
ar
X

iv
:1

30
7.

49
27

v1
 [

cs
.D

S]
 1

8
Ju

l 2
01

3

Linear-Time FPT Algorithms via Network Flow

Yoichi Iwata∗ Keigo Oka† Yuichi Yoshida‡

Abstract

In the area of parameterized complexity, to cope with NP-Hard problems, we introduce a
parameter k besides the input size n, and we aim to design algorithms (called FPT algorithms)
that run in O(f(k)nd) time for some function f(k) and constant d. Though FPT algorithms have
been successfully designed for many problems, typically they are not sufficiently fast because of
huge f(k) and d.

In this paper, we give FPT algorithms with small f(k) and d for many important problems
including Odd Cycle Transversal and Almost 2-SAT. More specifically, we can choose f(k) as
a single exponential (4k) and d as one, that is, linear in the input size. To the best of our
knowledge, our algorithms achieve linear time complexity for the first time for these problems.

To obtain our algorithms for these problems, we consider a large class of integer programs,
called BIP2. Then we show that, in linear time, we can reduce BIP2 to Vertex Cover Above LP

preserving the parameter k, and we can compute an optimal LP solution for Vertex Cover Above
LP using network flow.

Then, we perform an exaustive search by fixing half-integral values in the optimal LP solution
for Vertex Cover Above LP. A bottleneck here is that we need to recompute an LP optimal
solution after branching. To address this issue, we exploit network flow to update the optimal
LP solution in linear time.

1 Introduction

Assuming P 6= NP, there are no polynomial-time algorithms for NP-Hard problems in the worst
case. However, since many important problems are actually NP-Hard, it is natural to study in
which case these problems become polynomial-time tractable. Parameterized complexity is one of
such direction, in which we measure the time complexity of algorithms with respect to the input
size and another parameter. A problem is called fixed parameter tractable (FPT) with respect
to a parameter k if it can be solved in time f(k)nO(1), where n is the input size and f is some
computable function. See [5, 7, 17] for books for parameterized complexity.

Though the initial motivation of parameterized complexity is making NP-Hard problems more
tractable, unfortunately many FPT algorithms have a disadvantage in their time complexity. For
example, the function f(k) might be an astronomical tower of exponentials such as 22

k

or the degree

∗Department of Computer Science, Graduate School of Information Science and Technology, The University of
Tokyo. Research Fellow of Japan Society for the Promotion of Science. y.iwata@is.s.u-tokyo.ac.jp

†Department of Computer Science, Graduate School of Information Science and Technology, The University of
Tokyo. JST, ERATO, Kawarabayashi Large Graph Project. ogiekako@is.s.u-tokyo.ac.jp

‡National Institute of Informatics, and Preferred Infrastructure, Inc. yyoshida@nii.ac.jp Supported by JSPS
Grant-in-Aid for Research Activity Start-up (24800082), MEXT Grant-in-Aid for Scientific Research on Innovative
Areas (24106001), and JST, ERATO, Kawarabayashi Large Graph Project.

http://arxiv.org/abs/1307.4927v1

d of the polynomial in n might be quite huge such as n10. Thus, it is desirable to improve these
FPT algorithms so that f(k) and d become small simultaneously, and our main contribution in this
paper is giving FPT algorithms for many important problems whose running time is O(ckn) for
some constant c > 1. That is, the polynomial part is only linear whereas the function f(k) is only
a single exponential.

To describe the problems we are concerned with, we need to review previous results. Indeed,
there have been many studies on FPT algorithms with small f(k) and d. However, we note that
many works pursuing small d often neglect how large f(k) is, and many works pursuing small f(k)
often neglect how large d is.

Odd Cycle Transversal is a problem of finding the minimum vertex set whose removal makes the
input graph to be bipartite. We use the size of the optimal solution as a parameter. Reed et al. [22]
proved that the problem is FPT by introducing a technique called iterative compression. The
running time of their algorithm is O(3kknm). Based on the graph minor theory, Fiorini et al. [6]
improved the polynomial part to be linear for planar graphs. For general graphs, Kawarabayashi
and Reed [11] developed an O(f(k)(n+m)α(n+m))-time algorithm, where α(·) denotes the inverse
of the Ackermann function.

In Max 2-SAT, given a CNF with each clause containing two literals, we want to find an assign-
ment so as to maximize the number of satisfied clauses. Almost 2-SAT is a parameterized version
of Max 2-SAT, in which a parameter is the minimum number of unsatisfied clauses. Razgon and
O’Sullivan [21] proved that Almost 2-SAT is FPT by designing an O(15kkm3)-time algorithm, where
m is the number of clauses. Their algorithm is also based on iterative compression. Raman et al. [19]
improved the function f(k) to 9k by reducing the problem to Vertex Cover parameterized by the
difference between the size of the optimal solution and the size of the maximum matching. Here,
Vertex Cover is the problem of finding a minimum set of vertices S in a graph so that every edge
is incident to S. Cygan et al. [4] further improved f(k) to 4k by reducing the problem to Node

Multiway Cut, which is a problem of finding a small subset of vertices whose removal makes a given
set of terminals separated, parameterized by the difference between the size of the optimal solution
and the LP lower bound. And finally, Lokshtanov et al. [14] obtained an O∗(2.3146k) algorithm
by reducing the problem to Vertex Cover parameterized by the difference between the size of the
optimal solution and the LP lower bound (we call the problem Vertex Cover Above LP). They also
showed that many other problems such as Odd Cycle Transversal can be reduced to Vertex Cover

Above LP and obtained faster algorithms.
Our first result is generalizing [14] so that we can handle any problem in Binarized IP2. Binarized

IP2 (BIP2 in short) is a class of integer programs introduced by Hochbaum [10]. In an instance
of BIP2, each constraint has the form of ai,jxi + bi,jxj + zi,j ≥ ci,j, where ai,j, bi,j, and ci,j are
integer constants with ai,j, bi,j ∈ {−1, 0, 1}, xi and xj are variables that can freely appear in other
constraints, and zi,j is a variable that can appear only in this constraint. The objective function is
a non-negative linear function of variables. The variables can take any non-negative integer values.
We say that a variable is binary if its domain is {0, 1}, and if all variables in BIP2 are binary, we
call it as Binary BIP2. See Section 2 for the formal definition of BIP2. Many important problems
including Vertex Cover, Almost 2-SAT, and Odd Cycle Transversal can be easily written in the form
of (Binary) BIP2.

For an instance I of BIP2, we define its integrality gap as gap(I) = opt(I) − lp(I), where
opt(I) is the optimal IP value and lp(I) is the optimal LP value of its LP relaxation. Then,
BIP2 Above LP is the problem of finding an optimal IP solution for an instance I parameterized

1

by gap(I). Note that Vertex Cover Above LP is a special case of BIP2 Above LP. We give a generic
procedure that reduces BIP2 Above LP to Vertex Cover Above LP in linear time. Note that instances
that contain non-binary variables can also be reduced to Vertex Cover Above LP. To this end, we
use the property that any instance of BIP2 admits half-integral optimal primal/dual solutions [9].
More specifically, we show the following.

Theorem 1. Let I be an instance of BIP2 with n variables and m constraints. Suppose we have a
pair of half-integral optimal primal/dual solutions for I. Then we can construct an instance G of
Vertex Cover of O(n+m) vertices and edges with gap(G) = gap(I) in O(n+m) time, Furthermore,
we can compute half-integral optimal primal/dual solutions for G in O(n+m) time.

Our second and main result is showing an algorithm that, given half-integral optimal pri-
mal/dual solutions, solves Vertex Cover Above LP in linear time.

Theorem 2. Suppose that we are given an instance G = (V,E) of Vertex Cover and its half-integral
optimal primal/dual solutions. Then, we can solve Vertex Cover Above LP in O(4k(|V |+ |E|)) time.

A key ingredient in our algorithm is network flow. During exhaustive search, the instance
gradually changes and we need to update the optimal LP solution. To avoid computing it from
scratch, we express the LP solution as a flow. Then for each branching, in linear time, we update
the flow and extract the optimal LP solution for the resulting instance from the flow. We give a
detailed explanation later.

From Theorem 1, we obtain the following corollary.

Corollary 1. Given an instance I of BIP2 with n variables and m constraints and its half-integral
optimal primal/dual solutions, we can solve BIP2 Above LP in O(4k(n+m)) time.

In order to obtain linear-time FPT algorithms from Corollary 1, the only remaining part is to
compute half-integral optimal primal/dual solutions in linear time. Hochbaum [9] showed that for
Binary BIP2, we can compute them in O(ℓ(n +m)) time, where ℓ is the optimal LP value. Thus,
by applying Corollary 1 with these half-integral solutions, we obtain the following. Note that we
can assume ℓ ≤ k.

Theorem 3. We can solve BIP2 in O(4k(n+m)) time, where n is the number of variables and m

is the number constraints.

As we have mentioned, Theorem 3 immediately implies linear-time FPT algorithms for Odd

Cycle Transversal and Almost 2-SAT. To the best of our knowledge, they are first linear-time FPT
algorithms for these problems. To show the generality of Theorem 3, we give a list of other problems
that can be written in the form of Binary BIP2 in Appendix A.

We mention here that, independently of our work, Ramanujan and Saurabh [20] also have
obtained an O(4kk4n)-time algorithm for Almost 2-SAT via a different approach.

Proof Sketch. We now give a proof sketch of Theorem 2. Let G = (V,E) be a Vertex Cover

instance and y∗ be its half-integral optimal dual solution. Then, we construct a network G from
G and a flow f∗ from y∗. These network and flow will play a central role in our algorithm. We
also construct an optimal primal solution x∗ from the residual graph Gf∗ of G with respect to f∗.
Using x∗, we can fix variables v with x∗v = 0 or x∗v = 1. Further, we want to find a set of variables

2

S that can be assigned integers without changing lp(G). To this end, we will show that it suffices
to find a strongly connected component S in Gf∗ with a certain property. We now assign integers
to the corresponding set S and this operation causes removal of S from G.

Again, we want to find other variables that can be assigned integers. Naively speaking, we can
do so by recomputing a half-integral optimal dual solution, a feasible flow, the residual graph, and
strongly connected components. However, from the property of the network G, we can reuse almost
all information in the previous step. It turns out that we can assign integers by keep finding and
removing strongly connected components with a certain property from Gf∗ . We can also keep the
optimal flow f∗ at hand, and this process takes only linear time in total.

After this preprocess, the unique primal solution of G = (V,E) is the one consisting of 1
2

only. Then, we can follow a standard approach to design an FPT algorithm. That is, we pick an
arbitrary edge {u, v} ∈ E that is not covered yet by a variable assigned 1, and we invoke recursion
after assigning xu = 1 or xv = 1. To continue the process, instead of updating y∗, we directly
update f∗ by augmenting paths.

We can show that k decreases by ∆
2 if the number of augmenting paths is ∆. Since other parts

takes only linear time, the total running time becomes O(22k(|V |+ |E|)) = O(4k(|V |+ |E|)).

Related Work: Before Lokshtanov et al. [14] gave parameterized reductions from Odd Cycle

Transversal and Almost 2-SAT to Vertex Cover Above LP, Cygan et al. [4] had given parameterized
reductions to Node Multiway Cut Above LP. The reductions are one-way and it seems very difficult
to express Node Multiway Cut as BIP2. This is because Vertex Cover Above LP and thus BIP2 are
known to have polynomial kernels [13] whereas obtaining polynomial kernel for Node Multiway Cut

remains a (famous) open problem. To the best of our knowledge, there is no linear-time FPT
algorithm for Node Multiway Cut in the literature, and the fastest one (in terms of the input size)
is O(4kℓn3)-time algorithm by Chen et al. [2], where ℓ is the number of terminals. We note that,
Dániel Marx mentioned that a linear-time FPT algorithm for Node Multiway Cut is a folklore in his
lecture talk at GRAPH CUTS workshop in 2013. However, we show an FPT algorithm for Node

Multiway Cut that runs in O(4k(|V |+ |E|))-time by exploiting the network flow approach to make
the result more accessible and show the general applicability of our approach (Appendix C). Note
that by the reduction from Odd Cycle Transversal or Almost 2-SAT to Node Multiway Cut Above

LP, though the difference between the size of the optimal solution and the LP lower bound does
not change, the optimal solution size itself increases. Thus, a linear-time FPT algorithm for Node
Multiway Cut does not imply linear-time FPT algorithms for Odd Cycle Transversal and Almost

2-SAT.
Compare to works pursuing small f(k), there are a fewer number of works that pursue small

degree d of the polynomial. However, several important results are known. Bodlaender [1] developed
a linear time FPT algorithm for computing tree-decompositions of width k, and Courcelle [3] showed
that any graph property that can be expressed in monadic second-order logic can be tested in linear
time for graphs of fixed tree-width. Kawarabayashi and Reed [12] showed that the crossing number
k of a graph can be computed in linear time for a fixed k, where crossing number is the minimum
number of crossings of edges when we draw the graph on the plane. Fomin et al. [8] developed a
single exponential and linear time FPT algorithm for Planar-F Deletion. Marx et al. [15] showed
that we can reduce the treewidth of a graph while preserving all the minimal (s, t)-separators of size
up to k in linear time for a fixed k, and obtained faster algorithms for several problems including
Bipartite Contraction. However, they concluded that their approach is very difficult to be generalized

3

to other problems such as Almost 2-SAT.

Organization: We give definitions used in this paper and introduce BIP2 in Section 2. In Sec-
tion 3, we give a linear-time FPT algorithm for Vertex Cover Above LP and prove Theorem 2. In
Appendix A, we give a list of problems that can be expressed as Binary BIP2. We give a proof of
Theorem 1 in Appendix B. In Appendix C, we show a linear-time FPT algorithm for Node Multiway

Cut.

2 Preliminaries

In this section, we give definitions used in this paper and introduce binarized integer programming
(BIP2). We denote a set of non-negative integers by N, and a set of non-negative half-integers by
N1/2, where a half-integer is a multiple of 1

2 .
Let G = (V,E) be an undirected graph. The neighborhood N(v) of a vertex v is {u ∈ V |

{u, v} ∈ E}, and the neighborhood N(S) of a vertex set S ⊆ V is
⋃

v∈S N(v) \ S. We denote a set
of edges incident to a vertex v by δ(v). For a subset S ⊆ V , let G[S] denote the subgraph induced
by S.

For a directed graph G = (V,E) and its vertex v ∈ V , we denote the set of incoming edges of v
by δ−(v) and the set of outgoing edges of v by δ+(v). Similarly, for a vertex set S, we define δ−(S)
as the set of incoming edges of S and δ+(S) as the set of outgoing edges of S. We say that a vertex
set S ⊆ V is a strongly connected component if, for any two vertices u, v ∈ S, there is a directed
path from u to v. We say that S is a tail strongly connected component if it is strongly connected
and δ+(S) = ∅. A directed graph is called strongly connected if the whole vertex set V is strongly
connected. It is known that we can compute strongly connected components in O(|V |+ |E|) time.

A weighted graph is a pair of a graph G = (V,E) and a function w : V → N. For a vertex set
S ⊆ V , we denote the sum

∑

v∈S w(v) by w(S). Similarly, an edge-weighted graph is a pair of a
graph G = (V,E) and a function w : E → N.

A network is a pair of a directed graph G = (V,E) and an edge capacity function c : E → N.
For vertices s, t ∈ V , an s-t flow is a function f : E → N satisfying that, for some F ≥ 0,
∑

e∈δ+(s) f(e) =
∑

e∈δ−(t) f(e) = F ,
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e) for all v ∈ V \ {s, t}, and
0 ≤ f(e) ≤ c(e) for all e ∈ E. We call F the amount of the flow. Given a flow f and a set
of vertices S, the out-flow of S refers to the restriction of f to edges e ∈ δ+(S) with f(e) > 0.
and the in-flow of S refers to the restriction of f to edges e ∈ δ−(S) with f(e) > 0. A residual
graph of a network (G, c) with respect to its flow f is a directed graph Gf = (V,Ef) with Ef =
{(u, v) | ((u, v) ∈ E and f(u, v) < c(u, v)) or ((v, u) ∈ E and 0 < f(v, u))}. It is known that we
can compute an s-t flow of an amount F (if exists) in O(F (|V |+|E|)) time using the Ford-Fulkerson
algorithm.

Now, we define a class of integer programs, called IP2, introduced by Hochbaum [9, 10]. An

4

instance of IP2 is of the following form:

minimize
∑

i∈V

wixi +
∑

(i,j)∈E1

di,jzi,j

subject to ai,jxi + bi,jxj + zi,j ≥ ci,j for (i, j) ∈ E1,

ai,jxi + bi,jxj ≥ ci,j for (i, j) ∈ E2,

xi ∈ N for i ∈ V,

zi,j ∈ N for (i, j) ∈ E1.

Here E1, E2 ⊆ V × V are sets of pairs, xi and zi,j are non-negative integer variables, wi and di,j
are non-negative integers, and ai,j, bi,j, and ci,j are integers. We call the variables xi,j, which can
appear in several constraints, shared variables, and call the variables zi,j , which can appear in only
one constraint, independent variables. In IP2, each constraint imposed on E1 or E2 can contain
only two shared variables and at most one independent variable. When all coefficients of every
constraint, ai,j and bi,j, are from {−1, 0, 1}, the problem is called binarized IP2 (BIP2 in short).
Additionally, when all variables of BIP2 are binary, i.e., they are from {0, 1}, the problem is called
Binary BIP2.

For an IP instance I, we denote by opt(I) the optimal IP value. Its LP relaxation can be
obtained by replacing the constraint of the form x ∈ N by a constraint of the form x ≥ 0 for every
variable x. For an IP instance I, we denote by lp(I) the optimal value of its LP relaxation. For a
(primal or dual) solution x, val(I, x) denotes the LP value obtained by x. We define the integrality
gap of I as gap(I) = opt(I)− lp(I).1

The LP relaxation of BIP2 and its dual LP admit half-integral optimal solutions [9]. Moreover,
for Binary BIP2, we can compute the optimal LP solutions both in the primal problem and the
dual problem in O(F (n+m)) time, where F is the optimal LP value [9]. Many important problems
can be formulated as BIP2. Some examples are given in Appendix A.

3 A Linear-Time FPT Algorithm for Vertex Cover Above LP

In this section, we give an O(4k(|V | + |E|))-time algorithm for Vertex Cover Above LP and prove
Theorem 2. Given a graph G = (V,E), the (primal) LP relaxation of Vertex Cover can be written
as follows:

(Primal-VC)

minimize
∑

v∈V

w(v)xv

subject to xv + xu ≥ 1 for {u, v} ∈ E,

xu ≥ 0 for u ∈ V.

The all-half vector refers to a vector x ∈ RV such that xv = 1
2 for every v ∈ V . We write x ≡ 1

2 if
x ∈ RV is the all-half vector.

Lemma 1 ([16]). The primal LP relaxation of Vertex Cover satisfies the following.

(1) It admits a half-integral optimal solution.

(2) For any optimal LP solution xL ∈ RV , there is an optimal integer solution xI ∈ {0, 1}V such
that xIv = xLv holds for every v ∈ V for which xLv is an integer.

1In the context of approximation algorithms, the integrality gap is often defined as the ratio of lp(I) to opt(I)

5

(3) If the all-half vector is an optimal LP solution, then w(S) ≤ w(N(S)) holds for every inde-
pendent set S ⊆ V .

(4) If the all-half vector is an optimal LP solution and w(S) = w(N(S)) holds for some indepen-
dent set S ⊆ V , the following x ∈ NV

1/2 is also an optimal LP solution: If v ∈ S, then xv = 0.

If v ∈ N(S), then xv = 1. Otherwise, xv = 1
2 .

(5) If w(S) < w(N(S)) for every independent set S, the all-half vector is the unique optimal LP
solution.

By using Properties (1) and (2), it is not hard to design an FPT algorithm by naive exhaustive
search. First, as long as the optimal LP solution xL ∈ RV contains a variable v such that xLv is an
integer, we fix the value of v as xLv . Then, for each vertex v ∈ V , we try to fix xLv = 1 and check
whether the optimal LP value increases. If it remains the same, we can fix the value of v to 1, and
if it increases, we restore the value of v to 1

2 . By checking every vertex, the all-half vector becomes
the unique optimal LP solution. Now we pick an arbitrary edge {u, v} ∈ E that is not covered yet
by a variable whose value is fixed to 1, and we invoke recursion after setting xu = 1 or xv = 1.
Since the all-half vector is the unique optimal LP solution, the value of the optimal LP solution
increases by ∆ ≥ 1

2 . Thus, by setting xu = 1 or xv = 1, we can decrease k by ∆. Hence, the depth
of the search tree is bounded by 2k. In each node in the search tree, we might need to solve the
LP relaxation n times. Let T (n) be the running time to solve the LP relaxation, then the total
running time is O(4knT (n)), which is a huge polynomial.

The outline of our algorithm is similar to the naive exhaustive search. However, we exploit all
the properties in Lemma 1 to improve the running time to be linear. We introduce the dual LP
relaxation of Vertex Cover to describe our algorithm.

(Dual-VC)

maximize
∑

e∈E

ye

subject to
∑

e∈δ(v)

ye ≤ w(v) for v ∈ V,

ye ≥ 0 for e ∈ E.

As a preprocess, we construct a network and its half-integral flow f∗ from the given half-integral
optimal dual solution y∗ ∈ RE. A step in our exhaustive search consists of three parts.

(I) From the current graph and the half-integral flow f∗, we compute a corresponding half-integral
optimal primal solution x∗ ∈ RV . (Though we have x∗ in the beginning, we need this for
recursive steps.)

(II) We find all variables that can be fixed to integers without changing lp(G), and we transform
the current graph G so that the all-half vector is the unique optimal primal solution.

(III) We pick an arbitrary edge {u, v} ∈ E that is not covered yet, and we go back to part (I)
recursively after setting xu = 1 or xv = 1. In order to perform the following steps, we remove
covered edges from G and update the half-integral flow f∗.

We will show that these three parts can be performed in linear time, and the depth of the search
tree is bounded by 2k. Thus, the total running time of the algorithm is O(4k(|V |+ |E|)).

6

Preprocess: From the current graph G = (V,E), we construct a network (G = (V ∪{s, t}, E), c)
as follows.

V = L ∪R, L = {lv | v ∈ V }, R = {rv | v ∈ V },

E = {(s, lv) | v ∈ V } ∪ {(lu, rv) | {u, v} ∈ E} ∪ {(rv , t) | v ∈ V },

c(e) =

{

w(v) (e = (s, lv) or e = (rv, t)),

∞ (otherwise).

Proposition 1. Given a dual solution y, define f : E → R as f(s, lv) = f(rv, t) =
∑

e∈δ(v) ye for

v ∈ V , and f(lu, rv) = ye for e = {u, v} ∈ E. Then f is a flow in G of amount 2val(G, y).

Proof. Since y is a feasible dual solution, we have f(s, lv) = f(rv, t) =
∑

e∈δ(v) y
∗
e ≤ w(v) for any

v ∈ V . Also, f clearly satisfies the condition
∑

e∈δ+(v) f(e) =
∑

e∈δ−(v) f(e) for any v ∈ V . It is
easy to see that the amount of f is 2val(G, y).

Proposition 2. Given a flow f of G, define a solution y as y(u, v) = 1
2(f(lu, rv) + f(lv, ru)) for

e = {u, v} ∈ E. Then y is a feasible dual solution for G and val(G, y) is half the amount of f .

Proof. Since f is a flow, we have
∑

{u,v}∈δ(v) y(e) =
1
2

∑

{u,v}∈δ(v)(f(lu, rv) + f(lv, ru)) ≤ w(v) for

any v ∈ V . Also, val(G, y) =
∑

e∈E y(e) = 1
2

∑

{u,v}∈E (f(lu, rv) + f(lv, ru)), which is half the
amount of f .

From the correspondence between a dual solution and a flow, we have the following.

Corollary 2. From a maximum flow f∗ for G, we can compute an optimal dual solution y∗ for G

(and vice versa).

As a preprocess, we construct an optimal flow f∗ from the optimal dual solution y∗ using
Proposition 1. Note that f∗ is also half-integral.

Part (I): Given an optimal flow f∗, we create a primal solution x∗ ∈ NV
1/2 from the residual

graph Gf∗ as follows:

x∗v =











0 (lv is reachable from s and rv is not reachable from s in Gf∗),

1 (lv is not reachable from s and rv is reachable from s in Gf∗),
1
2 (otherwise).

Lemma 2 ([16]). x∗ is an optimal primal solution.

Part (II): Now we have an optimal primal solution x∗ from Lemma 2. We denote by y∗ the
optimal dual solution created from f∗. From Property (2), we can assume that there is a vertex
cover of the minimum weight containing all vertices v with x∗v = 1 and no vertices v with x∗v = 0.
Let V ′ be the set of vertices v with x∗v = 1

2 and E′ ⊆ E be the set of edges that are not covered by
vertices v with x∗v = 1. We define G′ = (V ′, E′).

Lemma 3. Let x′ and y′ be the restriction of x∗ and y∗ to V ′ and E′, respectively. Then, x′ and
y′ are optimal primal and dual solutions for G′, respectively.

7

Proof. The solution x′ must be an optimal primal solution in G′ since we have set integers to
variables according to x∗.

Let U ⊆ V be the set of vertices v with x∗v = 1. Note that val(G,x∗) − val(G′, x′) =
∑

v∈U w(v). On the other hand, val(G, y∗) − val(G′, y′) =
∑

e∈E:incident to U y∗(e) ≤
∑

v∈U w(v).
Since val(G,x∗) = val(G, y∗), it follows that val(G′, x′) ≤ val(G′, y′). Since x′ is an optimal primal
solution, y′ must be an optimal dual solution.

Note that x′ in the lemma above is again the all-half vector in RV ′
. Now we restrict our attention

to G′ and replace G by G′. Also, we can recompute the residual graph just by ignoring vertices in
V corresponding to vertices in V \ V ′. Since the restriction of y∗ is an optimal dual solution of G′,
the restriction of f∗ is a maximum flow of Ḡ′.

In order to transform the current graph G so that it admits the all-half vector as its unique
optimal LP solution, we need several properties of the residual graph Gf∗ . To avoid confusion, we
use · to denote a vertex set in V , e.g., S. For a subset S ⊆ V , we define SL = {v ∈ V | lv ∈ S ∩L}
and SR = {v ∈ V | rv ∈ S ∩ R}. For a subset T ⊆ V , we define LT = {lv ∈ V | v ∈ T} and
RT = {rv ∈ V | v ∈ T}.

Lemma 4. For a vertex set S ⊆ V , the following are equivalent:

(1) There is no edge from S to V \ S in Gf∗ .

(2) N(SL) = SR and w(SL) = w(SR).

Proof. In the proof, we use the notation of a neighbor set N(·) for G (neither G nor Gf∗).
Since the all-half vector is an optimal primal solution, the optimal LP value is 1

2

∑

v∈V w(v).
However in the dual,

∑

e∈E ye =
1
2

∑

v∈V

∑

e∈δ(v) ye ≤
1
2

∑

v∈V w(v). Thus,
∑

e∈δ(v) ye = w(v) must
hold for every v ∈ V . Hence, in the flow f∗, every edge incident to s or t is saturated. This means
that the amount of the out-flow of S ∩L is w(SL) and the amount of the in-flow of S ∩R is w(SR).
We define EL = {(lu, rv) ∈ E | lu ∈ S, rv 6∈ S} and ER = {(rv , lu) | (lu, rv) ∈ E, f(lu, rv) > 0, rv ∈
S, lu 6∈ S}.

(1) ⇒ (2): Note that no edge from L to R can be saturated. Thus, the set of edges outgoing
from S to V \S in Gf∗ is EL ∪ER (Recall that V does not contain s and t). Hence, EL = ER = ∅
from the assumption. We have N(SL) ⊆ SR from EL = ∅. Also, we have w(SR) ≤ w(SL) from
ER = ∅. Since the amount of the out-flow of S ∩L is at most the amount of the in-flow of RN(SL),
we have w(SL) ≤ w(N(SL)). Therefore, we obtain w(SL) ≤ w(N(SL)) ≤ w(SR) ≤ w(SL), which
implies N(SL) = SR and w(SL) = w(SR).

(2) ⇒ (1): Since N(SL) = SR, EL must be an empty set. Moreover, since w(SL) = w(SR), all
the in-flow of RN(SL) = RSR

= S ∩R must come from S ∩L. Therefore ER must be an empty set.

Thus, there is no edge from S to V \ S.

Lemma 5. If a tail strongly connected component S of Gf∗ satisfies SL ∩ SR = ∅, then SL is an
independent set of G and w(SL) = w(N(SL)).

Proof. Since there is no edge from S to V \S, N(SL) = SR and w(SL) = w(SR) hold from Lemma 4.
From the former property, SL ∩ N(SL) = SL ∩ SR = ∅, and therefore SL is an independent set.
From the both properties, w(SL) = w(SR) = w(N(SL)) holds.

Indeed, the converse is also true.

8

Lemma 6. If there is an independent set S ⊆ V of G that satisfies w(S) = w(N(S)), then there
exists a tail strongly connected component T of Gf∗ that satisfies TL ∩ TR = ∅.

Proof. Let S ⊆ V be the minimal independent set that satisfies w(S) = w(N(S)). We prove that
T = LS ∪ RN(S) satisfies the properties above. Since N(TL) = N(S) = TR and w(TL) = w(S) =

w(N(S)) = w(TR) hold, from Lemma 4, there is no edge from T to V \ T .
Suppose for contradiction that T is not strongly connected. Then, there is a subset T ′ (T such

that there is no edge from T ′ to T \ T
′
. Since there is no edge from T to V \ T , this implies there

is no edge from T ′ to V \ T ′. Therefore, from Lemma 4, w(T ′
L) = w(T ′

R) = w(N(T ′
L)) holds. This

contradicts the minimality of S as T ′
L ⊆ S. Thus, T must be a tail strongly connected component.

Since S is an independent set, TL ∩ TR = S ∩N(S) = ∅ holds.

From Property (4), as long as there is an independent set S ⊆ V with w(S) = w(N(S)), we
can safely assign integers to S and N(S). That is, we set xu = 1 for all u ∈ N(SL) and set xu = 0
for all u ∈ SL, and we remove them from the graph. From Property (5), if we no longer have such
an independent set, the all-half vector becomes the unique optimal primal solution.

From Lemmas 5 and 6, such an independent set exists if and only if there is a tail strongly
connected component S in Gf∗ with SL ∩ SR = ∅. Thus, it suffices to keep finding such tail
strongly connected components. An issue here is that (apparently) we have to recompute residual
graphs. Fix an independent set S with w(S) = w(N(S)) and let G′ be the graph obtained from G

by removing vertices in S ∪N(S) and removing edges incident to N(S). To avoid recomputing the
residual graph of G′ again, we use the following fact.

Lemma 7. The restriction of x∗ to V ′ and the restriction of y∗ to E′ are optimal primal and dual
solutions for G′, respectively. In particular, since x∗ is the all-half vector, the all-half vector in RV ′

is an optimal primal solution of G′.

Proof. Let x′ ∈ RV ′
and y′ ∈ RE′

be the restrictions of x∗ and y∗, respectively. Since the amount
of out-flow from S ∩L is w(SL) and w(SL) = w(N(SL)), all out-flow from S ∩L flows into RN(SL).

Thus, val(G, y∗) − val(G′, y′) = w(SL). Also, val(G,x∗) − val(G′, x′) = 1
2 (w(SL) + w(N(SL))) =

w(SL). Hence val(G′, x′) = val(G′, y′) holds, and it follows that x′ and y′ are optimal primal/dual
solutions.

By seeing the construction of the residual graph, we have the following.

Corollary 3. The residual graph of G′ is obtained from Gf∗ by removing the tail strongly connected
component S.

Thus, what we have to do is keep finding and removing tail strongly connected components S
with SL ∩ SR = ∅ in a fixed residual graph! We can perform this process in linear time, and in the
end we obtain a graph for which the all-half vector is the unique optimal primal solution.

Part (III): In this part, we choose an arbitrary edge {u, v} ∈ E that is not covered yet, and
invoke recursion after setting xu = 1 or xv = 1.

Suppose that we have set xu = 1. (The other case is similar.) We explain how to update the
optimal dual solution. Let f∗ be the current flow. Then, we remove all flow passing through lu or
ru. Since all edges between L and R are directed from L to R, we can remove them in O(|δ(u)|)
time. After removing lu and ru from G, we augment the flow as long as we can. If the amount of

9

the augmentation is ∆, the running time is O(∆(|V |+ |E|)) from the half-integrality of f∗. Thus,
the running time in this step is bounded by O(|δ(v)| +∆(|V |+ |E|)).

Now we calculate the total running time spent in Part (III). To this end, we see the connection
between ∆ and the change of the optimal LP value in one step. Since we have changed xu from 1

2

to 1, we gain w(u)
2 . Note that the amount of the flow decreases by w(u) −∆. From Proposition 2,

we lose w(u)
2 − ∆

2 . In total, the LP value increases by ∆
2 . Thus, we can decrease k by ∆

2 .
Throughout the algorithm, the sum of |δ(v)| is bounded by |E| and the sum of ∆ is bounded by

2k. Since the number of leaves in the search tree is at most 22k = 4k, the running time caused by
|δ(v)| is at most O(4k|E|). Since we spend O(∆(|V |+ |E|)) time to decrease k by ∆

2 , the running
time caused by augmenting the flow is at most O(4k(|V |+ |E|)). In total, the running time of Part
(III) is O(4k(|V |+ |E|)) and this is dominant in the whole algorithm.

References

[1] H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305–1317, 1996.

[2] J. Chen, Y. Liu, and S. Lu. An improved parameterized algorithm for the minimum node
multiway cut problem. Algorithmica, 55(1):1–13, 2009.

[3] B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Inf. Comput., 85(1):12–75, 1990.

[4] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut parameter-
ized above lower bounds. In IPEC’12: Proceedings of the 7th International Symposium on
Parameterized and Exact Computation, pages 1–12, 2012.

[5] R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer Verlag, 2012.

[6] S. Fiorini, N. Hardy, B. A. Reed, and A. Vetta. Planar graph bipartization in linear time.
Discrete Applied Mathematics, 156(7):1175–1180, 2008.

[7] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2010.

[8] F. V. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh. Planar F -deletion: Approximation,
kernelization and optimal fpt algorithms. In FOCS’12: Proceedings of the 53rd Annual IEEE
Symposium on Foundations of Computer Science, pages 470–479, 2012.

[9] D. S. Hochbaum. Solving integer programs over monotone inequalities in three variables: A
framework for half integrality and good approximations. European Journal of Operational
Research, 140(2):291–321, 2002.

[10] D. S. Hochbaum, N. Megiddo, J. S. Naor, and A. Tamir. Tight bounds and 2-approximation
algorithms for integer programs with two variables per inequality. Mathematical Programming,
62(1):69–83, 1993.

[11] K. Kawarabayashi and B. Reed. An (almost) linear time algorithm for odd cycles transversal.
In SODA’10: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 365–378, 2010.

10

[12] K. Kawarabayashi and B. A. Reed. Computing crossing number in linear time. In STOC’07:
Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pages 382–390,
2007.

[13] S. Kratsch and M. Wahlstrom. Representative sets and irrelevant vertices: New tools for
kernelization. In FOCS’12: Proceedings of the 53rd Annual IEEE Symposium on Foundations
of Computer Science, pages 450–459, 2012.

[14] D. Lokshtanov, N. S. Narayanaswamy, V. Raman, M. S. Ramanujan, and S. Saurabh. Faster
parameterized algorithms using linear programming. arXiv.org, cs.DS, 2012.

[15] D. Marx, B. O’Sullivan, and I. Razgon. Finding small separators in linear time via treewidth
reduction. CoRR, abs/1110.4765, 2011.

[16] G. L. Nemhauser and L. E. Trotter, Jr. Vertex packings: Structural properties and algorithms.
Mathematical Programming, 8(1):232–248, 1975.

[17] R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press on De-
mand, 2006.

[18] J.-C. Picard and M. Queyranne. On the structure of all minimum cuts in a network and applica-
tions. In V. Rayward-Smith, editor, Combinatorial Optimization II, volume 13 of Mathematical
Programming Studies, pages 8–16. Springer Berlin Heidelberg, 1980.

[19] V. Raman, M. S. Ramanujan, and S. Saurabh. Paths, flowers and vertex cover. In ESA’11:
Proceedings of the 19th European conference on Algorithms, pages 382–393, 2011.

[20] M. S. Ramanujan and S. Saurabh. Linear time parameterized algorithms via skew-symmetric
multicuts. CoRR, abs/1304.7505, 2013.

[21] I. Razgon and B. O’Sullivan. Almost 2-SAT is fixed-parameter tractable. Journal of computer
and system sciences, 75(8):435–450, 2009.

[22] B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Operations Research Letters,
32(4):299–301, 2004.

[23] M. Xiao. Simple and improved parameterized algorithms for multiterminal cuts. Theory
Comput. Syst., 46(4):723–736, 2010.

11

Appendix

A List of Binary BIP2 Problems

Many important problems can be formulated as BIP2. Below we see several examples.

Example 1 (Vertex Cover). Given a graph G = (V,E), by introducing a variable xv that represents
whether a vertex v ∈ V is contained in a vertex cover, the problem can be formulated as Binary
BIP2 as follows:

minimize
∑

v∈V

w(v)xv

subject to: xv + xu ≥ 1 for {u, v} ∈ E.

Example 2 (Odd Cycle Transversal). Given a graph G = (V,E), by introducing variables xv, lv,
and rv each describing whether a vertex v is contained in an odd cycle transversal S, in the left
side of the bipartite graph G[V \S], and in the right side of G[V \S], respectively, the problem can
be formulated as Binary BIP2 as follows:

minimize
∑

v∈V

w(v)xv

subject to: lv + rv + xv ≥ 1 for v ∈ V,

lu + lv ≤ 1 for {u, v} ∈ E,

ru + rv ≤ 1 for {u, v} ∈ E.

Example 3 (Almost 2-SAT). Given a 2-CNF C over variables V , by introducing a variable xv
representing the assigned value of a variable v and a variable zC representing whether a clause C

is unsatisfied, the problem can be formulated as Binary BIP2 as follows:

minimize
∑

C∈C

zC

subject to: xu + xv + zC ≥ 1 for C = (v ∨ u) ∈ C,
xu + (1− xv) + zC ≥ 1 for C = (v ∨ ū) ∈ C,
(1− xu) + xv + zC ≥ 1 for C = (v̄ ∨ u) ∈ C,
(1− xu) + (1− xv) + zC ≥ 1 for C = (v̄ ∨ ū) ∈ C.

Below is a list of other problems that can be written in the form of Binary BIP2. All these
problems can be solved in O(4k(n +m)) time, where k is the solution size. In graph problems, n
and m denote the number of vertices and the number of edges, respectively, and in problems related
to SAT, n and m denote the number of variables and the number of constraints, respectively.

• Split Vertex Deletion: An undirected graph G = (V,E) is called a split graph if there is a vertex
set C ⊆ V such that G[C] is a clique and G[V \ C] is an independent set. Given a weighted
undirected graph G = (V,E), Split Vertex Deletion is a problem of finding a minimum weight
vertex set S ⊆ V such that G[V \ S] becomes a split graph.

• Edge Bipartization: Given an edge-weighted undirected graph G = (V,E), Edge Bipartization

is a problem of finding a minimum weight edge set S ⊆ E such that the graph G′ = (V,E \S)
becomes bipartite.

12

• Min SAT: Given a CNF C over variables V , Min SAT is a problem of finding a Boolean
assignment that minimizes the number of satisfied clauses.

• Generalized Vertex Cover: The instance of Generalized Vertex Cover is a weighted undirected
graph G = (V,E) together with three edge weight functions d0, d1, d2 that satisfy d0(e) ≥
d1(e) ≥ d2(e) ≥ 0 for every edge e ∈ E. Generalized Vertex Cover is a problem of finding a
vertex set S ⊆ V that minimizes the weight

∑

v∈S w(v) +
∑

e∈E d|e∩S|(e).

• Generalized 2-SAT: For a given 2-CNF formula C over variables V and a function w : V → N,
Generalized 2-SAT is a problem of finding a Boolean assignment that makes the formula true
and minimizes the total cost of variables that are assigned true.

• Complement of Maximum Clique: For a given graph, Complement of Maximum Clique is a
problem of finding a minimum weight vertex set S such that G[V \ S] becomes a clique.

• Almost Boolean 2-CSP: Given a Boolean 2-CSP C over variables V , Almost Boolean 2-CSP is a
problem of finding a Boolean assignment that minimizes the number of unsatisfied constraints.

• Directed Min UnCut: Given an edge-weighted directed graph G = (V,E), Directed Min UnCut

is a problem of finding a partition (S, V \ S) that minimizes the number of edges not going
from S to V \ S.

B Linear-Time Reduction to Vertex Cover Above LP

Let I be an BIP2 instance. An LP solution pair of I refers to a pair of primal/dual solutions for
I. We say that an LP solution pair is optimal if both the primal solution and the dual solution are
optimal, and is half-integral if both the primal solution and the dual solution are half-integral. In
this section, we prove Theorem 1 by showing a linear-time algorithm that, given a BIP2 instance
I and its half-integral optimal LP solution pair, outputs a vertex cover instance G with gap(G) =
gap(I) and its half-integral optimal LP solution pair.

Our algorithm consists of a sequence of reductions and we have mainly three parts.

(I) We transform the instance so that each constraint has the form of xi+xj+zi,j ≥ ci,j , i.e., the
coefficient of every shared variable is one and every constraint has an independent variable.

(II) We remove all independent variables.

(III) We construct an instance of Vertex Cover by restricting the domain of variables to be binary.

Part (I). Let I be an instance of BIP2. We simplify I so that each constraint has an independent
variable as follows. For each constraint of the form ai,jxi + bi,jxj ≥ ci,j, we create an independent
variable zi,j of sufficiently large weight and replace the constraint with ai,jxi + bi,jxj + zi,j ≥ ci,j .
Let I1 be the resulting instance.

Lemma 8. We have gap(I1) = gap(I). From a (half-integral) optimal LP solution pair for I, we
can compute a (half-integral) optimal LP solution pair for I1 in linear time.

Proof. Note that zi,j must be zero in any optimal LP/IP solution. Thus, the modification does not
change optimal LP/IP values, and we can directly use the given optimal LP solution pair for I as
the one for I1.

13

Now we partition the constraint set E to E+, E 6=, and E− as follows. For each constraint of the
form ai,jxi+bi,j+zi,j ≥ ci,j , we add it to E+ if (ai,j, bi,j) = (1, 1), add it to E 6= if (ai,j , bi,j) = (1,−1),
and add it to E− if (ai,j , bi,j) = (−1,−1). (If (ai,j , bi,j) = (−1, 1), then the constraint is added to
E 6= after swapping i and j.) We regard E+ and E− as sets of unordered pairs and E 6= as a set of
ordered pairs.

Though all LP variables in this section are constrained to be non-negative, in what follows, we
omit them from LP formalizations for brevity. The LP relaxation of I1 and its dual can be written
as follows.

(Primal-1)

minimize
∑

i∈V

wixi +
∑

(i,j)∈E

di,jzi,j

subject to xi + xj + zi,j ≥ ci,j for (i, j) ∈ E+,

xi − xj + zi,j ≥ ci,j for (i, j) ∈ E 6=,

−xi − xj + zi,j ≥ ci,j for (i, j) ∈ E−.

(Dual-1)

maximize
∑

(i,j)∈E

ci,jyi,j

subject to
∑

(i,j)∈E+∪E 6=

yi,j −
∑

(j,i)∈E 6=∪E−

yj,i ≤ wi for i ∈ V,

yi,j ≤ di,j for (i, j) ∈ E.

Now, we want to transform the instance so that each constraint has the form of xi+xj+zi,j ≥ ci,j ,
i.e., ai,j = bi,j = 1 for every (i, j) ∈ E. Let X and M be sufficiently large integers. For a variable
xi of weight wi, we create two variables x+i and x−i . We set the weight of x+i to be w+

i = M + wi

and the weight of x−i to be w−
i = M . For each constraint, we replace +xi with x+i and −xi with

x−i − X. Finally, we add a new constraint of the form x+i + x−i ≥ X. Let I2 be the resulting
instance.

The primal and dual LP relaxations of I2 can be written as follows:

(Primal-2)

minimize
∑

i∈V

((M + wi)x
+
i +Mx−i) +

∑

(i,j)∈E

di,jzi,j

subject to x+i + x+j + zi,j ≥ ci,j for (i, j) ∈ E+,

x+i + x−j + zi,j ≥ ci,j +X for (i, j) ∈ E 6=,

x−i + x−j + zi,j ≥ ci,j + 2X for (i, j) ∈ E−,

x+i + x−i ≥ X for i ∈ V,

(Dual-2)

maximize
∑

(i,j)∈E

ci,jyi,j +X
∑

(i,j)∈E 6=

yi,j + 2X
∑

(i,j)∈E−

yi,j +X
∑

i∈V

γi

subject to
∑

(i,j)∈E+∪E 6=

yi,j + γi ≤ M + wi for i ∈ V,

∑

(j,i)∈E 6=∪E−

yj,i + γi ≤ M for i ∈ V,

yi,j ≤ di,j for (i, j) ∈ E.

Lemma 9. We have gap(I2) = gap(I1). Furthermore, from a (half-integral) optimal LP solution
pair for I1, we can compute a (half-integral) optimal LP solution pair for I2 in linear time.

14

Proof. Because M is sufficiently large, for any optimal primal/IP solution of I2, the constraint of
the form x+i +x−i ≥ X must be satisfied with equality. Therefore, we can assume that x−i = X−x+i
holds in any optimal primal/IP solution.

For any primal/IP solution x ∈ RV of I1, we can obtain a primal/IP solution of I2 by setting
x+i = xi and x−i = X − xi, and for any primal/IP solution (x+, x−) of I2, we can obtain a
primal/IP solution of I1 by setting xi = x+i . Thus, optimal LP/IP values increase exactly by
∑

i∈V ((M +wi)xi+M(X−xi)−wixi) = |V |XM . Hence, gap(I2) = gap(I1) and we can compute
the optimal primal solution for I2 in linear time.

We can obtain an optimal dual solution (y, γ) of I2 from an optimal dual solution y∗ of I1 by
setting y = y∗ and

γi = M −
∑

(j,i)∈E 6=∪E−

yj,i.

We can easily check that it is feasible and its value is exactly lp(I2).

For readability, we restate (Primal-2) and (Dual-2) as follows.

(Primal-2’)
minimize

∑

i∈V

wixi +
∑

{i,j}∈E

di,jzi,j

subject to xi + xj + zi,j ≥ ci,j for {i, j} ∈ E,

(Dual-2’)

maximize
∑

{i,j}∈E

ci,jyi,j

subject to
∑

{i,j}∈E

yi,j ≤ wi for i ∈ V,

yi,j ≤ di,j for {i, j} ∈ E.

Part (II). We want to remove independent variables from an instance I2 of the form (Primal-
2’). For a constraint of the form xi + xj + zi,j ≥ ci,j with an independent variable zi,j of weight

di,j, we create two variables zii,j and z
j
i,j of weight di,j. Then, we replace the constraint with the

following three constraints:

xi + zii,j ≥ ci,j , xj + z
j
i,j ≥ ci,j , zii,j + z

j
i,j ≥ ci,j .

Let I3 be the resulting instance.
Let yii,j, y

j
i,j, and yzi,j be dual variables corresponding to the newly added three constraints.

Then, the primal and dual LP relaxations of I3 can be written as follows:

(Primal-3)

minimize
∑

i∈V

wixi +
∑

{i,j}∈E

di,j(z
i
i,j + z

j
i,j)

subject to xi + zii,j ≥ ci,j for {i, j} ∈ E,

xj + z
j
i,j ≥ ci,j for {i, j} ∈ E,

zii,j + z
j
i,j ≥ ci,j for {i, j} ∈ E,

(Dual-3)

maximize
∑

{i,j}∈E

ci,j(y
i
i,j + y

j
i,j + yzi,j)

subject to
∑

{i,j}∈E

yii,j ≤ wi for i ∈ V,

yii,j + yzi,j ≤ di,j for {i, j} ∈ E.

15

Lemma 10. We have gap(I3) = gap(I2). Furthermore, from a (half-integral) optimal LP solution
pair for I2, we can compute a (half-integral) optimal LP solution pair for I3 in linear time.

Proof. For any primal/IP solution x ∈ RV of I2, we can obtain a primal/IP solution of the I3 by
setting zii,j = max(0, ci,j − xi) and z

j
i,j = max(ci,j − zii,j , ci,j − xj). This is feasible since xi + zii,j =

max(xi+ci,j) ≥ ci,j, xj+z
j
i,j = max(xj+ci,j) ≥ ci,j , and zii,j+z

j
i,j = ci,j+max(0, ci,j−xi−xj) ≥ ci,j .

Suppose we have an optimal primal/IP solution of I3. Since zi,j appears only in one constraint,
we can assume that, in the optimal primal/IP solution, zi,j = max(0, ci,j−xi−xj) holds. Therefore,

zii,j + z
j
i,j = zi,j + ci,j holds. Since zii,j and z

j
i,j appear only in these constraints, in the optimal

primal/IP solution, we can assume that zii,j = max(0, ci,j − xi) and z
j
i,j = max(ci,j − zii,j , ci,j − xj)

hold. Then, we can obtain a solution for I2 by setting zi,j = zii,j+z
j
i,j−ci,j . This is feasible because

xi + xj + zi,j = xi + xj + zii,j + z
j
i,j − ci,j ≥ ci,j .

Thus, optimal LP/IP values increase by
∑

{i,j}∈E di,j(z
i
i,j+z

j
i,j−zi,j) =

∑

{i,j}∈E di,jci,j . Hence,

gap(I3) = gap(I2) and we can compute the optimal primal solution for I3 in linear time.
We can obtain a dual optimal solution (yi, yj, yz) of I3 from the given dual optimal solution y

of I2 as follows:

yii,j = y
j
i,j = yi,j, yzi,j = di,j − yi,j.

We can easily check that the obtained dual solution is feasible and has the same value as the primal
solution obtained above.

For readability, we restate (Primal-3) and (Dual-3) as follows.

(Primal-3’)
minimize

∑

i∈V

wixi

subject to xi + xj ≥ ci,j for {i, j} ∈ E,

(Dual-3’)

maximize
∑

{i,j}∈E

ci,jyi,j

subject to
∑

{i,j}∈E

yi,j ≤ wi for i ∈ V.

Part (III). Let I3 be an instance of the form (Primal-3’). Finally, we reduce it to an instance
of Vertex Cover by restricting the domain of variables to be binary. We use the following lemma.

Lemma 11. For any half-integral optimal primal solution xL ∈ NV
1/2 of I3, there exists an optimal

IP solution x ∈ NV that satisfies the following:

xi = xLi (xLi ∈ N),
⌊xLi ⌋ ≤ xi ≤ ⌈xLi ⌉ (otherwise).

Proof. Let xI be an optimal IP solution. We construct an optimal IP solution that satisfies the
property above. We define the set of variables as follows:

XI = {i ∈ V | xLi ∈ N}, XH = {i ∈ V | xLi 6∈ N},

X< = {i ∈ V | xLi < xIi }, X= = {i ∈ V | xLi = xIi }, X> = {i ∈ V | xLi > xIi }.

16

Let wL = lp(I3) and wI = opt(I3). For a set of variables S, we define w(S) =
∑

i∈S wi. Let
wI = w(XI ∩X<)− w(XI ∩X>) and wH = w(XH ∩X<)− w(XH ∩X>).

First, we construct an IP solution x1 ∈ NV by rounding the non-integral part of xL towards xI :

x1i =











xLi (i ∈ XI),

xLi + 1
2 (i ∈ XH ∩X<),

xLi − 1
2 (i ∈ XH ∩X>).

We can check the feasibility of x1 by considering the following three cases. Fix a constraint xi+xj ≥
ci,j. If i, j ∈ XI , then x1i+x1j = xLi +xLj ≥ ci,j . If i ∈ XI and j ∈ XH , then x1i+x1j ≥ xLi +xLj −

1
2 ≥ ci,j

since xLi + xLj is not an integer. If i, j ∈ XH , then x1i + x1j ≥ min(xLi + xLj , x
I
i + xIj) ≥ ci,j . We have

val(I3, x1) = wL + 1
2wH . From the optimality of xI , we obtain

wL +
1

2
wH ≥ wI . (1)

Then, we construct another IP solution x2 ∈ NV by shifting xL towards xI :

x2i =































xLi (i ∈ X=),

xLi + 1 (i ∈ XI ∩X<),

xLi − 1 (i ∈ XI ∩X>),

xLi + 1
2 (i ∈ XH ∩X<),

xLi − 1
2 (i ∈ XH ∩X>).

The feasibility of x2 can be checked by considering the following two cases. Fix a constraint
xi + xj ≥ ci,j . If i ∈ XI and j ∈ XH , then x2i + x2j ≥ min(xLi + xLj − 1

2 , x
I
i + xIj) ≥ ci,j. Otherwise,

x2i +x2j ≥ min(xLi +xLj , x
I
i +xIj) ≥ ci,j. We have val(I3, x2) = wL+ 1

2wH +wI . From the optimality

of xI , we obtain

wL +
1

2
wH + wI ≥ wI . (2)

Finally, we construct a half-integral primal solution x3 ∈ NV
1/2 by shifting xI towards xL:

x3i =











xIi (i ∈ X=),

xIi −
1
2 (i ∈ X<),

xIi +
1
2 (i ∈ X>).

Since x3i + x3j ≥ min(xLi + xLj , x
I
i + xIj) ≥ ci,j holds, x3 is feasible. We have val(I3, x3) = wI −

1
2wH − 1

2wI . From the optimality of xL, we obtain

wI −
1

2
wH −

1

2
wI ≥ wL. (3)

From (1)+(3), we obtain wI ≤ 0, and from (2)+(3), we obtain wI ≥ 0. Therefore, wI = 0
holds. Then, from (1) and (3), we obtain wL + 1

2wH = wI . Thus, x1 is an optimal IP solution that
satisfies the given property.

17

Now we show how to construct an instance G of Vertex Cover. Let x∗ be a half-integral optimal
primal solution for I3. For each variable xi, we replace it with (⌊x∗i ⌋+xi). A constraint xi+xj ≥ ci,j
that is satisfied in x∗ with strict inequality is always satisfied. Thus, only constraints that is satisfied
with equality remain. If it consists of two integral variables, ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋ = 0 holds, and if it
consists of two half-integral variables, ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋ = 1 holds. Let E′ be the set of the latter
type of constraints. Then, the primal and dual LP relaxations can be written as follows:

(Primal-VC’)
minimize

∑

i∈V

wi⌊x
∗
i ⌋+

∑

i∈V

wixi

subject to xi + xj ≥ 1 for {i, j} ∈ E′,

(Dual-VC’)

maximize
∑

i∈V

wi⌊x
∗
i ⌋+

∑

{i,j}∈E′

yi,j

subject to
∑

{i,j}∈E′

yi,j ≤ wi for i ∈ V.

Note that we do not need an upper bound on xi since it always has a binary value in an optimal
primal/IP solution. The primal problem G is Vertex Cover with the vertex set V and the edge set
E′.

Lemma 12. We have gap(G) = gap(I3). Furthermore, from a half-integral optimal LP solution
pair for I3, we can compute a half-integral optimal LP solution pair for G in linear time.

Proof. It is clear that the optimal LP value does not change. Also from Lemma 11, it does not
change the optimal IP value. Thus, we have gap(G) = gap(I3) and we can compute a (half-
integral) optimal primal solution for G in linear time.

Let y∗ be the given half-integral optimal dual solution. It is obviously feasible in the reduced
problem. From the complementary slackness, for each variable xi > 0,

∑

{i,j}∈E y∗i,j = wi holds,
and for each constraint xi + xj > ci,j, y

∗
i,j = 0 holds. Therefore,

val(G, y∗) =
∑

i∈V

wi⌊x
∗
i ⌋+

∑

{i,j}∈E′

y∗i,j =
∑

i∈V

∑

{i,j}∈E

yi,j⌊x
∗
i ⌋+

∑

{i,j}∈E′

y∗i,j (complementary slackness)

=
∑

{i,j}∈E

y∗i,j(⌊x
∗
i ⌋+ ⌊x∗j⌋) +

∑

{i,j}∈E′

y∗i,j

=
∑

{i,j}∈E

y∗i,j(⌊x
∗
i ⌋+ ⌊x∗j⌋) +

∑

{i,j}∈E′

(ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋)y
∗
i,j (ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋ = 1 for (i, j) ∈ E′)

=
∑

{i,j}∈E

y∗i,j(⌊x
∗
i ⌋+ ⌊x∗j⌋) +

∑

{i,j}∈E

(ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋)y
∗
i,j (ci,j − ⌊x∗i ⌋ − ⌊x∗j⌋ = 0 for (i, j) ∈ E \ E′)

=
∑

{i,j}∈E

ci,jy
∗
i,j.

Thus, y∗ is a (half-integral) optimal dual solution in G.

As a result, an instance I of BIP2 is reduced to an instance G of Vertex Cover with gap(G) =
gap(I). Moreover, we can compute a half-integral optimal LP solution pair for G from a half-
integral optimal LP solution pair for I in linear time.

18

C A Linear-Time FPT Algorithm for Node Multiway Cut

In this section, we give an O(4k(|V | + |E|))-time FPT algorithm for Node Multiway Cut. Let
G = (V,E) be an undirected graph and T ⊆ V be a terminal set. In Node Multiway Cut, the
objective is to find the minimum set of vertices S so that every pair of terminals becomes separated
by removing S. We use the size of the optimal solution as a parameter.

For a terminal t ∈ T , we call a subset Ct of vertices an isolating cut of t if its removal separates
t from T \ {t}. We denote the connected component containing t after removing an isolating cut
Ct by R(Ct). Xiao [23] proved the following lemma.

Lemma 13 ([23]). Let Ct be a minimum isolating cut of a terminal t in a graph G. Then there
exists a minimum multiway cut C of G that contains no vertices of R(Ci).

A farthest minimum isolating cut of t is an isolating cut Ct that has the largest R(Ct) among
all isolating cuts of the minimum cardinality. The farthest minimum isolating cut Ct is unique
and can be computed in O(|Ct|(|V |+ |E|)) time by a single maximum flow computation from t to
T \{t}. Moreover, if we are given the maximum flow, it can be computed in O(|V |+ |E|) time [18].

Now, we describe our algorithm for Node Multiway Cut. First, if the number of terminals |T |
is at most 1, we return YES. Otherwise, we choose an arbitrary terminal t ∈ T . If t is adjacent
to T \ {t}, there is no multiway cut. If t is already separated from T \ {t}, we remove the set of
vertices that are reachable from t and choose another terminal. Otherwise, we compute the farthest
minimum isolating cut Ct of t by computing a maximum flow from t to T \ {t}. If the size of the
cut (and thus the amount of the flow) exceeds k, we immediately return NO. We keep and reuse
the maximum flow for future updates. From Lemma 13, there exists a minimum multiway cut that
does not contain any vertices of V (R(Ct)), thus we can safely contract V (R(Ct)) to t.

After the contraction of V (R(Ct)), the farthest minimum isolating cut becomes N(t). We
choose an arbitrary vertex v ∈ N(t) and branch into two cases, i.e., the minimum multiway cut
contains v or not. For the former case, we include v into the output and remove it from the graph.
The farthest minimum isolating cut changes to Ct \ {v} and we can update the maximum flow
by simply removing the flow passing throw v. For the latter case, we contract v to t. We update
the maximum flow by searching augmenting paths in the residual graph, recompute the farthest
minimum isolating cut Ct of t, and then contract V (R(Ct)) to t. Then, we apply the algorithm
recursively.

Finally, we analyze the running time of the algorithm. For simplicity, we fix the ordering
t1, . . . , t|T | of handling terminals. Let Ti(N, ℓ, λ) be the running time of the algorithm to handle ti.
where N is the sum of the number of vertices and edges, ℓ is the size of a multiway cut we want
to find, and λ is the size of the minimum isolating cut of ti in the current graph. Then, we want
to bound T1(|V | + |E|, k, λ1), where k is the given parameter on the solution size and λ1 is the
size of the minimum isolating cut of t1 in the input graph G. For notational simplicity, we define
T|T |+1(·, ·, ·) = 0.

Suppose λ = 0. Then, we can find the set R of vertices reachable from ti in O(N ′) time, where
N ′ is the sum of the numbers of vertices and edges in R. Let λ′ be the size of the minimum isolating
cut for the next terminal ti+1. Then, we can compute the maximum flow in O(λ′(N −N ′)) time.
Therefore, Ti(N, ℓ, 0) ≤ Ti+1(N −N ′, ℓ, λ′) +O(N ′ + λ′(N −N ′)) holds.

Suppose λ > 0. We can compute the farthest minimum isolating cut in O(N) time from the
given maximum flow. Let v ∈ N(t) be the chosen vertex. If we include v into the output, ℓ and λ

decrease by 1. In this case, we can update the maximum flow in O(N) time. If we contract v to t, ℓ

19

remains the same but λ increases by at least one because Ct = N(t) is the unique minimum isolating
cut of t. Let ∆ be the increase of λ. In this case, we can update the maximum flow by finding
augmenting paths ∆ times. Therefore, Ti(N, ℓ, λ) ≤ Ti(N, ℓ− 1, λ− 1) + Ti(N, ℓ, λ+∆) +O(∆N)
holds.

From the above two recurrences of Ti, we can obtain Ti(N, ℓ, λ) = O(22ℓ−λN). Thus the total
running time is bounded by O(22k−λ1(|V |+ |E|)) = O(4k(|V |+ |E|)).

20

	1 Introduction
	2 Preliminaries
	3 A Linear-Time FPT Algorithm for Vertex Cover Above LP
	A List of Binary BIP2 Problems
	B Linear-Time Reduction to Vertex Cover Above LP
	C A Linear-Time FPT Algorithm for Node Multiway Cut

