
ar
X

iv
:1

30
7.

67
38

v1
  [

cs
.C

C
] 

 2
5 

Ju
l 2

01
3

Efficient quantum protocols for XOR functions

Shengyu Zhang

Abstract

We show that for any Boolean function f : {0, 1}n → {0, 1}, the bounded-error quantum
communication complexity Qǫ(f ◦ ⊕) of XOR functions f(x ⊕ y) satisfies that Qǫ(f ◦ ⊕) =

O
(
2d
(
log ‖f̂‖1,ǫ + log n

ǫ

)
log(1/ǫ)

)
, where d = deg

2
(f) is the F2-degree of f , and ‖f̂‖1,ǫ =

ming:‖f−g‖∞≤ǫ ‖ĝ‖1. This implies that the previous lower bound Qǫ(f ◦ ⊕) = Ω(log ‖f̂‖1,ǫ)
by Lee and Shraibman [LS09] is tight for f with low F2-degree. The result also confirms
the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition,
we show that the exact quantum communication complexity satisfies QE(f) = O(2d log ‖f̂‖0),
where ‖f̂‖0 is the number of nonzero Fourier coefficients of f . This matches the previous lower
bound QE(f(x, y)) = Ω(log rank(Mf)) by Buhrman and de Wolf [BdW01] for low-degree XOR
functions.

1 Introduction

Communication complexity studies the minimum amount of communication needed for a compu-
tational task with input distributed to two (or more) parties. Communication complexity has been
applied to prove impossibility results for problems in a surprisingly wide range of computational
models. At the heart of studies of communication complexity are lower bounds, and the tight-
ness of lower bound techniques has been among the most important, and at the same time, most
challenging questions. Indeed, one of the most famous open problems in communication complex-
ity is the Log-rank Conjecture: It has been known that the (two-party, interactive) deterministic
communication complexity D(f) ≥ log2(rank(Mf )) [MS82], where the rank is over R and Mf is
the communication matrix defined as Mf (x, y) = f(x, y). The Log-rank Conjecture, proposed by
Lovász and Saks [LS88], says that the above bound is polynomially tight, namely

D(f) = O(log
O(1)
2 (rank(Mf ))). (1)

A quantum version of the conjecture, also seemingly hard to attack, says that the ǫ-bounded error
quantum communication complexity

Qǫ(f) = O(log
O(1)
2 (rankǫ(Mf ))), (2)

where rankǫ(Mf ) = min{rankǫ(Mf ) : ‖f − g‖∞ ≤ ǫ} [BdW01, LS09]. Note that proving this type
of conjectures needs to design efficient communication protocols.

Communication complexity for the class of XOR functions has recently drawn an increasing
amount of attention [ZS09, ZS10, LZ10, MO10, LLZ11, SW12, LZ13, TWXZ13]. The class contains
those functions F (x, y) = f(x⊕ y) for some function f : {0, 1}n → {0, 1}, where the inner operator
⊕ is the bit-wise XOR. Denote such functions F by f ◦ ⊕. This class includes important functions
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such as Equality (deciding whether x = y) [Yao79, NS96, Amb96, BK97, BCWdW01]), Hamming
Distance (deciding whether |x⊕ y| ≤ d) [Yao03, GKdW04, HSZZ06, ZS09, LLZ11, LZ13], and Gap
Hamming Distance (distinguishing |x ⊕ y| ≤ n/2 − √

n and |x ⊕ y| ≥ n/2 +
√
n) [JKS08, CR12,

She12, Vid12]. Communication complexity of XOR functions also exhibits interesting connections
to Fourier analysis of Boolean functions. First, the rank of the communication matrix Mf is

nothing but ‖f̂‖0, the number of nonzero Fourier coefficients of f . Thus for XOR functions, the
Log-rank Conjecture becomes the assertion that D(f ◦ ⊕) = O(logO(1) ‖f̂‖0); see [ZS09, MO10,
KS13, TWXZ13] for some investigations on this topic. The quantum Log-rank Conjecture becomes

Qǫ(f) = O(log
O(1)
2 (‖f̂‖0,ǫ)) accordingly, where ‖f̂‖0,ǫ = min{‖ĝ‖0 : ‖f − g‖∞ ≤ ǫ}. Second, as

shown in [LS09], the quantum communication complexity for computing f(x⊕ y) is known to be
lower bounded by an approximate version of the Fourier ℓ1-norm as follows.

Qǫ(f ◦ ⊕) = Ω(log ‖f̂‖1,ǫ), where ‖f̂‖1,ǫ = min{‖ĝ‖1 : ‖f − g‖∞ ≤ ǫ}. (3)

The tightness of this lower bound has been an intriguing question.
In this paper, we show that the bound in Eq.(3) is tight for functions f with low F2-degree, the

degree of f viewed as a polynomial in F2[x1, ..., xn]. For convenience of comparison, we copy the
lower bound in Eq.(3) into the following theorem.

Theorem 1. For any function f : {0, 1}n → {0, 1} with deg2(f) = d, and any ǫ ∈ (0, 1/2d+4), we
have

Ω(log ‖f̂‖1,ǫ) ≤ Qǫ(f ◦ ⊕) ≤ O
(
2d
(
log ‖f̂‖1,ǫ + log

n

ǫ

)
log(1/ǫ)

)
.

This theorem has two implications on the Log-rank Conjectures. First, it was known that
the above lower bound was smaller than log rankǫ(Mf◦⊕), and the above upper bound satisfies

‖f̂‖1,ǫ ≤ ‖f̂‖0,ǫ. Thus the above upper bound confirms the quantum Log-rank Conjecture (Eq.(2))
for low-degree XOR functions.

Corollary 2. The quantum Log-rank Conjecture holds for XOR functions f with F2-degree at most
O(log log ‖f̂‖1,ǫ).

Second, we also have a variant of the protocol in Theorem 1, and the variant is an exact protocol
in the sense that it has a fixed number of qubits exchanged besides that it has zero error. (For
comparison, the classical zero-error protocols usually refer to Las Vegas ones in which the number
of bits exchanged is a random variable that can be very large, and the complexity cost measure is
the expectation of the number of communication bits.) For exact protocols, we have the following
theorem, where the lower bound is from [BdW01]; we copy it into the following theorem, again for
the convenience of comparison.

Theorem 3. For any function f : {0, 1}n → {0, 1} with deg2(f) = d, we have

1

2
log2 ‖f̂‖0 ≤ QE(f ◦ ⊕) ≤ 2d+1 log2 ‖f̂‖0.

In particular, QE(f ◦⊕) is polynomially related to log rank(Mf◦⊕) when deg2(f) = O(log log ‖f̂‖0).

In [TWXZ13], it shows that D(f ◦ ⊕) ≤ O(2d
2/2 logd−2 ‖f̂‖0), which implies that the Log-rank

Conjecture holds for constant-degree XOR functions. The complexity bound in Theorem 3 has a
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better dependence on d, which enables us to obtain an upper bound of logO(1) ‖f̂‖0 for a larger
range of d. Another desirable property of the protocol in Theorem 3 is that unlike the ones in
[TWXZ13] and most other upper bounds in communication complexity, this protocol is efficient
not only in communication but also in computation, provided that the Fourier spectrum can be
efficiently encoded and decoded.

Techniques One common idea the protocols in this paper share with the ones in [TWXZ13] (as
well as many work in additive combinatorics) is degree reduction: The protocols have d rounds and
each round i reduces the problem of computation of a function fi to that of another function fi+1,
with deg2(fi+1) ≤ deg2(fi) − 1. Different than the protocols in [TWXZ13], the protocol in this
paper are not derived from parity decision tree algorithms. Neither do they use linear polynomial
rank or analyze any effect of linear restrictions on the Fourier domain as in [TWXZ13]. Instead, the
protocols in this paper merely use the definition of quantum Fourier transform over the additive
group of Fn

2 , and the efficiency of the protocols comes directly from the Fourier sparsity of the
corresponding function. Some new difficulty appears in this quantum Fourier sampling approach:
fi+1 is actually known only to Alice but not to Bob. This is solved by observing a simple (yet
important) property of the collection of derivatives of fi along all directions.

2 Preliminaries

Let [n] = {1, 2, ..., n}. For a vector v ∈ RN , its support is supp(v) = {i ∈ [N ] : vi 6= 0}. For
two n-bit strings x and y, their addition, denoted x ⊕ y (or sometimes just x + y), is bit-wise
over F2. For a set A ⊆ {0, 1}n, define A + A = {a1 + a2 : a1, a2 ∈ A}. In general, define
kA = {a1 + · · ·+ ak : ai ∈ A,∀i ∈ [k]}. It is easy to see that |kA| ≤ |A|k.

A Boolean function f : {0, 1}n → {0, 1} can be viewed as a multi-linear polynomial over F2,
whose degree is called F2-degree and denoted by deg2(f). For a function f : {0, 1}n → {0, 1} and a
direction vector t ∈ {0, 1}n−{0n}, the derivative ∆tf is defined by ∆tf(x) = f(x)+f(x+ t), where
both additions are over F2. It is easy to check that deg2(∆tf) < deg2(f) for any non-constant f
and any t ∈ {0, 1}n − {0n}. If one represents the range of a Boolean function by {+1,−1}, the
derivative becomes ∆tf(x) = f(x)f(x+ t).

For a real function f : {0, 1}n → R, one can define its Fourier coefficients by f̂(α) = 2−n
∑

x f(x)χα(x),
where the characters χα(x) = (−1)α·x are orthogonal with respect to the inner product 〈f1, f2〉 =
2−n

∑
x[f1(x)f2(x)]. The function f can be written as f =

∑
α f̂(α)χα. The Fourier sparsity of

f , denoted by ‖f̂‖0, is the number of nonzero Fourier coefficients of f . For any p > 0, the ℓp-

norm of f̂ , denoted by ‖f̂‖p, is (
∑

α |f̂(α)|p)1/p. In particular, ‖f̂‖1 =
∑

α |f̂(α)|. One can also

define an approximate version of the Fourier ℓ1-norm by ‖f̂‖1,ǫ = min{‖ĝ‖1 : ‖f − g‖∞ ≤ ǫ} where

‖f − g‖∞ = maxx |f(x)− g(x)|. Similarly define ‖f̂‖0,ǫ = min{‖ĝ‖0 : ‖f − g‖∞ ≤ ǫ}.
For any function f : {0, 1}n → R, Parseval’s Indentity says that

∑
α f̂

2
α = Ex[f(x)

2]. When the

range of f is {+1,−1}, this becomes
∑

α f̂
2
α = Ex[f(x)

2] = 1.
The quantum Fourier transform on Fn

2 is defined by
∑

x cx|x〉 7→ 2−n/2
∑

x,α cxχα(x)|α〉, and
it is easily seen to be a unitary operator. The transform can be implemented by H⊗n where

H = 1√
2

(
1 1
1 −1

)
is the Hadamard matrix.

The following lemma extends Chernoff’s bound to general domains; see, for example, [DP12]
(Problem 1.19).
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Lemma 4. Suppose we have random variables Xi ∈ [ai, bi] for i = 1, 2, ..., n, and let X =
∑n

i=1Xi.
Then

Pr[|X −E[X]| > t] < 2e
− 2t2∑

i(bi−ai)
2 .

In particular, if each Xi takes values in [−1, 1], then

Pr[|X −E[X]| > t] < 2e−
t2

4n .

3 Protocol

In this section, we will show Theorem 1. We will first mention how to convert Fourier ℓ1-norm to
Fourier ℓ0-norm in Section 3.1, and then show the main protocol in Section 3.2.

3.1 From ℓ1-norm approximation to ℓ0-norm approximation

In [BS91, Gro97], the sampling of characters with probability proportional to Fourier coefficients
(in abstract value) is studied. Given a function f : {0, 1}n → R, we sample α ∈ {0, 1}n with
probability |f̂(α)|/‖f̂‖1. We refer to a sample from this process as a Fourier ℓ1-sample. Using
Lemma 4, it is not hard to show the following lemma.

Lemma 5 (Grolmusz, [Gro97]). For a function g : {0, 1}n → R, independently draw M =

O(‖ĝ‖21n log(1/λ)/δ2) Fourier ℓ1-samples α1, ..., αM . Let h(x) = ‖ĝ‖1
M

∑M
i=1 sign(ĝ(α

i))χαi(x).
Then

Pr[∀x ∈ {0, 1}n, |h(x) − g(x)| ≤ δ] ≥ 1− λ.

The original lemma actually considers the probability of sign(h(x)) = sign(g(x)), but the same
proof works for the above statement. We include a proof here for completeness.

Proof. Let Zi = sign(ĝ(αi))χαi(x) ∈ {+1,−1}. Note that

E[Zi] =
∑

α∈{0,1}n
|ĝ(α)|sign(ĝ(α))χα(x)/‖ĝ‖1 = g(x)/‖ĝ‖1.

So by Lemma 4, we have

Pr[∃x, |h(x)− g(x)| > δ] ≤ 2nPr
[∣∣∣
∑

i

Zi −
g(x)M

‖ĝ‖1

∣∣∣ > δM

‖ĝ‖1

]
≤ 2n+1e

− δ2M

4‖ĝ‖2
1 ≤ λ

3.2 Protocol

Now we describe the protocol in this section. The setup is as follows. Suppose that there is
a function f : {0, 1}n → {+1,−1}, which can be approximated by a Fourier sparse function
g : {0, 1}n → R satisfying that ‖f − g‖∞ ≤ ǫ. The Fourier expansion of g is g =

∑
α ĝ(α)χα and

let A = supp(ĝ). In addition, let d = deg2(f) and N = 2n. For each k ∈ {0, 1, ..., d − 1}, Alice and

Bob fix an encoding Ek : {0, 1}n → [|A|2k ] s.t. for any α, β ∈ 2kA, Ek(α) 6= Ek(β). Finally, for a
real function h : {0, 1}n → R define ∆th(x) = h(x)h(x + t). The algorithm is in Box Algorithm

1.
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Algorithm 1 Protocol QuantumXOR for f(x, y)

Input: x to Alice, y to Bob

Output: ans ∈ {+1,−1}.
Registers: C is a 1-qubit register and M is an n-qubit regiester.
Assumption: f has an approximation g with ‖f − g‖∞ ≤ ǫ and supp(ĝ) = A.

1: For each k ∈ {0, 1, ..., d − 1}, Alice and Bob fix an encoding Ek : {0, 1}n → [|A|2k ] s.t. for any
α, β ∈ 2kA, Ek(α) 6= Ek(β).

2: k := 0, ans := 1; f (k) = f , g(k) = g.
3: while deg2(f

(k)) ≥ 1 do

4: Alice creates the state

|ψ〉 = 1√
2

(
|0〉C |0〉M + |1〉C

∑

α∈{0,1}n

ĝ(k)(α)

‖ĝ(k)‖2
χα(x)|Ek(α)〉M

)
(4)

and sends register C and the last min{n, ⌈2k log |A|⌉} qubits of register M to Bob.
5: Bob applies the following unitary transform:

on |1〉C , apply |Ek(α)〉M → χα(y)|Ek(α)〉M ,

and sends the resulting state |ψ′〉 back to Alice.
6: Alice applies the following unitary transform:

on |1〉C , apply |Ek(α)〉M → |α〉M .

7: Alice applies the quantum Fourier transform on register M .
8: Alice measures register M in the computational basis and observes an outcome t ∈ {0, 1}n.
9: Alice measures register C in {|+〉, |−〉} basis and observes an outcome b ∈ {+1,−1}.

10: ans := b · ans.
11: if t = 0 then

12: Alice outputs ans and terminates the whole protocol,
13: else

14: f (k+1) := ∆tf
(k), g(k+1) := ∆tg

(k), k := k + 1,
15: Alice sends deg2(f

(k)) to Bob.
16: end if

17: end while

18: Alice outputs ans · f (k)(0) and terminates the program.
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Lemma 6. For any function f : {0, 1}n → {+1,−1} and g : {0, 1}n → R, if ‖f − g‖∞ ≤ ǫ, then

for any t1, ..., tk ∈ {0, 1}n, ‖∆t1 · · ·∆tkf −∆t1 · · ·∆tkg‖∞ ≤ (1 + ǫ)2
k − 1.

Proof. When taking derivative once, the approximation error increases as follows.

|∆tf(x)−∆tg(x)| = |f(x)f(x+ t)− g(x)g(x + t)| ≤ (1 + ǫ)2 − 1 = 2ǫ+ ǫ2.

Using an induction, we can easily see that taking k derivatives has the following effect on the
accuracy.

‖∆t1 · · ·∆tkf −∆t1 · · ·∆tkg‖∞ = (1 + ǫ)2
k − 1.

Lemma 7. Suppose that f : {0, 1}n → {+1,−1} and g : {0, 1}n → R has ‖f − g‖∞ ≤ ǫ < 2−d−1,
where d = deg2(f). Then Protocol QuantumXOR computes f(x+ y) by at most 2d+2 log ‖ĝ‖0 qubits
of communication, and the error probability is at most 2dǫ.

Proof. Let us analyze the protocol step by step. (For the convenience of understanding, first
think of k = 0 in the following.) In Step (4), it is easy to see that the ℓ2-norm of the state is
1
2 + 1

2

∑
α |ĝ(k)(α)|2/‖ĝ(k)‖22 = 1, thus the state in Eq.(4) is indeed a quantum pure state. After

Step (5), the state is

|ψ′〉 = 1√
2

(
|0〉C |0〉M + |1〉C

∑

α∈{0,1}n

ĝ(k)(α)

‖ĝ(k)‖2
χα(x+ y)|Ek(α)〉M

)
.

After decoding α in Step (6) and applying the quantum Fourier transform in Step (7), Alice
holds the state

|ψ′′〉 = 1√
2N


|0〉C

∑

t∈{0,1}n
|t〉M + |1〉C

∑

α∈{0,1}n,t∈{0,1}n

ĝ(k)(α)

‖ĝ(k)‖2
χα(x+ y)χα(t)|t〉M




=
1√
N

∑

t∈{0,1}n

1√
2


|0〉C +

∑

α∈{0,1}n

ĝ(k)(α)

‖ĝ(k)‖2
χα(x+ y + t)|1〉C


 |t〉M

=
1√
N

∑

t∈{0,1}n

1√
2

(
|0〉C +

g(k)(x+ y + t)

‖ĝ(k)‖2
|1〉C

)
|t〉M .

After the measurement in Step (8), Alice obtains a random direction t, and the state left in

register C is 1√
2

(
|0〉C+ g(k)(x+y+t)

‖̂g(k)‖2
|1〉C

)
. Then in the next step, measuring register C in the {+1,−1}

basis gives f (k)(x+ y + t) with high probability. Indeed, by Parseval’s Identity,

‖ĝ(k)‖2 = ‖g(k)‖2 =
√
Ex[g(k)(x)2] ≤ (1 + ǫ)2

k

. (5)

Thus when Alice measures C, she observes 1√
2
(|0〉 + f (k)(x+ y + t)|1〉) with probability

(
1

2
+
f (k)(x+ y + t)g(k)(x+ y + t)

2‖ĝ(k)‖2

)2

≥
(
1

2
+

1− ((1 + ǫ)2
k − 1)

2(1 + ǫ)2k

)2

= (1+ ǫ)−2k ≥ 1− 2kǫ, (6)
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where the first inequality uses Lemma 6 and Eq.(5).
Now we explain Step (10) and (12). If t happens to be 0, then Alice already gets g(k)(x + y)

which well approximates f (k)(x+ y). In general t 6= 0. Turning around the definition of derivative,
∆tf(x+ y) = f(x+ y)f(x+ y+ t), we have that f(x+ y) = f(x+ y+ t)∆tf(x+ y). Since we have
obtained f(x + y + t), the problem of computing f(x + y) reduces to that of computing ∆tf on
the same input x+ y. This reduction is implemented in Step (10), and we let f (k+1) = ∆tf

(k) and
go to the next iteration. Therefore, each round reduces the problem to computing the derivative,
which is a lower degree polynomial, on the same input. Finally, when the degree of the polynomial
is 0, the function is constant, thus Alice can easily compute it as the last line after the while loop
in the algorithm.

One issue in this approach is that only Alice knows t after Step 8, but Bob does not know t and
consequently does not know f (k+1) = ∆tf

(k) for the next round. Also note that it is unaffordable
for Alice to send the whole t to Bob. Therefore, it seems hard for Alice and Bob to coordinate on
Ek. The solution here is to note that for all h : {0, 1}n → R, and for all t ∈ {0, 1}n, we have

supp(∆̂th) ⊆ supp(ĥ) + supp(ĥ).

Indeed, denote ht(x) = h(x+ t), then

ĥt(α) = Ex[h(x+ t)χα(x)] = Ex[h(x)χα(x)χα(t)] = χα(t)ĥ(α).

Therefore,

∆̂th(α) = ĥ · ht(α) =
∑

β

ĥ(β + α)ĥt(β) =
∑

β

ĥ(β + α)ĥ(β)χt(β). (7)

If α /∈ supp(ĥ) + supp(ĥ), then there is simply no β s.t. both ĥ(β) and ĥ(β +α) are nonzero. This

implies that supp(∆̂th) ⊆ supp(ĥ) + supp(ĥ). Using the same argument, it is easily seen that in
general, for any t1, ..., tk ∈ {0, 1}n, the derivative g(k) = ∆t1 · · ·∆tkg has Fourier support contained
in 2kA. Observe that the only operation Bob makes in each round k is to add a phase χα(y) on

|Ek(α)〉. So Alice and Bob can fix an encoding Ek : {0, 1}n → [|A|2k ] s.t. Ek(α) 6= Ek(β) for

any α, β ∈ 2kA. 1 Since for any t1, ..., tk ∈ {0, 1}n, Ek(supp(g
(k))) ⊆ [|A|2k ], the encoding Ek is

injective on supp(g(k)), and thus Alice and Bob can decode in Steps (5) and (6). This also explains
why Alice only needs to send the last min{n, ⌈2k log |A|⌉} qubits of register M to Bob in Step (4).

Next we analyze the error probability. The protocol is correct as long as in each iteration k, the
observed outcome b in Step (9) is equal to f (k)(x+ y). Since each iteration k has error probability
2kǫ as showed in Eq.(6), applying the union bound over k = 1, 2, ..., d− 1 gives that the probability
that there exists one round k in which the output bit disagrees with ∆t1,...,tk−1

f(x+ y + tk) is at

most
∑d−1

k=0 2
kǫ ≤ 2dǫ.

Finally we analyze the communication cost. In the while loop, only Step (4) and (5) need
communication of 1 + ⌈2k log |A|⌉ qubits each. Since taking derivative decreases the F2-degree by
at least 1, we know that k ≤ deg2(f) − 1 before the while loop ends. The total communication
cost is at most

d−1∑

k=0

2(1 + ⌈2k log |A|⌉) ≤ 2d+1 log |A|+ 2d < 2d+2 log |A|

1It is admittedly true that for a particular set of directions t1, ..., tk ∈ {0, 1}n, the Fourier spectrum for g(k) =
∆t1 · · ·∆tkg is only a subset of 2kA, thus ĝ(k)(α) = 0 for some α ∈ 2kA. But this does not affect the correctness of
the protocol, though some communication is wasted in coping with Bob’s ignorance of t.
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qubits.

Now we are ready to prove Theorem 1.

Theorem 1 (Restated). For any function f : {0, 1}n → {0, 1} with deg2(f) = d, and any ǫ ∈
(0, 1/2d+4), we have

Ω(log ‖f̂‖1,ǫ) ≤ Qǫ(f ◦ ⊕) ≤ O
(
2d
(
log ‖f̂‖1,ǫ + log

n

ǫ

)
log(1/ǫ)

)
.

Proof. The lower bound is from [LS09]. For the upper bound, by definition, there is a function
g : {0, 1}n → R with ‖f − g‖∞ ≤ ǫ and ‖ĝ‖1 = ‖f̂‖1,ǫ. We first use Lemma 5 to get a func-

tion h with ‖f − h‖∞ ≤ 2ǫ and ‖ĥ‖0 ≤ O(‖ĝ‖21n/ǫ2). Then we use the protocol QuantumXOR

and Lemma 7 to obtain a protocol of error probability 2d+2ǫ ≤ 1/4 and communication cost
O(2d log ‖ĥ‖0) = O(2d(log ‖ĝ‖1 + log n

ǫ )). Repeat the protocol for k = O(log(1/ǫ)) times to reduce
the error probability to ǫ, and the communication cost is

O
(
2d
(
log ‖ĝ‖1 + log

n

ǫ

)
log(1/ǫ)

)
= O

(
2d
(
log ‖f̂‖1,ǫ + log

n

ǫ

)
log(1/ǫ)

)
.

Given the above proof, Theorem 3 is an easy corollary.

Theorem 3 (Restated). For any function f : {0, 1}n → {0, 1} with deg2(f) = d, we have

1

2
log2 ‖f̂‖0 ≤ QE(f ◦ ⊕) ≤ 2d+1 log2 ‖f̂‖0.

In particular, QE(f ◦⊕) is polynomially related to log rank(Mf◦⊕) when deg2(f) = O(log log ‖f̂‖0).
Proof. The lower bound is from [BdW01]. The upper bound is from Lemma 7 by letting g = f .

Finally we notice that all the steps, except for the encoding and decoding of Ek, can be imple-
mented efficiently.

Proposition 8. The protocol in Theorem 3 needs only O(dn) Hadamard gates, C-NOT gates and
single-qubit measurements, 2d calls of f , plus the computation for encoding and decoding of {Ek}.
Proof. The quantum Fourier transform on {0, 1}n can be implemented by n Hadamard gates, and
all other steps except for the encoding and decoding can also be implemented using O(n) CNOT
gates and single-qubit measurements. The only step that may need explanation is when Alice

prepares the initial state

|ψ〉 = 1√
2

(
|0〉C |0〉M + |1〉C

∑

α∈{0,1}n
f̂ (k)(α)χα(x)|Ek(α)〉M

)

This can indeed by implemented easily as follows. Alice prepares |+〉C |0〉M , and conditioned on
C being |1〉, applies quantum Fourier transform on M to get 1√

N

∑
z |z〉M . Now Alice adds the

phase f (k)(z) on |z〉 by 2k calls to f . After applying the quantum Fourier transform again on

M , Alice obtains the state 1
N

∑
α

∑
z f

(k)(z)χα(z)|α〉M =
∑

α f̂
(k)(α)|α〉M . Then Alice adds the

phase χα(x) on |α〉M and gets
∑

α f̂
(k)(α)χα(x)|α〉M . Finally Alice encodes α and gets the state

∑
α f̂

(k)(α)χα(x)|Ek(α)〉M , as desired.
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