degree, ∆2

(χ2,p′)(n, p, q) = O
(

1
xp−p′ (1−x)q · (p+ q)O(1) · logn

)
• (χ2, p

′)-query time, Q2
(χ2,p′)(n, p, q) = O

((
2(p+q)2 + 1

xp−p′ (1−x)q

)
(p+ q)O(1) · logn

)
• (χ′2, q′)-degree, ∆2

(χ′2,q′)
(n, p, q) = O

(
1

xp(1−x)q−q′ · (p+ q)O(1) · logn
)

• (χ2, q
′)-query time, Q2

(χ′2,q′)
(n, p, q) = O

((
2(p+q)2 + 1

xp(1−x)q−q′
)

(p+ q)O(1) · logn
)

We apply Lemma 4.5 to this construction. Recall that in Lemma 4.5 we set s = b(log(p+ q))2c
and t = dp+qs e.

ζ3(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Zps,t

∏
i≤t

ζ2(n, pi, s− pi)

≤ nO(t) · |Zps,t| · max
(p1,...,pt)∈Zps,t

∏
i≤t

ζ2(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1
xp(1− x)q+s · s

O(t) · (logn)O(t)

≤ n
O(p+q

log2(p+q)
) · 1
xp(1− x)q

(
Because

(1
1− x

)s
≤ ns ≤ nO(t)

)

25

τ3
I (n, p, q) = O

 ∑
p̂≤s,p
s−p̂≤q

τ2
I (n, p̂, s− p̂)

+ ζ3(n, p, q) · nO(1)

= O

 ∑
p̂≤s,p
s−p̂≤q

sO(s)

xp̂(1− x)s−p̂
(

22s2
+ n logn

)+ ζ3(n, p, q) · nO(1)

= O

(
(log(p+ q))O(log2(p+q))

xp(1− x)q
(

22log4(p+q) + n logn
)

+ n
O(p+q

log2(p+q)
) · 1
xp(1− x)q

)

∆3
(χ3,p′)(n, p, q) ≤ ∆∗3(χ3,p′)(n, p, q)

= |Pn
t | · |Z

p
s,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+...+p′t=p′

∏
i≤t

∆2
(χ,p′)(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1
xp−p′(1− x)q+s · s

O(t) · (logn)O(t)

≤ n
O(p+q

log2(p+q)
) · 1
xp−p′(1− x)q

(
Because

(1
1− x

)s
∈ nO(t)

)
∆3

(χ′3,q′)
(n, p, q) ≤ ∆∗3(χ′3,q′)

(n, p, q)

= |Pn
t | · |Z

p
s,t| · max

(p1,...,pt)∈Zps,t
q′1≤s−p1,...,q′t≤s−qt

q′1+...+q′t=q′

∏
i≤t

∆2
(χ′,q′i)

(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 1
xp(1− x)q+s−q′ · s

O(t) · (logn)O(t)

≤ n
O(p+q

log2(p+q)
) · 1
xp(1− x)q−q′

(
Because

(1
1− x

)s
∈ nO(t)

)

Q3
(χ3,p′)(n, p, q) ≤ O

∆∗3(χ3,p′)(n, p, q) · n
O(1) + |Pn

t | · |Z
p
s,t| · t · max

p̂′≤p̂≤s
p̂−p̂′≤p−p′
s−p̂≤q

Q2
(χ2,p̂′)(n, p̂, s− p̂)

≤ O

∆∗3(χ3,p′)(n, p, q) · n
O(1) + nO(t) · max

p̂′≤p̂≤s
p̂−p̂′≤p−p′
s−p̂≤q

(
2s2 + 1

xp̂−p̂′(1− x)s−p̂
)
sO(1) logn

≤ O

 n
O(p+q

log2(p+q)
)

xp−p′(1− x)q + nO(t) · sO(1) · logn
(

2s2 + 1
xp−p′(1− x)q

)
≤ O

 n
O(p+q

log2(p+q)
)

xp−p′(1− x)q

26

Similar way we can bound Q3
(χ′3,q′)

as,

Q3
(χ′3,q′)

(n, p, q) ≤ O

 n
O(p+q

log2(p+q)
)

xp(1− x)q−q′

We apply Lemma 4.4 to this construction to get a new construction with the following

parameters.

• size, ζ4(n, p, q) ≤ 2O(p+q
log(p+q)) · 1

xp(1−x)q · (p+ q)O(1) · logn,

• initialization time,

τ4
I (n, p, q) ≤ O

(
τ3
I

(
(p+ q)2, p, q

)
+ ζ3

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n logn

)
≤ 22log4(p+q) · (log(p+ q))O(log2(p+q))

xp(1− x)q + 2O(p+q
log(p+q))

xp(1− x)q · (p+ q)O(1)n logn

• (χ4, p
′)-degree,

∆4
(χ4,p′)(n, p, q) ≤ ∆3

(χ3,p′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn

≤ 2O(p+q
log(p+q))

xp−p′(1− x)q · (p+ q)O(1) · logn

• (χ′4, q′)-degree,

∆4
(χ′4,q′)

(n, p, q) ≤ ∆3
(χ′3,q′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn

≤ 2O(p+q
log(p+q))

xp(1− x)q−q′ · (p+ q)O(1) · logn

• (χ4, p
′)-query time,

Q4
(χ4,p′)(n, p, q) ≤ O

((
Q3

(χ3,p′)

(
(p+ q)2, p, q

)
+ ∆3

(χ3,p′)

(
(p+ q)2, p, q

))
· (p+ q)O(1) · logn

)
≤ 2O(p+q

log(p+q))

xp−p′(1− x)q · (p+ q)O(1) logn

• (χ′4, q′)-query time,

Q4
(χ′4,q′)

(n, p, q) ≤ 2O(p+q
log(p+q))

xp(1− x)q−q′ · (p+ q)O(1) logn

We apply Lemma 4.5 to this construction by setting s = b(log(p+ q))2c and t = dp+qs e.

• size,

ζ5(n, p, q) ≤ |Pn
t | ·

∑
(p1,...,pt)∈Zps,t

∏
i≤t

ζ4(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · sO(t) · 2O(st
log s) · (logn)O(t) · 1

xp(1− x)q+s

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) 1
xp(1− x)q

(
Because

(1
1− x

)s
∈ nO(t)

)

27

• initialization time,

τ5
I (n, p, q) ≤ O

 ∑
p̂≤s,p
s−p̂≤q

τ4
I (n, p̂, s− p̂)

+ ζ5(n, p, q) · nO(1)

≤ O

s22log4 s · (log s)O(log2 s)

xp(1− x)q + 2O(s
log s)

xp(1− x)q · n logn+ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1− x)q

≤ O

s22log4 s · (log s)O(log2 s)

xp(1− x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1− x)q

≤ O

22log4 s · (s)O(s)

xp(1− x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1− x)q

≤ O

22(2 log log(p+q))4
· (log(p+ q))O((log(p+q))2)

xp(1− x)q + n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q))

xp(1− x)q

≤ O

nO(p+q
log2(p+q)

) · 2O(p+q
log log(p+q))

xp(1− x)q

(
Because 22(2 log log(p+q))4

, (log(p+ q))O(log2(p+q)) ≤ 2O(p+q
log log(p+q))

)

• (χ5, p
′)-degree,

∆5
(χ5,p′)(n, p, q) ≤ ∆∗5(χ5,p′)(n, p, q)

= |Pn
t | · |Z

p
s,t| · max

(p1,...,pt)∈Zps,t
p′1≤p1,...,p′t≤pt
p′1+...+p′t=p′

∏
i≤t

∆4
(χ4,p′i)

(n, pi, s− pi)

≤ nO(t) · (p+ q)O(t) · 2O(st
log s)

xp−p′(1− x)q+s · s
O(t) · (logn)O(t)

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp−p′(1− x)q

(
Because

(1
1− x

)s
∈ nO(t)

)

• (χ′5, q′)-degree,

∆5
(χ′5,q′)

(n, p, q) ≤ ∆∗5(χ′5,q′)
(n, p, q)

≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp(1− x)q−q′

• (χ5, p
′)-query time,

Q5
(χ5,p′)(n, p, q) ≤ O

∆∗5(χ5,p′)(n, p, q) · n
O(1) + |Pn

t | · |Z
p
s,t| · max

p̂′≤p̂≤s
p̂−p̂′≤p−p′
s−p̂≤q

Q4
(χ4,p̂′)(n, p̂, s− p̂)

≤ n

O(p+q
log2(p+q)

) · 2O(p+q
log log(p+q)) · 1

xp−p′(1− x)q

28

• (χ′5, q′)-query time,

Q5
(χ′5,q′)

(n, p, q) ≤ n
O(p+q

log2(p+q)
) · 2O(p+q

log log(p+q)) · 1
xp(1− x)q−q′

We apply Lemma 4.4 to this construction to get a new construction with the following param-
eters.

• size,

ζ(n, p, q) ≤ ζ5
(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn

≤ 2O(p+q
log log(p+q)) · 1

xp(1− x)q · (p+ q)O(1) logn

• initialization time,

τI(n, p, q) ≤ O
(
τ5
I

(
(p+ q)2, p, q

)
+ ζ5

(
(p+ q)2, p, q

)
· (p+ q)O(1) · n logn

)
= O

(
2O(p+q

log log(p+q)) · 1
xp(1− x)q · (p+ q)O(1)n logn

)
• (χ, p′)-degree,

∆(χ,p′)(n, p, q) ≤ ∆5
(χ5,p′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn

≤ O
(

2O(p+q
log log(p+q)) · 1

xp−p′(1− x)q · (p+ q)O(1) · logn
)

• (χ, p′)-query time,

Q(χ,p′)(n, p, q) ≤ O
((
Q5

(χ5,p′)

(
(p+ q)2, p, q

)
+ ∆5

(χ5,p′)

(
(p+ q)2, p, q

))
· (p+ q)O(1) · logn

)
≤ O

(
2O(p+q

log log(p+q)) · 1
xp−p′(1− x)q · (p+ q)O(1) · logn

)
• (χ′, q′)-degree,

∆(χ′,q′)(n, p, q) = ∆5
(χ′5,q′)

(
(p+ q)2, p, q

)
· (p+ q)O(1) · logn

≤ O
(

2O(p+q
log log(p+q)) · 1

xp(1− x)q−q′ · (p+ q)O(1) · logn
)

• (χ′, q′)-query time,

Q(χ′,q′)(n, p, q) = O
((
Q5

(χ′5,q′)

(
(p+ q)2, p, q

)
+ ∆5

(χ′5,q′)

(
(p+ q)2, p, q

))
· (p+ q)O(1) · logn

)
≤ O

(
2O(p+q

log log(p+q)) · 1
xp(1− x)q−q′ · (p+ q)O(1) · logn

)
The final construction satisfies all the claimed bounds. This concludes the proof.

Lemma 4.6. There is an algorithm that given a p-family A of sets over a universe U of size
n, an integer q, a 0 < x < 1, and a non-negative weight function w : A → N with maximum
value at most W , computes in time

O(x−p(1− x)−q · 2o(p+q) · n logn+ |A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q ·2o(p+q) ·logn and Â ⊆qminrep A (Â ⊆qmaxrep A).

29

Proof. The algorithm first checks whether |A| ≤ x−p(1− x)−q · 2o(p+q) · logn. If yes then it
outputs A (as Â) and halts. So we assume that |A| > x−p(1− x)−q · 2o(p+q) · logn. The algo-
rithm starts by constructing a generalized n-p-q-separating collection (F , χ, χ′) as guaranteed
by Lemma 4.2. If |A| ≤ |F| the algorithm outputs A and halts. Otherwise it builds the set Â
as follows. Initially Â is equal to ∅ and all sets in F are marked as unused. Now we sort the
sets in A in the increasing order of weights, given by w : A → N. The algorithm goes through
every A ∈ A in the sorted order and queries the separating collection to get the set χ(A). It
then looks for a set F ∈ χ(A) that is not yet marked as used. The first time such a set F is
found the algorithm marks F as used, inserts A into Â and proceeds to the next set in A. If
no such set F is found the algorithm proceeds to the next set in A without inserting A into Â.

The size of Â is upper bounded by |F| ≤ x−p(1− x)−q · 2o(p+q) · logn since every time a
set is added to Â an unused set in F is marked as used. For the running time analysis, the
initialization of (F , χ) takes time x−p(1− x)−q · (p + q)O(1) · 2o(p+q) · n logn. Sorting A takes
O(|A|· log |A|· logW) time. For each element A ∈ A the algorithm first queries χ(A), using time
(1− x)−q ·2o(p+q)·(p+q)O(1)·logn. Then it goes through all sets in χ(A) and checks whether they
have already been marked as used, taking time (1− x)−q ·(p+q)O(1) ·2o(p+q) ·logn. Thus in total,
the running time for these steps is bounded by O(|A|·(1−x)−q ·2o(p+q) ·logn+|A|·log |A|·logW).
Adding the initialization time to this gives the claimed running time.

Finally we need to argue that Â ⊆qminrep A. Consider any set A ∈ A and B such that
|B| = q and A ∩ B = ∅. If A ∈ Â we are done, so assume that A /∈ Â. Since (F , χ, χ′)
is a n-p-q-separating collection, we have that there exists F ∈ χ(A) ∩ χ′(B), i.e, A ⊆ F and
F ∩ B = ∅. Since A /∈ Â we know that F was marked as used when A was considered by the
algorithm. When the algorithm marked F as used it also inserted a set A′ into Â, with the
property that F ∈ χ(A′). Thus A′ ⊆ F and hence A′ ∩B = ∅. Furthermore, A′ was considered
before A and thus w(A′) ≤ w(A). But A′ ∈ Â, completing the proof.

Next we prove a “faster version of Lemma 4.6”, that speeds up the running time to compute
the representative families.

Lemma 4.7. There is an algorithm that given a p-family A of sets over a universe U of size
n, an integer q, a 0 < x < 1, and a non-negative weight function w : A → N with maximum
value at most W , computes in time

O((p+ q)O(1)n logn+ |A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q ·2o(p+q) ·logn and Â ⊆qminrep A (Â ⊆qmaxrep A).

Proof. The algorithm first checks whether |A| ≤ x−p(1− x)−q · 2o(p+q) · logn. If yes then it
outputs A (as Â) and halts. So we assume that |A| > x−p(1− x)−q · 2o(p+q) · logn.

We start by constructing a (p + q)-perfect family f1, . . . , ft of hash functions from U to
[(p + q)2] with t = O((p + q)O(1) · logn) in time O(kO(1)n logn) using Proposition 4.1. Now
we sort the sets in A in the increasing order of weights, given by w : A → N. For every
fj , 1 ≤ j ≤ t, we construct a family Âj as follows. The algorithm starts by constructing
a generalized [(p + q)2]-p-q-separating collection (Fj , χj , χ′j) as guaranteed by Lemma 4.2. It
builds the set Âj as follows. Initially Âj is equal to ∅ and all sets in F are marked as unused.
The algorithm goes through every A ∈ A in the sorted order and does as follows.

• It first check whether every element in A gets mapped to distinct integers by fj . That is,
|{fj(a) | a ∈ A}| = |A|. If |{fj(a) | a ∈ A}| < |A| then the algorithm proceeds to the next
set in A without inserting A into Â. Else, we move to the next step.

30

• It queries the separating collection to get the set χ(A). It looks for a set F ∈ χj(A) that
is not yet marked as used. The first time such a set F is found the algorithm marks F as
used, inserts A into Âj and proceeds to the next set in A. If no such set F is found the
algorithm proceeds to the next set in A without inserting A into Âj .

Finally, we return Â = ⋃t
j=1 Âj .

The size of Âj is upper bounded by |F| ≤ x−p(1− x)−q · 2o(p+q) · log(p+ q) since every time
a set is added to Â an unused set in F is marked as used. Thus, the size of Â is upper bounded
by |F| ≤ x−p(1− x)−q · 2o(p+q) · log(p+ q) · (p+ q)O(1) · logn ≤ x−p(1− x)−q · 2o(p+q) · logn. The
running time analysis follows similar to the one given in Lemma 4.6.

Finally we need to argue that Â ⊆qminrep A. Consider any set A ∈ A and B such that |B| = q

and A∩B = ∅. If A ∈ Â we are done, so assume that A /∈ Â. By the properties of (p+q)-perfect
family f1, . . . , ft of hash functions from U to [(p + q)2], there exists an integer j ∈ {1, . . . , t}
such that fj is injective on A ∪ B. We focus now on the construction of Âj . Since (Fj , χj , χ′j)
is a [(p+ q)2]-p-q-separating collection, we have that there exists F ∈ χj(A)∩χ′j(B), i.e, A ⊆ F
and F ∩ B = ∅. Since A /∈ Âj (as A /∈ Â) we know that F was marked as used when A was
considered by the algorithm. When the algorithm marked F as used it also inserted a set A′
into Â, with the property that F ∈ χ(A′). Thus A′ ⊆ F and hence A′∩B = ∅. Furthermore, A′
was considered before A and thus w(A′) ≤ w(A). But A′ ∈ Âj ⊆ Â, completing the proof.

While applying Lemma 4.7 we can reduce the universe size to at most |A|p + q. The next
lemma formalizes this.

Lemma 4.8. There is an algorithm that given a p-family A of sets over a universe U of size
n, an integer q, a 0 < x < 1 and a non-negative weight function w : A → N with maximum
value at most W , computes in time

O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q · 2o(p+q) · log |A| and Â ⊆qminrep A (Â ⊆qmaxrep
A).

Proof. We first construct a new universe U ′ as follows. If n ≤ |A|p + q, then we set U ′ = U ,
otherwise U ′ will consist of elements from U , which are part of any set in A and q new elements.
The universe U ′ can be constructed in O(|A|p + q) time. Also note that |U ′| ≤ |A|p + q and
|U ′| ≤ n. Now we claim that a q-representative family Â of A with respect to the universe U ′
is also the required representative family over U . Suppose X ∈ A and Y ⊆ U , |Y | ≤ q such
that X ∩ Y = ∅. Let Y ′ = Y \ U ′ and let Y ′′ be an arbitrary subset of size |Y ′| of U ′ \ U .
Let Z = (Y \ Y ′) ∪ Y ′′. It is easy to see that |Z| = |Y | and X ∩ Z = ∅. By the definition of
q-representative family, there exists X̂ ∈ Â such that X̂ ∩ Z = ∅. Since Y ′ ∩ X̂ = ∅, we have
that X̂ ∩ Y = ∅.

Thus we apply Lemma 4.7 to compute q-representative family Â of A with respect to the
universe U ′ and output it as the desired family. The claimed running time as well as the size
bound on the output representative family follow by substituting the upper bound on |U ′| in
the bounds coming from Lemma 4.7.

Finally, we give our main theorem.

Theorem 6. There is an algorithm that given a p-family A of sets over a universe U of size n,
an integer q, a 0 < x < 1 and a non-negative weight function w : A → N with maximum value
at most W , computes in time

O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

31

a subfamily Â ⊆ A such that |Â| ≤ x−p(1− x)−q · 2o(p+q) and Â ⊆qminrep A (Â ⊆qmaxrep A).

Proof. Let A = A1. We compute a sequence of representative families

A2 ⊆qminrep A1, · · · ,Am ⊆qminrep Am−1

using Corollary 4.8, such that m is the least integer with the property that |Am| ≥ |Am−1|/2.
In other words, for all i < m we have that |Ai| ≤ |Ai−1|/2 and |Am| ≥ |Am−1|/2. We output
Am as the q-representative family for A. The correctness of this following from Lemma 3.1. By
Corollary 4.8,

|Am| ≤ x−p(1− x)−q · 2o(p+q) · log |Am−1|
≤ x−p(1− x)−q · 2o(p+q) · log 2|Am|

Thus, |Am|
log |Am|

≤ x−p(1− x)−q · 2o(p+q).

We know that for some number a and b, if a ≤ b then a log2 a ≤ b log2 b. Applying this identity
we get the following.

|Am|
log |Am|

log2
(|Am|

log |Am|

)
≤ x−p(1− x)−q · 2o(p+q)

The above inequality implies that

|Am| ≤
|Am|

log |Am|
log2

(|Am|
log |Am|

)
≤ x−p(1− x)−q · 2o(p+q)

and thus |Am| ≤ x−p(1− x)−q · 2o(p+q). By Lemma 4.8, the total running time T to compute
Am is,

T =
m−1∑
i=1
|Ai| · log |Ai| · logW + |Ai| · (1− x)−q · 2o(p+q) · logn)

=
m−1∑
i=1
O
(|A|

2i−1 · log |A| · logW + |A|
2i−1 · (1− x)−q · 2o(p+q) · logn

)
(since |Ai| ≤

|A|
2i−1)

= O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

This concludes the proof.

The size of the output representative family in Theorem 6 is minimized when x = p
p+q . By

substituting x = p
p+q in Theorem 6 we get the following corollary.

Corollary 1. There is an algorithm that given a p-family A of sets over a universe U of size
n, an integer q, and a non-negative weight function w : A → N with maximum value at most
W , computes in time

O(|A| · log |A| · logW + |A| · (1− x)−q · 2o(p+q) · logn)

a subfamily Â ⊆ A such that |Â| ≤
(p+q
p

)
· 2o(p+q) and Â ⊆qminrep A (Â ⊆qmaxrep A).

32

5 Applications
In this section we demonstrate how the efficient construction of representative families can
be used to design single-exponential parameterized and exact exponential time algorithms.
Our applications include best known deterministic algorithms for Long Directed Cycle,
Minimum Equivalent Graph, k-Path and k-Tree.

Let M = (E, I) be a matroid with the ground set of size n and S = {S1, . . . , St} be a p-
family of independent sets. Then for specific matroids we use the following notations to denote
the time required to compute the following q-representative families of S:

• Trm(t, p, q) is the time required to compute a family Ŝ ⊆qrep S of size
(p+q
q

)
, when M is a

linear matroid.

• Tum(t, p, q) is the time required to compute a family Ŝ ⊆qrep S of size
(p+q
p

)
· 2o(p+q) · logn,

when M is a uniform matroid and x is chosen to be p
p+q .

Let us remind, that by Theorem 1, when rank of M is p + q, Trm(t, p, q) is bounded by
O
((p+q

p

)
tpω + t

(p+q
q

)ω−1) multiplied by the time required to perform operations over F. By
Corollary 1, Tum(t, p, q)= O(t · (p+qq)q · logn)

5.1 Long Directed Cycle

In this section we give our first application of algorithms based on representative families. We
study the following problem.

Long Directed Cycle Parameter: k
Input: A n-vertex and m-arc directed graph D and a positive integer k.
Question: Does there exist a directed cycle of length at least k in D?

Observe that the Long Directed Cycle problem is different from the well-known problem
of finding a directed cycle of length exactly k. It is quite possible that the only directed cycle
that has length at least k is much longer than k, and possibly even is a Hamiltonian cycle. Let
D be a directed graph, k be a positive integer, and M = (E, I) be a uniform matroid Un,2k
where E = V (D) and I = {S ⊆ V (D) | |S| ≤ 2k}. In this subsection whenever we talk about
independent sets, these are independent sets of the uniform matroid Un,2k. For a pair of vertices
u, v ∈ V (D), we define

P iuv =
{
X
∣∣∣ X ⊆ V (D), u, v ∈ X, |X| = i, and there is a directed uv-path in D

of length i− 1 with all the vertices belonging to X.
}

We start with a structural lemma providing the key insight to our algorithm.

Lemma 5.1. Let D be a directed graph. Then D has a directed cycle of length at least k if
and only if there exists a pair of vertices u, v ∈ V (D) and X ∈ P̂kuv ⊆krep Pkuv such that D has
a directed cycle C and in this cycle vertices of X induce a directed path (that is, vertices of X
form a consecutive segment in C).

Proof. The reverse direction of the proof is straightforward—if cycle C contains a path of
length k, the length of C is at least k. We proceed with the proof of the forward direction. Let
C∗ = v1v2 · · · vrv1 be a smallest directed cycle in D of length at least k. That is, r ≥ k and
there is no directed cycle of length r′ where k ≤ r′ < r. We consider two cases.

33

vr

vkv1

vk+1

v2kv2k+1

vr

vkv1

vk+1

v2kv2k+1

P P'

Figure 1: Illustration to the proof of Lemma 5.1.

Case A: r ≤ 2k. If r ≤ 2k, then we take u = v1 and v = vk. We define paths P = v1v2 · · · vk
and Q = vk+1 · · · vr. Because |Q| ≤ k, by the definition of P̂kuv ⊆krep Pkuv, there exists a directed
uv-path P ′ such that X = V (P ′) ∈ P̂kuv and X ∩ Q = ∅. By replacing P with P ′ in C∗ we
obtain a directed cycle C of length at least k containing P ′ as a subpath.

Case B: r ≥ 2k + 1. In this case we set u = v1, v = vk, and split C∗ into three paths
P = v1 · · · vk, Q = vk+1 · · · v2k, and R = v2k+1 · · · vr. Since |Q| = k and P̂kuv ⊆krep Pkuv, it follows
that there exists an uv-path P ′ such that X = V (P ′) ∈ P̂kuv and X ∩ Q = ∅. However, P ′ is
not necessarily disjoint with R and by replacing P with P ′ in C∗ we can obtain a closed walk
C ′ containing P ′ as a subpath. See Fig. 1 for an illustration.

If X∩R = ∅, then C ′ is a simple cycle and we take C ′ as the desired C. We claim that this is
the only possibility. Let us assume targeting towards a contradiction that X ∩R 6= ∅. We want
to show that in this case there is a cycle of length at least k but shorter than C∗, contradicting
the choice of C∗. Let vα be the last vertex in X ∩R when we walk from v1 to vk along P ′. Let
P ′[vα, vk] be the subpath of P ′ starting at vα and ending at vk. If vα = v2k+1, we set R′ = ∅.
Otherwise we put R′ = R[v2k+1, vα−1] to be the subpath of R starting at v2k+1 and ending at
vα−1. Observe that since the arc vα−1vα is present in D (in fact it is an arc of the cycle C∗),
we have that C = P ′[vα, vk]QR′ is a simple cycle in D. Clearly, |C| ≥ |Q| ≥ k. Furthermore,
since v1 is not present in P ′[vα, vk] we have that |P ′[vα, vk]| < |P ′| = |P |. Similarly since vα is
not present in R′, we have that |R′| < |R|. Thus we have

k ≤ |C| = |P ′[vα, vk]|+ |Q|+ |R′| < |P |+ |Q|+ |R| = |C∗|.

This implies that C is a directed simple cycle of length at least k and strictly smaller than
r. This is a contradiction. Hence by replacing P with P ′ in C∗ we obtain a directed cycle C
containing P ′ as a subpath. This concludes the proof.

Next lemma provides an efficient computation of family P̂kuv ⊆krep Pkuv. The next lemma
is provided to give a simple exposition of representative families based dynamic programming
algorithm.

Lemma 5.2. Let D be a directed/unidrected graph with n vertices and m edges, u ∈ V (D) and
M = (E, I) be an uniform matroid Un,` where E = V (D) and I = {S ⊆ V (D) | |S| ≤ `}. Then

34

for every p ≤ ` and v ∈ V (D) \ {u}, a family P̂puv ⊆`−prep Ppuv of size at most(
`

p

)
· 2o(`)

can be found in time

O
(

2o(`)m lognmax
i∈[p]

{(
`

i− 1

)(
`

`− i

)`−i})
.

Furthermore, within the same running time every set in P̂puv can be ordered in a way that it
corresponds to a directed (undirected) path in D.

Proof. We prove the lemma only for digraphs. The proof for undirected graphs is analogous and
we only point out the differences with the proof for the directed case. We describe a dynamic
programming based algorithm. Let V (D) = {u, v1, . . . , vn−1} and D be a (p − 1) × (n − 1)
matrix where the rows are indexed from integers in {2, . . . , p} and the columns are indexed
from vertices in {v1, . . . , vn−1}. The entry D[i, v] will store the family P̂ iuv ⊆`−irep P iuv. We fill
the entries in the matrix D in the increasing order of rows. For i = 2, D[2, v] = {{u, v}} if
uv ∈ A(D) (for an undirected graph we check whether u and v are adjacent). Assume that we
have filled all the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ iuw • {v}.

For undirected graphs we use the following definition

N i+1
uv =

⋃
w∈N(v)

P̂ iuw • {v}.

Claim 5.1. N i+1
uv ⊆

`−(i+1)
rep P i+1

uv .

Proof. Let S ∈ P i+1
uv and Y be a set of size ` − (i + 1) (which is essentially an independent

set of Un,`) such that S ∩ Y = ∅. We will show that there exists a set S′ ∈ N i+1
uv such that

S′ ∩ Y = ∅. This will imply the desired result. Since S ∈ P i+1
uv there exists a directed path

P = ua1 · · · ai−1v in D such that S = {u, a1, . . . , ai−1, v} and ai−1 ∈ N−(v). The existence of
path P [u, ai−1], the subpath of P between u and ai−1, implies that X∗ = S \ {v} ∈ P iuai−1 .
Take Y ∗ = Y ∪{v}. Observe that X∗ ∩Y ∗ = ∅ and |Y ∗| = `− i. Since P̂ iuai−1 ⊆

`−i
rep P iuai−1 there

exists a set X̂∗ ∈ P̂ iuai−1 such that X̂∗∩Y ∗ = ∅. However, since ai−1 ∈ N−(v) and X̂∗∩{v} = ∅
(as X̂∗ ∩ Y ∗ = ∅), we have X̂∗ • {v} = X̂∗ ∪ {v} and X̂∗ ∪ {v} ∈ N i+1

v . Taking S′ = X̂∗ ∪ {v}
suffices for our purpose. This completes the proof of the lemma.

We fill the entry for D[i+ 1, v] as follows. Observe that

N i+1
uv =

⋃
w∈N−(v)

D[i, w] • {v}.

We already have computed the family corresponding to D[i, w] for w ∈ N−(v). By Corol-
lary 1, |P̂ iuw| ≤

(`
i

)
2o(`) and thus |N i+1

uv | ≤ d−(v)
(`
i

)
2o(`). Furthermore, we can compute N i+1

uv

in time O
(
d−(v)

(`
i

)
2o(`)

)
. Now using Corollary 1, we compute N̂ i+1

uv ⊆`−i−1
rep N i+1

uv in time
Tum(t, i+ 1, `− i− 1), where t = d(v)

(`
i

)
2o(`). By Claim 5.1, we know that N i+1

uv ⊆`−i−1
rep P i+1

uv .

35

Thus Lemma 3.1 implies that N̂ i+1
uv = P̂ i+1

uv ⊆`−i−1
rep P i+1

uv . We assign this family to D[i + 1, v].
This completes the description and the correctness of the algorithm. We give ordering to the
vertices of the sets in P̂puv in the following way so that it corresponds to a directed (undirected)
path in D. We keep the sets in the order in which they are built using the • operation. That
is, we can view these sets as strings and • operation as concatenation. Then every ordered set
in our family represents a path in the graph. The running time of the algorithm is bounded by

O

 p∑
i=2

n−1∑
j=1
Tum

(
d−(vj)

(
`

i− 1

)
2o(`), i, `− i

)
= O

 p∑
i=2

n−1∑
j=1

d−(vj)
(

`

i− 1

)(
`

`− i

)`−i
2o(`) logn

= O

2o(`) logn
p∑
i=2

n−1∑
j=1

d−(vj)
(

`

i− 1

)(
`

`− i

)`−i
= O

(
2o(`)m lognmax

i∈[p]

{(
`

i− 1

)(
`

`− i

)`−i})

This completes the proof

Finally, we are ready to state the main result of this section.

Theorem 7. Long Directed Cycle can be solved in time O(8k+o(k)mn2).

Proof. Let D be a directed graph. We solve the problem by applying the structural characteri-
zation proved in Lemma 5.1. By Lemma 5.1, D has a directed cycle of length at least k if and
only if there exists a pair of vertices u, v ∈ V (D) and a path P ′ with V (P ′) ∈ P̂kuv ⊆krep Pkuv
such that D has a directed cycle C containing P ′ as a subpath.

We first compute P̂kuv ⊆krep Pkuv for all u, v ∈ V (D). For that we apply Lemma 5.2 for each
vertex u ∈ V (D) with ` = 2k and p = k. Thus, we can compute P̂kuv ⊆krep Pkuv for all u, v ∈ V (D)
in time O

(
8k+o(k)mn logn

)
. Moreover, for every X ∈ P̂kuv we also compute a directed uv-path

PX using vertices of X. Let
Q =

⋃
u,v∈V (D)

P̂kuv.

Now for every set X ∈ Q and the corresponding uv-path PX with endpoint, we check if there
is a uv-path in D avoiding all vertices of X but u and v. This check can be done by a standard
graph traversal algorithm like BFS/DFS in time O(m+ n). If we succeed in finding a path for
at least one X ∈ Q, we answer YES and return the corresponding directed cycle obtained by
merging PX and another path. Otherwise, if we did not succeed to find such a path for any
of the sets X ∈ Q, this means that there is no directed cycle of length at least k in D. The
correctness of the algorithm follows from Lemma 5.1. By Corollary 1, the size of Q is upper
bounded by n2(2k

k

)
2o(k) ≤ n24k+o(k). Thus the overall running time of the algorithm is upper

bounded by
O(8k+o(k)mn logn+ 4k+o(k)(n2m+ n3)).

This concludes the proof.

36

5.2 Faster Long Directed Cycle

In this subsection we design a faster algorirthm for Long Directed Cycle. In Subsection 5.1
we have seen an algorithm for Long Directed Cycle where the running time mainly depend
on the computation of representative families P̂puv ⊆qrep Ppuv for 2 ≤ p ≤ k and q = 2k − p.
We used Theorem 4.6 with x = p

p+q (i.e, Corollary 1) to compute representative families. The
choice x = p

p+q minimizes the size of representative family. But in fact, we can choose x that
minimizes the running time instead.

Now we find out the choice of x which minimizes the computation of P̂puv ⊆qrep Ppuv for
2 ≤ p ≤ k and q = 2k − p. Let sp,q denote the size of P̂puv. We know that the computation
of P̂puv ⊆qrep N p

uv ⊆qrep Ppuv depends on |N p
uv|, which depends on the size of the representative

families P̂p−1
uw . That is |N p

uv| ≤ sp−1,q+1 · n. Thus the value of sp−1,q+1 and sp,q are “almost
equal” and we denote it by sp−1,q+1 ≈ sp,q. By Theorem 6, the running time to compute
P̂puv ⊆qrep N p

uv ⊆qrep Ppuv is,

O
(
|N p

uv| · (1− x)−q · 2o(p+q) · logn
)

= O
(
sp,q · (1− x)−q · 2o(p+q) · n logn

)
= O

(
x−p · (1− x)−2q · 2o(p+q) · n logn

)

To minimize the above running time it is enough to minimize the function f(x) = x−p ·(1−x)−2q.
Using methods from calculus we know that the value x∗ of x for which f ′(x∗) = 0 corresponds
to a minimum value of the function f(x) if f ′′(x∗) > 0. The derivative of f(x) is, f ′(x) =
−px−p−1(1− x)−2q + 2q · x−p(1− x)−2q−1. Now consider the value of x for which f ′(x) = 0.

−px−p−1(1− x)−2q + 2q · x−p(1− x)−2q−1 = 0
−p(1− x) + 2q · x = 0

x = p

p+ 2q

Set x∗ = p
p+2q . To prove f(x) is minimized at x∗, it is enough to show that f ′′(x∗) > 0.

f ′(x) = −px−p−1(1− x)−2q + 2q · x−p(1− x)−2q−1

= x−p(1− x)−2q(−p · x−1 + 2q · (1− x)−1)
= f(x) · (−p · x−1 + 2q · (1− x)−1)

f ′′(x) = f(x) · (p · x−2 + 2q · (1− x)−2) + f ′(x) · (−p · x−1 + 2q · (1− x)−1)
f ′′(x∗) = f(x∗) · (p · (x∗)−2 + 2q · (1− (x∗))−2) > 0

Hence the run time to compute P̂puv ⊆qrep Ppuv is minimized when x = p
p+2q .

Lemma 5.3. Let D be a directed graph with n vertices and m edges, u ∈ V (D) and M = (E, I)
be an uniform matroid Un,` where E = V (D) and I = {S ⊆ V (D) | |S| ≤ `}. Then for every
v ∈ V (D)\{u} and integer 2 ≤ p ≤ ` there is an algorithm that computes a family P̂puv ⊆`−prep Ppuv
of size

(
2`−p
p

)p (2`−p
2`−2p

)`−p
· 2o(`) in time O

(
2o(`) ·m logn ·maxi∈[p]

{(
2`−i
i

)i (2`−i
2`−2i

)2`−2i
})

Proof. The proof is same as the proof of Lemma 5.2, except the choice of x while applying
Theorem 4.6 (instead of Corollary 1). As in the proof of Lemma 5.2, we have a dynamic
programming table D where the rows are indexed from integers in {2, . . . , p} and the columns

37

are indexed from vertices in {v1, . . . , vn−1}. The entry D[i, v] will store the family P̂ iuv ⊆`−irep P iuv.
We fill the entries in the matrix D in the increasing order of rows. For i = 2, D[2, v] = {{u, v}}
if uv ∈ A(D). Assume that we have filled all the entries until the row i. Let

N i+1
uv =

⋃
w∈N−(v)

P̂ iuw • {v}.

Due to Claim 5.1, we have that N i+1
uv ⊆`−(i+1)

rep P i+1
uv . Lemma 3.1 implies that N̂ i+1

uv =
P̂ i+1
uv ⊆`−i−1

rep P i+1
uv . We assign this family to D[i+ 1, v].

Now we explain the computation of N̂ i+1
uv = P̂ i+1

uv . For any j, to compute N̂ j
uv = P̂juv, we

apply Theorem 6 with the value xj for x, where

xj = j

j + 2(`− j) = j

2`− j

Let sj,`−j be the size of the representative family N̂ j
uv = P̂juv when we apply Theorem 6 with the

value xj . That is sj,`−j = (xj)−j(1− xj)`−j · 2o(`). Assume that we have computed P̂juw of size
sj,`−j and stored it in D[j, w] for all j ≤ i and w ∈ {v1, . . . , vn−1}. Now consider the computation
of N̂ i+1

uv = P̂ i+1
uv . We apply Theorem 6 with value xi+1 for x to compute N̂ i+1

uv ⊆
`−(i+1)
rep N i+1

uv .
Since N i+1

uv = ⋃
w∈N−(v) P̂ iuw • {v}, we have that

|N i+1
uv | ≤ si,`−i · d−(v)

≤ (xi)−i(1− xi)`−i · 2o(`)d−(v)

By Theorem 6, the running time to compute N̂ i+1
uv is,

si,`−i · (1− xi+1)`−(i+1) · 2o(`) · d−(v) · logn (6)

To analyze the running time further we need the following claim.

Claim 5.2. For any 3 < i < p, si,`−i ≤ e2 · (i+ 1) · si+1,`−i−1.

Proof. By applying the definition of si and xi+1 we get he following inequality.
si,`−i

si+1,`−i−1
= x−ii (1− xi)−`+i

x
−(i+1)
i+1 (1− xi+1)−`+(i+1)

=
(2`− i

i

)i (2`− i
2`− 2i

)`−i (i+ 1
2`− (i+ 1)

)i+1 (2`− 2(i+ 1)
2`− (i+ 1)

)`−(i+1)

=
(2`− i

2`− (i+ 1)

)`
· (i+ 1)i+1

ii
· (2`− 2(i+ 1))`−(i+1)

2`− 2i)`−i

≤
(

1 + 1
2`− (i+ 1)

)2`−(i+1)
· (i+ 1) ·

(
1 + 1

i

)i
≤ e2 · (i+ 1).

In the last transition we used that (1 + 1/x)x < e for every x > 0.

From Equation 6 and Claim 5.2 we have that the running time for computing P̂puv is bounded
by

O

 p∑
i=2

n−1∑
j=1

si,`−i · d−(vj) · (1− xi)−`+i · 2o(`) · logn

= O

(
2o(`) ·m logn ·max

i∈[p]

{(2`− i
i

)i (2`− i
2`− 2i

)2`−2i})

38

The size of the family P̂puv ⊆`−prep N p
uv ⊆`−prep Ppuv is,

sp,`−p = (xp)−p(1− xp)−`+p · 2o(`) =
(2`− p

p

)p (2`− p
2`− 2p

)`−p
· 2o(`).

This completes the proof.

We now have a faster algorithm to compute the representative family P̂kuv ⊆krep Ppuv. Using
Lemma 5.3, we can compute P̂kuv, for all v ∈ V (D) \ {u} in time

O
(

2o(k) ·m logn ·max
i∈[p]

{(4k − i
i

)i (4k − i
4k − 2i

)4k−2i})
.

Simple calculus shows that the maximum is attained for i = k. Hence the running time to
compute P̂kuv for all u, v ∈ V (D) is upper bounded by O(6.75k+o(k)nm logn). This yields an
improved bound for the running time of our algorithm for Long Directed Cycle.

We apply Lemma 5.3 for each u ∈ V (D) with ` = 2k and p = k. Thus, we can compute
P̂kuv ⊆krep Ppuv for all u, v ∈ V (D) in time O(6.75k+o(k)nm logn). The size of the family P̂kuv
for any u, v ∈ V (D) is upper bounded by O(4.5k+o(k)). Thus, if we now loop over every set in
the representative families and run a breadth first search, just as in the proof of Theorem 7,
this will take at most O(6.75k+o(k)nm logn +4.5k+o(k)(n3 + n2m)) time. Hence we arrive at the
following theorem.

Theorem 8. There is a O(6.75k+o(k)mn2) time algorithm for Long Directed Cycle

5.3 Minimum Equivalent Graph

For a given digraph D, a subdigraph D′ of D is said to be an equivalent subdigraph of D if for
any pair of vertices u, v ∈ V (D) if there is a directed path in D from u to v then there is also
a directed path from u to v in D′. That is, reachability of vertices in D and D′ is same. In
this section we study a problem where given a digraph D the objective is to find an equivalent
subdigraph of D′ of D with as few arcs as possible. Equivalently, the objective is to remove the
maximum number of arcs from a digraph D without affecting its reachability. More precisely
the problem we study is as follows.

Minimum Equivalent Graph (MEG)
Input: A directed graph D
Task: Find an equivalent subdigraph of D with the minimum number of arcs.

The following proposition is due to Moyles and Thompson [45], see also [4, Sections 2.3],
reduces the problem of finding a minimum equivalent subdigraph of an arbitrary D to a strong
digraph.

Proposition 5.1. Let D be a digraph on n vertices with strongly connected components C1, . . . , Cr.
Given a minimum equivalent subdigraph C ′i for each Ci, i ∈ [r], one can obtain a minimum
equivalent subdigraph D′ of D containing each of C ′i in O(nω) time.

Observe that for a strong digraph D any equivalent subdigraph is also strong. By Proposi-
tion 5.1, MEG reduces to the following problem.

Minimum Strongly Connected Spanning Subgraph (Minimum SCSS)
Input: A strongly connected directed graph D
Task: Find a strong spanning subdigraph of D with the minimum number of arcs.

39

It seems to be no established agreement in the literature on how to call these problems. MEG
sometimes is also referred as Minimum Equivalent Digraph and Minimum Equivalent
Subdigraph, while Minimum SCSS is also called Minimum Spanning Strong Subdigraph
(MSSS).

A digraph T is an out-tree (an in-tree) if T is an oriented tree with just one vertex s of
in-degree zero (out-degree zero). The vertex s is the root of T . If an out-tree (in-tree) T is a
spanning subdigraph of D, T is called an out-branching (an in-branching). We use the notation
B+
s (B−s) to denote an out-branching (in-branching) rooted at s of the digraph.
It is known that a digraph is strong if and only if it contain an out-branching and an

in-branching rooted at some vertex v ∈ V (D) [4, Proposition 12.1.1].

Proposition 5.2. Let D be a strong digraph on n vertices, let v be an arbitrary vertex of V (D),
and ` ≤ n − 2 be a natural number. Then there exists a strong spanning subdigraph of D with
at most 2n− 2− ` arcs if and only if D contains an in-branching B−v and an out-branching B+

v

with root v so that |A(B+
v) ∩A(B−v)| ≥ ` (that is, they have at least ` common arcs).

Proposition 5.2 implies that the Minimum SCSS problem is equivalent to finding, for an
arbitrary vertex v ∈ V (D), an out-branching B+

v and an in-branching B−v that maximizes
|A(B+

v) ∩ A(B−v)|. For our exact algorithm for Minimum SCSS we implement this equivalent
version using representative sets.

Let D be a strong digraph and s ∈ V (D) be a fixed vertex. For v ∈ V (D) we use In(v) and
Out(v) to denote the sets of in-coming and out-going arcs incident with v. By D−s we denote
the digraph obtained from D by deleting the arcs in Out(s). Similarly, by D+

s we denote the
digraph obtained from D by deleting the arcs in In(s).

We take two copies E1, E2 of A(D) (that is Ei = {ei | e ∈ A(D)}) , a copy E3 of A(D+
s) and

a copy E4 of A(D−s) and construct four matroids as follows. Let U(D) denote the underlying
undirected graph of D. The first two matroids M1 = (E1, I1), M2 = (E2, I2) are the graphic
matroids on U(D). Observe that

A(D+
s) =

⊎
v∈V (D+

s)

In(v) and A(D−s) =
⊎

v∈V (D−s)

Out(v).

Thus the arcs of D+
s can be partitioned into sets of in-arcs and similarly the arcs of D−s into

sets of out-arcs. The other two matroids are the following partition matroids M3 = (E3, I3),
M4 = (E4, I4), where

I3 = {I | I ⊆ A(D+
s), for every v ∈ V (D+

s) = V (D), |I ∩ In(v)| ≤ 1},

and
I4 = {I | I ⊆ A(D−s), for every v ∈ V (D−s) = V (D), |I ∩ Out(v)| ≤ 1}.

We define the matroid M = (E, I) as the direct sum M = M1 ⊕M2 ⊕M3 ⊕M4. Since each
of Mi is a representable matroids over the same field (by Propositions 2.2 and 2.3), we have
that M is also representable (Proposition 2.1). The reason we say that Mi is representable over
the same field F is that the graphic matroid is representable over any field and the partition
matroids defined here are representable over a finite field of size nO(1). So if we take F as a
finite field of size nO(1) then M is representable over F. The rank of this matroid is 4n− 4.

Let us note that for each arc e ∈ A(D) which is not incident with s, we have four elements in
the matroidM , corresponding to the copies of e inMi, i ∈ {1, . . . , 4}. We denote these elements
by ei, i ∈ {1, . . . , 4}. For every edge e ∈ A(D) incident with s, we have three corresponding
elements. We denote them by e1, e2, e3, or e1, e2, e4, depending on the case when e is in- or
out-arc for s.

40

For i ∈ {1, . . . , n− 1}, we define

B4i =
{
W
∣∣∣ W ∈ I, |W | = 4i, ∀ e ∈ A(D) either W ∩ {e1, e2, e3, e4} = ∅ or {e1, e2, e3, e4} ⊆W

}
.

For W ∈ I, by AW we denote the set of arcs e ∈ A(D) such that {e1, e2, e3, e4} ∩ W 6= ∅.
Now we are ready to state the lemma that relates representative sets and the Minimum SCSS
problem.

Lemma 5.4. Let D be a strong digraph on n vertices and ` ≤ n− 2 be a natural number. Then
there exists a strong spanning subdigraph D′ of D with at most 2n − 2 − ` arcs if and only if
there exists a set F̂ ∈ B̂4` ⊆n′−4`

rep B4` such that D has a strong spanning subdigraph D̄ with
A
F̂
⊆ A(D̄). Here, n′ = 4n− 4.

Proof. We only show the forward direction of the proof, the reverse direction is straightfor-
ward. Let D′ be a strong spanning subdigraph of D with at most 2n − 2 − ` arcs. Thus, by
Proposition 5.2 we have that for any vertex v ∈ V (D′), there exists an out-branching B+

v and an
in-branching B−v in D′ such that |A(B+

v)∩A(B−v)| ≥ `. Observe that the arcs in A(B+
v)∩A(B−v)

form an out-forest (in-forest). Let F ′ be an arbitrary subset of A(B+
v) ∩A(B−v) containing ex-

actly ` arcs. Take X = A(B+
v) \ F ′ and Y = A(B−v) \ F ′. Observe that X and Y need not be

disjoint. Clearly, |X| = |Y | = n− 1− `.
In matroid M , one can associate with D′ an independent set ID′ of size 4n− 4 as follows:

ID′ =
⋃
e∈F ′
{e1, e2, e3, e4}

⋃
e∈X
{e1, e3}

⋃
e∈Y
{e2, e4}.

By our construction, we have that ID′ is an independent set in I and |ID′ | = 4`+4(n−1−`) = n′.
Let F = ⋃

e∈F ′{e1, e2, e3, e4}, X̄ = ⋃
e∈X{e1, e3} and Ȳ = ⋃

e∈Y {e2, e4}. Then notice that
F ∈ B4` and F ⊂ ID′ . This implies that there exists a set F̂ ∈ B̂4` ⊆n′−4`

rep B4` such that
ID̄ = F̂ ∪ X̄ ∪ Ȳ ∈ I. We show that D has a strong spanning subdigraph D̄ with A

F̂
⊆ A(D̄).

Let D̄ be the digraph with the vertex set V (D) and the arc set A(D̄) = X ∪ Y ∪A
F̂
. Consider

the following four sets.

1. Let W1 = {e1 | e ∈ X ∪AF̂ } then we have that W1 ⊆ ID̄ and thus W1 ∈ I1. This together
with the fact that |W1| = n− 1 implies that X ∪A

F̂
forms a spanning tree in U(D).

2. Let W2 = {e2 | e ∈ Y ∪AF̂ }. Similar to the first case, then Y ∪A
F̂
forms a spanning tree

in U(D).

3. Let W3 = {e3 | e ∈ X ∪AF̂ } then we have that W3 ⊆ ID̄ and thus W3 ∈ I3. This together
with the fact that |W1| = |W3| = n − 1 and that X ∪ A

F̂
is a a spanning tree in U(D)

implies that X ∪A
F̂
forms an out-branching rooted at s in D+

s .

4. Let W4 = {e3 | e ∈ Y ∪ A
F̂
}. Similar to the previous case, then Y ∪ A

F̂
forms an

in-branching rooted at s in D−s .

We have shown that D̄ contains A
F̂

and has an out-branching and in-branching rooted at s.
This implies that D̄ is the desired strong spanning subdigraph of D containing a set from B̂4`.
This concludes the proof of the lemma.

Lemma 5.5. Let D be a strong digraph on n vertices and ` ≤ n − 2 be a natural number.
Then in time O

(
maxi∈[`]

(n′
4i
)ω
mn2 logn

)
we can compute B̂4` ⊆n′−4`

rep B4` of size
(n′
4`
)
. Here,

n′ = 4n− 4.

41

Proof. We describe a dynamic programming based algorithm. Let D be an array of size `.
The entry D[i] will store the family B̂4i ⊆n′−4i

rep B4`. We fill the entries in the array D in the
increasing order of its index, that is, from 0, . . . , `. For the base case define B̂0 = {∅} and let
W = {{e1, e2, e3, e4}| e ∈ A(D)}. Given that D[i] is filled for all i′ ≤ i, we fill D[i+1] as follows.
Define N 4(i+1) =

(
B̂4i •W

)
∩ I.

Claim 5.3. For all 0 ≤ i ≤ `− 1, N 4(i+1) ⊆n
′−4(i+1)
rep B4(i+1).

Proof. Let S ∈ B4(i+1) and Y be a set of size n′ − 4(i+ 1) such that S ∩ Y = ∅ and S ∪ Y ∈ I.
We will show that there exists a set Ŝ ∈ N 4(i+1) such that Ŝ ∩ Y = ∅ and Ŝ ∪ Y ∈ I. This will
imply the desired result.

Let e ∈ A(D) such that {e1, e2, e3, e4} ⊆ S. Define S∗ = S \ {e1, e2, e3, e4} and Y ∗ =
Y ∪ {e1, e2, e3, e4}. Since S ∪ Y ∈ I we have that S∗ ∈ I and Y ∗ ∈ I. Observe that S∗ ∈ B4i,
S∗∪Y ∗ ∈ I and the size of Y ∗ is n′−4i. This implies that there exists Ŝ∗ in B̂4i ⊆n′−4i

rep B4` such
that Ŝ∗∪Y ∗ ∈ I. Thus Ŝ∗∪{e1, e2, e3, e4} ∈ I and also in B̂4i •W and thus in N 4(i+1). Taking
Ŝ = Ŝ∗ ∪ {e1, e2, e3, e4} suffices for our purpose. This completes the proof of the claim.

We fill the entry for D[i + 1] as follows. Observe that N 4(i+1)
uv = (D[i, w] • W) ∩ I. We

already have computed the family corresponding to D[i]. By Theorem 1, |B̂4i| ≤
(n′

4i
)
and thus

|N 4(i+1)| ≤ 4m
(n′

4i
)
. Furthermore, we can compute N 4(i+1) in time O

(
mn

(n′
4i
))
. Now using

Theorem 1, we can compute N̂ 4(i+1) ⊆n
′−4(i+1)
rep N 4(i+1) in time Trm(t, 4i+ 4, n′ − 4(i+ 1)),

where t = 4m
(n′

4i
)
.

By Claim 5.3 we know that N 4(i+1) ⊆n
′−4(i+1)
rep B4(i+1). Thus Lemma 3.1 implies that

N̂ 4(i+1) = B̂4(i+1) ⊆n
′−4(i+1)
rep B4(i+1). We assign this family to D[i + 1]. This completes the

description and the correctness of the dynamic programming. The field size for uniform matroids
are upper bounded by nO(1) and thus we can perform all the field operations in time O(logn).
Thus, the running time of this algorithm is upper bounded by

O
(∑̀
i=1
Trm

(
4m
(

n′

4(i− 1)

)
, 4i, n′ − 4i

))
= O

(
max
i∈[`]

(
n′

4i

)ω
m logn

)
.

This completes the proof.

Lemma 5.6. Minimum SCSS can be solved in time O(24ωnmn).

Proof. Let us fix n′ = 4n − 4. Proposition 5.2 implies that the Minimum SCSS problem
is equivalent to finding, for an arbitrary vertex s ∈ V (D), an out-branching B+

v and an in-
branching B−v that maximizes |A(B+

v) ∩ A(B−v)|. We guess the value of |A(B+
v) ∩ A(B−v)|

and let this be `. By Lemma 5.4, there exists a strong spanning subdigraph D′ of D with at
most 2n − 2 − ` arcs if and only if there exists a set F̂ ∈ B̂4` ⊆n′−4`

rep B4` such that D has a
strong spanning subdigraph D̄ with A

F̂
⊆ A(D̄). Recall that for X ∈ I, by AX we denote

the set of arcs e ∈ A(D) such that {e1, e2, e3, e4} ∩X 6= ∅. Now using Lemma 5.5 we compute
B̂4` ⊆n′−4`

rep B4` in time O
(
maxi∈[`]

(n′
4i
)ω
m logn

)
.

For every F̂ ∈ B̂4` we test whether A
F̂
can be extended to an out-branching in D+

s and to
an in-branching in D−s . We can do it in O(n(n+m))-time by putting weights 0 to the arcs of
A
F̂
and weights 1 to all remaining arcs and then by running the classical algorithm of Edmonds

[19]. Since ` ≤ n− 2, the running time of this algorithm is upper bounded by O(24ωnmn). This
concludes the proof.

42

Finally, we are ready to prove the main result of this section

Theorem 9. Minimum Equivalent Graph can be solved in time O(24ωnmn).

Proof. Given an arbitrary digraph D we first find its strongly connected components C1, . . . , Cs.
Now on each Ci, we apply Lemma 5.6 and obtain a minimum equivalent subdigraph C ′i. After
this we apply Proposition 5.1 and obtain a minimum equivalent subdigraph of D. Since all the
steps except Lemma 5.6 takes polynomial time we get the desired running time. This completes
the proof.

A weighted variant of Minimum Equivalent Graph has also been studied in literature.
More precisely the problem is defined as follows.

Minimum Weight Equivalent Graph (MWEG)
Input: A directed graph D and a weight function w : A(D)→ N.
Task: Find a minimum weight equivalent subdigraph of D.

MWEG can be solved along the same line as MEG but to do this we need to use the notion
of min q-representative family and use Theorem 3 instead of Theorem 1. These changes give us
the following theorem.

Theorem 10. Minimum Weight Equivalent Graph can be solved in time O(24ωnmn logW).
Here, W is the maximum value assigned by the weight function w : A(D)→ N.

5.4 Dynamic Programming over graphs of bounded treewidth

In this section we discuss deterministic algorithms for “connectivity problems” such as Hamil-
tonian Path, Steiner Tree, Feedback Vertex Set parameterized by the treewidth of
the input graph. The algorithms are based on Theorem 1 and use graphic matroids to take care
of connectivity constraints. The approach is generic and can be used whenever all the relevant
information about a “partial solution” can be encoded as an independent set of a specific linear
matroid. We exemplify the approach on the Steiner Tree problem.

Steiner Tree
Input: An undirected graph G with a set of terminals T ⊆ V (G), and a weight

function w : E(G)→ N.
Task: Find a subtree in G of minimum weight spanning all vertices of T .

5.4.1 Treewidth

Let G be a graph. A tree-decomposition of a graph G is a pair (T,X = {Xt}t∈V (T)) such that

• ∪t∈V (T)Xt = V (G),
• for every edge xy ∈ E(G) there is a t ∈ V (T) such that {x, y} ⊆ Xt, and
• for every vertex v ∈ V (G) the subgraph of T induced by the set {t | v ∈ Xt} is connected.

The width of a tree decomposition is maxt∈V (T) |Xt|−1 and the treewidth ofG is the minimum
width over all tree decompositions of G and is denoted by tw(G).

A tree decomposition (T,X) is called a nice tree decomposition if T is a tree rooted at some
node r where Xr = ∅, each node of T has at most two children, and each node is of one of the
following kinds:

43

1. Introduce node: a node t that has only one child t′ where Xt ⊃ Xt′ and |Xt| = |Xt′ |+1.

2. Forget node: a node t that has only one child t′ where Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1.

3. Join node: a node t with two children t1 and t2 such that Xt = Xt1 = Xt2 .

4. Base node: a node t that is a leaf of T, is different than the root, and Xt = ∅.

Notice that, according to the above definition, the root r of T is either a forget node or a join
node. It is well known that any tree decomposition of G can be transformed into a nice tree
decomposition maintaining the same width in linear time [32]. We use Gt to denote the graph
induced by the vertex set ∪t′Xt′ , where t′ ranges over all descendants of t, including t. By E(Xt)
we denote the edges present in G[Xt]. We use Ht to denote the graph on vertex set V (Gt) and
the edge set E(Gt) \ E(Xt). For clarity of presentation we use the term nodes to refer to the
vertices of the tree T.

5.4.2 Steiner Tree parameterized by treewidth

Let G be an input graph of the Steiner Tree problem. Throughout this section, we say that
E′ ⊆ E(G) is a solution if the subgraph induced on this edge set is connected and it contains all
the terminal vertices. We call E′ ⊆ E(G) an optimal solution if E′ is a solution of the minimum
weight. Let S be the family of edge subsets such that every edge subset corresponds to an
optimal solution. That is,

S = {E′ ⊆ E(G) | E′ is an optimal solution}.

We start with few definitions that will be useful in explaining the algorithm. Let (T,X) be a
tree decomposition of G of width tw. Let t be a node of V (T). By St we denote the family of
edge subsets of E(Ht), {E′ ⊆ E(Ht)}, that satisfies the following properties.

• Either E′ is a solution (that is, the subgraph formed by this edge set is connected and
contains all the terminal vertices); or

• every vertex of (T ∩V (Gt)) \Xt is incident with some edge from E′, and every connected
component of the graph induced by E′ contains a vertex from Xt.

We call St a family of partial solutions for t. We denote by Kt a complete graph on the
vertex set Xt. For an edge subset E∗ ⊆ E(G) and a bag Xt corresponding to a node t, we define
the following.

1. Set ∂t(E∗) = Xt ∩ V (E∗), the set of endpoints of E∗ in Xt.

2. Let G∗ be the subgraph of G on the vertex set V (G) and the edge set E∗. Let C ′1, . . . , C ′`
be the connected components of G∗ such that for all i ∈ [`], C ′i∩Xt 6= ∅. Let Ci = C ′i∩Xt.
Observe that C1, . . . , C` is a partition of ∂t(E∗). By F (E∗) we denote a forest {Q1, . . . , Q`}
where each Qi is an arbitrary spanning tree of Kt[Ci]. For an example, since Kt[Ci] is a
complete graph we could take Qi as a star. The purpose of F (E∗) is to keep track for the
vertices in Ci whether they are in the same connected component of G∗.

3. We define w(F (E∗)) = w(E∗).

Our description of the algorithm slightly deviates from the usual table look-up based expo-
sitions of dynamic programming algorithms on graphs of bounded treewidth. With every node
t of T, we associate a subgraph of G. In our case it will be Ht. For every node t, rather than

44

keeping a table, we keep a family of partial solutions for the graph Ht. That is, for every optimal
solution L ∈ S and its intersection Lt = E(Ht) ∩ L with the graph Ht, we have some partial
solution in the family that is “as good as Lt”. More precisely, we have some partial solution,
say L̂t in our family such that L̂t ∪ LR is also an optimum solution for the whole graph. Here,
LR = L \ Lt. As we move from one node t in the decomposition tree to the next node t′ the
graph Ht changes to Ht′ , and so does the set of partial solutions. The algorithm updates its
set of partial solutions accordingly. Here matroids come into play: in order to bound the size
of the family of partial solutions that the algorithm stores at each node we employ Theorem 3
for graphic matroids. More details are given in the proof of the following theorem, which is the
main result of this section.

Theorem 11. Let G be an n-vertex graph given together with its tree decomposition of width
tw. Then Steiner Tree on G can be solved in time O((1 + 2ω+1)twtwO(1)n).

Proof. We first outline an algorithm with running time O((1 + 2ω+1)twtwO(1)n2) for a simple
exposition. Later we point out how we can remove the extra factor of n at the cost of a factor
polynomial in tw.

For every node t of T and subset Z ⊆ Xt, we store a family of edge subsets Ŝt[Z] of Ht

satisfying the following correctness invariant.

Correctness Invariant: For every L ∈ S we have the following. Let Lt = E(Ht)∩
L, LR = L \ Lt, and Z = ∂t(L). Then there exists L̂t ∈ Ŝt[Z] such that w(L̂t) ≤
w(Lt), L̂ = L̂t ∪LR is a solution, and ∂t(L̂) = Z. Observe that since w(L̂t) ≤ w(Lt)
and L ∈ S , we have that L̂ ∈ S .

We process the nodes of the tree T from base nodes to the root node while doing the dynamic
programming. Throughout the process we maintain the correctness invariant, which will prove
the correctness of the algorithm. However, our main idea is to use representative sets to obtain
Ŝt[Z] of small size. That is, given the set Ŝt[Z] that satisfies the correctness invariant, we use
Theorem 3 to obtain a subset Ŝ ′t[Z] of Ŝt[Z] that also satisfies the correctness invariant and has
size upper bounded by 2|Z|. Thus, we maintain the following size invariant.

Size Invariant: After node t of T is processed by the algorithm, for every Z ⊆ Xt

we have that |Ŝt[Z]| ≤ 2|Z|.

The new ingredient of the dynamic programming algorithm for Steiner Tree is the use
of Theorem 3 to compute Ŝt[Z] maintaining the size invariant. The next lemma shows how to
implement it.

Lemma 5.7 (Shrinking Lemma). Let t be a node of T, and let Z ⊆ Xt be a set of size k.
Furthermore, let Ŝt[Z] be a family of edge subsets of Ht satisfying the correctness invariant.
If |Ŝt[Z]| = `, then in time O

(
2k(ω−1)kO(1)` · n

)
we can compute Ŝ ′t[Z] ⊆ Ŝt[Z] satisfying

correctness and size invariants.

Proof. We start by associating a matroid with node t and the set Z ⊆ Xt as follows. We
consider a graphic matroid M = (E, I) on Kt[Z]. Here, the element set E of the matroid is the
edge set E(Kt[Z]) and the family of independent sets I consists of spanning forests of Kt[Z].

Let Ŝt[Z] = {Et1, . . . , Et`} and let N = {F (Et1), . . . , F (Et`)} be the set of forests in Kt[Z]
corresponding to the edge subsets in Ŝt[Z]. For i ∈ {1, . . . , k−1}, let Ni be the family of forests
of N with i edges. For each family Ni we apply Theorem 3 and compute its min (k − 1 − i)-
representative. That is,

N̂i ⊆k−1−i
minrep Ni.

45

Let Ŝ ′t[Z] ⊆ Ŝt[Z] be such that for every Etj ∈ Ŝ ′t[Z] we have that F (Etj) ∈ ∪k−1
i=1 N̂i. By

Theorem 3, |Ŝ ′t[Z]| ≤ ∑k−1
i=1

(k
i

)
≤ 2k. Now we show that Ŝ ′t[Z] maintains the correctness

invariant.
Let L ∈ S and let Lt = E(Ht) ∩ L, LR = L \ Lt and Z = ∂t(L). Then there exists

Etj ∈ Ŝt[Z] such that w(Etj) ≤ w(Lt), L̂ = Etj ∪ LR is an optimal solution and ∂t(L̂) = Z.
Consider the forest F (Etj). Suppose its size is i, then F (Etj) ∈ Ni. Now let F (LR) be the
forest corresponding to LR with respect to the bag Xt. Since L̂ is a solution, we have that
F (Etj) ∪ F (LR) is a spanning tree in Kt[Z]. Since N̂i ⊆k−1−i

minrep Ni, we have that there exists a
forest F (Eth) ∈ N̂i such that w(F (Eth)) ≤ w(F (Eti)) and F (Eth) ∪ F (LR) is a spanning tree in
Kt[Z]. Thus, we know that Eth ∪ LR is an optimum solution and Eth ∈ Ŝ ′t[Z]. This proves that
Ŝ ′t[Z] maintains the invariant.

The running time to compute Ŝt[Z] is dominated by:

O

k−1∑
i=1

(
k − 1
i

)ω−1

kO(1)`

 = O
(
2k(ω−1)kO(1)`

)
.

For a given edge set we also need to compute the forest and that can take O(n) time.

In our algorithm the size of Ŝt[Z] can grow larger than 2|Z| in intermediate steps but it will
be at most 4|Z| and thus we can use Shrinking Lemma (Lemma 5.7) to reduce its size efficiently.

We now return to the dynamic programming algorithm over the tree-decomposition (T,X)
of G and prove that it maintains the correctness invariant. We assume that (T,X) is a nice
tree-decomposition of G. By Ŝt we denote ⋃Z⊆Xt Ŝt[Z] (also called a representative family of
partial solutions). We show how Ŝt is obtained by doing dynamic programming from base node
to the root node.

Base node t. Here the graph Ht is empty and thus we take Ŝt = ∅.

Introduce node t with child t′. Here, we know that Xt ⊃ Xt′ and |Xt| = |Xt′ | + 1. Let
v be the vertex in Xt \ Xt′ . Furthermore observe that E(Ht) = E(Ht′) and v is degree zero
vertex in Ht. Thus the graph Ht only differs from Ht′ at a isolated vertex v. Since we have not
added any edge to the new graph, the family of solutions, which contains edge-subsets, does
not change. Thus, we take Ŝt = Ŝt′ . Formally, we take Ŝt[Z] = Ŝt′ [Z \ {v}]. Since, Ht and Ht′

have same set of edges the invariant is vacuously maintained.

Forget node t with child t′. Here we know Xt ⊂ Xt′ and |Xt| = |Xt′ | − 1. Let v be the
vertex in Xt′ \Xt. Let Ev[Z] denote the set of edges between v and the vertices in Z ⊆ Xt. Let
Pv[Z] = {Y | ∅ 6= Y ⊆ Ev[Z]}. Observe that E(Ht) = E(Ht′) ∪ Ev[Xt]. Before we define things
formally, observe that in this step the graphs Ht and Ht′ differ by at most tw edges - the edges
with one endpoint in v and the other in Xt. We go through every possible way an optimal
solution can intersect with these newly added edges. The idea is that for every edge subset in
our family of partial solutions we make several new partial solutions, one each for every subset
of newly added edges. More formally the new set of partial solutions is defined as follows.

Ŝt[Z] =

(
Ŝt′ [Z ∪ {v}] ◦ Pv[Z]

)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
∪ Ŝt′ [Z] if v /∈ T

46

Recall that for two families A and B, we defined A ◦ B = {A ∪B : A ∈ A ∧B ∈ B}. Now
we claim that Ŝt[Z] ⊆ St. Towards the proof we first show that Ŝt′ [Z ∪ {v}] ◦ Pv[Z] ⊆ St. Let
E′ ∈ Ŝt′ [Z ∪ {v}] ◦ Pv[Z]. Note that E′ ∩ Ev[Z] 6= ∅. If E′ is a solution tree then E′ ∈ St and
we are done. Since E′ \ Ev[Z] ∈ Ŝt′ [Z ∪ {v}] ⊆ St′ , every vertex of (T ∩ V (Gt)) \ (Xt ∪ {v})
is incident with some edge from E′. Since E′ ∩ Ev[Z] 6= ∅, there exists an edge in E′ which is
incident to v. This implies that every vertex of (T ∩ V (Gt)) \ Xt is incident with some edge
from E′. Now consider any connected component C in G[E′]. If v /∈ V (C), then C contains
a vertex from Xt′ \ {v} = Xt, because E′ \ Ev[Z] ∈ Ŝt′ [Z ∪ {v}] ⊆ St′ . If v ∈ V (C), then C
contains a vertex from Xt because E′ ∩ Ev[Z] 6= ∅. Thus we have shown that E′ ∈ St. It is easy
to see that {A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St} ⊆ St. If v /∈ T then Ŝt′ [Z] ⊆ St, because Ŝt′ [Z] ⊆ St′
and Xt = Xt′ \ {v}.

Now we show that Ŝt maintains the invariant of the algorithm. Let L ∈ S .

1. Let Lt = E(Ht) ∩ L and LR = L \ Lt. Furthermore, edges of Lt can be partitioned into
Lt′ = E(Ht′) ∩ L and Lv = Lt \ Lt′ . That is, Lt = Lt′] Lv.

2. Let Z = ∂t(L) and Z ′ = ∂t
′(L).

By the property of Ŝt′ , there exists a L̂t′ ∈ Ŝt′ [Z ′] such that

L ∈ S ⇐⇒ Lt′] Lv] LR ∈ S

⇐⇒ L̂t′] Lv] LR ∈ S (7)

and ∂t′(L) = ∂t
′(L̂t′] Lv] LR) = Z ′.

We put L̂t = L̂t′ ∪Lv and L̂ = L̂t∪LR. We know show that L̂t ∈ Ŝt[Z]. Towards this just note
that since Z ′ = Z or Z ′ = Z ∪ {v}, we have that Ŝt[Z] contains Ŝt′ [Z ′] ◦ {Lv}. By (7), L̂ ∈ S .
Finally, we need to show that ∂t(L̂) = Z. Towards this just note that ∂t(L̂) = Z ′ \ {v} = Z.
This concludes the proof for the fact that Ŝt maintains the correctness invariant.

Join node t with two children t1 and t2. Here, we know that Xt = Xt1 = Xt2 . Also we
know that the edges of Ht is obtained by the union of edges of Ht1 and Ht2 which are disjoint.
Of course they are separated by the vertices in Xt. A natural way to obtain a family of partial
solutions for Ht is that we take the union of edges subsets of the families stored at nodes t1 and
t2. This is exactly what we do. Let

Ŝt[Z] = Ŝt1 [Z] ◦ Ŝt2 [Z].

Now we show that Ŝt maintains the invariant. Let L ∈ S .

1. Let Lt = E(Ht)∩L and LR = L\Lt. Furthermore edges of Lt can be partitioned into those
belonging to Ht1 and those belonging to Ht2 . Let Lt1 = E(Ht1)∩L and Lt2 = E(Ht2)∩L.
Observe that since E(Ht1) ∩ E(Ht2) = ∅, we have that Lt1 ∩ Lt2 = ∅. Also observe that
Lt = Lt1] Lt2 .

2. Let Z = ∂t(L). Since Xt = Xt1 = Xt2 this implies that Z = ∂t(L) = ∂t1(L) = ∂t2(L).

Now observe that

L ∈ S ⇐⇒ Lt1] Lt2] LR ∈ S

⇐⇒ L̂t1] Lt2] LR ∈ S (by the property of Ŝt1 we have that L̂t1 ∈ Ŝt1 [Z])
⇐⇒ L̂t1] L̂t2] LR ∈ S (by the property of Ŝt2 we have that L̂t2 ∈ Ŝt2 [Z])

47

We put L̂t = L̂t1 ∪ L̂t2 . By the definition of Ŝt[Z], we have that L̂t1 ∪ L̂t2 ∈ Ŝ[Z]. The
above inequalities also show that L̂ = L̂t ∪ LR ∈ S . It remains to show that ∂t(L̂) = Z.
Since ∂t1(L) = Z, we have that ∂t1(L̂t1] Lt2] LR) = Z. Now since Xt1 = Xt2 we have that
∂t2(L̂t1]Lt2]LR) = Z and thus ∂t2(L̂t1]L̂t2]LR) = Z. Finally, becauseXt2 = Xt, we conclude
that ∂t(L̂t1] L̂t2] LR) = ∂t(L̂) = Z. This concludes the proof of correctness invariant.

Root node r. Here, Xr = ∅. We go through all the solution in Ŝr[∅] and output the one with
the minimum weight. This concludes the description of the dynamic programming algorithm.

Computation of Ŝt. Now we show how to implement the algorithm described above in the
desired running time by making use of Lemma 5.7. For our discussion let us fix a node t and
Z ⊆ Xt of size k. While doing dynamic programming algorithm from the base nodes to the
root node we always maintain the size invariant. That is, Ŝt[Z]| ≤ 2k.

Base node t. Trivially, in this case we have |Ŝt[Z]| ≤ 2k.

Introduce node t with child t′. Here, we have that Ŝt[Z] = Ŝt′ [Z \ {v}] and thus |Ŝt[Z]| =
|Ŝt′ [Z \ {v}]| ≤ 2k−1 ≤ 2k.

Forget node t with child t′. In this case,

Ŝt[Z] =

(
Ŝt′ [Z ∪ {v}] ◦ Pv[Z]

)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
if v ∈ T(

Ŝt′ [Z ∪ {v}] ◦ Pv[Z]
)
∪
{
A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St

}
∪ Ŝt′ [Z] if v /∈ T

Observe that,∣∣∣Ŝt[Z]
∣∣∣ ≤ ∣∣∣Ŝt′ [Z ∪ {v}] ◦ Pv[Z]

∣∣∣+ ∣∣∣{A ∈ Ŝt′ [Z ∪ {v}] : A ∈ St
}∣∣∣+ ∣∣∣Ŝt′ [Z]

∣∣∣
≤

(
k∑
i=1

(
k

i

)
2k+1

)
+ 2k+1 + 2k = O(4k).

It can happen in this case that the size of Ŝt[Z] is larger than 2k and thus we need to reduce
the size of family. We apply Lemma 5.7 and obtain Ŝ ′t[Z] that maintains the correctness and
size invariants. We update Ŝt[Z] = Ŝ ′t[Z].

The running time to compute Ŝt (that is, across all subsets of Xt) is

O
(tw+1∑

i=1

(
tw + 1

i

)
2i(ω−1)4i · twO(1)n

)
= O

(
(1 + 2ω+1)tw · twO(1)n

)
.

Join node t with two children t1 and t2. Here we defined

Ŝt[Z] = Ŝt1 [Z] ◦ Ŝt2 [Z].

The size of Ŝt[Z] is 2k · 2k = 4k. Now, we apply Lemma 5.7 and obtain Ŝ ′t[Z] that maintains
the correctness invariant and has size at most 2k. We put Ŝt[Z] = Ŝ ′t[Z].

The running time to compute Ŝt is

O
(tw+1∑

i=1

(
tw + 1

i

)
4i2i(ω−1) · twO(1)n

)
= O

(
(1 + 2ω+1)tw · twO(1)n

)
.

48

Thus the whole algorithm takes time O
(
(1 + 2ω+1)tw · twO(1) · n2

)
as the number of nodes

in a nice tree-decomposition is upper bounded by O(n). However, observe that we do not need
to compute the forests and the associated weight at every step of the algorithm. The size of
the forest is at most tw + 1 and we can maintain these forests across the bags during dynamic
programming in time twO(1). This will lead to an algorithm with the claimed running time.
The last remark we would like to make is that one can do better at forget node by forgetting a
single edge at a time. However, we did not try to optimize this, as the running time to compute
the family of partial solutions at join node is the most expensive operation. This completes
the proof.

The approach of Theorem 11 can be used to obtain single-exponential algorithms param-
eterized by the treewidth of an input graph for several other connectivity problems such as
Hamiltonian Cycle, Feedback Vertex Set, and Connected Dominated Set. For all
these problems, checking whether two partial solutions can be glued together to form a global
solution can be checked by testing independence in a specific graphic matroid. We believe
that there exist interesting problems where this check corresponds to testing independence in a
different class of linear matroids.

5.5 Path, Trees and Subgraph Isomorprhism

In this section we outline algorithms for k-Path, k-Tree and k-Subgraph Isomorphism
using representative families. All results in this section are based on computing representative
families with respect to uniform matroids.

5.5.1 k-Path

The problem we study in this section is as follows.
k-Path Parameter: k
Input: An undirected n-vertex and m-edge graph G and a positive integer k.
Question: Does there exist a simple path of length k in G?

We start by modifying the graph slightly. We add a new vertex, say s not present in V (G),
to G by making it adjacent to every vertex in V (G). Let the modified graph be called G′. It is
clear that G has a path of length k if and only if G′ has a path of length k + 1 starting from
s. For ease of presentation we rename G′ to G and the objective is to find a path of length
k + 1 starting from s. Let M = (E, I) be an uniform matroid Un,k+2 where E = V (G) and
I = {S ⊆ V (G) | |S| ≤ k + 2}. In this section whenever we speak about independent sets we
mean independence with respect to the uniform matroid Un,k+2 defined above. For a given pair
of vertices s, v ∈ V (G), recall that we defined

P isv =
{
X
∣∣∣ X ⊆ V (G), v, s ∈ X, |X| = i and there is a path from s to v of length i

in G with all the vertices belonging to X.
}

The problem can be reformulated to asking whether there exists v ∈ V (G) such that Pk+2
sv is

non-empty. Our algorithm will check whether Pk+2
uv is non-empty by computing P̂k+2

sv ⊆0
rep Pk+2

sv

and checking whether P̂k+2
sv is non-empty. The correctness of this algorithm is as follows. If

Pk+2
sv is non-empty then Pk+2

sv contains some set A which does not intersect the empty set ∅. But
then P̂k+2

sv ⊆0
rep Pk+2

sv must also contain a set which does not intersect with ∅, and hence P̂k+2
sv

must be non-empty as well. Thus, having computed the representative familes P̂k+2
sv all we need

49

to do is to check whether there is a vertex v such that P̂k+2
sv is non-empty. All that remains is

an algorithm that computes the representative families P̂k+2
sv ⊆0

rep Pk+2
sv for all v ∈ V (G) \ {s}.

Now using Lemma 5.3 (by setting ` = p = k + 2) we compute P̂k+2
sv ⊆0

rep Pk+2
sv for all

v ∈ V (G) \ {s} in time

2o(k) ·m logn · max
i∈[k+2]

{(2(k + 2)− i
i

)i (2(k + 2)− i
2(k + 2)− 2i

)2(k+2)−2i}
.

Simple calculus shows that the running time is maximized for i = (1 − 1√
5)(k + 2), and thus

the running time to compute P̂k+2
sv ⊆0

rep Pk+2
sv for all v ∈ V (G) \ {s} together is upper bounded

by φ2k+o(k)m log2 n = O(2.619km logn), where where φ is the golden ratio 1+
√

5
2 . Furthermore,

in the same time every set in P̂psv can be ordered in a way that it corresponds to an undirected
path in G. A graph G has a path of length k + 1 starting from s if and only if for some
v ∈ V (G) \ {s}, we have that P̂k+2

sv 6= ∅. Thus the running time of this algorithm is upper
bounded by O(2.619km logn). Let us remark that almost the same arguments show that the
version of the problem on directed graphs is solvable within the same running time. However
on undirected graphs we can speed up the algorithm slightly by using the following standard
trick. We need the following result.

Proposition 5.3 ([7]). There exists an algorithm, that given a graph G and an integer k, in
time O(k2n) either finds a simple path of length ≥ k or computes a DFS (depth first search)
tree rooted at some vertex of G of depth at most k.

We first apply Proposition 5.3 and in time O(k2n) either find a simple path of length ≥ k
in G or compute a DFS tree of G of depth at most k. In the former case we simply output the
same path. In the later case since all the root to leaf paths are upper bounded by k and there
are no cross edges in a DFS tree, we have that the number of edges in G is upper bounded by
O(k2n). Now on this G we apply the representative set based algorithm described above. This
results in the following theorem.

Theorem 12. k-Path can be solved in time O(2.619kn logn).

Our algorithm for k-Path can be used to solve the weighted version of the problem, i.e,
Short Cheap Tour. In this problem a graph G with maximum edge cost W is given, and
the objective is to find a path of length at least k where the total sum of costs on the edges is
minimized.

Theorem 13. Short Cheap Tour can be solved in time O(2.619knO(1) logW).

5.5.2 k-Tree and k-Subgraph Isomorphism

In this section we consider the following problem.

k-Tree Parameter: k
Input: An undirected n-vertex, m-edge graph G and a tree T on k vertices.
Question: Does G contains a subgraph isomorphic to T?

We design an algorithm for k-Tree using the method of representative sets. The algorithm
for k-Tree is more involved than for k-Path. The reason to that is due to the fact that paths
poses perfectly balanced separators of size one while trees not. We select a leaf r of T and root
the tree at r. For vertices x,y ∈ V (T) we say that y ≤ x if x lies on the path from y to r in T
(if x = r we also say that y ≤ x). For a set C of vertices in T we will say that x �C y if x ≤ y

50

and there is no z ∈ C such that x ≤ z and z ≤ y. For a pair x, y of vertices such that y ≤ x in
T we define

Cxy =
{
∅ if xy ∈ E(T),
The unique component C of T \ {x, y} such that N(C) = {x, y} otherwise.

We also define T uv = T [Cuv ∪{u, v}]. We start by making a few simple observations about sets
of vertices in trees.

Lemma 5.8. For any tree T , a pair {x, y} of vertices in V (T) and integer c ≥ 1 there exists
a set W of vertices such that {x, y} ⊆ W , |W | = O(c) and every connected component U of
T \W satisfies |U | ≤ |V (T)|

c and |N(U)| ≤ 2.

Proof. We first find a setW1 of size at most c such that every connected component U of T \W1
satisfies |U | ≤ |V (T)|

c . Start with W1 = ∅ and select a lowermost vertex u ∈ V (T) such that the
subtree rooted at u has at least |V (T)|

c vertices. Add u to W1 and remove the subtree rooted at
u from T . The process must stop after c iterations since each iteration removes |V (T)|

c vertices of
T . Each component U of T \W1 satisfies |U | ≤ |V (T)|

c because (a) whenever a vertex u is added
to W1, all components below u have size strictly less than |V (T)|

c and (b) when the process ends
the subtree rooted at r has size at most |U | ≤ |V (T)|

c . Now, insert x and y into W1 as well.
We buildW fromW1 by taking the least common ancestor closure ofW1; start withW = W1

and as long as there exist two vertices u and v in W such that their least common ancestor w
is not in W , add w to W . Standard counting arguments on trees imply that this process will
never increase the size of W by more than a factor 2, hence |W | ≤ 2|W1| = O(c).

We claim that every connected component U of T \W satisfies N(U) ≤ 2. Suppose not
and let u be the vertex of u closest to the root. Since N(U) > 2 at least two vertices v and
w in N(U) are descendants of u. Since U is connected v and w can’t be descendants of each
other, but then the least common ancestor of v and w is in U , contradicting the construction
of W .

Observation 5.1. For any tree T , set W ⊆ V (T) and component U of T \ W such that
|N(U)| = 1, U contains a leaf of T .

Proof. T [U ∪ N(U)] is a tree on at least two vertices and hence it has at least two leaves. At
most one of these leaves is in N(U), the other one is also a leaf of T .

Lemma 5.9. Let W ⊆ V (T) be a set of vertices such that for every pair of vertices in W
their least common ancestor is also in W . Let X be a set containing one leaf of T from each
connected component U of T \W such that |N(U)| = 1. Then, for every connected component
U such that |N(U)| = 1 there exist x ∈ W , y ∈ X such that U = Cxy ∪ {y}. For every other
connected component U there exist x, y ∈W such that U = Cxy.

Proof. It follows from the argument at the end of the proof of Lemma 5.8 that every component
U of T \W satisfies |N(U)| ≤ 2. If |N(U)| = 2, let N(U) = {x, y}. We have that x ≤ y or
y ≤ x since least common ancestor of x and y can not be in U and would therefore be in N(U),
contradicting |N(U)| = 2. Without loss of generality y ≤ x. But then U = Cxy. If N(U) = 1,
let N(U) = {x}. By Observation 5.1 U contains a leaf y of T . Then U = Cxy ∪ {y}.

Given two graphs F and H, a graph homomorphism from F to H is a map f from V (F) to
V (H), that is f : V (F)→ V (H), such that if uv ∈ E(F), then f(u)f(v) ∈ E(H). Furthermore,

51

when the map f is injective, f is called a subgraph isomorphism. For every x, y ∈ V (T) such
that y ≤ x, and every u,v in V (G) we define

Fxyuv =
{
F ∈

(
V (G) \ {u, v}
|Cxy|

)
: ∃ subgraph isomorphism f

from T xy to G[F ∪ {u, v}] such that f(x) = u and f(y) = v
}

Let us remind that for a set X and a family A, we use A+X to denote {A∪X : A ∈ A}. For
every x, y ∈ V (T) such that y ≤ x, and every u in V (G) we define

Fxyu∗ =
⋃

v∈V (G)\{u}
Fxyuv + {v} (8)

In order to solve the problem it is sufficient to select an arbitrary leaf ` of T and determine
whether there exists a u ∈ V (G) such that the family Fr`u∗ is non-empty. We show that the
collections of families {Fxyuv } and {F

xy
u∗ } satisfy a recurrence relation. We will then exploit this

recurrence relation to get a fast algorithm for k-Tree.

Lemma 5.10. For every x,y ∈ V (T) such that y ≤ x, every Ŵ = W ∪ {x, y} where W ⊆ Cxy,
such that for every pair of vertices in Ŵ their least common ancestor is also in Ŵ , every
X ⊆ Cxy \W such that X contains exactly one leaf of T in each connected component U of
T xy \ Ŵ with |N(U)| = 1, the following recurrence holds.

Fxyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v

•∏

x′,y′∈Ŵ
y′�

Ŵ
x′

Fx
′y′

g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

Fx
′y′

g(x′)∗

+ g(W)

 (9)

Here the union goes over all O(n|W |) injective maps g from Ŵ to V (G) such that g(x) = u and
g(y) = v, and by g(W) we mean {g(c) : c ∈W}.

Proof. For the ⊆ direction of the equality consider any subgraph isomorphism f from T xy to
V (G) such that f(x) = u and f(y) = v. Let g be the restriction of f to W . The map f
can be considered as a collection of subgraph isomorphisms with one isomorphism for each
x′, y′ ∈ Ŵ such that y′ �

Ŵ
x from T x

′y′ to G such that f(x′) = g(x′) and f(y′) = g(y′),
and one isomorphism for each x′ ∈ Ŵ , y′ ∈ X such that y′ �

Ŵ
x from T x

′y′ to G such that
f(x′) = g(x′). Taking the union of the ranges of each of the small subgraph isomorphisms clearly
give the range of f . Here we used Lemma 5.9 to argue that for every connected component U
of T xy \ Ŵ we have that T [U ∪N(U)] is in fact on the form T x

′y′ for some x′, y′.
For the reverse direction take any collection of subgraph isomorphisms with one isomorphism

f for each x′, y′ ∈ Ŵ such that y′ �
Ŵ
x from T x

′y′ to G such that f(x′) = g(x′) and f(y′) =
g(y′), and one isomorphism for each x′ ∈ Ŵ , y′ ∈ X such that y′ �

Ŵ
x from T x

′y′ to G such that
f(x′) = g(x′), such that the range of all of these subgraph isomorphisms are pairwise disjoint
(except on vertices in Ŵ). Since all of these subgraph isomorphisms agree on the set W they
can be glued together to a subgraph isomorphism from T xy to G.

Our goal is to compute for every x, y ∈ V (T) such that y ≤ x and u, v ∈ V (G) a family F̂xyuv
such that F̂xyuv ⊆

k−|Cxy |
rep Fxyuv and for every x, y ∈ V (T) such that y ≤ x and u ∈ V (G) a family

52

F̂xyu∗ such that F̂xyu∗ ⊆k−|C
xy |−1

rep Fxyuv . We will also maintain the following size invariants.

|F̂xyuv | ≤
(2k − |Cxy|
|Cxy|

)|Cxy | (2k − |Cxy|
2k − 2|Cxy|

)k−|Cxy |
2o(k) (10)

|F̂xyu∗ | ≤
(2k − |Cxy| − 1
|Cxy|+ 1

)|Cxy |+1 (2k − |Cxy| − 1
2k − 2|Cxy| − 2

)k−|Cxy |−1
2o(k) (11)

Let the right hand side of equation 10 be sxy and the right had side of equation 11 be s∗xy. We
first compute such families F̂xyuv for all x, y ∈ V (T) such that y ≤ x and xy ∈ E(T). Observe
that in this case we have

Fxyuv =
{
{∅} if uv ∈ E(G),
∅ if uv /∈ E(G).

For each x, y ∈ V (T) such that y ≤ x and xy ∈ E(T) and every u, v ∈ V (G) we set F̂xyuv = Fxyuv .
We can now for compute F̂xyu∗ for every x, y ∈ V (T) such that y ≤ x and xy ∈ E(T) and every
u ∈ V (G) by applying Equation 8. Clearly the computed families are within the required size
bounds.

We now show how to compute a family F̂xyuv of size sxy for every x, y ∈ V (T) such that y ≤ x
and u, v ∈ V (G) and |Cxy| = t, assuming that the families F̂xyuv and F̂xyu∗ have been computed
for every x, y ∈ V (T) such that y ≤ x and u, v ∈ V (G) and |Cxy| < t. We also assume that
for each family F̂xyuv that has been computed, |F̂xyuv | ≤ sxy. Similarly we assume that for each
family F̂xyu∗ that has been computed, |F̂xyu∗ | ≤ s∗xy.

We fix a constant c whose value will be decided later. First apply Lemma 5.8 on T xy, vertex
pair {x, y} and constant c and obtain a set Ŵ such that {x, y} ⊆ Ŵ and every connected
component U of T \Ŵ satisfies |U | ≤ |V (T)|

c and |N(U)| ≤ 2. Select a set X ⊆ V (T x,y)\Ŵ such
that each connected component U of T \ Ŵ with |N(U)| = 1 contains exactly one leaf which is
in X. Now, set W = Ŵ \ {x, y} and consider Equation 9 for F̂xyuv for this choice of x,y,W and
X. Define

F̃xyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v

•∏

x′,y′∈Ŵ
y′�

Ŵ
x′

F̂x
′y′

g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

F̂x
′y′

g(x′)∗

+ g(W)

 (12)

Lemma 5.10 together with Lemmata 3.2 and 3.3 directly imply that F̃xyuv ⊆
k−|Cxy |
rep Fxyuv . Fur-

thermore, each family on the right hand side of Equation 12 has already been computed, since
Cx
′y′ ⊂ Cxy and so |Cx′y′ | < t. For a fixed injective map g : W → V (G) we define

F̃xyg =

•∏

x′,y′∈Ŵ
y′�

Ŵ
x′

F̂x
′y′

g(x′)g(y′) •
•∏

x′∈Ŵ , y′∈X
y′�

Ŵ
x′

F̂x
′y′

g(x′)∗

+ g(W) (13)

It follows directly from the definition of F̃xyuv and F̃xyg that

F̃xyuv =
⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v

F̃xyg .

53

Our goal is to compute a family F̂xyuv ⊆
k−|Cxy |
rep F̃xyuv such that |F̂xyuv | ≤ sxy. Lemma 3.1 then

implies that F̂xyuv ⊆
k−|Cxy |
rep Fxyuv . To that end, we define the function reduce. Given a family F

of sets of size p, the function reduce will run the algorithm of Theorem 6 on F with x = p
2k−p

and produce a family of size
(

2k−p
p

)p (2k−p
2k−2p

)k−p
2o(k) that k − p represents F .

We will compute for each g : Ŵ → V (G) such that g(x) = u and g(y) = v a family F̂xyg of
size at most sxy such that F̂xyg ⊆

k−|Cxy |
rep F̃xyg . We will then set

F̂xyuv = reduce

⋃

g:Ŵ→V (G)
g(x)=u∧g(y)=v

F̂xyg

 . (14)

To compute F̂xyg , inspect Equation 13. Equation 13 shows that F̃xyg basically is a long chain of
• operations, specifically

F̃xyg =
(
F̂1 • F̂2 • F̂3 . . . • F̂`

)
+ g(W) (15)

We define (and compute) F̂xyg as follows

F̂xyg = reduce
(
reduce

(
. . . reduce

(
reduce

(
F̂1 • F̂2

)
• F̂3

)
• . . .

)
• F̂`

)
+ g(W) (16)

F̂xyg ⊆
k−|Cxy |
rep F̃xyg and thus also F̂xyuv ⊆

k−|Cxy |
rep F̃xyuv ⊆

k−|Cxy |
rep Fxyuv follows from Lemma 3.3 and

Theorem 6. Since the last operation we do in the construction of F̂xyuv is a call to reduce,
|F̂xyuv | ≤ sxy follows from Theorem 6. To conclude the computation we set

F̃xyu∗ = reduce

 ⋃
v∈V (G)\{u}

F̂xyuv + {v}

 (17)

Lemma 3.3 and Theorem 6 imply that F̃xyu∗ ⊆k−|C
xy |−1

rep Fxyu∗ and that |F̂xyu∗ | ≤ s∗xy.
The algorithm computes the families F̂xyu∗ and F̂xyuv for every x, y ∈ V (T) such that y ≤ x.

It then selects an arbitrary leaf ` of T and checks whether there exists a u ∈ V (G) such that
the family F̂r`u∗ is non-empty. Since F̂r`u∗ ⊆0

rep Fr`u∗ there is a non-empty Fr`u∗ if and only if there
is a non empty F̂r`u∗. Thus the algorithm can answer that there is a subgraph isomorphism from
T to G if some F̂r`u∗ is non-empty, and that no such subgraph isomorphism exists otherwise.

It remains to bound the running time of the algorithm. Up to polynomial factors, the
running time of the algorithm is dominated by the computation of F̂xyuv . This computation
consists of nO(|̂W |) independent computations of the families F̂xyg . Each computation of the
family F̂xyg consists of at most k repeated applications of the operation

F̂ i+1 = reduce(F̂ i • F̂i+1).

Here F i is a family of sets of size p, and so |F i| ≤
(

2k−p
p

)p (2k−p
2k−2p

)k−p
2o(k) logn. On the other

54

hand F̂i+1 is a family of sets of size p′ ≤ k
c since we used Lemma 5.8 to construct Ŵ . Thus,

|F̂i+1| ≤
(2k − p′

p′

)p′ (2k − p′
2k − 2p′

)k−p′
2o(k)

≤
(2k
p′

)p′ (2k
2k − 2p′

)k−p′
2o(k)

≤
(
k

p′

)
· 2p′ · 2o(k)

≤
(
k

k/c

)
· 2k/c · 2o(k)

≤ 2(ε+1/c)k · 2o(k)

Thus |F̂ i • F̂i+1| ≤
(

2k−p
p

)p (2k−p
2k−2p

)k−p
2(ε+1/c)k+o(k). Hence, when we apply Theorem 6 with

x = p+p′
2k−p−p′ to compute reduce(F̂ i • F̂i+1), this takes time

|F̂ i • F̂i+1|
(2k − p− p′

2k − 2p− 2p′
)k−p−p′

2o(k) logn

≤ |F̂ i • F̂i+1|
(2k − p

2k − 2p

)k−p (2k − 2p
2k − 2p− 2p′

)k−p−p′
2o(k) logn

≤ |F̂ i • F̂i+1|
(2k − p

2k − 2p

)k−p (
1 + p′

k − p− p′
)k−p−p′

2o(k) logn

≤ |F̂ i • F̂i+1|
(2k − p

2k − 2p

)k−p
ep
′2o(k) logn

≤
(2k − p

p

)p (2k − p
2k − 2p

)2k−2p
2(ε+3/c)k+o(k) logn

Since there are nO(|̂W |) (which is equal to nO(c), where c is a constant) independent computations
of the families F̂xyg , the total running time is upper bounded by

(2k − p
p

)p (2k − p
2k − 2p

)2k−2p
2(ε+3/c)k+o(k)nO(1)

The maximum value of
(

2k−p
p

)p (2k−p
2k−2p

)2k−2p
is when p = (1 − 1√

5)k and the maximum value
is φ2k, where φ is the golden ratio 1+

√
5

2 . Now we can choose the value of c in such a way that
ε+ 3/c is small enough and the above running time is bounded by 2.619knO(1). This yields the
following theorem.

Theorem 14. k-Tree can be solved in time 2.619knO(1).

The algorithm for k-Tree can be generalized to k-Subgraph Isomorphism for the case
when the pattern graph F has treewidth at most t. Towards this we need a result analogous to
Lemma 5.8 for trees, which can be proved using the separation properties of graphs of treewidth
at most t. This will lead to an algorithm with running time 2.619k · nO(t).

55

5.6 Other Applications

Marx [42] gave algorithms for several problems based on matroid optimization. The main
theorem in his work is Theorem 1.1 [42] on which most applications of [42] are based. The
proof of the theorem uses an algorithm to find representative sets as a black box. Applying our
algorithm (Theorem 1 of this paper) instead gives an improved version of Theorem 1.1 of [42].

Proposition 5.4. Let M = (E, I) be a linear matroid where the ground set is partitioned into
blocks of size `. Given a linear representation AM ofM , it can be determined in O(2ωk`||AM ||O(1))
randomized time whether there is an independent set that is the union of k blocks. (||AM || de-
notes the length of AM in the input.)

Finally, we mention another application from [42] which we believe could be useful to obtain
single exponential time parameterized and exact algorithms.

`-Matroid Intersection Parameter: k
Input: Let M1 = (E, I1), . . . ,M1 = (E, I`) be matroids on the same ground set E given

by their representations AM1 , . . . , AM`
over the same field F and a positive integer k.

Question: Does there exist k element set that is independent in eachMi (X ∈ I1∩. . .∩I`)?

Using Theorem 1.1 of [42], Marx [42] gave a randomized algorithm for `-Matroid Inter-
section. By using Proposition 5.4 instead we get the following result.

Proposition 5.5. `-Matroid Intersection can be solved in O(2ωk`||AM ||O(1)) randomized
time.

6 Conclusion and Recent Developments
In this paper, we gave an efficient algorithm for computing a representative familiy of a family
of independent sets in a linear matroid. For the special case where the underlying matroid
is uniform we developed an even faster algorithm. We also showed interesting links between
representative families of matroids and the design of single-exponential parameterized and exact
exponential algorithms. We believe that these connections have a potential for a wide range of
applications. This works opens up an interesting avenue for further research, we list some of
the natural open problems below.

• What is the best possible running time of an algorithm that computes a q-representative
family of size at most

(p+q
p

)
for a p-family F of independent sets of a linear matroid? Does

an algorithm with linear dependence of the running time on |F| exist, or is it possible to
prove superlinear lower bounds?

• It would be interesting to find faster algorithms even for special classes of linear matroids.
Uniform matroids and graphic matroids are especially interesting in this regard.

• Finally, the only matroids we used in our algorithmic applications were graphic, uniform,
and partition matroids. It would be interesting to see what kind of applications can be
handled by other kinds of matroids.

The results and methods from the preliminary conference version of this paper have already
been utilized to obtain several deterministic parameterized algorithms [20, 27, 28, 50, 52, 53].
The results also have been used in the context exact learning [1] and linear time constructions

56

of some d-restriction problems [10]. Lokshtanov et al. [37] obtained a deterministic algorithm
for computing a `-truncation of a given matrix and using this obtained a deterministic version
of Theorem 4 for those matroids whose representation can be found in deterministic polynomial
time. Very recently Zehavi [58] has announced a further improvement for k-Path algorithm.
The algorithm presented in [58] runs in time 2.597k · nO(1). It has also been brought to out
attention by Marek Cygan [16], in a private communication, that one can obtain single expo-
nential time algorithms for Minimum Equivalent Graph based on the methods described
in [8, 17].

References
[1] H. Abasi, N. H. Bshouty, and H. Mazzawi, On exact learning monotone DNF from

membership queries, in Algorithmic Learning Theory - 25th International Conference, ALT
2014, Bled, Slovenia, October 8-10, 2014. Proceedings, 2014, pp. 111–124. 56

[2] N. Alon, R. Yuster, and U. Zwick, Color-coding, J. Assoc. Comput. Mach., 42 (1995),
pp. 844–856. 4, 5, 19

[3] O. Amini, F. V. Fomin, and S. Saurabh, Counting subgraphs via homomorphisms,
SIAM J. Discrete Math., 26 (2012), pp. 695–717. 5

[4] J. Bang-Jensen and G. Gutin, Digraphs, Springer Monographs in Mathematics,
Springer-Verlag London Ltd., London, second ed., 2009. Theory, algorithms and appli-
cations. 6, 39, 40

[5] A. Björklund, T. Husfeldt, P. Kaski, and M. Koivisto, Narrow sieves for param-
eterized paths and packings, CoRR, abs/1007.1161 (2010). 4, 5

[6] A. Björklund, T. Husfeldt, and S. Khanna, Approximating longest directed paths
and cycles, in Proceedings of the 31st International Colloquium, Automata, Languages and
Programming (ICALP 2004), vol. 3142 of Lecture Notes in Comput. Sci., Springer, 2004,
pp. 222–233. 6

[7] H. L. Bodlaender, On linear time minor tests with depth-first search, J. Algorithms, 14
(1993), pp. 1–23. 4, 50

[8] H. L. Bodlaender, M. Cygan, S. Kratsch, and J. Nederlof, Solving weighted and
counting variants of connectivity problems parameterized by treewidth deterministically in
single exponential time, CoRR, abs/1211.1505 (2012). 6, 14, 57

[9] B. Bollobás, On generalized graphs, Acta Math. Acad. Sci. Hungar, 16 (1965), pp. 447–
452. 2

[10] N. H. Bshouty, Linear time constructions of some d-restriction problems, CoRR,
abs/1406.2108 (2014). 57

[11] J. Bunch and J. Hopcroft, Triangular factorization and inversion by fast matrix mul-
tiplication, Mathematics of Computation, 28 (1974), pp. 231–236. 14

[12] J. Chen, J. Kneis, S. Lu, D. Mölle, S. Richter, P. Rossmanith, S.-H. Sze,
and F. Zhang, Randomized divide-and-conquer: improved path, matching, and packing
algorithms, SIAM J. Comput., 38 (2009), pp. 2526–2547. 4, 5

57

[13] J. Chen, S. Lu, S.-H. Sze, and F. Zhang, Improved algorithms for path, matching, and
packing problems, in Proceedings of the18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), SIAM, 2007, pp. 298–307. 5

[14] N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo, Algorithm
for finding k-vertex out-trees and its application to k-internal out-branching problem, J.
Comput. System Sci., 76 (2010), pp. 650–662. 5

[15] T. H. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms,
The MIT Press, Cambridge, Mass., second ed., 2001. 6

[16] M. Cygan, private communication., (2013). 57

[17] M. Cygan, J. Nederlof, M. Pilipczuk, M. Pilipczuk, J. M. M. van Rooij, and
J. O. Wojtaszczyk, Solving connectivity problems parameterized by treewidth in single
exponential time, in Proceedings of the 52nd Annual Symposium on Foundations of Com-
puter Science (FOCS 2011), IEEE, 2011. 6, 57

[18] R. G. Downey and M. R. Fellows, Parameterized complexity, Springer-Verlag, New
York, 1999. 4

[19] J. Edmonds, Optimum branchings, J. Res. Nat. Bur. Standards Sect. B, 71B (1967),
pp. 233–240. 42

[20] F. V. Fomin and P. A. Golovach, Long circuits and large euler subgraphs, SIAM J.
Discrete Math., 28 (2014), pp. 878–892. 56

[21] F. V. Fomin and D. Kratsch, Exact exponential algorithms, Springer, 2011. 6

[22] F. V. Fomin, D. Lokshtanov, F. Panolan, and S. Saurabh, Representative sets of
product families, in Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw,
Poland, September 8-10, 2014. Proceedings, vol. 8737, 2014, pp. 443–454. 4, 16

[23] F. V. Fomin, D. Lokshtanov, V. Raman, S. Saurabh, and B. V. R. Rao, Faster
algorithms for finding and counting subgraphs, J. Comput. System Sci., 78 (2012), pp. 698–
706. 5

[24] F. V. Fomin, D. Lokshtanov, and S. Saurabh, Efficient computation of represen-
tative sets with applications in parameterized and exact algorithms, in Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Port-
land, Oregon, USA, January 5-7, 2014, 2014, pp. 142–151. 4, 16

[25] P. Frankl, An extremal problem for two families of sets, European J. Combin., 3 (1982),
pp. 125–127. 2

[26] H. N. Gabow and S. Nie, Finding a long directed cycle, ACM Transactions on Algo-
rithms, 4 (2008). 6

[27] P. Goyal, N. Misra, and F. Panolan, Faster deterministic algorithms for r-
dimensional matching using representative sets, in IARCS Annual Conference on Founda-
tions of Software Technology and Theoretical Computer Science, FSTTCS 2013, December
12-14, 2013, Guwahati, India, vol. 24, 2013, pp. 237–248. 56

58

[28] P. Goyal, P. Misra, F. Panolan, G. Philip, and S. Saurabh, Finding even subgraphs
even faster, in 35th IARCS Annual Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2015, December 16-18, 2015, Bangalore, India,
2015, pp. 434–447. 56

[29] H. T. Hsu, An algorithm for finding a minimal equivalent graph of a digraph, J. Assoc.
Comput. Mach., 22 (1975), pp. 11–16. 6

[30] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential
complexity, Journal of Computer and System Sciences, 63 (2001), pp. 512–530. 6

[31] S. Jukna, Extremal combinatorics, Springer Verlag Berlin Heidelberg, 2011. 3

[32] T. Kloks, Treewidth, Computations and Approximations, vol. 842 of Lecture Notes in
Computer Science, Springer, 1994. 44

[33] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Divide-and-color, in Proceed-
ings of the 34th International Workshop Graph-Theoretic Concepts in Computer Science
(WG 2008), vol. 4271 of Lecture Notes in Computer Science, Springer, 2008, pp. 58–67. 4

[34] I. Koutis, Faster algebraic algorithms for path and packing problems, in Proceedings of
the 35th International Colloquium on Automata, Languages and Programming (ICALP
2008), vol. 5125 of Lecture Notes in Computer Science, 2008, pp. 575–586. 4

[35] I. Koutis and R. Williams, Limits and applications of group algebras for parameterized
problems, in Proceedings of the 36th International Colloquium on Automata, Languages
and Programming (ICALP 2009), vol. 5555 of Lecture Notes in Computer Sci., Springer,
2009, pp. 653–664. 5

[36] S. Kratsch and M. Wahlström, Representative sets and irrelevant vertices: New tools
for kernelization, in Proceedings of the 53rd Annual Symposium on Foundations of Com-
puter Science (FOCS 2012), IEEE, 2012, pp. 450–459. 3

[37] D. Lokshtanov, P. Misra, F. Panolan, and S. Saurabh, Deterministic truncation
of linear matroids, in Automata, Languages, and Programming - 42nd International Collo-
quium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I, 2015, pp. 922–934.
57

[38] L. Lovász, Flats in matroids and geometric graphs., in In Combinatorial surveys (Proc.
Sixth British Combinatorial Conf., Royal Holloway Coll., Egham), Academic Press, Lon-
don, 1977, pp. 45–86. 2, 3, 11

[39] S. Martello, An algorithm for finding a minimal equivalent graph of a strongly connected
digraph, Computing, 21 (1978/79), pp. 183–194. 6

[40] S. Martello and P. Toth, Finding a minimum equivalent graph of a digraph, Networks,
12 (1982), pp. 89–100. 6

[41] D. Marx, Parameterized coloring problems on chordal graphs, Theor. Comput. Sci., 351
(2006), pp. 407–424. 3

[42] , A parameterized view on matroid optimization problems, Theor. Comput. Sci., 410
(2009), pp. 4471–4479. 2, 3, 8, 9, 10, 12, 56

59

[43] M. Mitzenmacher and E. Upfal, Probability and computing: Randomized algorithms
and probabilistic analysis, Cambridge University Press, 2005. 18

[44] B. Monien, How to find long paths efficiently, in Analysis and design of algorithms for
combinatorial problems (Udine, 1982), vol. 109 of North-Holland Math. Stud., North-
Holland, Amsterdam, 1985, pp. 239–254. 2, 3, 4

[45] D. M. Moyles and G. L. Thompson, An algorithm for finding a minimum equivalent
graph of a digraph, J. ACM, 16 (1969), pp. 455–460. 6, 39

[46] K. Murota, Matrices and matroids for systems analysis, vol. 20, Springer, 2000. 12

[47] M. Naor, L. J. Schulman, and A. Srinivasan, Splitters and near-optimal derandom-
ization, in Proceedings of the 36th Annual Symposium on Foundations of Computer Science
(FOCS 1995), IEEE, 1995, pp. 182–191. 3, 15

[48] J. G. Oxley, Matroid theory, vol. 3, Oxford University Press, 2006. 8, 10

[49] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the com-
plexity of the V-C dimension, J. Comput. Syst. Sci., 53 (1996), pp. 161–170. 4

[50] R. Y. Pinter, H. Shachnai, and M. Zehavi, Deterministic parameterized algorithms
for the graph motif problem, in Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceed-
ings, Part II, vol. 8635, 2014, pp. 589–600. 56

[51] J. Plehn and B. Voigt, Finding minimally weighted subgraphs, in Proceedings of the
16th Workshop on Graph-Theoretic Concepts in Computer Science (WG 1991), vol. 484 of
Lecture Notes in Comput. Sci., Springer, 1991, pp. 18–29. 4

[52] H. Shachnai and M. Zehavi, Parameterized algorithms for graph partitioning problems,
in Graph-Theoretic Concepts in Computer Science - 40th International Workshop, WG
2014, Nouan-le-Fuzelier, France, June 25-27, 2014. Revised Selected Papers, vol. 8747,
2014, pp. 384–395. 56

[53] , Representative families: A unified tradeoff-based approach, in Algorithms - ESA 2014
- 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings,
vol. 8737, 2014, pp. 786–797. 4, 56

[54] Z. Tuza, Applications of the set-pair method in extremal hypergraph theory, in Extremal
problems for finite sets (Visegrád, 1991), vol. 3 of Bolyai Soc. Math. Stud., János Bolyai
Math. Soc., Budapest, 1994, pp. 479–514. 3

[55] , Applications of the set-pair method in extremal problems. II, in Combinatorics, Paul
Erdős is eighty, Vol. 2 (Keszthely, 1993), vol. 2 of Bolyai Soc. Math. Stud., János Bolyai
Math. Soc., Budapest, 1996, pp. 459–490. 3

[56] R. Williams, Finding paths of length k in O∗(2k) time, Inf. Process. Lett., 109 (2009),
pp. 315–318. 4, 5

[57] V. V. Williams, Multiplying matrices faster than Coppersmith-Winograd, in Proceedings
of the 44th Symposium on Theory of Computing Conference (STOC 2012), ACM, 2012,
pp. 887–898. 8

60

[58] M. Zehavi, Mixing color coding-related techniques, in Algorithms - ESA 2015 - 23rd An-
nual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings, 2015,
pp. 1037–1049. 57

61

	1 Introduction
	2 Preliminaries
	2.1 Randomized Algorithms
	2.2 Matroids
	2.3 Linear Matroids and Representable Matroids
	2.4 Direct Sum of Matroids.
	2.5 Uniform and Partition Matroids
	2.6 Graphic Matroids
	2.7 Truncation of a Matroid.

	3 Fast Computation for Representative Sets for Linear Matroids
	4 Fast Computation for Representative Sets for Uniform Matroids
	4.1 Representative Sets using Lopsided Universal Sets
	4.2 Representative Sets using Separating Collections

	5 Applications
	5.1 Long Directed Cycle
	5.2 Faster Long Directed Cycle
	5.3 Minimum Equivalent Graph
	5.4 Dynamic Programming over graphs of bounded treewidth
	5.4.1 Treewidth
	5.4.2 Steiner Tree parameterized by treewidth

	5.5 Path, Trees and Subgraph Isomorprhism
	5.5.1 k-Path
	5.5.2 k-Tree and k-Subgraph Isomorphism

	5.6 Other Applications

	6 Conclusion and Recent Developments

