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Abstract

Optimizing parameters of Two-Prover-One-Round Game (Jfsl&n important task in PCPs litera-
ture as it would imply a smaller PCP with the same or strongendness. While this is a basic question
in PCPs community, the connection between the paramet®€B§ and hardness of approximations is
sometime obscure to approximation algorithm communitythla paper, we investigate the connection
between the parameters of 2P1R and the hardness of apptmgrttee class of so-called connectivity
problems, which includes as subclasses the survivableonletesign and (multi)cut problems. Based
on recent development on 2P1R by Chan (ECCC 2011) and se¢gehaliques in PCPs literature, we
improve hardness results of some connectivity problentsatteain the formk?, for some (very) small
constant > 0, to hardness results of the forkfi for some explicit constant wherek is a connectivity
parameter. In addition, we show how to convert these hagdinés hardness results of the forBf’,
whereD is the number of demand pairs (or the number of terminalsj.régults are as follows.

1. For the rooted-connectivity problem, we have hardness of

k'/2=¢  on directed graphs.
k/19=¢<  on undirected graphs.
D'/4=¢  on both directed and undirected graphs.

This improves upon the best known hardnesk®by Cheriyan et al. (SODA 2012).
2. For the vertex-connectivity survivable network desigolglem, we have hardness of

k'/6=¢  onundirected graphs
D'/4=<  on both directed and undirected graphs.

This improves upon the best known hardnesQ@f”) by Chakraborty et al. (STOC 2008).
3. For the vertex-connectivity-route cut problem on undirected graphs, we have hardness of

kl/ﬁfe
{ fD1/4—e

This improves upon the best known hardnesk®by Chuzhoy et al. (SODA 2012).
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1 Introduction

Optimizing parameters of Two-Prover-One-Round Game (3l&n important task in PCPs literature as it
would imply a smaller PCP with the same or stronger soundmgssh will in turn tighten hardness results
for many optimization problems. While this is a basic quastn PCPs community, the connection between
the parameters of PCPs and hardness of approximations etisoenobscure to approximation algorithm
community. In this paper, we investigate the connectiomvbeh the parameters of 2P1R and the hardness
of approximating the class of so-called connectivity peoins, which includes as subclasses the survivable
network design and (multi)cut problems.

Similar to 2P1R, a connectivity problem comes with sevesagmeters, e.g., the number of vertiegs
connectivity parametét, and the number of demand paiPs As these parameters are independent of each
other, approximation algorithms for connectivity probkeare usually designed by exploiting properties of
the parameters, which means that the approximation rafittsecalgorithms depend on these terms. By
way of illustration, let consider a concrete example of heted k-connectivityproblem on undirected
graphs. In this problem, we are given an undirected gt@ph (V, E), a root vertex: and a set of terminals
T; the goal is to find a minimum-cost subgraph that kagpenly (vertex) disjoint paths from the root
vertexr to each terminat € T. For arbitraryk, the best known approximation ratio of this problem
is O(klog k) by Nutov [24], and it was shown by Cheriyan, Laekhanukit, &aand Vetta [7] that the
dependence oh cannot be taken out because the problem does not adifij-approximation, for some
(very) small constant > 0, unlessP = NP. However, wherk is larger than the number of demands (or
terminals)D, a trivial D-approximation algorithm does exist and yields a better@pmation ratio than
the O(k log k)-approximation algorithm. Moreover, the hardness redultfeeriyan et al. only holds when
k is much smaller tha®. Thus, the approximability of the rootédconnectivity problem on undirected
graphs depends on two parameters: the connectivétgd the number of demands (terminals)e.g.,k is
a constant independent Bf. Thus, to prove tighter approximation hardness of conviggtproblems, we
have to consider all the parameters involved.

Here two parameters of connectivity problems that we aerd@sted in are the connectivity parameter
k, which is the main focus in this paper, and the number of dehpairsD. We consider 2P1R in its
combinatorial form — théabel-coverproblem. In this problem, we are given a bipartite directeap G =
(U, W, E), the set of labels (a.k.alphabet} L, and constraints which are functions on ed@es: e € E};
the goal is to find an assignment of labels to each vertex #tigfigs all the constraints. It is known that the
hardness of the label cover problem depends on two parasrtéEmaximum degreé\(G) of G and the
alphabet-sizeL|. Thus, our goal is to investigate relationships betweehl andA(G), |L|.

First, we consider the connectivity parameteil he problems whose hardness depending on the param-
eterk are the rooted-connectivity problem in both directed and undirected psgphevertex-connectivity
survivable network desigproblem and therertex-connectivity:-route cutproblem. These problems have
hardness of the formk?, whereo is a small constant that has not been calculated. (See [Z4/11]).
The common source of hardness of these problems is the labet problem (a.k.a., 2P1R) with parallel
repetition. Ther here involved with the constant loss in the exponent whestoogpthe hardness gap using
parallel repetition. Estimating the valueis not an easy task, and even if we can calculate this valee, th
constant is very small [17]. By studying the constructiohglbthese problems, we observe that the con-
nectivity parametek depends on the maximum degree and alphabet-size of a lalel iostance. Thus,
the simplest way in proving this hardness is to find an ingaofcthe label cover problem whose maxi-
mum degree and alphabet-size are small comparing to thesew# its soundness. Based on the recent
developments in 2P1RI[4, 22,113, 2], we construct a labelrdogéance that satisfies the desired properties.



To be precise, we take a label cover instance of Chan [4] thsialphabet-size close to the inverse of its
soundness. (Also, see the prior result by Khot and Safra)[Then we apply several reductions — tight
degreereduction by Moshkovitz and Raz [22] and tteexdom sparsificatioechnique by Austrin, Khot and
Safra [Zﬂﬂ to reduce the maximum degree of the instance. Hence, we hamstance with small degree and
small alphabet-size, and we thus obtain the explicit expbmethe hardness of all the problems mentioned
above.

Second, we consider the paramefeithe number of demand pairs. The problems that we are it¢gres
in are the rooted:-connectivity problem on both directed and undirected lgsaphe vertex-connectivity
survivable network design problem and the vertex-conviégtik-route cut problem. By diving into the
construction of these problems, we observe that some ofdh®add pairs are independent and thus can
be merged. So, we have to partition the constraints (eddes)adel-cover instance so that they have no
conflict after reducing to a connectivity problem. We obgdhat such partitioning can be done usstigng
edge coloring To be precise, the strong edge coloring is a coloring of eddg&r such that, for any two
edgese, f with the same colore and f share no endpoint, an@ has no edge joining an endpoint @fo
an endpoint off. For example, edge:, b} and{c,d} can have the same colordf b, ¢, d are all distinct
vertices, and~ has none of the edgés, c},{a, d},{b, c} and{b, d}. Itis known that a graph with maximum
degreeA has a strong edge coloring with(A?) colors. Thus, we can reduce the number of demands to be
close toA(G), which is thus close to the inverse of its soundness.

Lastly, we would like to remark that we consider our resuttde a survey paper that connects the
parameters of 2P1R to the hardness of connectivity probléihshe techniques used in this paper are not
new and have been used many times in literature. The righedegduction was introduced by Moshkovitz
and Raz in[[22] and has been used[in/[14]. The random samg@ufique was used in PCPs literature
by Goldreich and Sudan in_[15] and was recently used by Diktrtsarz and Raz if_[13] to prove the
hardness of thbasick-spannermroblem. Also, it has been used to reduced the degree of amaesof the
independent set problem by Austrin, Khot and Safra In [2Hekd, our work is inspired by the result of
Moshkovitz and Raz [22] and the result of Dinitz et al.[[13helgraph coloring technique has been used to
obtain approximation algorithms for the rootkeeonnectivity problem in undirected graphs[[9, 6, 24]. Here
we show that such technique can be used to show the converséhe hardness of approximation. (Indeed,
to best of our knowledge, the strong edge coloring has nat bsed in the previous literature.)

The connectivity problems considered in this paper are lasvse

The Rooted k-Connectivity Problem. In the rooted k-connectivityproblem, we are given a directed or
undirected grapliy = (V, E) onn vertices with cost, on each edge € F, aroot vertex, a set of terminals
T C V — {r} and a connectivity requiremeht The goal is to find a minimum-cost subgragh= (V, E’)
of G such thatG’ hask openly (vertex) disjointpaths fromr to each terminat € 7. This problem has
been studied intensively inl[3] 9] 5,110,/ 24] 5, 6, 7]. Thdedé&-connectivity problem is a fundamental
network design problem with vertex-connectivity requiests, and it lies at the bottom of the complexity
hierarchy of the vertex-connectivity problems. In pariécuthe undirected rootekl-connectivity problem
was shown to be a special case of subsett-connectivityproblem [20] and is clearly a special case of the
vertex-connectivity survivable network desmmoblem. It can be seen that the same relationships alsg appl
for the case of directed graphs.

The rootedc-connectivity problem on both directed and undirected lysammits a trivia|7’|-approximation
algorithm, which can be done by applying a minimum-cedtow algorithm|7’| times, one for each ter-

! Indeed, we are firstinspired by the result of Moshkovitz and R2] and the result of Dinitz, Kortsarz and Razl[13]. Hoerv
due to a technical issue, we require a techniquilin [2], whviak suggested by Siu On Chan.



minal. Non-trivial approximation algorithms for the rodtg-connectivity problem are known only for the
undirected case, and the best known approximation ratifAdog k) by Nutov [24]; however, the approx-
imation ratio surpasses that of the trivial algorithm onlgemk > |T'|. On the negative side, Cheriyan,
Laekhanukit, Naves and Vetta [7] recently showed that tlogeidk-connectivity problem on both directed
and undirected graphs are hard to approximate to withintarfa€ £ for some fixedr > 0 (the constants
o are different in directed and undirected cases). Howekerconstants obtained are small and have not
been explicitly calculated.

For the case of directed graphs, we give improved hardnes$/éf¢ and D'/~ for the rootedk-
connectivity problem, for any constaat> 0. (In fact, thek!/2~<-hardness of this problem can be derived
from combining the result in [7] and [13].) For the case of imected graphs, the hardness &ré!0—¢
and D'/4~¢, for any constant > 0, and this also gives the same bound for the hardness of treetsub
k-connectivity problem. (Note that the number of demandsai® = |T'| for the rootedk-connectivity
problem andD = |T'|? for the subsek-connectivity problem.)

The Vertex-Connectivity Survivable Network Design Problen. Thevertex-connectivity survivable net-
work designVC-SNDP) problem is a generalization of the rootedonnectivity problem. In this problem,
we are given a directed or undirected graph= (V, E') onn vertices with a cost, on each edge and a
connectivity requirementeq(s, t) for each pair of vertices, ¢ € V. A vertexs is called aterminalif there

is a vertext such thatreq(s,t) > 0, i.e., s is a terminal if it has a positive connectivity requiremethig
set of terminals is denoted k. The only known non-trivial approximation algorithm foigtproblem due

to the work of Chuzhoy and Khanna]10] has an approximatitio af O(k? log |T'|), and the best known
hardness i%?, for some (very) small constant > 0, due to Chakrabarty, Chuzhoy and Khanna [3]. We
give an improved hardness bf/6—¢ andD'/4~¢ for VC-SNDP, for any constant > 0.

The Vertex-Connectivity k-Route Cut Problem. In thevertex-connectivity:-route cut(VC-k-RC) prob-
lem, we are given an undirected gra@h= (V, E') onn vertices with a cost. on each edge € FE, a set of
source-sink pair§(si,t1), (s2,t2),...,(sp,tp)} €V x V and a connectivity parametér The goal is to
find a minimum-cost subsét’ C E of edges such thd@t — £’ has nok openly disjoints;, t;-paths for every
source-sink pairs;, t;. The best known approximation guarantee for this proble@(® - k) due to the
work of Chuzhoy, Makarycheyv, Vijayaraghavan and Zhou [&bl the best known hardnessi¢k?), for
some (very) small constant > 0. The approximation ratio is slightly better when we turn tbi-&riteria
approximation algorithm. Chuzhoy et al. showed that theamialgorithm that guarantees to find a solution
E' C E with cost at mos(\k log®® D loglog D) times the optimal, wher is the maximum number of
demand pairs in which any terminal participates, @ficuts at least:/2-routes i.e.,G — E’ has nok/2
openlys;, t;-paths for alli. In this paper, we show that at least one of the two terrmasdD cannot be taken
out. Precisely, we show that it is hard to approximate M&C to within a factor of:!/6—¢ andD/4~¢, for
any constant > 0.

Our hardness results are summarized in Table 1.

2 Preliminaries

We use standard graph terminologies as in [12]. &et (V, E) be any graph. For any vertexe V, the
degree ofv in G is denoted byleg(v). The maximum (resp., minimum) degree®@f denoted byA(G)
(resp.,0(@)), is the maximum (resp., minimum) degree over all vertide§ olf we consider more than one
graph, then we denote the set of vertices and edgéshyf V (G) and E(G), respectively.
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Problem Graphs | Interms ofk (k < D) | Interms ofD (k > D)
Rootedk-Connectivity | Directed f1/2—e pl/a—e
Undirected Je1/10—€ Dl/A—e
Subset:-Connectivity | Undirected f1/10—€ Dl/a=e
VC-SNDP Undirected E1/6=¢ Dl/A=e
VC-k-Route Cut | Undirected E1/6=¢ Dl/A=e

Table 1: The table summarizes our hardness results, whidHfdwany e > 0.

By a bipartite directed graph, we mean a directed g@ph (U, W, E) such that every arc is directed
from U to W, i.e., an arc of7 is of the form(u, w), whereu € U andw € W. We call vertices irU left
verticesand vertices iflV right vertices Since each left (resp., right) vertex @fhas no incoming (resp.,
outgoing) arc, we abuse the term “degree” to mean indegesp.(routdegree) of left (resp., right) vertices
of G. By themaximum (resp., minimum) left degrekeG, denoted byA .t (G) (resp.,dis:(G)), we mean
the maximum (resp., minimum) degree of left vertices5ofSimilar, notations are used for right vertices.
Thus,Asight (G) (resp.dright (G)) denotes the maximum (resp., minimum) degree of right eestdfG. We
use a similar notations for the average degreé& off he average degree 6f is denoted byA*'&((G), and
the average left and right degree@fare denoted byAl"#(G) andAfngght(G), respectively. We say that
is left (resp., right) regulaiif every left (resp., right) vertex off has the same degree.dfis both left and
right regular with degreé, andds, then we say that7 is (d;, dy)-regular. If G is clear in the context, then
we will omit G, e.g., we may writeleg;(v) asdeg(v) and writeA(G) asA.

By amatchingM of a (directed) grapli-, we mean a set of edges (resp., arcs) such that no two edges
(resp., arcs) in\f share an endpoint, and liyduced matching in G, we mean a matching such that no
edge (resp., arc) i joins endpoints of edges (resp., arcs)inrhus, a subgraph @¥ induced by sucll is
also a matching. Atrong edge coloringf G is a partitionEy, Es, .. . , B, of sets of edges (resp., arcs) of
G such that eacl’; is an induced matching i&. The smallest numbérsuch thatz has ar¢-strong edge
coloring is called thestrong chromatic inderf G, denoted by/s(G).

All of our hardness results come from the same soutwe)abel coveproblem (a.k.a, 2P1R). Hence,
we devote the next section to discuss the label cover problem

2.1 The Label Cover Problem

The (maximum) label coveproblem ¢he projection gamkis defined as follows. We are given a directed
bipartite graphG = (U, W, E) on n vertices, two sets of labels (a.k.a, alphabdis)(for vertices inU)
and L» (for vertices inW), and aconstraintw, on each are, which is aprojectioni 7. : L1 — Ls. A
labeling ( f1, f2) is a pair of functionsf; : U — L; and fy : W — Lo assigning a label to each vertex of
U and W, respectively. We say thaifi, f2) coversan arc(u,w) € E if m.((fi(u)) = fi(w). The goal
in the maximum label cover problem is to find a labeling thakimézes the number of arcs covered. For
notational convenience, we shall denote an instance ofathed tover problem byG = (U, W, E), {r. :
e c E}, Ll,Lg).

The gap version of the maximum label cover problem is thelprotof deciding whether a given in-
stance of the maximum label cover problem is one of the fallgviwo cases:

2 The constraints of the label cover problem can be relatinsead of projections; however, here we define the labelrcove
problem as the projection game.



e YESINSTANCE: There is an labeling covering at ledst— ¢) fraction of all the arcs.
e NO-INSTANCE: There is no labeling covering more thariraction of all the arcs.

We call1 — ¢ and~ the completenesand thesoundnessf the label cover instance, respectivelye K= 0,
then we say that a (gap) label cover instance peatect completenesstherwise, we say that an instance
hasimperfect completenesft can be seen that NP-hardness of the gap version of thedaber problem
implies the hardness of the maximum one. Thus, we shall abesterm “maximum label cover” to also
mean the gap label cover problem.

For our purpose, we need a minimization version of the labeécproblem, which can be defined by
allowing each vertex to have more than one label, and theiga@alminimize the total cost of labels used
over all vertices. To be precise, we define thi@imum-cost label covgaroblem to be the weighted counter
part of the maximum label cover problem. The minimum labekc@roblem was defined ihl[1], and it has
an equivalent form known as tiin-Repproblem as defined in [18]. The input of this problem is thesam
as that of the maximum label cover problem except that welsse a cost; on each labet € L, and a
costc, on each labeb € L,. The labeling is relaxed as a pair of functiofg, f2), wheref; : U — 201
andf, : W — 22 i.e., we are allowed to assign more than one labels to eatéxveA labeling(f1, fo)
coversan arce = (u,w) if there are labela € f;(u) andb € fa2(w) such thatr.(a) = b. The goal in the
minimum-cost label cover problem is to find a labelif), f2) that covers all the arcs and minimizes the
coste(f1, f2) = 2uev €1 - [[1(w)] + 2w c2 - [f2(w)]-

Note that there is a standard technique that transformsatunbss of the maximization version of the
label cover problem to the minimum-cost version. (See AppeAlfor more detail.) Thus, it suffices to
consider the maximum label cover problem.

3 Relationships between Label Cover and with Connectivity Foblems

Here we show the relationships between the parameters taflibbecover problem (2P1R) with the hardness
of approximating connectivity problems.

First, we survey relationships between the hardness inst&inthe connectivity parametér of the
connectivity problems and the parameters of the minimusi-etel cover problems.

Theorem 1([7,[3,[11]) Given an instancéG = (U, W, E),{n. : e € E}, L1, Lo, c1, c2) of the minimum-
cost label cover problem, there are polynomial-time apjmation preserving reductions that output

e An instance of the rootek-connectivity problem on directed graphs with= A(G).

e Aninstance of the rooteld-connectivity problem on undirected graphs with= O(A(G)3-max{|L1|, |L2|}+
A(G)Y).

e An instance of the vertex-connectivity survivable netwdaign problem on undirected graphs with a
maximum requiremerit = O(A(G) - max{|L1], |L2|} + A(G)?).

e An instance of the vertex-connectivityroute cut problem on undirected graphs with= O(A(G) -
max{|L1,[La|}).

The hardness in terms of the connectivity paramktesin be transformed into hardness in terms of the
number of demand pair®. The parameter that involves with hardness in this termesdigree of the
label cover instance. We claim that, for each of the problemsonsider, two demand paifs, ,¢;) and
(s2,t2) areindependentf and only if they come from two different constraints (9r€s;, w1) and(usg, wo)
of the label cover instance such tffat, w; ) and(uq, we) forms an induced matching, which thus can have



the same “strong edge color”. So, we can partition the ardeefabel cover instance using strong edge
coloring and merge source-sink pairs with the same colausTWwe have the following theorem.

Theorem 2. For each of the following problems, sal,
e The rootedk-connectivity problem on directed graphs,
e The rootedk-connectivity problem on undirected graphs,
e The vertex-connectivity survivable network design pmobde undirected graphs,
e The vertex-connectivity-route cut problem on undirected graphs,

there is a polynomial-time reduction that, given an ins&@ = (U, W, E),{n. : e € E}, L1, Lo, c1,¢2)
of the minimum-cost label cover problem, outputs an instafche problenil with the number of demand
pairs D = 2A(G)2.

See Appendik 1T, 0, IE, arid F for the full proofs and discussions

As we will show in the next section, the label cover instantc€lman [4] can be modified so that it has
degree close to the inverse of its soundness. (See Thébrewe&@pply a standard technique to transform
the hardness of the maximization version of the label coveblpm to the minimum-cost version. (See
Appendix[A for more detail.) Then we have the following themr.

Theorem 3. For any constantg > 0 ande > 0, given an instancéG = (U, W, E),{r. : e € E}, L1, Lo)
of the maximum label cover such thdt; |, |Ls| < ¢2, A(G) = ©O(q) and A*8(G) = ©(q), unless
NP = ZPP, itis hard to approximate the minimum-cost label cover peabto within a factor of,'/2—.

By substituting the bound in Theordr 3 to Theofém 1 and Tme&ewe prove the results in Talile 1.

4 Modifying The Label Cover Instance

In this section, we show how to construct a label cover irtganith strong soundness, small degree and
small alphabet-size. In particular, we prove the followiegnma.

Lemma 4. Letq > 0 be a constant. There is a randomized polynomial-time allgorithat reads as input
aninstancgG = (U, W, E),{r. : e € E}, L1, Lo) of the maximum label-cover problem with the following
properties:

e The alphabet-size isiax{|L:|, |L2|} < q.

e The graphG has regular left degreé\ .y = poly(q).
e The completeness Is— ¢, for anye > 0.

e The soundness is= 1/poly(q).

outputs an instancéG’ = (U, W', E’),{n : e € E}, L1, Ly) of the maximum label-cover problem with
completeness — e and soundness’ = ©(v) and A(G’) < O((1/v)log(1/7)).

The following theorem is due to the work of Chan [4].

Theorem 5 ([4]). For any constantgy > 0 ande > 0, given an instancéG = (U, W, E),{n. : e €
E}, L1, Ly) of the maximum label cover such thdt;|, |Ls| < ¢* and Ay (G) = g, it is NP-hard to
distinguish between the following two cases.

e YES-INSTANCE: There is an labeling covering at least — ¢) fraction of all the arcs.



e NO-INSTANCE: There is no labeling covering more thé&nlog ¢/q) fraction of all the arcs.
Thus, by invoking Lemm@l4, we have the following theorem.

Theorem 6. For any constantg > 0 ande > 0, given an instancéG = (U, W, E),{n. : e € E}, L1, L)
of the maximum label cover such thdt |, |Ls| < ¢2, A(G) = O(qlogq) and A™8(G) = O(qlogq),
unlessNP = ZPP, it is hard to distinguish between the following two cases.

e YESINSTANCE: There is an labeling covering at leait — ¢) fraction of all the arcs.

e NO-INSTANCE: There is no labeling covering more th&nlog q/q) fraction of all the arcs.

So, we devote the remaining part of this section to prove LadmwWe have four steps. First, we take
a basic instance, which is a label cover instance with stemmpdness and have a regular left-degree as in
Theorenib. We apply the right degree reduction to maké ad, )-regular instance. Then we make copies
of left vertices so that both sides have the same number tifesrand thus have regular degree. Finally, we
apply a random sparsification to reduce the maximum degradatifel cover graph to b@(q log ¢), where
+v = 1/poly(q) is the soundness of the label cover instance.

4.1 Basic Instance

We take an instancéG = (U, W, E),{r. : e € E}, L1, L) of the maximum label cover problem with
properties as stated in Lemina 4. That is,

The alphabet-size isiax{|L:|, |L2|} < q.

The graphG has regular left degreB = poly(q).
The completeness is— ¢, for anye > 0.

The soundness ig = 1/poly(q).

An instance of the maximum label cover problem that satisfiesabove properties are that constructed
by Chan in[4] and by Khot and Safra in]17]. Note that due todize of the construction, the former result
applies for any constant > 0 while the latter result in_ [17] applies for all primé&s< ¢ < polylog(N),
where N is the size of the label cover instance. More precisely, #dsilt in [17] also applies fog§ =
polylog(N) under the hardness assumpti§R C DTIME(2rolylosn),

4.2 Making An Instance (dy, d2)-Regular

The basic instance discussed in the previous chapter isghdite graphG = (U, V, E) that is left-regular
but not right-regular. To make an instance of the maximunell@over instance regular, we apply the
right degree reductiomtroduced by Moshkovitz and Raz [22]. (Also, seel[14].) o, the right degree
reduction makes the right degree of a label cover instargdaewhile almost preserves the soundness. It
is not hard to see that the reduction preserves the compksters well. (See AppendiX B for more detail.)

Lemma 7 (Right Degree Reduction [22])There exists a polynomial-time reduction that, given a pseter
d and a maximum label cover instan¢@ = (U, W, E), L1, Lo, {7 : ¢ € E}) with completeness — ¢
and soundness, whereG has regular left degreé\ ., outputs a maximum label cover instangg® =
(U, W' E"), L1, Lo, {m }ccp') With regular left degreel - A\, regular right degreel, completeness— e
and soundness + O(1/V/d).

We choose a parametér= 1/~ and apply the right degree reduction @n Thus, we have an instance
(G = (U*,W,E), Ly, Lo, {me}.cp) of the maximum label cover problem in whichis (dD, d)-regular,
whereD is the left-degree of7, as desired.



4.3 Making (d;, d>)-Regular Instance A-Regular

Take an instancé! of the maximum label cover problem as discussed in the pus\section. Now, we want

to make the(dD, d)-regular graphG a dD-regular graph. To do so, we replace each left vett@f G by

D verticesuy, ua, ..., up and we add an ar@:;, w) with a constraintr,, ,, = 7, for each arqu, w) of

G. This results in a graphir©9 which is dD-regular because the degree of each right vertex increases b
a factor of D while the degree of each left vertex remains the same. Obdbat the reduction preserves
completeness because each edgé dfas exactlyD copies inG™9. Now, consider the soundness. Take
any labeling(f, f2) of G™9. We construct a Iabelingfl, f2) of G by assigningfl(u) = f1(u;), where
f1(u;) is a labeling that covers the maximum number of arc§6¥ incident tou; given thatfs is fixed. If

(f1, f2) covers more than fraction of arcs ofz"/, then( f1, f2) will cover more thany fraction of arcs of

G as well by the choice ofl(u). Therefore, the reduction preserves both completenessauminess, and
the resulting bipartite graph i-regular, where\ = dD.

4.4 Reducing Degree via Random Sparsification

Now, we take alD-regular label cover instance from the previous sectionady a random sparsification
technique to reduce the “average degree” of the label coxstamce to almost match the inverse of its
soundness. Then we throw away vertices with large degreleasdhe graph has degree within the desired
bound, the inverse of the soundness.

4.4.1 Sparsifying The Graph

First, we will sparsify the grapl@. The reduction takes as input a regular-degree instancleeomexi-
mum label cover problem and outputs an instance whose Igpgraph has small average degree. To be
precise, the input of our reduction is an instari¢ce = (U, W, E),{r. : e € E}, Ly, L) of the maxi-
mum label cover problem with regular degrae completenes$ — ¢ and soundness. Then it constructs
a graphG’ = (U, W, E') from G by randomly and independently picking each arczoivith probability
p =7 'log(max{|L1|,|La[})/A(G).

Intuitively, since we sample arcs 6f with the same probability, the resulting grapld?’ should have
degree approximatel®(pA), and for any labelind f1, f2), the fraction of arcs iz’ that(f1, f2) covers
is approximately the same as that it covergiin The next theorem shows that the random sparsification
(almost) preserves completeness and soundness of theabriiggtance. Moreover, the average degree of
the output instance is exactty*'8(G) = v~ ! log(max{|L1|, |L2|}).

Lemma 8. Suppose the random sparsification algorithm takes as inpunstance(G = (U, W, E), {7, :
e € E}, Ly, Ly) of the maximum label cover problem with regular degfeg=), completeness$ — e and
soundness, where0 < €,y < 1. Then it outputs with high probability an instan¢® = (U, W, E’, {m. :
e € E'}, Ly, Ly) of the maximum label cover problem with completeniess4¢, soundness~y and the
average degree @’ is A*8(G") = v~ log(max{|L1|,|La|}).

Proof. Throughout, letv = |U| + |W| denote the number of vertices Gf

Completeness: Suppose there is a labelifig;, f2) covering(1 — ¢€) fraction of arcs inG. We will
show that(f, f2) covers at least — 2¢ fraction of arcs inG’.

Let X = > . Xc be the number of arcs covered by the labelirfg, f2), where X, is an indicator
random variable such tha, = 1 if an arce is covered by the labelingfi, f2) and X, = 0 otherwise.



Then the expected number of arcs not coveredfyf,) is

-1
0% en
BI|B| ~ X] = dlB|- 3 g log(max{|Lal, |La[}) = G -7 log(masx{| L] |La1})

The last equation follows sind&| = A(G)|U| = A(G)|W|. By Chernoff’s bound, we have

_ en —Q(n
Pr[|E| — X > eny log(max{|Li]|, |La|})] < exp (—F -y~ Hog(max{|L1|, \Lg[})) < 279%m)
Now, consider the expected number of arc&in We have

-1 oglmax n
() = 5| T EEE R = D og(mas | Lol

Thus, by Chernoff’s bound,

n _ n — — n
Pr (|| < 29 log(max{|L1], | L2l})| < exp (157 log(max{| L], |a}) ) < 272

By union bound, with high probability,f1, f2) covers at leastl — 4¢) fraction of arcs inG’.

Soundness: Suppose there is no labelirid, f2) covering more thar fraction of arcs inG. We will
show that there is also no labelifd;, f>) covering more thard~ fraction of arcs inG’.

Fix any labeling(f1, f2). Let X = > ., X. be the number of arcs covered by the labelfifig, f2),
where X, is an indicator random variable such tit = 1 if an arce is covered by the labelingf;, f2)
and X, = 0 otherwise. Then the expected number of arcs satisfi€ghy) is

—og(max n
E[X] =|E|- . el A(g)LIHLﬂ}) = 5 - log(max{|L1], [La[}).

Thus, by Chernoff's bound, we have

9 1 3n/2
Pr|X > 2nlog(max{|L1|, |L <e —nlog(max{|L1|, |L <
| slmax{|Lal, |21} < exp (Grtogtmax(|Lah 121D)) < (s

Since there aréL;|"/?|Ly|"? < (max{|L1|,|L2|})" possible labellings, by union bound, we have
that with probability2—%("), the labeling(f1, f2) covers at mostn log(max{|L,|,|L2|}) arcs. By the
proof for the case o¥es-Instance we have thaty’ has at mostn/4)y~! log(max{|L1|,|L2|}) arcs with

probability 2=, Thus, the labelind f1, f2) covers at mosg~ fraction of the arcs with high probability.
This completes the proof. O

So, we can sparsify the instant@ = (U, w, E),{m.:e € E}, Ly, Ly) from Sectior{ 4.8 to obtain an
instance(G*9 = (U, W, E*9),{r. : e € E*9}, L1, Lo) such thatG*"9 has average degre&*'¢(G’) =
v~ !og(max{| L1, |L2[}).



4.4.2 Removing Vertices with Large Degree

The grapr@‘“’g obtained from the previous step has average degree to hie thiéhdesired bound. However,
some vertices may still hadarge degreei.e., their degree are larger tham— log(max{|L|, |L2|}). To
make the graph to have degree within the desired bound, weveeall the large degree vertices from the
graphG®v9. This results in a grapfi®und = (U, V', E') with A(G"""4) < 2y~ 1log(max{|L1|, |La|}).

By Chernoff’'s bound, the probability that a vertexc U U W has large degree is

_ 1 _ _ -
Prldegu (1) > 20 loglmax(Li | [Z2]})] < exp (-39 ogmax{| L Lal} ) 27057

Let X, be an indicator variable such that, = 1 if v has large degree ang, = 0 otherwise. Then we
havek [ZUEVUW Xv} = Zueww E[X,] <27 (/3 ’V uwil.

By Markov’s inequality, we hav@r [ZvevuwX > 2~ |y y W|] < 3.

Thus, with probabilityl/2 we remove at mose—(1/37"" |V U W| vertices of Go; we call this a
probability of successWe can repeat the proceSglog n) times, wheren =

probability of success tb—1/Q(n). This does not effect the success probability of the randmarssfication
step because the probability of success of the random Bpatisin step is very high, say— 1 /29(”).

The Size of Construction: As above, with high probability, the gramf‘(’(’“"d has at leastl —1/2"/3)n ver-
tices. For the number of arcs, we may assume that all veréresved have degre) = poly(y~!), where
dD is the (regular) degree of the graﬁh Note thaty~! is smaller tharO(log ). So, with high probability,
the number of arcs @i is at leas{ E(G*9)| — 2~"/3dD(|U| + |W|) > (1 — 2-/6)|E(G™9)].

Completeness:Suppose there is a labelifigi, f2) covering(1 — ¢) fraction of the arcs o6av9. We wiill
show that( f1, f») covers at leastl — 2¢) fraction of the arcs onOU"d
We may assume that arcs incident to vertices removed fesH are covered by f1, f2), and each
vertex removed has degré® = poly(y~!), which is the maximum degree 6f. Thus, the number of arcs
of Ghound covered by( f1, f2) is at leas{1 — )| E(G™9)| — 27 /3dD(|U| + |W|) > (1 — 2¢)|E(G™9)|.
The last inequality follows becauses a constant. Therefore, in this case, there is a labelimigcthvers
at least(1 — 2¢) fraction of the arcs of7?ound.

Soundness:Suppose there is no labelifd, f2) that covers more tham fraction of the arcs o6ivd. We
will show that there is no labelingf;, f») that covers more tha®r fraction of the arcs of7?ound.

Consider a labeling f1, f2) of G that coversy’ < « fraction of arcs ofGound We construct a
labeling (f1, f}) of GPnd by assigningf!(u) = fi(u) (resp.,f}(w) = fo(w)) for each vertexu € U’
(resp.,w € W’)in Gbound e may assume the worst case that all vertices removed leaveed D and
arcs incident to them are not covered (bfy, f2). So,(f], f3) still covers~'|E(G9)| arcs ofGPund, but
the number of arcs i6**#d s smaller than that afavs. By the analysis of the constructlon size, with high
probability, Gt has at leastl — 2~/6)| E(G9)| arcs. Thus(fy, f2) covers at mosii <29 <

2-n/6
2+ arcs ofGround,
The first inequality follows because— 2/6 > 1/2 for large enough. Therefore, there is no labeling
covering more thafy fraction of arcs oGbound Moreover, this happens with high probability.
This completes the proof of Lemrha 4.
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5 Getting Hardness in Terms ofD

In this section, we discuss how to obtain the hardness instefndemand pairs. We will give an example
of the hardness of the rootédconnectivity problem on directed graphs. The next thedseimplicit in the
construction of Cheriyan et al.|[7].

Theorem 9 (Implicit in [[Z]). There is a polynomial-time approximation preserving rdahrc such that,
given an instancéG = (U, W, E),{n. : e € E}, L1, Lo, c1, c2) of the minimum-cost label cover problem,
outputs an instanc(a@, ¢, r,T) of the rootedk-connectivity problem on directed graphs with= O(6(G),
whereG is a directed graphg is a cost functiony is a root vertex and’ is a set of terminals. Moreover, the
reduction has the following properties:

e Each terminal; ; € T corresponds to an arfu;, w;) € E(G).
* The graphG can be partitioned int@> = U,, .. Gi j, whereE; ; is the union of all, ¢; ;-paths inG.

e For any two partitionsG; ; and Gy of G, wherei # i and j # j, there is a path fron@; ; to Gy
(resp., fromGy ;i to G; ;) if only if the label cover grapldx has an arg(u;, w;/) (resp.,(uy, wjr)).

The full discussions are provided in Appendik C, and theuwdisions for other problems are discussed
in Appendix(D[E, and]F.

Our goal is to reduce the number of terminals by merging s@meihals of the instancé@, c,r,T) of
the rootedk-connectivity problem on directed graphs as in Thedrem Qvéder, if we merge terminals ;
andt; ; such that@-vj and@-f,jf share some non-root vertex, then this will cause us somegmsb For
example, we might have some “free path” formed by concaitemainr, ¢; ;-path and am, t; j-path, or
we might not have enough openly disjoint paths to satisfycthrenectivity requirement. Thus, we have to
ensure that no two terminals that we merge share a non-roetie the graphﬁm’s.

Observe that if the label cover gragh has no arc joiningu;, w;) and (u;, w;r), wherei # i’ and
j # j', then the graphé&’; ; andG; ; share no non-root vertex. In other words(if,, w;) and (u;, w;:)
form “an induced matching” id7, then we can merge terminals; andt,/ ;. Hence, we can partition arcs of
G into induced matching by applying “strong edge coloringidahe number of partition of arcs we obtain
is at most2A(G)?. Thus, we can merge terminalsihinto 2A(G)? terminals. Applying Theorerl 3, we
have the hardness {if|!/4=¢ = D'/4~¢, for anye > 0 as claimed.

Acknowledgment. We thank Adrian Vetta, Joseph Cheriyan, Guyslain NavesnpraChalermsook, Danupon
Nanongkai and Siu On Chan for useful comments and discussion
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A  From Maximum To Minimum-Cost Label Cover

In this section, we show how to obtain the hardness of thermini-cost label cover problem from the
hardness of the maximum label cover problem.

The following is a standard lemma that transforms the hasld the maximization version of the
label cover problem to the hardness of the minimum-cost @eer problem. The theorem has been proved
for the case that an instance has perfect completenesdl, 868 ,[and also se&l[B] 3]. For our purpose, we
state the theorem for the case of imperfect completeness.

Lemma 10. Suppose there are constarits< v,e¢ < 1 andgq;, g2 > 0 such that, given an instandé& =
(U,W,E),{m. : e € E}, L1, L) of the maximum label cover problem with.;; = ¢1 Al and Ayigne =
2241 itis hard to distinguish between the following two cases:

e COMPLETENESS There is a labeling covering at least— ¢ fraction of the arcs.

e SOUNDNESS There is no labeling covering at leagtfraction of the arcs.
Then itis hard to approximate the minimum-cost label coveblem to within a factor 0b(1/,/7).

Proof. We construct an instance of the minimum-cost label coverlpro from an instancéz = (U, W, E), {~. :
e € E}, Ly, Ly) of the maximum label cover problem with a parametsuch thak - |E| < min{|U|, |W |}

as follows. First, we take an instant@ = (U, W, E),{r. : e € E}, L1, Ly) as a base construction. Then
we set costg; andc, of the left and right labels so that|U| = 2|V, and letC = ¢;|U| + c2|W|. To
show the hardness of the minimum-cost label cover problesaffices to show that there is a gap of at least
V7/(164/2q162) = Q(/7) between the two cases of maximum label cover instances.

Completeness:Suppose there is a labelirid, f2) of the maximum label cover instance that covers
1 — € fraction of the arcs. Then, clearly, there is a Iabel([fg, fg) of the minimum-cost label cover that
covers the same number of arcs. For eachare) not covered, we add tf (u) and f»(w) labelsa € L,
andb € L, such thatr, ,(a) = b. By the construction, the Iabelin@l,fg) covers all the arcs. Since
e|E| < min{|U[, W[}, the cost of the labelingfi, f2) is at most2(c1|U| + c2|W|) = 2C.

Soundness:Suppose there is no labeling of the maximum label coverrestéhat covers at leastE|
arcs. We will show that if there is a labelir(g, f2) of the minimum cost label cover instance with cost
aC < (7/(8v2q1q2)) - C, then there is a labelingfi, f2) of the maximum label cover instance that
covers at least|E| arcs.

First, we constructfi, f2) from (fl, fg) by uniformly at random picking a labele fl(u) and assigning
fi(u) = a, for eachu € U, and uniformly at random picking a labkle fg(’w) and assigningfa(w) = b,
for eachw € W. We claim that(f1, f2) covers at least|E| arcs. To see this, consider the number of labels
assigned td fl, fg). LetU’ C U andW’ C W be sets of vertices with at mo8tvg; and8aq, labels,
respectively, and lek’ C E be the set of arcs with both endpointslihu W’. Then we have

alC 1 aC 1
U-U|< ——— = ——Uland|W —W/| < ——— = —|W
| = Sa- qicy 4Q1’ | | < 8ac-gaco  4qo |

Thus, by union bound, the number of arcs/ifis at least

1 1 |E|
E| = — A |U| = — Ao [ W] > |E| — =2
‘ ’ 4q, lcft’ ‘ 4qs rlght’ ’ = ’ ‘ 2
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The second inequality follows from the facts thats |U| = q10ici|U| < ¢1]|E] andAigne|W| = g2l rigne| W] <
q2|E|. The probability thaf f1, f») covers any are € E' is at leastl /(64a?). Thus, the expected number
of arcs of £’ covered by(f1, f2) is

L S - I
2 640%-qig2 — 128q192/(8v/2q142)?

Z(l - Pr|(f1, fo) coverse]) >

ecE'’

YIE].

We can derandomize this process by the method of conditex@dctation. Therefore, there is a labeling
(f1, f2) of the maximum label cover instance that covers at legst arcs, a contradiction. O

A similar lemma can be proven for the case of the label covebblpm with perfect completeness. We
will skip the proof for this case since it is almost identitakhe previous one.

Lemma 11. Suppose there are constarits< v < 1 and¢;, g2 > 0 such that, given an instandé&r =
(UW,E),{n. : e € E}, L1, Ly) of the maximum label cover problem witf\.¢; = ¢191ese aNd Ayigne =
q2Avight, it is hard to distinguish between the following two cases:

e COMPLETENESS There is a labeling covering all the arcs.
e SOUNDNESS There is no labeling covering at leagtfraction of the arcs.
Then itis hard to approximate the minimum-cost label coveblem to within a factor 0b(1/,/7).

B The Right Degree Reduction

In this section, we discuss the right degree reduction ditced by Moshkovitz and Raz in_[22]. The
right degree reduction is an operation that transforms asiance of the maximum label cover problem to
an instance with regular right degréevhile preserving the completes and preserving the sousdie$o
additiveO(1/V/d).

The right degree reduction is described as follows. Takenatance(G = (U, W,E),{r. : e €
E}, Ly, L) of the maximum label cover problem with completenésse and soundness. For each right
vertexw € W, we construct an expander graph, (H,, is an undirected graph) afeg(w) vertices with
regular degreel and a second eigenvalug(v/d). Then we replace each vertex € W by vertices of
H,. To be precise, we makéeg(w) copies ofw, namelyw(1),w(2),...,w(deg(w)), and associate each
vertexw(j) to a vertex ofH,, by a one-to-one mapping. We order neighborsvah G arbitrary, and let
U1, U2, - - ., Udeg(w) D€ the neighbors ab. For each edgéw(i), w(j)} of H,, we add an ar¢u;, w(j)) and
place a constraint,, .,; = Ty, w; 0N the arqu;, w;).

By the construction, there arecopies of arce € E in the output instance, and they have the same
constraint. Thus, for any labeling, f2) that coverg1 — ¢) fraction of arcs of the input instance, there is a
labeling (f1, f4) that coverg1 — ¢) fraction of arcs of the output instance, whefecan be constructed by
assigningfs,(w(j)) = f2(w) for all copiesw(j) of a vertexw € W. It was shown in[[22] using the expander
mixing lemma that the right-degree reduction gives an duitpstance with soundness+ O(1/v/d); see
[22] and [14] for more detail.

This operation requires the projection property of a latloslec instance and thus does not apply to the
more general instance in which the constraintsare relations rather than projections. Also, the additive
lossO(1/+/d) in the soundness is the best possible because the smakisdlpsecond eigenvalue of the
d-regular expander graph s/d — 1 due to the work of Alon and Boppana; see Theorem 5.8 ih [16].
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C Rootedk-Connectivity on Directed Graphs

In this section, we present hardness(fk!/?) and Q(D'/*) for the rootedk-connectivity problem on
directed graphs.

C.1 Hardness in Terms ofk

First, we give a hardness 6f(k'/?) for the rootedk-connectivity problem on directed graphs. Our result
is based on the construction in [7]. Here we will give a camgton but will omit the proof. Le{G =
(UW,E),{me : e € E}, L1, Ls,cq,c2) be an instance of the minimum-cost label cover problem. We
construct a directed grapiﬁ = (V’, E) of the rootedk-connectivity problem as follows.

Base Construction: For each vertex;; € U, we add toG a vertexu; and a set of verticed;, which is a
copy of the set of label&; we join u; to each vertex. € A; by an arc(u;,a). For each vertexv; € W,
we add toGi a vertexw; and a set of verticeB;, which is a copy of the set of labels,; we joinw; to each
vertexb € B; by an arc(u;, a). We may think that:; (resp.,w;) is the same vertex in bot¥ andG. Also,
since A; (resp.,B;) is a copy ofL, (resp.,L2), we may say that a vertexc A; (resp.,b € B;) is a label
in Ly (resp.,L2). We set cost; on an arqu;, a), for eacha € A;, and we set cost, on an argb, w; ), for
eachb € B;. For each ar¢u;, w;) of G, we add toG a zero-cost ar¢a, b) joining a vertexa € A; to a
vertexb € Bj if 7y, v, (a) = b. This finishes the base construction.

The final construction: Now, we add a root vertex to G and joinr to each vertex:; by a zero-cost arc
(r,u;). For each arcu;, w;), we add a terminal; ; and joinw; to ¢; ; by a zero-cost ar¢w,, t; ;). Thus,
we have the root vertexand a set of terminal$; ; = {¢; ; : (u;, w;) € E'}. Next, we add a zero-cost arcs
(uir, ti;), called apadding argif ' # ¢ and(uy, w;) € E. Thus, each terminal has indegree at mbgt).
For each terminat; ; with indegreed; ; < A(G), we addA(G) — d; ; copies of a zero-cost afe, t; ;).
Finally, we set the connectivity requiremént= A(G). (Note thatA(G) < |T'].)

The above construction gives the following theorem whoseectness is proved in[[7].

Theorem 12 ([7]). There is a polynomial-time approximation preserving raguc such that, given an
instance of the minimum-cost label cover problem congjsiira graphG, outputs an instance of the rooted
k-connectivity problem on directed graphs with= A(G).

Applying Theoreni B, it then immediately follows that the draess of the rootekl-connectivity problem
on directed graphs Q(kl/Q‘e), for anye > 0 (sincek = A(QG)). Thus, we have the next theorem.

Theorem 13. For k£ < |T'|, unlessNP = ZPP, it is hard to approximate the rootedconnectivity problem
on directed graphs to within a factor of k'/?).

C.2 Hardness in Terms ofD

Now, we show the hardness of the rootedonnectivity problem on directed graphs in terms of theeoth
parameter. Specifically, we show a hardnes@@'/4) for the rootedk-connectivity problem on directed
graphs, wher® = |T'| (since the demand pairs are between the root verend terminals irf”). We start
from the previous construction and then merge some termifdie key idea is to merge terminals that do
not share paths from the root vertex. To be precise, we sayvaerminalst; ; andt; ;; aredependent

if there are an, ¢, ;-path P and anr, t; j-path P’ that have a common vertex# r; otherwise, we say
thatt; ; andt; ; areindependent Observe that two terminalg ; andt; ;» are dependent if and only if
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arcs(u;, w;) and (uy,w; ) of G (of the label cover instance) are incident or there is an@irgrjg them.
Specifically,(u;, w;) and(uy , w; ) are independent if and only if they form an induced matchim@'i This
proves in the lemma below. For notational convenience, € u® mean an ar€u;, w;) of G.

Lemma 14. Any two terminalg; ; and ¢, ;» are independent if and only ifi and ;" forms an induced
matching inG.

Proof. First, we prove the “only if” part. Supposg; andt; ; are independent, bytyj,: '} is not an
induced matching irz. Then we have two cases: (1)= 7' or j = j' (2) G has an ardj’ or ’j. For the
former case, every, t; ;-path andr, ¢, j-path inG has to use either; or w; and thus share a vertex. This
implies thatt; ; andt; ;» are dependent, a contradiction. For the latter case, asslogethatG has an arc
ij’. Then we must have addedd@a padding ara;, t; j by the construction. Thus, there is &, ;-path
that shares a vertex with anr, ¢; ;-path, a contradiction. This proves the “only if” part.

Next, we prove the “if” part. Supposg and:’j’ form an induced matching it". Theni # ¢ and
j # 7. Also, G has neither an arig’ nor an arc’;. It then follows immediately by the construction th@t
has nor, ¢; j-path andr, ¢ j-path that share a common vertex. This completes the proof. O

Lemmal14 allows us to apply a strong edge coloring algorithrihé arcs of7, which are constraints
of the label cover instance. It is known that every grapban be strongly colored using at mask(G)?
colors. Since each color class forms an induced matchigg imo two of them are dependent. Thus, we can
merge all the terminals corresponding to arcs of the sanw class into one terminal without any conflict.
To be precise, for each coléf, defineTc = {t; ; : ij has colorC}. Then we unifylc as a single terminal
and set a connectivity requiremehitZ,.| for this terminal. The new graph is denoted 698“). Observe
that anyk|T| openly disjointr, T--paths inGnew corresponds t& openly disjointr, ¢; ;-paths for every
t;; € Tc in the original grapr@. Thus, there is a one-to-one mapping between the solutidineimew
instance and that of the old instance, and both have the sardedss. To make a connectivity uniform, set
k™" = k- maxc |Te| and addk™*" — k|T'| copies of a zero-cost afe, T¢) for each terminalc. By the
construction, we have at moaA (G)? terminals in the new instance. Therefore, applying Thed@eme
have a hardness 6f(D'/4~¢) = Q(|T|'/*~¢) for the rootedk-connectivity problem on directed graphs, for
any constant > 0.

Theorem 15. For k£ > |T'|, unlessNP = ZPP, it is hard to approximate the rootedconnectivity problem
on directed graphs to within a factor of D'/4~¢) = o(|T|'/4~¢) for any constant > 0.

D The Rootedk-Connectivity Problem on Undirected Graphs.

In this section, we present hardness constructions forathtedk-connectivity on undirected graphs.

D.1 Hardness in Terms ofk

Similar to the case of the directed graphs, the followingthe has been proved in [7].

Theorem 16 ([7]). There is a polynomial-time approximation preserving rdaguc such that, given an
instance of the minimum-cost label cover problem congjstiha graphG with a set of labelsl,; and
Lo, outputs an instance of the rootédconnectivity problem on directed graphs with= O(A(G)3 -
max{|L1], | L[} + A(G)°).
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We will present the hardness construction described|iny7inll skip the proof for completeness and
soundness. (For more detail, see [7].) Take an instéfice (U, W, E),{rw. : e € E}, L1, Ly, ¢1, c2) of the
minimum-cost label cove problem. We construct a gréph (17, E) of the rootedk-connectivity problem
on undirected graphs as follows.

Base Construction: The base construction is the same as that in SeCtioh C.1 tett@pwe ignore the
direction of edges.

Add Root Vertex and Terminals: We add toG a root vertex-. For each arcéu;, w;) € G, we add toG a

cliqgue X; ; and a terminat; ;; the size ofX; ; will be specified later. We join each cliqu€; ; to a vertex
u; € U by adding a zero-cost edde;, u; } for each pair of vertices € X; ; andu;, € U. We join each
terminalt; ; to a vertexw; € W by a zero-cost edgfw;, ¢; ; }. Then we join the root vertexto each clique
X; j by a zero-cost edggr, } for eachz € X ;.

Final Construction: Now, we add some zero-cost edges, caledlding edgeswhich intuitively force

r,t; j;-paths to be in @anonicalform. We say that am, ¢; ;-paths is acanonical pathif it is of the form

r, X; 5, ui, Ai, Bj, wj, t; ;. The padding for each termingl; is as follows. For notational convenience, we
useij to means an arfu;, w; } of the label cover instanag, and we uselist(ij, 7’j’) to mean the distance
betweeni;j and:’j’ in theline graph H of the underlying undirected d¥, i.e., the vertex set off is the
edge set of7, and there is an edde, ¢’) in H if edgese ande’ share an endpoint i¥. We define the set
Z; ; andY; ; as below.

Z=( U alul U 5

i'#ii'jeE j'#juij'€E
Z2 = {ty 1 < dist(ij,i'5") <2}
Zij=2;; U7

Yij= U Xt jr
1<dist(ij,i'j/)<2

We also create a set of vertio®s ;, which is the set of auxiliary vertices created to make theegtivity
requirement uniform. The vertices € ; are not in the base construction, and its size will be speldditer.
We join Y;’j to t;; by edges{y, ti,j} forall y € Y;,j. We join Zi,j to Xz',j andtm by EdQES{CL', Z},{Z, tz’,j}
for all pairs of verticest € X;; andz € Z; ;. We joinr,Q;; andt; ; by edges{r,q}, {q,t;;} for all
q € Qi ;. All of these edges have zero costs.

Lastly, we have to set the connectivity requirement andigpte size ofX; ;. We remark that we want
all ther, t; ;-paths except a canonical path to use all the vertice inJ Y; ; U @Q; ;. Thus, we need to set
the size ofX; ; to be|Z; ;| + 1. By the construction, we have to €k ;| = k — [Z; ;| + |Yi ;| — 1.

Zij| = |Z}5| + 12| < 2A(G) - max{|Ly|, |L2|} + 2A(G)>.

Thus, we needX; ;| = 2A(G) - max{|L1|,|L2|} + 2A(G)? + 1, implying that|Y; ;| = O(A(G)3 -
max{|L1|, |La|} +A(G)*). We setk = max; ;(|Z; j|+|Yi;|)+ 1 and set the size @, ; to be|Q; j| = k —

|Zi ;| +1Yi ;] — 1. Therefore, we have an instance of the rodtazbnnectivity problem on undirected graphs
with & = O(A(G)3 -max{|L1]|, |L2|} + A(G)?) (given an instance in Theordm 3, we have: O(¢°)), and

the reduction preserves both the completeness and sosndia® we skip the completeness and soundness
proofs. For more detail, please see [7].
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D.2 Hardness in terms ofD

To obtain the hardness in termsDffor the rootedk-connectivity problem on undirected graphs, we may
apply the same technique as that used in the directed caseevidg we can simplify the proof by applying
the following theorem due to Lando and Nutov[21].

Theorem 17([21]]). There is a polynomial-time approximation preserving redwcthat, given an instance
of the “directed rooted k-connectivity problem consisting of a directed gra@lon n vertices, a root vertex
r, a set of terminals” and a connectivity requiremeit, outputs an instance of theuhdirected rooted
k-connectivity problem consisting of an undirected graglonn’ = 2n vertices, a root vertex, and a set
of terminalsT”, where|T'| = |T'| andk’ = k + n.

Since there is af(|T'|*/*~<)-hardness for the rootek-connectivity problem on directed graphs, the
same hardness applies for the undirected case as well.

Theorem 18. For k > |T'|, it is NP-hard to approximate the undirected rootegtonnectivity problem to
within a factor ofo(|T|'/4~¢) = o(D'/*~) for any constant > 0.

E Vertex-Connectivity Survivable Network Design

In this section, we present hardness constructions of ttiexreonnectivity survivable network design prob-
lem on undirected graphs.

E.1 Hardness in Terms ofk

The hardness of the vertex-connectivity survivable netvaasign problem can be derived from its special
case, the rooted-connectivity problem. However, by applying the reductairectly from the minimum-
cost label cover problem, we have a better bound.

The following theorem is proved by Chakrabarty, Chuzhoy henna in|[[3].

Theorem 19 ([3]). There is a polynomial-time approximation preserving raguc such that, given an
instance of the minimum-cost label cover problem congjstiha graphG with a set of labels,; and
Lo, outputs an instance of the rootddconnectivity problem on directed graphs with= O(A(G) -
max{|L1],|Lo[} + A(G)?).

We will present the hardness construction described|inyBjnll skip the proof for completeness and
soundness. (For more detall, see [3].) Take an instéfice (U, W, E),{n. : e € E}, L1, Ly, c1, c2) Of the
minimum-cost label cove problem. We construct a grapk: (V, E) of the vertex-connectivity survivable
network design problem on undirected graphs as follows.

Base Construction: The base construction is the same as that in SeCtion C.1 tette@pwe ignore the
direction of edges.

Add Source-Sink Pairs: We will add to the undirected granﬁ source-sinkpairs, i.e., we add a pair of
vertices whose connectivity requirement is positive. Fmtearcqu;,w;) € G, we add toG a sources; ;
and a sinkt; ;. We join each sourcs; ; to a vertexu; € U by adding a zero-cost edde; ;, u;}, and we
join each terminat; ; to a vertexw; € W by a zero-cost edggw;, t; ;}.

Final Construction: Now, we add some zero-cost edges, caledlding edgeswhich intuitively force
si j, ti j-paths to be in @anonicalform. We say that am, t; ;-paths is acanonical pathif it is of the form
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si.j. Wi, Ai, By, wj, t; 5. The padding for a source-sink paijr;, ¢; ; is as follows. For notational convenience,
we useij to means an ar¢u;,w;} of the label cover instanc&, and we uselist(ij,i'j’) to mean the
distance betweeiy andi’;’ in the line graph# of the underlying undirected a¥, i.e., the vertex set off

is the edge set af?, and there is an edde, ¢’) in H if edgese ande’ share an endpoint i&. We define the
setZ; ; andY; ; as below.

Zi7j = U Ai’ U U Bj’

V%! jEE J'#jij'er

Yij = U fsvgntog)

1<dist(ij,i'j/)<2

We joins; ; andt; ;toY; ;U Z; ; by adding zero-cost edggs; j, «} and{x,t; ;} forallz € Y; ; U Z; ;.
For the connectivity requirement, we se|(s; j,t; ;) = |Y;; U Z; ;| 4 1 for all source-sink pairs; ;, t; ;.
We may make the requirements uniform by setfing max; ; |Y; ; U Z; ;| + 1 and adding a set of auxiliary
verticesQ; ; with |Q; ;| = k — |Y; ; U Z; ;| — 1 for each source-sink pait, t ;.

By the construction, we have

| Z;i j| + Vi ] < 2A(G) - max{|L1|, |L2|} + 4A(G)?

Therefore, we have an instance of the rootedonnectivity problem on undirected graphs with=
O(A(G) - max{|L1|,|La|} + A(G)?) (given an instance in Theorelm 3, we have= O(q?)), and the
reduction preserves both the completeness and soundness.wd skip the completeness and soundness
proofs. For more detail, please see [3].

E.2 Hardness in Terms ofD

The hardness in terms @ for the vertex-connectivity survivable network designlgem on undirected
graphs follows immediately from that of its special case, fbotedk-connectivity problem on undirected
graphs. Thus, we have

Theorem 20. For £ > D, it is NP-hard to approximate the vertex-connectivity stadle network design
problem on undirected graphs to within a factorazéiDl/‘*‘ﬁ) for any constant > 0.

F Vertex-Connectivity k-Route Cut

In this section, we discuss the vertex-connectivityoute cut problem.

F.1 Hardness in Terms ofk
The following theorem is proved in [11] by Chuzhoy et al.

Theorem 21 ([11]). There is a polynomial-time approximation preserving rduc such that, given an
instance of the minimum-cost label cover problem congjstiha graphG with a set of labels’; and
Lo, outputs an instance of the vertex-connectivityoute cut problem on undirected graphs with=
O(A(G) - max{|L1|, |L2[}).
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We will give the hardness construction of this problem basedhe construction in [JE] Take an
instance(G = (U,W, E),{m. : e € E}, L1, Ls,c1,cz) of the minimum-cost label cove problem. We
construct a grapliy = (V, E) of the vertex-connectivity;-route cut problem as follows.

Base Construction:First, for each left vertex; € U, we create a set of edgéXu,) = {{a,d’'} : a € L1 }.
Similarly, for each right vertexo; € W, we create a set of edgéXw;) = {{b,0'} : b € Lo}. All the edges
in E(u;)'s have costsy, and all the edges if’(w;)’s have costs;.

Next, for each right vertexo; € W, we arrange edges ifi(w;) in an arbitrary order, saf(w;) =
{{b1, 0}, {ba2, 05}, . .., {b|L2‘,b1L2|}}. We then form a patlP; by joining edges in&(w;) by edges with
costs infinity. To be precise, we have an edbe by 1 } with cost infinity inG, for each? = 1,2,...,|La|—

1. Because of the projection property, which we will discus®l, we only create such paths for right
vertices.

For each ar¢u;, w;) € E, we construct a patty; ; as follows. For any label, € Lo, let 7=1(by) =
(agysaqys - - - ,aqa(bl)) be a sequence of labels In that projects td, arranged in an arbitrary order. Since
each label,, maps to an edgéay,, a), } in E(w;), we may abuser—*(b) to mean edges if'(u;). We
define an ordet) (i, j) by arranging the edges @f(u;) to be of the form

7 (br, )m (b2), - (b))

iS, g (0] IIe (0] (jeb b h
Y ( 1 /17x17a27a,27x27-..7CL|L1‘7 ‘,Ll‘)

where indices ofi,’s are obtained from) (i, j). (This is crucial as edges ifi(u;) may have different orders
in two different paths); ; andQ; j-.) We denote byX; ; a set of vertices:; s in Q; ; separating edges of
E(u;). Next, for each edgéby, b;} and{bs1,b;,,} in E(w;), we joinb, andb,, to a vertexr,,, where
z,, is a vertex inX; ; connecting the path om—!(b,) to the path onr—!(b.,1). These edges have costs
infinity. This completes the base construction.

Add Source-Sink Pairs: For each vertex; € U, we add a source verte, and for each vertew; ¢ W,
we add a sink vertex;. For each aru;, w;) of G, we add a demand (source-sink) pgif, ¢;) to the set
of demand pair®; then we joins; to the first vertices of the patl@; ; and P;, and we joint; to the last
vertices of the pathg; ; and P;. All of these edges have costs infinity.

Final Construction: Now, we addbadding edgeswvhich will guarantee that to make the vertex-connectivity
of a source-sink pais;, ¢t y to be belowk, ones have to remove edges corresponding to the feasilainigb
of the label cover instance. For the ease of presentatiomwillvese ij to mean an ar¢u;, w;) of G. Denote

by V(F) a set of vertices spanned by a set of edges (resp., a gFaphg define a set of vertices; ; to be
the set of neighbors df (Q; ;) U V(P;) in the current graph; that is,

Zij= U W@y)u{sshu | Ky uV(Pr)u{td)

i'FER(G):i'#i ij' € B(Q):j'#5
By the construction, we have

@ =max|Z;| < O(AG)(ILa] + [ La]) < O(A(G) - max{|Ly], [ La[})-

% Due to a very subtle error in the proof [n]11], our constratis slightly different from the original construction.
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The sizeZ; j andZ; j for ij # i'j’ may be different. Thus, we add @a set of auxiliary vertices; ; with
|Sij| = z —|Z;;]. Then we add edge§s;, v}, {t;, v} with cost infinity joining s; andt; to each vertex
v € Z; ;U S; ;. Note that all the neighbors df;,t;} U V(Q; ;) UV (P;) areinZ; ; U S; ;. Finally, we set
k = z + 1, finishing the construction.

Completeness and Soundnes8oth the completeness and soundness proofs follows fromekieclaim.

Claim 22. Consider any source-sink pais;,t;) € D. There are at most + 1 openly disjoints;, ¢;-paths
in G, and there are at mogtopenly disjoints;, ¢;-paths inG — (Z; ;U S; ;). Moreover, any2 openly disjoint
si, tj-paths inG — (Z; ; U S; ;) must have); ; and P; as subpaths.

Proof. First, observe that vertices i} ;US; ;, V(Q; ;) andV (P;) are pairwise disjoint by the construction.
It can be seen tha; ; U S; ; givesk — 1 paths between; andt;, and the pathQ; ; and P; give another
two paths. Thus, we proved both the first and the second statsmFor the third statement, it follows by
the construction that all the neighbors{sf, ¢;} UV (Q; ;) UV (P;) areinZ; ; U .S; ;, which means that the
only way we can have openly disjoints;, t;-paths inG — (Z;; U S;;) is to follow the two paths); ; and
P;. Hence, the claim follows. O

It can be seen that there is a one-to-one mapping betwees adtefinite cost and the labels of the
minimum-cost label cover instance. Thus, its suffices tavstiat, for any edge®&’ C E with finite cost,
G — E' has nok openly disjoint disjoints;, t; paths for all(s;, ¢;) € D if and only if the labeling(f1, f2)
corresponding td’ is feasible for the minimum-cost label cover instance. T®thés, consider the graph
CA}M = @—(ZZ-JUSM) for any source-sink paifs;, t;) € D. By Claim(22, there are at mogbpenly disjoint
si, tj-paths, and these paths have to gkg¢ and P;. Now, consider the pathQ; ; and P;. Observe that if
we remove an edggh, b’} and one edge inu‘jwj, then the resulting graph has gpt;-path. Conversely, if
we remove{b, b’} but none of the edges im;jwj, then we can have a path that goes zig-zag betwggn
and P; via an edg€{z,, b}, where{b, i’} is an edge next t¢b, b’ }. Therefore, we conclude that there is no
k openly disjoints;, t;-paths in@m if and only if we remove edges corresponding to the labelmgedng
an edge{u;, w;} of G. This completes the proof of Theoréml 21.

O

F.2 Hardness in Terms ofD

For the hardness in terms of the number of demand pairs, iveaeen that for any pair of ar¢s;, w;) and
(uir,wj ) that form an induced matching (i.€ has no arc joiningu;, w;) and(uy, w;)), all the vertices
and edges of subgraphs@finduced byZ; ;U.S; ;UV (Q; ;) UV (P;) andZy ;s USi ;s UV (Qy ;1) UV (Pjr)
are disjoint by the construction. Thus, two afas, w;) and(u;, w;-) areindependenif and only if (u;, w;)
and(u;, w;) form an induced matching. By the same arguments as in theo€#ise rootedk-connectivity
problem on directed graphs, we have the following theorem.

Theorem 23. For k£ > D, unlessNP = ZPP, it is hard to approximate the vertex connectiviyroute cut
problem to within a factor ob(D'/4~¢) for any constant > 0.
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