
Near Linear Time Approximation Schemes for Uncapacitated and
Capacitated b–Matching Problems in Nonbipartite Graphs∗

Kook Jin Ahn† Sudipto Guha‡

Abstract

We present the first near optimal approximation schemes for the maximum weighted (unca-
pacitated or capacitated) b–matching problems for non-bipartite graphs that run in time (near)
linear in the number of edges. For any δ > 3/

√
n the algorithm produces a (1 − δ) approxi-

mation in O(mpoly(δ−1, logn)) time. We provide fractional solutions for the standard linear
programming formulations for these problems and subsequently also provide (near) linear time
approximation schemes for rounding the fractional solutions. Through these problems as a vehi-
cle, we also present several ideas in the context of solving linear programs approximately using
fast primal-dual algorithms. First, even though the dual of these problems have exponentially
many variables and an efficient exact computation of dual weights is infeasible, we show that we
can efficiently compute and use a sparse approximation of the dual weights using a combination
of (i) adding perturbation to the constraints of the polytope and (ii) amplification followed by
thresholding of the dual weights. Second, we show that approximation algorithms can be used
to reduce the width of the formulation, and faster convergence.

1 Introduction
The b–matching problem is a fundamental problem with a rich history in combinatorial optimiza-
tion, see [29, Chapters 31–33]. In this paper we focus on finding near optimal approximation
schemes for finding fractional as well as integral solutions for maximum b–matching problems
in non-bipartite graphs. The algorithms produce a (1 − O(δ)) approximations and run in time
O((m+ n) · poly(logn, 1/δ)) time for δ ≥ 3/

√
n.

Definition 1. [29, Chapter 31] In the b–matching problem we are given a weighted (possibly non-
bipartite) graph G = (V,E, {wij}, {bi}) where wij is the weight of edge (i, j) and bi is the capacity
of the vertex i. Let |V | = n and |E| = m. We assume bi are integers in [1,polyn]. We can select
an edge (i, j) with multiplicity yij such that

∑
j:(i,j)∈E yij ≤ bi for all vertices i and the goal is to

maximize
∑

(i,j)∈E wijyij. Let B =
∑
i bi, and note B ≥ n.

Definition 2. [29, Chapters 32 & 33] In the Capacitated b–matching problem we have an
additional restriction that the multiplicity of an edge (i, j) ∈ E is at most cij where cij are also
given in the input (also assumed to be an integer in [0, polyn]). Observe that we can assume
cij ≤ min{bi, bj} without loss of generality. A problem with cij = 1 for all (i, j) ∈ E is also referred
to as an “unit capacity” or “simple” b–matching problem in the literature.

∗A previous extended abstract of this paper appeared in SODA 2014 [2].
†Google, 1600 Amphitheatre Parkway Mountain View, CA 94043. Email kookjin@google.com. This work was

done while the author was at University of Pennsylvania.
‡Department of Computer and Information Sciences, University of Pennsylvania, Philadelphia, PA. Email:

sudipto@cis.upenn.edu. Research supported in part by NSF Award CCF-1546151.

1

ar
X

iv
:1

30
7.

43
55

v4
 [

cs
.D

S]
 1

8
Ju

n
20

18

Müller-Hannemann and Schwartz [26] provide an excellent survey of different algorithms for
variants of b–matching. Approaches that solve regular matching do not extend to b-matchings
without significant loss of efficiency. We revisit some of the reasons shortly. In the interest of
space we summarize the main results for the b-matching problem briefly. Gabow [14] gave an
O(nm logn) algorithm for the unweighted (wij = 1) capacitated problem. For cij = 1 this reduces
to O(min{

√
Bm,nm logn}). For the weighted uncapacitated case Anstee [4] gave an O(n2m) algo-

rithm; an Õ(m2) algorithm is in [14]. Letchford et al. [23], building on Padberg and Rao [27],
gave an O(n2m log(n2/m)) time algorithm for the decision version of the weighted, uncapaci-
tated/capacitated problem. In summary the best exact algorithms to date for the b–matching
problem in general graphs are super–linear (see [29, Chapter 31]) in the size of the input.

It is known that solving the bipartite relaxation for the weighted b–matching problem within a
(1 − δ) approximation (for any δ > 0) will always produce a (2

3 − δ)-approximation algorithm for
general non-bipartite graphs [12, 13]. This approximation is also tight (consider all bi = 1, wij = 1
for a triangle graph) — no approach which only uses bipartite relaxations will breach the 2

3 barrier.
Distributed algorithms with O(1) or weaker approximation guarantees have been discussed by
Koufogiannakis and Young [22]. Mestre [25] provided a (2

3 − δ) approximation algorithm running
in O(m(maxi bi) log 1

δ) time for weighted unit capacity b–matching [25]. However a constant factor
approximation does not seem to be a natural stopping point.

Given the recent growth in data sets and sizes of the graphs defining instances of matching it
is natural to consider approximation algorithms that trade off the quality of the solution versus
running time. Typically these algorithms provide an f -approximation, that is, for any instance we
return a feasible solution whose value is at least f times the value of the true optimum for that
instance (maximum version). In particular efficient algorithms which are (1 − δ)-approximation
schemes (for any absolute constant δ > 0, independent of n) and faster than computing the opti-
mum solution are useful in this context. It would be preferable that the running time depended
polynomially on 1/δ (instead of exponential dependence) – even though δ is assumed constant. It
is possible that each vertex has bi =

√
n and a linear dependence on B is not a near linear time

algorithm. This paper provides the first near linear time approximation scheme for b–matching.

1.1 Existing Approaches and Challenges

We begin with the natural question about similarity and differences vis-a-vis weighted matching,
which correspond to bi = 1 for all vertices i. Efficient approximation schemes exist for maximum
weighted matching, even for the non-bipartite case, see [9, 10] and references therein. All of these
algorithms maintain a feasible matching and repeatedly use augmentation paths – paths between
two unmatched vertices such that the alternate edges are matched. In the non-bipartite case, if
the two endpoints are the same vertex then this path is known as a “blossom”. An efficient search
for good augmentation paths, in the weighted case, requires contraction of blossoms. However this
approach does not extend to non-bipartite b–matching for the case bi > 1. The augmentation
structures needed for b–matching are not just blossoms but also blossoms with forests that are
attached to the blossom (often known as petals/arms), see the discussion in [26]. Searching over
this space of odd cycles with attached forests is significantly more difficult and inefficient. In the
language of linear programming (which we discuss in more detail shortly), augmentation paths
preserve primal feasibility for the matching problem. In our approach we explicitly maintain a
primal infeasible solution (by violating the capacities) except at the last step.

It is known that if we copy each node bi times then the b–matching problems reduce to maximum
weighted matching. As an example the pairs of edges (u, v) and (v, w) where the vertex capacities
are 3, 2, 3 as shown, correspond to 8 vertices and 12 edges.

2

u

3

v

2

w

3

u1

u2

u3

v1

v2

w1

w2

w3

The size of the graph increases significantly under such a transformation – consider a star graph
where the central node has bi = n and the leaf nodes have bi = 1 – replication of that central node
will make the number of edges n2. If we are seeking near linear running times then transformations
such as copying do not help since the number of edges and vertices can increase by polynomial
factors. This blowup was known since [14], judicious use of this approach has been used to achieve
superlinear time (in n) optimal algorithms that also depend on B, for example as in [15]. However
near linear time algorithms have remained elusive.

Linear Programming Formulations. Consider the following definition and linear program-
ming formulation LP1 for the uncapacitated b–matching problem.

Definition 3 (Odd Sets and Small Odd Sets). Given a graph G = (V,E), with |V | = n and
|E| = m, and non-negative integer bi for each i ∈ V , for each U ⊆ V let ‖U‖b =

∑
i∈U bi. Define

O = {U | ‖U‖b is odd and ≥ 3, U has more than one vertex}. Let Oδ = {U | U ∈ O; ‖U‖b ≤ 1/δ}.

β∗ = LP1(b) = max
∑

(i,j)∈E

wijyij∑
j:(i,j)∈E

yij ≤ bi ∀i ∈ V∑
(i,j)∈E:i,j∈U

yij ≤ b‖U‖b/2c ∀U ∈ O

yij ≥ 0 ∀(i, j) ∈ E

(LP1)

The constraints of LP1 represent the “b-matching polytope”; any vector in this polytope can be
expressed as a convex combination of integral b–matching solutions, see [29, Chapter 31].

The constraints in LP1 correspond to the vertices and odd sets. The variable yij (which is
the same as yji) corresponds to the fractional relaxation of the “multiplicity” of the edge (i, j) in
the uncapacitated b–matching. It is known that the formulation LP1 has an integral optimum
solution when bi are integers. The formulation has m variables and 2Ω(n) constraints – but can be
solved in polynomial time since the oracle for computing the maximum violated constraint can be
implemented in polynomial time using standard techniques [23]. That approach is the “minimum
odd-cut” approach of Padberg and Rao [27]. If we only retain the constraints for odd sets U ∈ Oδ
then a fractional solution of the modified system, when multiplied by (1− δ), satisfies LP1. That
relaxed formulation, still has n1/δ constraints which is exponential in 1/δ. Note that an approximate
solution of the dual does not immediately provide us a solution for the primal1.

It may be tempting to postulate that applying existing multiplicative weight algorithms such as
[24, 28, 18] and many others (see the surveys [11, 5]) can help provide us approximate solutions to
LP1 efficiently. However that is not the case due to several reasons. First, the existing algorithms
have to maintain weights for each of the n1/δ constraints. Second, even if we are provided an

1In subsequent work, in manuscript [3], we show that we can solve the dual to identify the subgraph containing
the maximum uncapacitated b–matching; but that manuscript uses the results in this paper to construct an actual
feasible primal solution on that subgraph. Further the methods of [3] do not apply to the dual of the capacitated
b–matching problem.

3

approximately feasible fractional solution, no efficient algorithm exists that easily computes the
maximum violation of the constraints in LP1. Moreover it is nontrivial to verify that we have
already achieved an approximately feasible solution. The only known algorithms for computing
the maximum violation (for just the odd-sets) still correspond to the minimum odd-cut problem.
Those solutions are at least cubic (see [23]).

Capacitated b–Matching The situation is more dire in presence of edge capacities. The
capacitated b–matching problem has two known solution approaches. In the first one [29, Theorem
32.2, page 564], the matching polytope is defined by where the set constraints are for every subset
U and every subset F of the cut defined by U .

∑
j:(i,j)∈E

yij ≤ bi ∀i ∈ V

yij ≤ cij ∀(i, j) ∈ E∑
(i,j)∈E:i,j∈U

yij +
∑

(i,j)∈F

yij ≤

1
2

‖U‖b +
∑

(i,j)∈F

cij

 ∀U ⊆ V, F ⊆ {(i, j)|i ∈ U, j 6∈ U}

and ‖U‖b +
∑

(i,j)∈F cij is odd
yij ≥ 0 ∀(i, j) ∈ E

(LP2)

Expressing the dual of LP2 is already nontrivial, let alone any combinatorial manipulation.
The second approach corresponds to compressed representations introduced in [14], see also [29,
Theorem 32.4,page 567]. It corresponds to subdividing each edge e = (i, j) to introduce two new
vertices pei and pej and creating three edges, where bpei = cij as shown in the example below. There
are no capacities on edges but we are constrained to always saturate the newly created vertices
pei, pej for every edge (i, j), i.e.,

yipei + ypeipej = cij and ypejj + ypeipej = cij

i

3

j

4

u

3
c=3 c=2

i

3 3

pij,i

3

pij,j

j

4 2

pju,j

2

pju,u

u

3

Observe that the equality rules out simply scaling the vector y by a constant smaller than 1. The
all-zero vector 0 is not even in the polytope! Even though the polytope is convex, the lack of
closure under affine transformations makes it unwieldy for most known techniques that produce
fast approximate solutions. The transformation creates unusual difficulties for approaches that are
not based on linear programming as well, see [21]. New ideas are required to address these issues
and the development of such is the goal of this paper.

1.2 Contributions

The paper combines several novel structural properties of the b–matching polytope with novel
modifications of the multiplicative weights method, and uses approximation algorithms to efficiently
solve the subproblems produced by the said multiplicative weights method. All three of these facets
function in tandem, and the overall technical theme of the solution are independently of interest.

Main Results We assume that the edges in the graph G = (V,E) are presented as a read only list
〈. . . , (i, j, wij), . . .〉 in arbitrary order where wij is the weight of the edge (i, j). The space complexity
will be measured in words and we assume that the integers in the input are bounded from above
by polyn to avoid bit-complexity issues. We prove the following theorems about b–matching.

4

Theorem 1 (Fractional b–matching). Given any non-bipartite graph, for any 3√
n
< δ ≤ 1/16,

we find a (1−O(δ))-approximate (to LP1) fractional weighted b-matching using additional “work”
space (space excluding the read-only input) O(n poly(δ−1, lnn)) and making T = O(δ−4(ln(1/δ)) lnn)
passes over the list of edges. The running time2 is O(mT + n poly(δ−1, lnn)).

Theorem 2 (Integral b–matching). Given a fractional b-matching y for a non-bipartite graph
which satisfies the constraints in the standard LP formulation and has weight W0, we find an
integral b–matching of weight at least (1 − 2δ)W0 in O(m′δ−3 ln(1/δ)) time and O(m′/δ2) space
where m′ = |{(i, j)|yij > 0}|.

The computation for the capacitated b–matching problem maintains the invariant that edge
capacities are never violated at any stage of the algorithm. This yields a new approximation
version of the capacitated matching problem where we exceed the vertex capacities but do not
exceed the edge capacities at all and (almost) preserve the objective function. We prove:

Theorem 3 (Fractional, Capacitated). Given any weighted non-bipartite graph, for any 3√
n
<

δ ≤ 1/16, we find a (1 − O(δ))-approximate fractional capacitated b-matching using O(mR/δ +
min{B,m} poly(δ−1, lnn)) time, O(min{m,B}poly(δ−1, lnn)) additional “work” space with R =
O(δ−4(ln2(1/δ)) lnn) passes over the list of edges where B =

∑
i bi. The algorithm returns a solution

{ŷij} such that the subgraph Ê = {(i, j)|(i, j) ∈ E, ŷij > 0} satisfies
∑

(i,j)∈Ê wijcij ≤ 16Rβ∗,c where
β∗,c is the weight of the integral maximum capacitated b–matching.

The restriction on
∑

(i,j)∈Ê wijcij is explicitly used in the next theorem.

Theorem 4 (Integral, Capacitated). Given a feasible fractional solution y to the linear pro-
gram referred in Theorem 3 for a non-bipartite graph such that the optimum solution is at most β∗,c
and

∑
(i,j)∈Ê wijcij ≤ 16Rβ∗,c where Ê = {(i, j)|yij > 0}, we find an integral b-matching of weight

at least (1− δ)
∑

(i,j)wijyij − δβ∗,c in O(m′Rδ−3 ln(R/δ)) time and O(m′/δ2) space where m′ = |Ê|
is the number of nontrivial edges (as defined by the linear program) in the fractional solution. As
a consequence we have a (1−O(δ))-approximate integral solution.

Technical Themes To prove the Theorems 1–4 this paper makes novel contributions towards
the structure of b–matching polytope as well as techniques for speeding up multiplicative weights
methods.

Multiplicative Weights Methods. We show that we can use existing constant factor approxi-
mation algorithms for b–matching to produce a (1− δ)-approximate solution. The approximation
factor surfaces in the speed of convergence of the multiplicative weights method used but the final
solution produced is a (1− δ) approximation. This provides fairly straightforward proofs for near
linear time (1−δ) approximation schemes for bipartite graphs using standard multiplicative weights
methods. While the results for bipartite case in this paper do not completely dominate existing
results (e.g., [1]), they serve as a warmup for non-bipartite graphs. Many of the pieces which are
demonstrated with relatively less complexity in the bipartite case (initial solutions, Lagrangians,
etc.) are also re-used in the non-bipartite case.

We then use specific structural properties of the b–matching polytope (and perturbations, de-
scribed shortly) to show that the non-bipartite b–matching problem can be solved via a sequence of
weighted bipartite b–matching problems. The overall approach can be viewed as dual thresholding
where we only focus on the large weights in the multiplicative weights method (which are candidate

2The exact exponent of δ, logn in the poly() term depends on [20, 6] and we omit further discussion in this paper.

5

dual variables) and ignore the remainder. If we modify (perturb) the b–matching polytope then the
number of constraints with large weights is small. However the choice of these constraints vary from
iteration to iteration – and our algorithm differs from the application of standard multiplicative
weights techniques in this aspect. Naturally, this requires a proof that the modified approach con-
verges. This is shown in Section 3 and is used to prove Theorem 1 for uncapacitated b–matching.
The framework extends to capacities helping prove Theorem 3.

Polytope and Perturbations. We investigate the laminarity of the sets corresponding to the
unsatisfied constraints in LP1 at the neighborhood of any infeasible primal. A collection of sets L
is a laminar family if for any two sets U,U ′ ∈ L, U ∩ U ′ is either U , U ′ or ∅. We show that if we
modify the polytope by introducing a small perturbation, then the constraints corresponding to
the small odd sets that are “almost maximally violated” define a laminar family. Since a laminar
family has O(n) sets, this provides the small subset of constraints to the modified multiplicative
weights method (note that the total number of constraints is Ω(n1/δ)). In that sense this approach
generalizes the minimum odd-cut approach.

Many algorithms using the minimum odd-cut approach rely on the following fact: the sets
corresponding to the nonzero variables of the optimum dual solution of LP1 define a laminar family
(see Giles and Pulleyblank [16], Cook [7], Cunningham and Marsh [8], and also Schrijver [29]).
However all these techniques rely on the exact optimality of the pair of primal and dual solutions.
In fact, such relationships do not exist for arbitrary candidate primal or dual solutions. It is
surprising that the maximally violated constraints of the perturbed polytope shows this property.
This is shown in Theorem 5.

Theorem 5. For a graph G with n vertices and any non-negative edge weights ŷ suppose that we
are given ŷ satisfying ŷii = 0 for all i and

∑
j:(i,j)∈E ŷij ≤ bi for all i. Define a perturbation of

bi, bU = b‖U‖b/2c as b̃i = (1− 4δ)bi and b̃U = b‖U‖b/2c −
δ2‖U‖2

b
4 . Let λ̂U = (

∑
(i,j)∈E:i,j∈U ŷij)/b̃U

and λ̂ = maxU∈Oδ λ̂U . If δ ≤ 1
16 and λ̂ ≥ 1 + 3δ, the set L1 = {U : λ̂U ≥ λ̂− δ3;U ∈ Oδ} forms a

laminar family. Moreover for any x ≥ 2 we have |{U : λ̂U ≥ λ̂−δx;U ∈ Oδ}| ≤ n3+(n/δ)1+δ(x−3)/2
.

In other words, if we were provided an infeasible (with respect to the perturbed polytope) primal
solution {ŷij} then the constraints that are almost as violated as the maximum violated constraint
of the perturbed polytope (in ratio of LHS to RHS) correspond to a laminar family. Intuitively,∑

(i,j):i,j∈U ŷij = λ̂U b̃U and for a fixed λ̂U , if we could ignore the floor and ceil functions, the right
hand side is a concave function of ‖U‖b. As a result if two such U1, U2 intersect at a non-singleton
odd set U3 6= U1, U2 (the union U4 6= U1, U2 is also an odd set) then max{λ̂U3 , λ̂U4} will exceed
min{λ̂U1 , λ̂U2} by δ3. Of course, the floor and ceil functions, singleton sets cannot be ignored and
more details are required, and Theorem 5 is proved in Section 4. However Theorem 5, does not
give us an algorithm. But the laminarity of the “almost maximally violated” constraints allow us
to design an algorithm that finds these constraints (small odd sets) without the knowledge of the
maximum violation. Since the laminarity guarantees that at most O(n) such sets can be found, we
can compute the maximum violated constraint more efficiently than the existing algorithms. This
is formalized in Theorem 6.

Theorem 6. For a graph G with n vertices and {ŷij} and the definitions of {λ̂U} exactly as in the
statement of Theorem 5 and δ ∈ (0, 1

16], if λ̂ ≥ 1+3δ we can find the set L2 = {U : λ̂U ≥ λ̂− δ3

10 ;U ∈
Oδ} in O(m′ + n poly{δ−1, logn}) time using O(nδ−5) space where m′ = |{(i, j)|ŷij > 0}|.

The proof of Theorem 6 combines the insights of the minimum odd-cut approach [27] along
with the fact that L2 ⊆ L1 is a laminar family as proved in Theorem 5.

6

Roadmap. Theorems 5 and 6 are proved in Sections 4 and 5 respectively. We discuss the bipartite
b–matching problem in Section 2 to serve as a warmup as well as to develop pieces (such as
initial solutions, etc.) that would be required to solve the non-bipartite problem. In particular we
make the connection between fast constant factor approximation algorithms and the convergence of
the multiplicative weights method. Section 3 which discusses perturbations and thresholding and
provides a modified multiplicative weights framework which is likely of interest in other problems
where we have a large number of constraints. Theorem 1 follows immediately from the application
of the framework and the bipartite relaxation discussed in Section 2. Section 6 proves Theorem 2.
Section 7 discusses capacitated b–matching.

2 Approximations to speed up Multiplicative Weights Method
The goal of this section is to illustrate how multiplicative weights method can be used in the
context of b–matching. We focus on the bipartite case in this section. The results obtained in this
section do not always dominate the best known results for bipartite b–matching, see for example
[1]. But the main purpose of this section is to provide a simple illustration of the ideas that are
required for the non-bipartite case. We use existing multiplicative weights methods (see [5] for a
comprehensive review of these) and show how they apply to the bipartite b–matching case without
any modification. At the end of the section we discuss why existing techniques will not work
directly in the non-bipartite case. However the different parts of the overall solution for bipartite
graphs will be reused in the non-bipartite context.

From the perspective of algorithms for matching problems, the multiplicative weights method
provides an approach different from that of augmentation paths. Instead of maintaining a feasible
solution and increasing the value of that feasible solution using augmenting paths, we maintain an
infeasible solution of a certain value and reduce the infeasibility. The overall algorithm is iterative,
at each point we identify parts of the graph where our solution is infeasible — we construct a new
partial solution that reduces the effect of these parts and consider a convex combination of the old
and new solutions. However the new partial solution, in itself can be significantly unhelpful for the
original problem! In particular the new solution will either be a matching that allows vertex i to
have up to 6bi edges instead of the at most bi as specified in the problem, or have 1/6 the desired
objective value (which depends both on the weight of the maximum matching as well constraints
in the framework). Of course, this deviation also allows us to find the solution efficiently. However,
even though each individual solution is not helpful, the average of the solutions is a (1 − O(δ))
approximation for the original problem for a small δ > 3/

√
n.

2.1 Existing Multiplicative Weights Methods

Let A′ be a non-negative m × N matrix, and suppose b′ ≥ 0. Suppose that we seek to solve
A′y ≤ b′,y ∈ P ′ where P ′ ⊆ {y|y ≥ 0} is convex. The literature on Multiplicative Weights method
shows that it suffices to repeatedly average y(t) corresponding to iteration t. In iteration t, given
a non-negative vector u(t), the methods ask for an oracle to supply y(t) such that u(t)TA′y(t) ≤
(1 + O(δ))u(t)Tb′,y(t) ∈ P ′ and A′y(t) ≤ ρb′ where ρ > 1 is the width parameter. The u(t) are
referred to as the Multiplicative Weights, because the vector u(t) in the expression u(t)TA′y(t)
implies an assignment weights to the rows of A′ which correspond to constraints. The multiplicative
weights method states that as long as we have bounded solutions A′y(t) ≤ ρb′, a (weighted) average
y of y(t) satisfies A′y ≤ (1 +O(δ))b′. We note that many variations of the multiplicative weights
method exist but for the purposes of this section we focus on the version in [28]. In that version
the average is a predetermined weighted average and the j-th entry of u(t) corresponds to a scaled

7

exponential of (A′y′)j/b′j where y′ is the corresponding weighted average of y(0), . . . ,y(t − 1).
Intuitively, if the j-th constraint is violated more, its weight would be large and the desired y(t)
would prioritize satisfying the j-th constraint.

Theorem 7. [28] Starting from an initial solution y(0) such that A′y(0) ≤ ρb′, after O(ρ(δ−2 +
log ρ) logN) iterations we have a y ∈ P ′ that satisfies A′y′ ≤ (1 + δ)b′.

2.2 Boosting Constant Factor Approximations to (1− δ)-approximations

We begin with Theorem 8 and consider its applications.

Theorem 8 (Proved in Section 2.3). Let f1, f2 > 0,h ≥ 0. Let Q̂ ⊆ P̂ ⊆ {y | y ≥ 0}. Suppose
P̂, Q̂ are convex and 0 ∈ Q̂. Suppose we have a subroutine that for any z (which can be negative)
provides a y ∈ P̂ such that zTy ≥ (1− δ/2) max{zTy′ | y′ ∈ Q̂}.3

1. If {y|wTy ≥ f1,hTy ≤ f2,y ∈ Q̂} is non-empty then using O(ln 1
δ) invocations of the sub-

routine we can find a y ∈ P̂ such that wTy ≥ (1− δ)f1 and hTy ≤ f2.
2. Suppose Â, b̂ are non-negative and b ∈ RN , let β̂ = max{wTy | Ây ≤ b̂,y ∈ Q̂}. If
{y/λ0 | y ∈ P̂} ⊆ {y | Ây ≤ b̂,y ∈ Q̂} then we can compute y that satisfies wTy ≥ (1−δ)2β̂,
Ây ≤ (1 + δ)b̂ and y ∈ P̂ using O(λ0(δ−2 + δ−1 log λ0)(logN)(log 1/δ)) invocations of the
subroutine.

Note that if {λ0y | Ây ≤ b̂,y ∈ Q̂} = P̂ for some λ0 ≥ 1, then a (1/λ0)-approximate solution to
max{wTy | Ây ≤ b̂,y ∈ Q̂} can be multiplied by λ0 to achieve the subroutine mentioned above and
therefore using O((λ0(δ−2 + log λ0) logN + δ−1 log λ0) log(1/δ)) invocations we find a (fractional)
y as described in (2).

Bipartite Uncapacitated b–matching. The problem is expressed by linear program LP3. Vari-
able yij corresponds to the fraction with which (i, j) ∈ E is present in the solution.

β∗b = max
∑

(i,j)∈E

wijyij

Q :


∑

j:(i,j)∈E

yij ≤ bi ∀i ∈ V

yij ≥ 0 ∀(i, j) ∈ E

(LP3)

Observe that negative weight edges can simply be ignored by any approximation algorithm.
While many constant factor approximation algorithms for uncapacitated b–matching exist, we use
Theorem 9 which has no dependence on B =

∑
i bi.

Theorem 9. [Proved in Section 2.4] For the bipartite uncapacitated b–matching problem we can
provide a 1/6 approximation in O(m logn) time and O(n) space.

We now define Q as in LP3 and set Q̂ = Q, {Ây ≤ b̂} = Q and P̂ = {6y|y ∈ Q̂}. We multiply
the solution provided by Theorem 9 by a factor 6 and as a consequence of the final part of Theorem 8
we obtain a non-negative (fractional) solution {yij} that satisfies

∑
j:(i,j)∈E yij ≤ (1 + δ)bi for all

i ∈ V corresponding to Ây ≤ (1+ δ)b̂. Dividing each yij by (1+ δ) provides us a ((1− δ)2/(1+ δ))-
approximation to the optimum bipartite b–matching solution in time O(mδ−2(log2 n)(log 2/δ)).

3While it may be appealing to discuss closure of Q̂, note the (1− δ/2) factor and therefore lim sup suffices.

8

Bipartite Capacitated b–matching. The problem is expressed as a linear program in LP4
where cij are integer capacities on the edge (i, j) ∈ E. Without loss of generality cij ≤ min{bi, bj}.

β∗,cb = max
∑

(i,j)∈E

wijyij

Qc :


∑

j:(i,j)∈E

yij ≤ bi ∀i ∈ V

yij ≤ cij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E

(LP4)

Define Pc as:

Pc :


∑

j:(i,j)∈E

yij ≤ λ0bi/2 ∀i ∈ V

yij ≤ cij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E

(LP5)

Theorem 10. [Proved in Section 2.4] If cij ≤ min{bi, bj} then given any weight vector w, using
Theorem 9 at most k = O(log 1/δ) times we can compute a solution y†,c ∈ Pc with λ0 = 16 ln 2

δ

such that wTy†,c ≥ 2β∗,cb /λ0. If Ê = {(i, j) | y†,cij > 0} then
∑

(i,j)∈Ê wijcij ≤ 8kβ∗,cb .

We cannot use an arbitrary algorithm in lieu of Theorem 10 – because we only relax a part of the
constraints. The final property of Theorem 10 is used to guarantee that a fractional solution can be
rounded in near linear time (Theorem 4). We define Ây ≤ b̂ to be {

∑
j:(i,j)∈E yij ≤ bi, ∀i ∈ V } and

let Q̂ = Qc and P̂ = Pc for λ0 = 16 ln 2/δ. We apply Theorem 8 to get a solution which satisfies∑
j:(i,j)∈E yij ≤ (1 + δ)bi for all i as well as yij ≤ cij for all (i, j) ∈ E. An appropriate scaling of the

solution provides a (1−O(δ))-approximation.

Theorem 11. We can compute a fractional solution which is a (1 − δ) approximation to the
optimum capacitated b–matching in O(mδ−2(log2 n)(log2 1/δ)) time in a bipartite graph.

2.3 Proof of Theorem 8

Theorem 8. Let f1, f2 > 0,h ≥ 0. Let Q̂ ⊆ P̂ ⊆ {y | y ≥ 0}. Suppose P̂, Q̂ are convex and
0 ∈ Q̂. Suppose we have a subroutine that for any z (which can be negative) provides a y ∈ P̂ such
that zTy ≥ (1− δ/2) max{zTy′ | y′ ∈ Q̂}.

1. If {y|wTy ≥ f1,hTy ≤ f2,y ∈ Q̂} is non-empty then using O(ln 1
δ) invocations of the sub-

routine we can find a y ∈ P̂ such that wTy ≥ (1− δ)f1 and hTy ≤ f2.

2. Suppose Â, b̂ are non-negative and b ∈ RN , let β̂ = max{wTy | Ây ≤ b̂,y ∈ Q̂}. If
{y/λ0 | y ∈ P̂} ⊆ {y | Ây ≤ b̂,y ∈ Q̂} then we can compute y that satisfies wTy ≥ (1−δ)2β̂,
Ây ≤ (1 + δ)b̂ and y ∈ P̂ using O(λ0(δ−2 + δ−1 log λ0)(logN)(log 1/δ)) invocations of the
subroutine.

Note that if {λ0y | Ây ≤ b̂,y ∈ Q̂} = P̂ for some λ0 ≥ 1, then a (1/λ0)-approximate solution to
max{wTy | Ây ≤ b̂,y ∈ Q̂} can be multiplied by λ0 to achieve the subroutine mentioned above and
therefore using O((λ0(δ−2 + log λ0) logN + δ−1 log λ0) log(1/δ)) invocations we find a (fractional)
y as described in part (2).

9

Proof: Define g(%) = max{(wT − %hT)y | y ∈ Q̂}. Since {y|wTy ≥ f1,hTy ≤ f2,y ∈ Q̂} is
non-empty, g(%) exists and is at least f1 − %f2. Let L(y, %) = (wT − %hT)y and let y% be the
solution returned by the subroutine for z = wT − %hT .

For % = 0, the returned solution y0 satisfies L(y0, 0) = (wT − %hT)y0 ≥ (1 − δ/2)g(0) =
(1− δ/2)(f1− %f2). This implies wTy0 ≥ (1− δ/2)f1. If y0 also satisfies hTy0 ≤ f2, then y0 is our
desired solution for the first part of the theorem. We therefore consider the case hTy0 > f2.

Consider % = f1/f2 and set y% = 0. Note we do not run the subroutine. Note y% ∈ P̂ and
hTy% = 0 ≤ f2 and L(y%, %) = (wT − %hT)y% = 0 ≥ (1 − δ/2)(f1 − f1

f2
f2) = (1 − δ/2)(f1 − %f2)

Therefore over the endpoints of the interval % ∈ [0, f1/f2] = [%−, %+] we have two solutions y%− ,y%+

that satisfy

(1) L(y%− , %−) ≥ (1− δ/2)(f1 − %−f2), hTy%− > f2

(2) L(y%+
, %+) ≥ (1− δ/2)(f1 − %+f2), hTy%+ ≤ f2

Now consider running the subroutine for % = 1
2(%− + %+). Again based on the subroutine we

know that we will obtain a solution y% which satisfies:

L(y%, %) = (wT − %hT)y% ≥ (1− δ/2)g(%) ≥ (1− δ/2)(f1 − %f2)

If hTy% > f2 then we focus on [%, %+]. Otherwise we focus on [%−, %]. Observe that we are
maintaining the invariants (1) and (2). Now we use binary search to find %+, %− such that 0 ≤
%+ − %− ≤ δf1

2f2
. This requires O(ln 2

δ) invocations of the subroutine. We take a linear combination
y = ay%+ + (1− a)y%− , a ∈ [0, 1] such that hTy = f2. Since y%+,y%− ∈ P̂, their linear combination
y is also in P̂. Note that

aL(y%+
, %+) + (1− a)L(y%− , %−) ≥ (1− δ/2)f1 − (1− δ/2)%−f2 − a(1− δ/2)(%+ − %−)f2

≥ (1− δ)f1 − %−f2

because a ≤ 1, %+ − %− ≤ δf1
2f2

and f2 ≥ 0. Thus

wTy = aL(y%
+
, %+) + (1− a)L(y%

−
, %−) + a%+hTy%

+
+ (1− a)%−hTy%

−

≥ (1− δ)f1 − %−f2 + a(%+ − %−)hTy%
+

+ hT (a%−y%
+

+ (1− a)%−y%
−

)

≥ (1− δ)f1 − %−f2 + hT (a%−y%
+

+ (1− a)%−y%
−

) (Using hTy%+ ≥ 0 and %+ − %− ≥ 0)

≥ (1− δ)f1 − %−f2 + hT %−y (Using y = ay%+ + (1− a)y%−)
≥ (1− δ)f1 − %−(f2 − hTy) = (1− δ)f1 (Since hTy = f2 by construction)

The first part of the theorem follows. Note that hTy ≤ f2 from the case hTy0 ≤ f2.
For the second part, observe that setting z = w we get a y(0) ∈ P̂ such that zTy(0) ≥ (1− δ)β̂

using the subroutine. Moreover zTy(0) ≤ λ0β̂ since y(0)/λ0 ∈ {y|Ây ≤ b̂,y ∈ Q̂}. This provides
an initial solution. Observe that the width is λ0 by construction. We can now apply Theorem 7.
If 0 < β ≤ β̂ we get a solution for y ∈ P̂ that satisfies wTy ≥ (1 − δ)β and u(t)T Ây ≤ u(t)T b̂
from the first part of the theorem setting f1 = β, f2 = u(t)T b̂. If we fail to find a solution to the
first part for some β then we decrease β by a factor of (1 − δ). Observe that we would decrease
β at most O(δ−1 log λ0) times and eventually we would reach (1 − δ)β̂ ≤ β ≤ β̂ since the initial
β = wTy(0) is at most λ0β. Note wTy ≥ (1− δ)β ≥ (1− δ2)β̂.

Observe that the iterations for larger β remain valid for a smaller β. Therefore if we classify the
iterations according to (a) decrease of β because we did not find a solution for for the first part and

10

(b) invocations where we succeed in finding a solution for the first part. The number corresponding
to (a) is at most O(δ−1 log λ0) (decreases of β) times O((log1/δ)), the multiplier due to the reduc-
tion. The number corresponding to (b) cannot be more than O(λ0(δ−2 + log λ0) logN)(log(1/δ))
because then we would have already gotten a better solution based on Theorem 7 – once again,
because the y found for larger β remain valid for a smaller β. The total number of invocations of
the subroutine is O((λ0(δ−2 + log λ0) logN + δ−1 log λ0) log(1/δ)). The second part of the theorem
follows.

For the final remark, a λ0 approximation implies that we have a feasible solution solution y′
satisfying Ây′ ≤ b̂,y′ ∈ Q. The claim follows from the second part.

�

2.4 Proofs of Theorem 9 and 10

In this section we provide primal-dual approximation algorithms for both uncapacitated and ca-
pacitated b–matching. The capacities bi, cij , for vertices and edges respectively are integral. Each
edge (i, j) has weight wij . In the uncapacitated case the edge constraints are not present; one
can model that by setting cij = min{bi, bj} for every edge (i, j). The formulation LP4 expresses
a bipartite relaxation which omits non-bipartite constraints. Therefore β∗,cb ≥ β∗,c (the maximum
capacitated b-matching) as well as β∗,cb ≥ β∗ (the maximum uncapacitated b–matching, assuming
cij = min{bi, bj} for every edge (i, j)). The system LP6 is the dual of LP4.

β∗,cb = max
∑

(i,j)∈E

wijyij

1
bi

∑
j:(i,j)∈E

yij ≤ 1 ∀i (LP4)

1
cij
yij ≤ 1 ∀(i, j) ∈ E

yij ≥ 0 ∀(i, j) ∈ E

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

β∗,cb = min
∑
i

pi +
∑

(i,j)∈E

qij

pi
bi

+ pj
bj

+ qij
cij
≥ wij ∀(i, j) ∈ E (LP6)

pi, qij ≥ 0 ∀i,∀(i, j) ∈ E

Algorithm 1 satisfies the following invariants; and the next lemma is the core of the proof.

(I1) We maintain a feasible primal solution {yij}.

(I2) If we insert an edge into the solution yij = cij (but some copies of this edge can be deleted
later).

(I3) Once an edge is processed (ignored or inserted) we ensure that pi
bi

+ pj
bj

+ qij
cij
≥ wij .

(I4) We ensure that {pi, qij} are non-decreasing and therefore the final {pi, qij} satisfies the con-
straints of LP6, and

∑
i pi +

∑
(i,j) qij ≥ β

∗,c
b .

(I5) At the end of step 3(e), we have the invariant pi ≥ 2
∑
j wijyij .

Lemma 12. Let ∆ be the decrease in
∑

(i,j)wijyij in Steps 3(c) and 3(d) due to the deletions before
the edge (i, j) is added in Step 3(e). ∆ ≤ wijcij/2.

11

Algorithm 1 A near linear time algorithm for capacitated b–matching
1: We start with all pi = 0. Initially the graph is empty and all yij = qij = 0. In the following yij = yji,

the variables are defined on the edges.
2: Order the edges E according to an arbitrary ordering and consider the edges one by one.
3: for each new edge e = (i, j) do

(a) If pibi + pj
bj
≥ wij then ignore the edge, otherwise:

(b) We will be eventually inserting cij copies of the edge (i, j). Recall for the uncapacitated case
cij = min{bi, bj}.

(c) Suppose that cij +
∑
j yij > bi. In that case we need to delete (

∑
j′ yij′ − bi + cij) edges such that

when we add the cij copies of (i, j) the vertex constraint
∑
j′ yij′ ≤ bi will be satisfied. Therefore we

delete xi = max{0,
∑
j′ yij′ − bi + cij} edges incident to i — but we delete the edges with the lowest

wij′ with yij′ > 0.

(d) Likewise we delete the xj = max{0,
∑
i′ yi′j − bj + cij} edges incident to j, with the lowest wi′j

amongst yi′j > 0.

(e) Set yij = cij , (if required) increase pi, pj to be at least 2
∑
j wijyij , 2

∑
i wijyij respectively. Set

qij = wijcij .

4: Output {(i, j)|yij > 0} and {pi}, {qij}.

Proof: Suppose we deleted edges at i for Step 3(c) and xi > 0. Note that we retained the heaviest
bi − cij edges and therefore the total retained edges have weight at least bi−cij∑

j′ yij′

∑
j′ wij′yij′ which

is at least bi−cij
bi

∑
j′ wij′yij′ since

∑
j′ yij′ ≤ bi because {yij′} are feasible. Thus the total weight

deleted at i is at most cij
bi

∑
j′ wij′yij′ . But since 2

∑
j′ wij′yij′ ≤ pi at Step 3(e) in the iteration

before (i, j) was considered, the total weight deleted at i is at most cijpi
2bi . Using the same reasoning

at j, the the total weight deleted by (i, j) at both i, j is at most cijpi
2bi + cijpj

2bj which is at most
cijwij/2 since we are past Step 3(a). �

Note that we now immediately have a factor 1/10 approximation for both capacitated and
uncapacitated b-matching. This because the net direct increase to

∑
i pi+

∑
(i,j) qij due to inserting

(i, j) is at most 5wijcij . At each of the endpoints i, j the increase is 2wijcij and qij ≤ cijwij .
Combined with Lemma 12 we have a 1/10 approximation because the total increase in

∑
i pi +∑

(i,j) qij due to (i, j) is the direct increase from (i, j) plus the increase due to all edges deleted by
(i, j) (and the edges which have been recursively deleted). But using Lemma 12 the total weight of
all such recursively deleted edges is at most wijcij . Therefore 10

∑
(i,j)wijyij ≥

∑
i pi +

∑
(i,j) qij ≥

β∗,cb . For the remainder of the paper any absolute constant approximation suffices. However since
the approximation factor relates to the speed of convergence, we provide a slightly better analysis,
and space complexity.

Theorem 9. For the bipartite uncapacitated b–matching problem we can provide a 1/6 approx-
imation in O(m logn) time and O(n) space.
Proof: We first observe that qij = 0 for every edge (i, j) which already improves the approximation
to 1/8. We then prove 6

∑
(i,j)wijyij ≥

∑
i pi +

∑
(i,j) qij ≥ β∗,cb . In the uncapacitated this case

cij = min{bi, bj} and the edge (i, j) is inserted with yij = cij . Therefore both pi, pj ≥ 2cijwij
due to Step 3(e). Therefore at least one of pi/bi, pj/bj is 2wij . Thus pi

bi
+ pj

bj
≥ wij which implies

qij = 0. This also means that at each insertion at least one vertex has exactly one edge (but
possibly multiple copies of it) and therefore the total number of edges in the solution is O(n). We
now observe that the increase in Step 3(e) of

∑
i pi is at most 4wijcij − 2∆ (recall ∆ is defined in

12

Lemma 12). Suppose that we maintained 6
∑

(i,j)wijyij ≥
∑
i pi before we considered the deletions

in Steps 3(c) and 3(d). Then the left hand side increased by 6wijcij − 6∆ but

6wijcij − 6∆ = (4wijcij − 2∆) + (2wijcij − 4∆)

and ∆ ≤ wijcij/2. This implies that the increase in 6
∑

(i,j)wijyij after Step 3(e) is more than the
increase in

∑
i pi. Therefore the invariant continues to hold and the theorem follows. �

Theorem 13. We can solve the capacitated b–matching problem to an approximation factor 1/8
in time O(m logn). If E′ is the set of edges (i, j) such that yij > 0 at any point of time in the
algorithm then

∑
(i,j)∈E′ wijcij ≤ 8β∗,cb .

Proof: Unlike the proof of Theorem 9 we cannot assert qij = 0. But observe that if we maintained
8
∑

(i,j)wijyij ≥
∑
i pi +

∑
(i,j) qij , then the increase to the left hand side is 8wijcij − 8∆ (again

following the definition of ∆ from Lemma 12) and the increase to the right hand side is 4wijcij −
2∆ + wijcij (the addition is due to qij). But

8wijcij − 8∆ = 4wijcij − 2∆ + wijcij + 3 (wijcij − 2∆) ≥ 4wijcij − 2∆ + wijcij

Therefore the invariant continues to hold after Step 3(e). For the second part, observe that∑
(i,j)∈E′ wijcij =

∑
(i,j) qij but

∑
(i,j) qij ≤ 8

∑
(i,j)wijyij and {yij} are feasible. Therefore the

theorem follows. �

We use Theorem 13 to prove Theorem 10.
Theorem 10. Using Algorithm 1 at most k ≤ 8 ln 2

δ times we get an integral solution that
satisfies ∑

(i,j)∈E

wijyij ≥
(

1− δ

2

)
β∗,cb

∑
j:(i,j)∈E

yij ≤
(

8 ln 2
δ

)
bi ∀i (LP7)

yij ≤ cij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E

Moreover if Ê = {(i, j) ∈ E|yij > 0} then
∑

(i,j)∈Ê wijcij ≤ (8k)β∗,cb .
Proof: We reuse the notation y(t) since we would be using an iterative algorithm. For any bi, cij ≥
0 we can find a solution y(1) such that

∑
(i,j)wijyij(1) = τ1 ≥ β∗,cb /8 using Algorithm 1 and

Theorem 13.
Define β̂(1) = β∗,cb . We now run an iterative procedure where we remove the edges (i, j)

corresponding to yij(1) > 0 and decrease the corresponding capacities. The decrease in capacities
corresponds to modifying LP4 by adding the constraint yij ≤ max{0, cij − yij(1)}. Let optimum
solution of LP4 on this modified graph be denoted by β̂(2). We have

β̂(1)− τ1 ≤ β̂(2) ≤ β̂(1) (1)

Consider the optimum solution of LP4 on the unmodified graph. Let that solution be {y∗ij}.
Consider y′ij = max{y∗ij − yij(1), 0}. Then {y′ij} is a feasible solution of the modified LP4 and∑
i,j wijyij ≥ β̂(1) − τ1. β̂(2) ≤ β̂(1) follows from the fact that capacities are decreased and

Equation (1) follows.

13

Now we obtain a solution y(2) such that
∑

(i,j)wijyij(2) = τ2 ≥ β̂(2)/8. We now repeat the
process by modifying LP4 to yij ≤ max{0, cij − yij(1) − yij(2)}. Proceeding in this fashion we
obtain solutions {yij(`)}k`=1 where k ≤ d8 ln 2

δ e or we have no further edges to pick. Observe, that
by construction

∑k
`=1 yij(`) ≤ cij for all (i, j) and therefore the union of these k solutions satisfies

yij ≤ cij . Moreover for every ` we have
∑
j yij(`) ≤ bi and therefore for the union of these k

solutions the vertex constraints hold as described in the statement of Theorem 10.
We now claim that

∑k
`=1

∑
(i,j)wijyij(`) ≥

(
1−

(
7
8

)k)
β̂(1) by induction on k. The base

case follows from τ1 ≥ β̂(1)/8. In the inductive case, applying the hypothesis on 2, . . . , k we get∑k
`=2

∑
(i,j)wijyij(`) ≥

(
1−

(
7
8

)k−1
)
β̂(2). Thus:

k∑
`=1

∑
(i,j)

wijyij(`) ≥ τ1+
(

1−
(

7
8

)k−1
)
β̂(2) ≥ τ1+

(
1−

(
7
8

)k−1
)

(β̂(1)−τ1) = β̂(1)−β̂(1)
(

7
8

)k−1
+τ1

(
7
8

)k−1

and the claim follows since τ1 ≥ β̂(1)/8. The first part of the theorem follows. For the second
part, Theorem 13 was applied k times and the result follows. �

3 Perturbations, Thresholding, and Non-bipartite b–matching
We considered the bipartite case in Section 2. We provided an algorithm that produces an (1−δ)2-
approximate solution for max{wTy | Ây ≤ b̂,y ∈ Q̂}, by repeatedly, for any z finding a solution
y ∈ P̂ such that zTy ≥ (1−δ/2) max{zTy′ | y′ ∈ Q̂} (we omit the connections between Q̂, P̂ for the
moment). However that algorithm relied on the Theorem 7 which computes a multiplicative weight
for each constraint/row of matrix Â. For the bipartite case, the number of constraints was n for the
uncapacitated case and n+m for the capacitated case for a graph with n vertices and m edges. In
this section we consider non-bipartite matching — the number of constraints are exponential. The
number of constraints can be reduced to nΩ(1/δ) to seek a (1 − δ) approximation, but computing
the multiplicative weights for all rows of the constraint matrix is infeasible for a near linear time
algorithm. We now provide a framework that bypasses the computation of the weights for all rows
in Section 3.1. We then apply the framework to uncapacitated b–matching in Section 3.2.

3.1 A Dual Thresholding Framework

Suppose that Q ⊆ P ⊆ {y | y ≥ 0}. Suppose further that P,Q are convex and 0 ∈ Q̂. The overall
goal in this section to solve max{wTy | Ay ≤ b,y ∈ Q}, by repeatedly, for any z finding a solution
y ∈ P such that zTy ≥ (1 − δ/2) max{zTy′ | y′ ∈ Q}. However, we would like to achieve the
reduction by only evaluating the multiplicative weights for the constraints L which are close to the
maximum violated constraint. Note that this set L would change every iteration. We achieve this
by perturbing the constraints and focusing on Ay ≤ b̃.

We present the basic Algorithm 2. The proof of convergence is provided in Theorem 16. The
theorem follows from Lemma 15 which computes the rate of monotonic decrease of a potential
function (Definition 4). Lemma 14 demonstrates how the ideas in Section 2 are used as critical
pieces of Algorithm 2.
The remainder of this section uses the notation introduced in Algorithm 2.

Definition 4. Extend u as u` = exp(αλ`)/b̃` for all ` in Line 11 of Algorithm 2. Define Ψ =∑
` e
λ`α = uT b̃ which only depends on the current solution.

14

Algorithm 2 A Dual Thresholding Multiplicative Weights Algorithm. M � m� K ≥ 1.
1: Let P,Q be convex with Q ⊆ P ⊆ {y ≥ 0}. Let A is nonnegative matrix of dimension M ×m.
2: Fix δ ∈ (0, 1

16]. Let λ0,K, f(δ), α be parameters. λ0 ≥ 1, f(δ) < δ, α ≤ 1
f(δ) ln

(
Mλ0
δ

)
.

3: Find an initial solution y0 ∈ P with wTy = β0 and Ay0 ≤ λ0b̃. Set β = β0.
4: Let ε = 1

8 (note ε ≥ δ) and t = 0.
5: Start a superphase corresponding to ε = 1

8 . The algorithm proceeds in superphases corresponding to
a fixed value of ε. We will be decreasing ε. The algorithm ends when λ ≤ 1 + 8δ. We will not assume λ
decreases monotonically.

6: while true do
7: Define λ` = (Ay)`/b̃` and λ = max` λ`. Find L = {`|λ` ≥ λ− f(δ)}, assert |L| ≤ K.
8: If (λ ≤ 1 + 8δ) output y which satisfies wTy ≥ (1− δ)β and Ay ≤ (1 + 8δ)b̃ and stop.
9: If λ < 1 + 8ε then declare the current superphase to be over.
10: Repeatedly set ε← max{2ε/3, δ} till λ > 1 + 8ε and start a new superphase corresponding to this

new ε.
11: Define u(L) as u(L)` = exp(αλ`)/b̃` if ` ∈ L and 0 otherwise. Let γ = u(L)T b̃.
12: Using O(ln 2

δ) invocations of a subroutine that for any z finds a y ∈ P such that zTy ≥ (1 −
δ/2) max{zTy|y ∈ Q}, to find a solution ỹ of LP8, otherwise decrease β ← (1− δ)β.

wT ỹ ≥ (1− δ)β, u(L)TAỹ ≤ γ

1− δ , ỹ ∈ P (LP8)

13: Set y← (1− σ)y + σỹ where σ = ε/(4αλ0).
14: end while

Lemma 14. Suppose Ψ ≤ γ + δγ
λ0
. If β̃ = max{wTy | u(L)TAy ≤ γ

1−δ ,y ∈ Q} exists then we have
an algorithm for Line 12 of Algorithm 2 for any β < β̃. Further the final output of Algorithm 2
satisfies wTy ≥ (1− δ) min{(1− δ)2β̃, β0}.

Proof: The assumption implies that u(L)TAy ≤ uTAy ≤ uT b̃ = Ψ ≤ γ/(1−δ) for any y satisfying
Ay ≤ b. Part (1) of Theorem 8 applies with P̂ = P and Q̂ = Q and we succeed in solving LP8.
This implies that β cannot decrease below (1 − δ)β̃; the last decrease of β corresponds to a value
greater than β̃. �

For α = 1
f(δ) ln

(
Mλ0
δ

)
we satisfy the precondition of Lemma 14 because

Ψ− u(L)T b̃ = uT b̃− u(L)T b̃ =
∑

`:λ`<λ−f(δ)

exp(αλ`) ≤
δ

λ0
eαλ ≤ δ

λ0
u(L)T b̃ = δγ

λ0

However we include the condition in the statements of Lemma 15 and Theorem 16 because in the
specific case of b–matching we would use a value of α which is better by a factor of 1/δ – therefore
we can use Lemma 15 and Theorem 16 without any change. A smaller value of α will result in
faster convergence.

Lemma 15. Suppose Ψ ≤ γ + δγ/λ0. Let Ψ′ be the new potential corresponding to the new y
computed in Step 13. Then if λ ≥ 4 and ε = 1/8 then Ψ′ ≤ (1 − λ

128λ0
)Ψ otherwise we have

Ψ′ ≤ (1− ε2

8λ0
)Ψ.

Proof: Observe that the algorithm maintains the invariant λ ≥ 1 + 8ε, even though λ may not be
monotone. After the update, let the new current solution be denoted by y′′, i.e., y′′ = (1−σ)y+σỹ
where ỹ is the solution of LP8. Recall ασ = ε/(4λ0). Let

λ′′` = (Ay′′)` /b̃`, and λ̃` = (Aỹ)` /b̃` therefore λ′′` = (1− σ)λ` + σλ̃` ∀`

15

Observe that
∑
` e
αλ`λ` =

∑
`

(
b̃`u`

) (Ay)`
b̃`

= uTAy. Likewise
∑
` e
αλ` λ̃` =

∑
`

(
b̃`u`

) (Aỹ)`
b̃`

=
uTAỹ.

Since ỹ ∈ P we have λ̃` ≤ λ0 from Step 2 of Algorithm 2. Since we repeatedly take convex
combination of the current candidate solution y with a ỹ ∈ P, and the initial solution satisfies
λ ≤ λ0; we have λ` ≤ λ0 throughout the algorithm. Since λ` ≤ λ0 we have all |ασ(λ̃` − λ`)| ≤ ε/4.
Now for |∆| ≤ ε

4 ≤
1
4 ; we have ea+∆ ≤ ea(1 + ∆ + ε|∆|/2). Therefore:

eαλ
′′
` ≤ eαλ`

(
1 + σα(λ̃` − λ`) + 1

2εσα(λ̃` + λ`)
)

= eαλ` +
(

1 + ε

2

)
σαλ̃`e

αλ` −
(

1− ε

2

)
σαλ`e

αλ`

which implies that

Ψ′ =
∑
`

eαλ
′′
` ≤ Ψ +

(
1 + ε

2

)
σα
∑
`

eαλ` λ̃` −
(

1− ε

2

)
σα
∑
`

eαλ`λ`

= Ψ +
(

1 + ε

2

)
σαuTAỹ−

(
1− ε

2

)
σαuTAy (2)

ỹ satisfies LP8 and therefore u(L)TAỹ ≤ γ
1−δ , which along with λ̃` ≤ λ0, δ ≤ 1/16, implies:

uTAỹ = u(L)TAỹ +
∑

`:λ`<λ−f(δ)

λ̃`e
λ`α ≤ γ

1− δ + λ0
∑

`:λ`<λ−f(δ)

eλ`α ≤ γ

1− δ + λ0 (Ψ− γ) ≤ (1 + 3δ)γ

(3)

Finally observe that since λ > 1 + 8ε, f(δ) ≤ δ, and γ =
∑
`:λ`>λ−f(δ) λ`e

λ`α,

uTAy ≥ u(L)TAy =
∑

`:λ`≥λ−f(δ)

λ`e
λ`α ≥ (λ− f(δ))

 ∑
`:λ`≥λ−f(δ)

eλ`α

 = (λ− f(δ))γ ≥ (λ− δ)γ (4)

Using Equations (2)–(4) we have:

Ψ′ ≤ Ψ−
(
λ− 1− 4δ − (λ+ 4δ + 1) ε

2

)
γασ (5)

Note δ ≤ ε ≤ 1/8. If λ ≥ 4 then λ− 1− 4δ − (λ+4δ+1)ε
2 ≥ λ/2. From the statement of the lemma,

Ψ ≤ 2γ. Note that if λ ≥ 4 and ε = 1
8 then λασ

4 = λ
128λ0

. Thus in the case when λ ≥ 4 and ε = 1/8,

Ψ′ ≤ Ψ− λασγ

2 ≤ Ψ
(

1− λασ

4

)
≤ Ψ

(
1− λ

128λ0

)
Otherwise using λ ≥ 1 + 8ε,

λ− 1− 4δ − (λ+ 4δ + 1) ε
2 ≥ (1 + 8ε)

(
1− ε

2

)
− (1 + 4δ)

(
1 + ε

2

)
≥ 7ε− 4δ − (4ε2 + 2δε) ≥ ε

Combining with Equation (5) we get Ψ′ ≤ Ψ− εσαγ ≤ Ψ
(
1− εασ

2
)

= Ψ(1− ε2

8λ0
). �

Lemma 15 proves that Ψ decreases monotonically, even though λ may not.

Theorem 16. Suppose Ψ ≤ γ+δγ/λ0. Algorithm 2 converges within τ = O
(
λ0
(

ln(2K)
δ2 + α

δ + α lnλ0
))

invocations of LP8 and provides a solution as described in line 8.

16

Proof: Observe that eαλ ≤ γ ≤ Keαλ since there are at most K constraints in L. Since γ ≤ Ψ ≤ 2γ
we know that eαλ ≤ Ψ ≤ 2Keαλ. We partition the number of iterations into three parts:

(C1) The number of iterations till we observe λ < 4 for the first time.

(C2) The number of iterations after we observe λ < 4 for the first time till λ < 2 for the first
time.

(C3) The number of iterations since λ < 2 for the first time.

Observe (C1) and (C2) correspond to the first superphase during which ε = 1
8 . In case (C1),

consider the total number of iterations when 4 ≤ 2j ≤ λ ≤ 2j+1. The potential Ψ must be below
2Keα2j+1 . If we perform r updates to y then the potential decreased by at least (1 − 2j−5/λ0)r
but if r ≥ λ0

2j−5 (ln(2K) + 2j+1α) then the new potential will be below 1, which is impossible
since the potential must be at least e4α. Therefore the total number of updates corresponding to
4 ≤ 2j ≤ λ ≤ 2j+1 for a fixed j is at most 128λ02−j ln(2K) + 256λ0α. Summed over all j ≥ 2 the
number of updates in case (C1) is O(λ0 ln(2K) + λ0α lnλ0).

In case (C2), the potential decreases by a factor (1− 1/(512λ0)). By the same exact argument
as in case (C1), if the number of updates exceed 512λ0(ln(2K) + 4α) then the potential would be
below 1, which again is impossible since the potential must be at least e2α. Therefore the number
of updates in this case is O(λ0(ln(2K) + α)).
In case (C3), we partition a superphase into a number of different phases.

Definition 5. A phase starts when a superphase starts, and we remember the λ value at the start
of a phase. Let the value of λ at the start of phase t be λt. If at some point of time during phase
t, we observe λ < (1− δ)λt, then we mark the end of phase t and start phase t+ 1 with λt+1 = λ.
A phase also ends when λ < 1 + 8ε because the corresponding superphase ends as well.

Note that while λ is not monotone, λt are monotone and we will use λt to bound the number
of iterations. Since in each phase λ decreases by at least (1 − δ) factor the number of phases in
the superphase corresponding to ε is O

(
log 1

(1−δ)

(1+12ε)
(1+8ε)

)
= O(4ε

δ). In each of these phases (say in

phase t) we have eα(1−δ)λt ≤ Ψ ≤ 2Keαλt and Ψ decreases by a factor (1− ε2/(8λ0)). Note that if
Ψ decreases by a factor of 2Keδαλt then the phase would be over. Therefore the number of updates
in a phase is at most 4λ0

ε2 (ln(2K) + 2δα) using λt ≤ 2 – note λt decreases monotonically. Therefore
the number of updates in a superphase corresponding to an ε is

4ε
δ

4λ0

ε2
(ln(2K) + 2δα) = 16λ0

δε
ln(2K) + 48αλ0

ε
(6)

However note that ε decreases by a factor of at least 2/3 (unless it is close to δ) and the terms
in Equation (6) define a geometric series each and the smallest two values of ε dominate because
we may have ε = 1.01δ followed by ε = δ. Therefore the total number of updates in this case is
O(λ0(ln(2K)

δ2 +α
δ)). Summing up the three cases, the number of updates is O(λ0(ln(2K)

δ2 +α
δ +α lnλ0)).

The bound on the number of non-zero edges follows from multiplying the number of updates by
the number of nonzero entries guaranteed by LP8 which is O(n′). This proves Theorem 16. �

Note that λt and its monotonicity was used in (C3), even though λ need not be monotone.

17

3.2 Applying Algorithm 2 to Uncapacitated b–matching
Ay ≤ b̃,Q and P are defined below:

{Ay ≤ b̃} =


∑

i:(i,j)∈E

yij ≤ b̃i ∀i ∈ V where b̃i = (1− 4δ)bi∑
(i,j)∈E:i,j∈U

yij ≤ b̃U ∀U ∈ Oδ where b̃U =
(⌊
‖U‖b

2

⌋
− δ2‖U‖2

b

4

)

Q =


∑

j:(i,j)∈E

yij ≤ bi ∀i ∈ V

yij ≥ 0 ∀(i, j) ∈ E

P =


∑

j:(i,j)∈E

yij ≤ λ0bi/2 ∀i ∈ V

yij ≥ 0 ∀(i, j) ∈ E

Note the number of constraints in Ay ≤ b̃ is M = nO(1/δ) � m, the number of edges. We observe
that {y/λ0 | y ∈ P} ⊆ {y |,Ay ≤ b̃,Q} for δ ≤ 1/16.

Definition 6. Let β̃ = {wTy | Ay ≤ b̃,y ∈ Q}; note β̃ exists.

We can now apply Lemma 14 and Theorem 16 and obtain a solution wTy ≥ (1 − δ)2β̃ and
Ay ≤ (1 + 8δ)b̃ (we ignore P). We can extract a (1 − O(δ)) approximation to the optimum
uncapacitated b–matching from y. Set y†ij = (1−δ)

(1+8δ)yij . Since b̃i ≤ bi and b̃U ≤
⌊
‖U‖b

2

⌋
the constraints

corresponding to vertices and U ∈ Oδ are satisfied in LP1. For the U 6∈ Oδ, which have ‖U‖b ≥ 1/δ
observe that∑

j:(i,j)∈E

y†ij ≤ (1− δ)bi =⇒
∑

(i,j)∈E,i,j∈U

y†ij ≤
1
2
∑
i∈U

∑
j:(i,j)∈E

y†ij ≤ (1− δ)‖U‖b2 ≤
⌊
‖U‖b

2

⌋

At the same time wTy ≥ (1− δ)2β̃ and thus wTy† ≥ (1−δ)2

(1+8δ) β̃. Note that the same argument also
proves that if we consider the optimum solution of max{wty | Ay ≤ b̃,y ∈ Q} and multiply by
(1−δ) then we satisfy the constraints of LP1. Therefore (1−δ)β̃ ≤ β∗. We observe β̃ ≥ (1−4δ)β∗.
The latter equation follows from Likewise consider the optimum b–matching and multiply that
solution by (1 − 4δ). That modified solution y′ satisfies Ay′ ≤ b̃ when δ ≤ 1/16. Thus β̃ ≥
(1− 4δ)β∗. Therefore y† provides a (1−O(δ))-approximation to LP1 (page 3), the uncapacitated
b–matching LP that characterizes the optimum solution.

We set λ0 = 12. The initial solution is a solution of the bipartite relaxation (Theorem 9)
multiplied by λ0/2 = 6. This solution value β0 will be at least β∗b due to the approximation
guarantee. But β∗b ≥ β̃, based on the constraints. On the other hand β0 can be as large as 6β∗b (the
bipartite optimum) which is at most 9β∗ since the gap between bipartite and non-bipartite solution
is at most a factor of 1.5. But 9β∗ ≤ 1

1−4δ β̃ ≤ 12β̃. This proves the bound on the initial solution.
The parameter λ0 can be improved (e.g., it can be argued that β̃ ≤ β∗), but that only affects the
running time by a O(1) factor. Observe that an algorithm for solving LP8 is also provided by
Theorem 9 and multiplying the solution by 6. We now focus on Step (7).

We set f(δ) = δ3/10. We show that in Step (7) the sparse set of constraints will be of size at
most K = 2n, since that collection would define a laminar family. More specifically:

Lemma 17. Let 3√
n
≤ δ ≤ 1

16 . If λ > 1 + 8δ then we can find L = {U |λU ≥ λ − δ3/10;U ∈ Oδ}
in O(m + n poly(δ−1, lnn)) time. We find L without knowing λ and once L is known, we know λ
as well.

18

Proof: Let λ = max{1,maxi(1 − 4δ)λi} = max{1,maxi
∑
j yij/bi} and ŷij = yij/λ. Let λ̂U =∑

i,j∈U ŷij/b̃U and λ̂ = maxU∈Oδ λ̂U . Observe that λU = λλ̂U and if λ > maxi λi then λ = λλ̂.
Note

∑
j ŷij ≤ bi.

Suppose that λ̂ ≤ 1+3δ and λ = 1. Then for all U we have λU = λλ̂U ≤ λλ̂ ≤ λ(1+3δ) < 1+8δ
and maxi λi ≤ 1/(1− 4δ) ≤ 1 + 8δ for δ ∈ (0, 1

16]. This contradicts the assumption that λ > 1 + 8δ.
Therefore, if λ̂ ≤ 1 + 3δ then we must have λ > 1. Now consider the vertex i which defined λ; then

λ ≥ λi = λ

1− 4δ ≥ (1 + 4δ)λ ≥ (1 + 3δ)λ+ δλ > λ̂λ+ δ

which implies λ − δ ≥ λU for every U . In this case L = ∅ and |{U : λU ≥ λ − δx;U ∈ Oδ}| = 0
for x ≥ 2. Therefore the remaining case is λ̂ > 1 + 3δ. But in this case Theorems 5 and 6 apply
because we satisfy

∑
j ŷij ≤ bi. To find L, compute λ, ŷij and run the algorithm in Theorem 6. We

can compute λ = {λλ̂,maxi λi} and return the sets satisfying λU ≥ λ− δ3/10. �

To compute zT = wT − u(L)TA in LP8, note that zij = wij − %
(
xi + xj +

∑
U :i,j∈U zU

)
where xi

corresponds to the vertices and zU correspond to the odd set in u. These weights can be computed
in O(1) time if we precompute the

∑
U∈L,i,j∈U zU for each pair of vertices (i, j). Note there can be at

most
∑O(1/δ)
s=1

n
s s

2 = O(nδ−2) such pairs for any L. If we use α = 1
f(δ) ln

(
Mλ0
δ

)
we get an algorithm

which converges in O(δ−5 logn) invocations of LP8 and provides a (1− O(δ))-approximation. We
show that α can be chosen to be smaller.

Lemma 18. For 3√
n
≤ δ ≤ 1

16 , n ≥ λ0, α = 50δ−3 lnn and the definition of γ in Algorithm 2:

∑
i:λi≤λ−δ3/10

b̃ixi +
∑

λU<λ−δ3/10

zU b̃U =
∑

i:λi≤λ−δ3/10

eλiα +
∑

λU<λ−δ3/10

eλUα ≤ eλαδ

n
≤ δγ

n
<
δγ

λ0

Proof: Observe that eλα ≤ γ since λ = maxi λi or λ = maxU∈L λU . We first focus on U ∈ Oδ.
Observe the U considered in the left hand side of the statement of the inequality in the Lemma
can be partitioned into three classes (i) λU ≤ λ− δ2 (ii) λ− δ(x0+3)/2 ≤ λU ≤ λ− δ3/10, where x0
is the largest value of x ≥ 2 such that δ(x−3)/2 ≥ 2. Note that x0 < 3 exists4 given δ ≤ 1/16, and
(iii) λ− δ2 ≤ λU < λ− δ(x0+3)/2.

For case (i) observe that the corresponding eλUα ≤ eλα−δ
2α ≤ eλαe−50δ−1 lnn = eαλ/n(50/δ).

There are at most n1/δ such sets and therefore
∑
U :λU≤(1−δ2)λ e

λUα ≤ eλα/n(49/δ).
For case (ii), perform the same transformation as in the first two lines of Lemma 17. The

bound on λU corresponds to λ̂U ≥ (λ̂− δ(3+x0)/2)/λ ≥ λ̂− δ(3+x0)/2 since λ ≥ 1. Using Theorem 5
we know that there are at most n3 + (n/δ)1+δ(x0−3)/2

≤ 2(n/δ)3 such sets. For each such set
U , eλUα ≤ eλαe−δ

3α/10 = eλαe−5 lnn = eλα/n5. Summing up over such 2(n/δ)3 sets the total
contribution to the left hand side of the inequality in the statement of the lemma is at most
2eλαδ−3/n2.

For case (iii), we partition the interval (λ − δ2, λ − δ(x0+3)/2] into subintervals of the form
(λ − δx, λ − δ(x+3)/2] for different values of x. The last subinterval corresponds to x = x0. If we
set x1 = 2x0 − 3 we have (3 + x1)/2 = x0 and thus x1 < x0 < 3, which corresponds to the second
subinterval. The j-th subinterval is defined by xj satisfying 3 + xj = 2xj−1. The number of such
subintervals is at most 2 + log log(1/δ).

Consider the case λU ∈ (λ − δx, λ − δ(x+3)/2]. Again, performing the transformation as in the
first two lines of Lemma 17, we get that λ̂U ≥ (λ̂−δx)/λ ≥ λ̂−δx (again, λ ≥ 1). Using Theorem 5

4 Consider h = δ(x−3)/2 as x increases from 2 to 3. The value of h decreases from δ−1/2 to 1.

19

and δ ≥ 1/
√
n, the number of odd-sets corresponding to this subinterval is at most

n3 + (n/δ)1+δ(x−3)/2
≤ 2(n/δ)1+δ(x−3)/2 ≤ 2n1.5+1.5δ(x−3)/2

However note that λU ≤ λ− δ(3+x)/2 and therefore eαλU is at most

eαλ/eαδ
(x+3)/2 = eαλ

e50δ(x−3)/2 lnn
= eαλ

n50δ(x−3)/2

Therefore the total contribution to the left hand side of the inequality in the statement of the
lemma for all U such that λU ∈ (λ− δx, λ− δ(x+3)/2] is at most (since x ≤ x0):

2eαλ

n48.5δ(x−3)/2−1.5
≤ 2eαλ

n97−1.5 ≤
eαλ

n94

For i ∈ V such that λi ≤ λ−δ3/10 the calculation as in the case (iii) applies and
∑
i:λi≤λ−δ3/10 e

λiα ≤
2eλαδ−3/n2 as well. Since 1

n49/δ + 2+log log(1/δ)
n94 + 4δ−3

n2 ≤ 5δ−3

n2 ≤ δ
n ; the lemma follows. �

We can now conclude Theorem 1 based on the discussion above, Theorems 8, 16 and Lemmas 17–
18:

Theorem 1. Given any non-bipartite graph, for any 3√
n
< δ ≤ 1/16 we find a (1 − O(δ))-

approximate maximum fractional weighted b-matching using additional “work” space (space exclud-
ing the read-only input) O(n poly(δ−1, lnn)) and making T = O(δ−4(ln(1/δ)) lnn) passes over the
list of edges. The running time is O(mT + n poly(δ−1, lnn)).

4 Proof of Theorem 5
Before proving Theorem 5, recall that b̃U =

⌊
‖U‖b

2

⌋
− f(‖U‖b) where f(`) = δ2`2

4 and δ ∈ (0, 1
16].

We can verify that f(`) is convex, monotonic for 0 ≤ ` ≤ 2/δ and:

(F1): For 3 ≤ ‖U‖b ≤ 2/δ − 1 (irrespective of odd or even) we have b̃U ≥ (1− δ)
⌊
‖U‖b

2

⌋
.

(F2): For any `1, `2; f(`1) + f(`2) = f(`1 + `2 − 1)− (2`1`2 − 2`1 − 2`2 + 1) δ2

4 .

(F3): For integers `1, `2, `3, `4 ∈ [3, 2/δ] and t ≥ 0, such that `1 + 2t ≤ `2 ≤ `3 ≤ `4 − 2t and
`1 + `4 = `2 + `3, we have f(`2) + f(`3) ≤ f(`1) + f(`4)− 2t2δ2.

Theorem 5. For a graph G with n vertices and any non-negative edge weights ŷij = ŷji such

that ŷii = 0 for all i,
∑
j ŷij ≤ bi for all i, and δ ∈ (0, 1

16], define: λ̂U =
∑

(i,j):i,j∈U ŷij

b̃U
and

λ̂ = maxU∈Oδ λ̂U . If λ̂ ≥ 1 + 3δ, the set L1 = {U : λ̂U ≥ λ̂− δ3;U ∈ Oδ} defines a laminar family.
Moreover for any x ≥ 2 we have |{U : λ̂U ≥ λ̂− δx;U ∈ Oδ}| ≤ n3 + (n/δ)1+δ(x−3)/2

.
Proof: Consider two sets A1, A2 ∈ Oδ such that λ̂A1 , λ̂A2 ≥ λ̂ − δx > 1 + 2δ (since x ≥ 2) and
neither A1 − A2, A2 − A1 6= ∅. For any set U (with ‖U‖b ≥ 1, even or odd, large or small) define
ŶU =

∑
(i,j):i,j∈U ŷij and b̃U . For ‖U‖b = 1 we have ŶU = 0. Let λ̂U = ŶU/b̃U . There are now two

cases.

Case I: ‖A1 ∩A2‖b is even. Let D = A1 ∩A2 and t = ‖D‖b/2. Let Q1 =
∑
i∈D

∑
j∈A1−A2 ŷij (the

cut between D and A1 − A2 using the edge weights ŷij) and Q2 =
∑
i∈D

∑
j∈A2−A1 ŷij . Without

loss of generality, assume that Q1 ≤ Q2 (otherwise we can switch A1, A2). Let C = A1 − A2 and

20

A = A1. Let 2`−1 = ‖C‖b which is odd. From the definitions of ŶC , ŶD we have ŶC = ŶA−Q1−ŶD
and ŶD ≤ 1

2(
∑
i∈D

∑
j ŷij −Q1 −Q2) ≤ ‖D‖b2 − Q1+Q2

2 . Using Q1 ≤ Q2 we get:

ŶC ≥ ŶA −
‖D‖b

2 − Q1

2 + Q2

2 ≥ ŶA −
‖D‖b

2 = ŶA − t. (7)

Now ŶA = λ̂Ab̃A > (1 + 2δ)(1 − δ)
⌊
‖A‖b

2

⌋
≥
⌊
‖A‖b

2

⌋
using Condition F1, and the lower bound on

λ̂. Therefore ŶA > t and ŶC > 0 which means ‖C‖b ≥ 3. Therefore we can refer to b̃C , λ̂C . Since
‖D‖b = ‖A‖b − ‖C‖b,

b̃A − b̃C =
⌊
‖A‖b

2

⌋
− f(‖A‖b)−

⌊
‖C‖b

2

⌋
+ f(‖C‖b) = ‖D‖b2 − (f(‖A‖b)− f(‖C‖b))

= t− tδ(t+ 2`− 1)δ ≥ (1− δ)t (8)

where the last line uses 1
δ ≥ ‖A‖b ≥ (2t + 2` − 1) because A ∈ Oδ. From Equations (7) and (8),

and ŶC = λ̂C b̃C , ŶA = λ̂Ab̃A we get:

λ̂b̃C ≥ λ̂C b̃C = ŶC ≥ ŶA − t = λ̂Ab̃A − t ≥ (λ̂− δx)b̃A − t = λ̂b̃A − δxb̃A − t ≥ λ̂(b̃C + (1− δ)t)− δxb̃A − t
> λ̂b̃C + (1 + 3δ)(1− δ)t− δxb̃A − t ≥ λ̂b̃C + δt− δxb̃A

Since b̃A ≤ 1/δ this implies that t < δx−1b̃A ≤ δx−2 which contradicts A1 ∩A2 6= ∅ for x ≥ 2.
Case II: ‖A1 ∩A2‖b is odd. Let C = A1 ∪A2, and D = A1 ∩A2. Let ‖A1‖b = `1,‖A2‖b = `2. We
prove

λ̂C ≤ λ̂ (9)

If ‖C‖b ≤ 1/δ then Equation (9) is true by definition since λ̂ explicitly optimizes over Oδ and
C ∈ Oδ. We focus on the case ‖C‖b > 1/δ. We extend the definitions b̃C =

⌊
‖C‖b

2

⌋
− f(‖C‖b) and

λ̂C = ŶC/b̃C for all odd subsets with ‖ · ‖b ≤ 2/δ. Now ŶC ≤ ‖C‖b
2 since

∑
j ŷij ≤ bi. Note that

‖C‖b = ‖A1‖b + ‖A2‖b − ‖D‖b and ‖D‖b ≥ 1. Thus ‖C‖b ≤ 2/δ − 1 and using Condition F1:

b̃C ≥ (1− δ)
⌊
‖C‖b

2

⌋
= (1− δ)‖C‖b2

(
1− 1
‖C‖b

)
≥ (1− δ)2 ‖C‖b

2

which implies that λ̂C ≤ (1− δ)−2 ≤ 1 + 3δ < λ̂. Thus Equation (9) holds in this case as well.
Now, ŶC + ŶD ≥ ŶA1 + ŶA2 and

⌊
‖C‖b

2

⌋
+
⌊
‖D‖b

2

⌋
=
⌊
‖A1‖b

2

⌋
+
⌊
‖A2‖b

2

⌋
. Therefore:

ŶC + ŶD ≥ ŶA1 + ŶA2 = λ̂A1 b̃A1 + λ̂A2 b̃A2 ≥ (λ̂− δx)(b̃A1 + b̃A2) (10)

If ‖D‖b = 1, then by Condition F3: b̃C = b̃A1 + b̃A2 − δ2

4 (2`1`2 − 2`1 − 2`2 + 1), and using
Equation (9),

λ̂b̃C ≥ λ̂C b̃C = ŶC ≥ (λ̂− δx)(b̃A1 + b̃A2) ≥ λ̂(b̃A1 + b̃A2)− δx(b̃A1 + b̃A2)

≥ λ̂b̃C + δ2λ̂(2`1`2 − 2`1 − 2`2 + 1)
4 − δx

(
`1 + `2 − 2

2

)
since b̃A1 + b̃A2 ≤ (`1 + `2 − 2)/2. Therefore we would have a contradiction if

λ̂(2`1`2 − 2`1 − 2`2 + 1)− 2δx−2(`1 + `2 − 2) > 0 (11)

Observe that for x ≥ 3 the term 2δx−2(`1 + `2− 2) is at most 2 whereas (2`1`2− 2`1− 2`2 + 1) ≥ 7
since 3 ≤ `1, `2 ≤ 1

δ . Since λ̂ > 1 we have a contradiction for ‖D‖b = 1, x ≥ 3.

21

Now consider ‖D‖b ≥ 3. Without loss of generality, ‖A2 −D‖b ≥ ‖A1 −D‖b. Let ‖A1 −D‖b = 2t.
Using Condition F3, b̃C + b̃D ≤ b̃A1 + b̃A2 − 2t2δ2. Note λ̂D ≤ λ̂, and from Equation (9) λ̂C ≤ λ̂.
Therefore λ̂

(
b̃C + b̃D

)
≥ λ̂C b̃C + λ̂D b̃D and from Equation (10):

λ̂
(
b̃C + b̃D

)
≥ λ̂C b̃C + λ̂D b̃D = ŶC + ŶD ≥ λ̂(b̃A1 + b̃A2)− δx(b̃A1 + b̃A2)
≥ λ̂(b̃C + b̃D) + 2t2δ2λ̂− δx(b̃A1 + b̃A2) (12)

Again, this is infeasible if x ≥ 3 since b̃A1 + b̃A2 ≤ 2/δ and λ̂ ≥ 1. Therefore for x ≥ 3, in all cases
we arrived at a contradiction to A1∩A2 6= ∅. Thus we have proved that {U : λ̂U ≥ λ̂− δ3;U ∈ Oδ}
is a laminar family.

We now prove the second part. Consider L′` = {U : λ̂U ≥ λ̂ − δx;U ∈ Oδ; ‖U‖b = `}. From
Case I, no two distinct sets A1, A2 ∈ L′` intersect when ‖A1 ∩ A2‖b is even. From Case II for
` ≥ 5, they cannot have ‖D‖b = 1 because (2`2 − 4` + 1) − 2(2` − 2) > 0 for ` ≥ 5. Note
‖A1 − D‖b = ‖A2 − D‖b because ‖A1‖b = ‖A2‖b = `. Moreover for t ≥ δ(x−3)/2 we would have
2t2δ2λ̂ > δx(b̃A1 + b̃A2) in Equation 12. Therefore two distinct sets A1, A2 ∈ L′` which intersect,
cannot differ by δ(x−3)/2 or more elements. This means that |L′`| ≤ (n/δ)1+δ(x−3)/2

for ` ≥ 5 — to
see this choose a maximal collection of disjoint sets in L′`. This would be at most n. Every other
set S in L′` has to intersect one of these sets in the maximal collection. To upper bound the number
of such sets S with intersection t, we can start from a set in that maximal collection; throw out
t elements in `t ways and include new elements in nt ways. Note ` ≤ 1/δ. Thus the number of
such sets for a fixed t is n(n/δ)δ(x−3)/2 . Observe that t ≤ 1/δ and the bound follows. Finally note
|L′3| ≤ n3. Thus the total number of sets is n3 + (n/δ)1+δ(x−3)/2 . The lemma follows. �

5 Proof of Theorem 6
An Overview. We combine the insights of the minimum odd-cut approach [27] along with the
fact that L2 ⊆ L1 is a laminar family as proved in Theorem 5. The algorithm picks the sets based
on their sizes. Define L1(`) = {U |U ∈ L1, ‖U‖b = `} and L2(`) = {U |U ∈ L2, ‖U‖b = `} for
` ∈ [3, 1/δ]. Note that L1(`) ⊇ L2(`). Observe that it suffices to identify L2(`) for different values
of `. We construct an unweighted graph Gϕ(`, λ̃) where ϕ = O(δ−4) with a new special node r(`)
with the following two properties:

Property 1. If λ̃− δ3

100 < λ̂ ≤ λ̃, then (i) all sets in L2(`) have a cut which is of size at most κ(`)
and (ii) all odd sets of Gϕ(`, λ̃) which do not contain r(`) and have cut of size at most κ(`) belong
to L1(`). Here κ(`) = bϕλ̃(1− δ2`2/2)c+ 12`

δ + 1 < 2ϕ.

Property 2. We show in Lemma 19 that we can extend the algorithm in [27] to efficiently extract
a collection L̄(`) of maximal odd-sets in Gϕ(`, λ̃), not containing r(`) and cut of size at most κ(`)
– such that any such set which is not chosen must intersect with some set in the collection.

Lemma 19. Given an unweighted graph G with parameter κ(`) and a special node r(`), in time
O(n poly(κ, logn)) we can identify a collection L̄(`) of odd-sets such that (i) each U ∈ L̄(`) does
not contain r(`) (ii) each U ∈ L̄(`) defines a cut of size at most κ in G and (iii) every other odd
set not containing r(`) and with a cut less than κ(`) intersects with a set in L̄(`).

The second property follows without much difficulty from the properties of Gomory-Hu trees
[17, 19] – trees which represent all pairwise mincuts over a set of nodes. Observe that property 1
implies that we can restrict our attention to only those regions of the graph Gϕ(`, λ̃) which have

22

cuts of size at most O(δ−4). Therefore if we are given a subset of vertices such that any partition of
that vertex set induces a large cut, then either that subset is included entirely within one odd set or
excluded completely. This is the notion of a Steiner Mincut which is used to compute the “partial
Gomory Hu tree” – where for some κ we represent all pairwise min cuts of value at most κ. Such
representations can be computed for unweighted undirected graphs in time O(m+ nκ3 log2 n) [20]
(see also improvements in [6]). The graph Gϕ(`, λ̃) is used exactly for this purpose. If we have a
maximal collection L̄(`) then L̄(`) ⊆ L1(`) by condition (ii) of Property 1. Due to Theorem 5, the
intersection of two such sets U1, U2 ∈ L1(`) will be either empty or have ‖ · ‖b = ` by laminarity –
the latter implies U1 = U2. Therefore the sets in L1(`) are disjoint. Any U ∈ L2(`)− L̄(`) has a cut
of size at most κ(`) using condition (i) of Property 1 and therefore must intersect with some set in
L̄(`). This is impossible because U ∈ L2(`) implies U ∈ L1(`) and L̄(`) ⊆ L1(`) and we just argued
that the sets in L1(`) are disjoint! Therefore no such U exists and L2(`) ⊆ L̄(`). We now have a
complete algorithm: we perform a binary search over the estimate λ̃ ∈ [1 + 3δ, 3

2 + δ2], and we can
decide if there exists a set U ∈ L2(`) in time O(n poly(δ−1, logn)) as we vary `, λ̃. This gives us λ̃.
We now find the collection L̄(`) for each ` and compute all λ̂U exactly (either remembering the ŷij
of the the edges stored in Gϕ or by another pass over G). We can now return ∪`L2(`). We now
prove Lemma 19.

5.1 Proof Of Lemma 19

The parameter ` is not relevant to the proof and is dropped. Algorithm 3 provides the algorithm
for this lemma.

Lemma 19. Given an unweighted graph G with parameter κ and a special node r, in time
O(n poly(κ, logn)) we can identify a collection L̄ of odd-sets such that (i) each U ∈ L̄ does not
contain r (ii) each U ∈ L̄ defines a cut of size at most κ in G and (iii) every other odd set not
containing r and with a cut less than κ intersects with a set in L̄.

Algorithm 3 Algorithm: Finding a maximal collection of odd-sets
1: L̄← ∅. Initially G′ = G. The node r ∈ V (G).
2: repeat
3: Assign the r duplicity br = 1 if

∑
i∈V (G′) bi is odd. Otherwise let br = 2.

4: Construct a tree T that represents all low s–t cuts in G′ using Theorem 20. The nodes of this tree
T correspond to subsets of vertices of V (G′).

5: Make the vertex set containing r the root of T and orient all edges towards the root. The oriented
edges represent an edge from a child to a parent. Let D(e) indicate the set of descendant subsets of
an edge e (including the child subset which is the tail of the edge, but not including the parent subset
which is the head of the edge).

6: Using dynamic programming starting at the leaf, mark every edge as admissible/inadmissible based
on the

∑
S∈D(e)

∑
i∈S bi over the descendant subsets of that edge being odd/even respectively.

7: Starting from the root s downwards, pick the edges e in parallel such that (c1) the weight of e
(corresponding to a cut) is at most κ, (c2)

∑
S∈D(e)

∑
i∈S bi is odd and (c3) no edge e′ on the path from

e to r satisfies (c1) and (c2). Let the odd-set Ue corresponding to this edge e ∈ T be Ue = ∪S∈D(e)S.
8: If the odd-sets found are Ue1 , . . . , Uef then L̄ ← L̄ ∪ {Ue1 , . . . , Uef }. Observe that the sets Ueg are

mutually disjoint for 1 ≤ g ≤ f and do not contain r.
9: Merge all vertices in

⋃f
g=1 Ueg with r. Observe that for any set U that does not contain r and does

not intersect with any Ueg , the cut Cut(U) is unchanged. This defines the new G′.
10: until no new odd set has been found in G′
11: return L̄.

Proof: First, consider the following known theorem and Lemma:

23

Theorem 20 ([6, 20]). Given a graph with n nodes and m edges (possibly with parallel edges), in
time O(m) + Õ(nκ2) we can construct a weighted tree T that represents all min s–t cuts in G′ of
value at most κ. The nodes of this tree are subsets of vertices. The mincut of any pair of vertices
that belong to the same subset (the same node in the tree T) is larger than κ and for any pair
of vertices i, j belonging to different subsets (nodes in the tree T) the mincut is specified by the
partition corresponding to the least weighted edge in the tree T between the two nodes that contain
i and j respectively.

Lemma 21 (Implicit in [27]). Suppose that for a graph G = (V,E),
∑
i∈V bi is even. For any

odd-set U in G with cut κ, there exists an edge e in the low min s-t cut tree T such that removing e
from the tree results in two connected components of odd sizes and the component Ue not containing
the root intersects U . In addition, the cut between Ue and rest of the graph is at most κ.

Proof:(Of Lemma 21) Observe that the min u-v cut for any u ∈ U and v 6∈ U is at most κ.
We provide an algorithmic proof of the existence – this is not the algorithm to find the odd sets.

Let H0 = V (G). We will maintain the three invariants that (1) ‖Hz‖b is even (2) H(z) defines a
connected component in the low min s-t cut tree T and (3) Hz ∩U 6= ∅ and Hz ∩ (V (G)−U) 6= ∅.
These hold for H0. Staring from Hz until we find a desired edge e or find Hz+1 ⊂ Hz which satisfies
the same invariants. This process has to stop eventually and we would have found the desired edge
e.

Given the invariant, there exists u ∈ Hz ∩U and v ∈ Hz ∩ (V (G)−U) such that the min u-v cut
is at most κ and therefore there must exist an edge ez (corresponding to a min u–v cut) within the
component Hz such that ez separates u, v. Let the two connected sub-components of Hz defined
by the removal of ez be S1 and S2. If ‖S1‖b, ‖S2‖b are both even, then one of them must satisfy
condition (3), since ‖U‖b is odd.

This process has to stop eventually and we would have found the desired edge e. Observe that
all the subcomponents of T created in this manner define even sets until we find e. If we add back
all the sub-components such that we have the two components corresponding to the two sides of
e, both of those components must have odd ‖ · ‖b. The component not containing r defines Ue. In
addition, the corresponding cut size is less than κ. �

(Continuing with Proof of Lemma 19.) All that remains to be proven is that the loop in Algorithm 3
needs to be run only a few times. Suppose after t′ repetitions Qt′ is the maximum collection of
disjoint odd-sets which are attached to the remainder of T with cuts of size at most κ and we
choose Ue1 , . . . , Uef to be added to L in the t′ + 1st iteration. We first claim that |Qt′+1| ≤ f . To
see this we first map every odd-set in Qt′+1 to an edge in the tree as specified by the existence proof
in Lemma 21. This map need not be constructive – the map is only used for this proof. Note that∑
i bi is even, by construction, in Algorithm 3 as required in Lemma 21. Observe that this can be

a many to one map; i.e., several sets mapping to the same edge.
Now every edges e1, . . . , ef chosen in Algorithm 3 satisfy the property for all j: no edge e′ on

the path from the head of ej (recall that the edges are oriented towards the root r) to r is one of
the edges in our map. Because in that case we would have chosen that edge e′ instead of ej .

Therefore the sets in Qt′+1 could not have mapped to any edges in the path towards r. Now, if
a set in Qt′+1 mapped to an edge e′ which is a descendant of the tail of some ej (again, the edges
are oriented towards r) then this set intersects with our chosen Uej which is not possible.

Therefore any set in Qt′+1 must have mapped to the same edges in the tree; i.e., e1, . . . , ef . But
then the vertex at the head of the edge belongs to the set in Qt′+1. Therefore there can be at most
f such sets. This proves |Qt′+1| ≤ f .

24

We next claim that |Qt′+1| ≤ |Qt′ | − f . Consider Q′ = Qt′+1 ∪{Ue1 , . . . , Uef }. Q′ is a collection
of disjoint odd-sets which define a cut of size κ in G after t′ repetitions. Obviously |Q′| = |Qt′+1|+f
and by the definition of Qt′ , |Q′| ≤ |Qt′ |. Therefore, |Qt′+1| ≤ |Qt′ | − f .

Therefore, in the worst case, |Qt′ | decreases by a factor 1/2 and therefore in O(logn) iterations
over this loop we would eliminate all odd-sets that define a cut of size κ in G′. �

5.2 Proof of Theorem 6

Theorem 6. For a graph G with n vertices and any non-negative edge weights ŷij = ŷji such that

ŷii = 0 and
∑
j ŷij ≤ bi for all i; and δ ∈ (0, 1

16], define: λ̂U =
∑

(i,j):i,j∈U ŷij

b̃U
where b̃U =

⌊
‖U‖b

2

⌋
−

δ2‖U‖2
b

4 and λ̂ = maxU∈Oδ λ̂U . If λ̂ ≥ 1 + 3δ we can find the set L2 = {U : λ̂U ≥ λ̂− δ3/10;U ∈ Oδ}
in O(m′ + n poly(δ−1, logn)) time using O(nδ−5) space where m′ = |{(i, j)|ŷij > 0}|.
Proof: We first observe that L2 is a laminar family using Theorem 5 and L2 ⊆ L1. Second,
observe that for any U we have

∑
(i,j):i,j∈U ŷij ≤ 1

2
∑
i∈U

∑
j ŷij ≤ 1

2
∑
i∈U bi = ‖U‖b/2. Therefore

λ̂ ≤ 3
2/(1−

δ2

4) < 3
2 + δ2. We maintain an estimate λ̃ of such that λ̃− δ3

100 < λ̂ ≤ λ̃ ≤ 3
2 + δ2. This

estimate can be found using binary search (as described below) We now show how to find the sets
U ∈ L2 with ‖U‖b = `, denoted by L2(`).
Create a graph Gϕ with pij = bϕŷijc parallel edges between i and j where ϕ = 50/δ4 (this parameter
can be optimized but we omit that in the interest of simplicity). This is an unweighted graph. This
graph can be constructed in a single pass over {(i, j)}. We also “merge” all pairs of vertices i and j
if pij exceeds 2ϕ. Moreover delete vertices i with 2ϕ/δ edges – note that these vertices must have
bi ≥

∑
j ŷij > 1/δ and cannot participate in any odd set in Oδ. This gives us a graph Gϕ with at

most O(nδ−5) edges.
Now for an odd ` ∈ [3, 1/δ] and λ̃, create Gϕ(`, λ̃) as follows: We begin with Gϕ. Let qi(`) =

bϕλ̃(1 − δ2`)bic for all i. Since qi(`) > (1 + δ)ϕbi >
∑
j pij (because λ̃ is large) we can add a new

node r(`) and add qi(`)−
∑
j pij edges between r(`) and i (for all i). This gives us a graph Gϕ(`, λ̃)

of size O(nδ−5) edges for all `. Let κ(`) = bϕλ̃(1− δ2`2/2)c+ 12`
δ + 1 < 2ϕ. Now:

qi(`)− κ(`) ≥ ϕλ̃(1− δ2`)− 1− ϕλ̃(1− δ2`2/2)− 12`
δ
− 1 = ϕλ̃δ2`(`− 2)

2 − 12`
δ
− 2

which is positive for ϕ = 50/δ4 and ` ≥ 3. Therefore qi(`) > κ(`).
Define Cut(U) to be the cut induced by U inGϕ(`, λ̃), that is, Cut(U) =

∑
i∈U qi−2

∑
(i,j):i,j∈U pij .

We now show that for ‖U‖b > 1/δ, Cut(U) > κ(`). For any odd set U ∈ O with ‖U‖b > 1/δ:

Cut(U)− κ(`) =
∑
i∈U

qi(`)− 2
∑

(i,j):i,j∈U

pij − κ(`)

≥
∑
i∈U

(ϕλ̃(1− δ2`)bi − 1)− 2ϕ
∑

(i,j):i,j∈U

ŷij − ϕλ̃(1− δ2`2/2)− 12`
δ
− 1

≥ ϕλ̃(1− δ2`)‖U‖b − |U | − ϕ‖U‖b − ϕλ̃(1− δ2`2/2)− 12`
δ
− 1 (Since

∑
(i,j):i,j∈U ŷij ≤ ‖U‖b/2)

≥ ϕλ̃(1− δ)‖U‖b − ϕ‖U‖b − ϕλ̃− δ2ϕ‖U‖b (Since ` ≤ 1/δ and δ2ϕ‖U‖b > |U |+ 12`
δ + 1)

= ϕ
(
λ̃(1− δ)‖U‖b − λ̃− (1 + δ2)‖U‖b

)
≥ ϕ

(
(1 + 3δ)(1− δ)‖U‖b −

3
2 − δ

2 − (1 + δ2)‖U‖b
)

(Since 1 + 3δ ≤ λ̂ ≤ λ̃ ≤ 3
2 + δ2)

> ϕ

(
2δ(1− 2δ)‖U‖b −

3
2 − δ

2
)
> ϕ

(
2(1− 2δ)− 3

2 − δ
2
)
> 0 (Since δ‖U‖b > 1)

25

where the last inequality follows δ ∈ (0, 1
16]. Therefore no odd-set with ‖U‖b > 1/δ satisfies

Cut(U) ≤ κ(`).
We now show Property 1, namely: If λ̃− δ3

100 < λ̂ ≤ λ̃, then (i) all sets in L2(`) have a cut which
is at most κ(`) and (ii) all odd sets of Gϕ(`, λ̃) which do not contain s and have cut at most κ(`)
belong to L1(`). For part (i) for a set U ∈ L2(`) with ‖U‖b = `, note |U | ≤ ‖U‖b = ` and:

Cut(U) =
∑
i∈U

qi − 2
∑

(i,j):i,j∈U

pij ≤
∑
i∈U

ϕλ̃(1− δ2`)bi − 2ϕ
∑

(i,j):i,j∈U

ŷij + |U |2

≤ ϕλ̃(1− δ2`)‖U‖b − 2ϕλ̂U b̃U + `2 ≤ ϕλ̃(1− δ2`)‖U‖b − 2ϕ
(
λ̃− δ3

100 −
δ3

10

)
b̃U + `2

= ϕλ̃(1− δ2`2/2) + 11δ3ϕb̃U
50 + `2 = ϕλ̃(1− δ2`2/2) + 11b̃U

δ
+ `2

≤ ϕλ̃(1− δ2`2/2) + 12`
δ
≤ κ(`) (since b̃U < ‖U‖b = ` ≤ 1/δ)

To prove part (ii) if Cut(U) ≤ κ(`) then:

∑
(i,j):i,j∈U

pij = 1
2

(∑
i∈U

qi − Cut(U ′)
)
≥ 1

2

(∑
i∈U

(
ϕλ̃(1− δ2`)bi − 1

)
− κ(`)

)

≥ 1
2

(∑
i∈U

(
ϕλ̃(1− δ2`)bi − 1

)
− ϕλ̃(1− δ2`2/2)

)
− 12`

δ
− 1

≥ ϕλ̃

(⌊
‖U‖b

2

⌋
− δ2‖U‖2

b

4

)
+ ϕλ̃δ2

4 (‖U‖b − `)2 − |U |2 −
12`
δ
− 1

= ϕλ̃b̃U + ϕλ̃δ2

4 (‖U‖b − `)2 − |U |2 −
12`
δ
− 1

But since λ̃ ≥ λ̂ ≥ λ̂U and ϕb̃U λ̂U = ϕ
∑

(i,j):i,j∈U ŷij ≥
∑

(i,j):i,j∈U pij we have

ϕλ̃b̃U ≥ ϕλ̂U b̃U ≥ ϕλ̃b̃U + ϕλ̃δ2

4 (‖U‖b − `)2 − |U |2 −
12`
δ
− 1 (13)

But that is a contradiction unless ‖U‖b = `, otherwise the quadratic term, ϕλ̃δ2

4 (‖U‖b − `)2 ≥
12.5δ−2 is larger than the negative terms which are at most 1

2δ + 12
δ2 + 1 in the RHS of Equation 13.

Therefore Cut(U) ≤ κ(`) for an odd-set implies ‖U‖b = `. But then Equation 13 implies (again
using |U | ≤ ‖U‖b = `):

ϕλ̂U b̃U ≥ ϕλ̃b̃U −
`

2 −
12`
δ
− 1

Now b̃U ≥ `
3(1− 3δ

4) when ‖U‖b = ` ≥ 3; thus:

λ̂U ≥ λ̃−
`

2ϕb̃U
− 12`
δϕb̃U

− 1
ϕb̃U

≥ λ̃− 3δ4

100(1− 3δ
4)
− 36δ3

50(1− 3δ
4)
− δ4

50 > λ̃− δ3 ≥ λ̂− δ3

in other words, Cut(U) ≤ κ(`) for an odd-set implies U ∈ L1(`), as claimed in part(ii).
We now apply Lemma 19 to extract a collection L̄(`) of odd-sets in Gϕ(`, λ̃), not containing r(`)
and cut at most κ(`) – such that any such set which is not chosen must intersect with some set in
the collection L̄(`).

If we have a maximal collection L̄(`) then L̄(`) ⊆ L1(`) by part (ii) of Property 1. Due
to Theorem 5, the intersection of two such sets U1, U2 ∈ L1(`) will be either empty or of size

26

` by laminarity – the latter implies U1 = U2. Therefore the sets in L1(`) are disjoint. Any
U ∈ L2(`) − L̄(`) has a cut of size at most κ(`) using part (i) of Property 1 and therefore must
intersect with some set in L̄(`). This is impossible because U ∈ L2(`) implies U ∈ L1(`) and
L̄(`) ⊆ L1(`) and we just argued that the sets in L1(`) are disjoint. Therefore no such U exists and
L2(`) ⊆ L̄(`). We now have a complete algorithm: we perform a binary search over the estimate
λ̃ ∈ [1 + 3δ, 3

2 + δ2], and we can decide if there exists a set U ∈ L2(`) in time O(n poly(δ−1, logn))
as we vary `, λ̃. This gives us λ̃. We now find the collections L̄(`) for each ` and compute all λ̂U
exactly. We can now return ∪`L2(`). Observe that Gϕ does not need to be constructed more than
once; it can be stored and reused. The running time follows from simple counting. �

6 Rounding Uncapacitated b-matchings
Theorem 2.(Integral b–matching) Given a fractional b-matching y for a non-bipartite graph which
satisfies LP1(b) (parametrized over b) where |{(i, j)|yij > 0}| = m′, we find an integral b–matching
of weight at least (1− 2δ)

∑
(i,j)wijyij in O(m′δ−3 log(1/δ)) time and O(m′/δ2) space.

Algorithm 4 Rounding a fractional b–matching
1: First Phase: (large multiplicities) Let t = d2/δe andM(0) = ∅.

(a) If yij ≥ t add ŷ(0)
ij = byijc − 1 copies of (i, j) toM(0).

(b) Set y(1)
ij = 0 if yij ≥ t and y(1)

ij = yij otherwise.

(c) Let b(1)
i = min

{
bi −

∑
j ŷ

(0)
ij , d

∑
j y

(1)
ij e+ 1

}
.

2: Second Phase: (large capacities)

(a) While ∃i s.t.
∑
j y

(1)
ij ≥ 3t do

(i) Order the vertices adjacent to i arbitrarily. Select the prefix S in that order such that the
sum is between t and 2t (each edge is at most t from Step 1b). Create a new copy i′ of i
with this prefix and y

(1)
i′j = y

(1)
ij for j ∈ S and delete the edges from S incident to i. Observe

that the procedure describes a process where given a set of numbers q1, . . . , qk such that each
qj ≤ 1 and

∑
j qj = Y ≥ 3; we partition the set of numbers such that each partition S satisfies

1 ≤
∑
j∈S qj ≤ 2.

(b) If no copies of i were created then b(2)
i = b

(1)
i . For every new i′ (corresponding to i) created from

the partition S (which may have now become S′ with subsequent splits), assign b(2)
i′ = b

∑
j∈S′ y

(1)
ij c.

Note b(2)
i ≤ 3t for all vertices. We now have a vertex set V (2). Set y(2)

ij = (1− δ)y(1)
ij for i, j ∈ V (2).

3: Third Phase: Reduction to weighted matching.

(a) For each i ∈ V (2) with b(2)
i , create i(1), i(2), · · · , i(b(2)

i).
(b) For each edge (i, j), create a complete bipartite graph between i(1), i(2), · · · and j(1), j(2), · · · with

every edge having weight wij . Let this new graph be G(3).
(c) Run any fast approximation for finding a (1−ε)-approximate maximum weighted matching in G(3) let

this matching beM(3). MatchingM(3) provides a b–matchingM(2) in G(2) of same weight (merge
edges). (ii) MatchingM(2) provides a b–matchingM(1) in G(1) of same weight (merge vertices).

4: Output: M(0) ∪M(1).

As an example of Step 3(b), consider

27

u

3

v

2

w

3

u1

u2

u3

v1

v2

w1

w2

w3

The algorithm is given in Algorithm 4. We begin with the following lemma:

Lemma 22. (First Phase and the Output Phase) Suppose that all vertex constraints are satisfied
and

∑
j yij ≤ bi− 1 for some i ∈ V . Then, for any odd set U that contains i, the corresponding odd

set constraint is satisfied. The fractional solution {y(1)
ij } obtained in the first phase of Algorithm 4

is feasible for LP1(b(1)) — and an integral M(1) which is a (1− 2δ)-approximation of LP1(b(1))
can be output along withM(0).

Proof: For any U ∈ O, i ∈ U ,
∑
i′,j∈U

yi′j ≤
1
2
∑
i′∈U

∑
j

yi′j ≤
1
2((
∑
i′∈U

bi′)− 1) = ‖U‖b − 1
2 =

⌊
‖U‖b

2

⌋
. Thus

it follows that any vertex which has an edge incident to it inM(0) cannot be in any violated odd-set
in LP1(b(1)). Then any violated odd-set in LP1(b(1)) with respect to {y(1)

ij }must also be a violated
odd-set in LP1(b); contradicting the fact that we started with a {yij} is feasible for LP1(b). Now
M(0) ∪ M(1) is feasible since both are integral and we know that b(1)

i ≤ bi −
∑
j ŷ

(0)
ij . Observe

that w(M(0)) ≥ (1 − δ)
∑

(i,j)∈E wij
(
yij − y(1)

ij

)
where w(M(0)) =

∑
(i,j)∈E ŷ

(0)
ij wij . Therefore if

w(M(1)) ≥ (1− 2δ)
∑

(i,j)∈E wijy
(1)
ij then w(M(0)) + w(M(1)) is at least (1− 2δ)

∑
(i,j)∈E wijyij as

desired. �

Lemma 23. (Second Phase) If {y(1)
ij } satisfies LP1(b(1)) over V , then {y(2)

ij } satisfies LP1(b(2))
over G(2) and

∑
i,j wijy

(2)
ij = (1− δ)

∑
i,j wijy

(1)
ij .

Proof: Observe that any vertex which participates in any split produces vertices which have (frac-
tionally) at least t edges. After scaling we have (1−δ)

∑
j y

(1)
ij ≤

∑
j y

(1)
ij −δt ≤

∑
j y

(1)
ij −2 ≤ b(2)

i −1
from the definition of b(2) in line (3b) of Algorithm 4. Therefore the new vertices cannot be in any
violated vertex or set constraint; from the first part of Lemma 22 (now applied to LP1(b(2)) instead
of LP1(b)). Therefore the Lemma follows. �
Finally, observe that any integral b–matching in G(2) has an integral matching in G(3) of the same
weight and vice versa — moreover given a matching for G(3) the integral b–matching for G(2) can be
constructed trivially. Also, the number of edges inG(3) is at most O(δ−2m′) since each vertex in G(2)

is split into O(δ−1) vertices in G(3). We are guaranteed a maximum b–matching in G(2) of weight
at least

∑
(i,j)∈E(2) wijy

(2)
ij since {y(2)

ij } satisfies LP1(b(2)) over G(2). Therefore we are guaranteed
a matching of the same weight in G(3). Now, we use the approximation algorithm in [9, 10] which
returns a (1− δ)-approximate maximum weighted matching in G(3) in O(m′δ−3 log(1/δ)) time and
space. From the (1− δ)-approximate maximum matching we construct a b–matching in G(2) of the
same weight (and therefore a b–matchingM(1) in G(1) of the same weight). Theorem 2 follows.

7 The Capacitated b–Matching Problem
Definition 2.[29, Chapters 32 & 33] The Capacitated b–matching problem is a b–matching
problem where we have an additional restriction that the multiplicity of an edge (i, j) ∈ E is at

28

most cij. The vertex and edge capacities {bi}, {cij} are given as input and for this paper are
assumed to be integers in [0, polyn]. Observe that we can assume cij ≤ min{bi, bj} without loss of
generality.
Long and Short Representations: We follow the reduction of the capacitated problem to the
uncapacitated problem outlined in [29, Chapter 32], with modifications.

Definition 7. Given a graph G = (V,E) with vertex and edge capacities. Consider subdividing
each edge e = (i, j) into (i, pij,i), (pij,i, pij,j), (pij,j , j) where pij,i, pij,j are new additional vertices
with capacity bcpij,i = bcpij,j = cij. For i ∈ V set bci = bi. We use the weights denoted by wc to be
1
2wij , 0,

1
2wij for (i, pij,i), (pij,i, pij,j), (pij,j , j) respectively. Let the transformation of G be denoted

as Long (G); let the vertices and edges of Long (G) be V c and Ec respectively. Long (G) does not
have any edge capacities.

For U c ⊆ V c let ‖U c‖b =
∑
s∈Uc b

c
s as before. The odd-sets in Long (G) , i.e. U c such that

‖U c‖b is odd, are denoted by Oc and define Ocδ = {U c ∈ Oc, ‖U c‖b ≤ 1/δ}.

The above transformation is inspired by the proof of [29, Theorem 32.4, Vol A, page 567] which
used the weights wij , wij , wij instead of 1

2wij , 0,
1
2wij for (i, pij,i), (pij,i, pij,j), (pij,j , j) respectively.

In fact [29, Theorem 32.4] computes an optimum solution of value β∗,c +
∑

(i,j)∈E wijcij . How-
ever an approximation of β∗,c +

∑
(i,j)∈E wijcij need not provide an approximation of β∗,c because∑

(i,j)∈E wijcij can be significantly larger. We will eventually use the algorithm in [29, Theorem 32.4]
to find an integral solution in Section 7.2. We need to bound

∑
(i,j)∈Ê wijcij where Ê is the edgeset

in our candidate fractional solution. An example of the transformation is as follows (the edges only
have weight in the new graph).

i1

3
i2

4
i3

3
c=3
w=2

c=2
w=4

i1

3 3

pi1i2,i1 pi1i2,i2

3
i2

4 2

pi2i3,i2

2

pi2i3,i3

i3

3
1 0 1 2 0 2

Notation: We will use i, j to denote vertices (and edges) in the original graph G and use s, r, u, v
to denote vertices (and edges) in Long (G). We will use the superscript such as yc, U c to indicate
variables, subsets in Long (G) to distinguish them from G. However we can switch between G and
Long (G) as described next.

Definition 8. Let λc0 be a parameter which is determined later. Define:

Long (Qc) :



∑
r:(s,r)∈Ec

ycsr ≤ bcs ∀s ∈ V c

ycipij,i + ycpij,ipij,j = cij ∀(i, j) ∈ E
ycpij,ipij,j + ycpij,jj = cij ∀(i, j) ∈ E
ycsr ≥ 0 ∀(s, r) ∈ Ec

and Qc :


∑

j:(i,j)∈E

yij ≤ bi ∀i ∈ V

yij ≤ cij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E

And likewise:

Long (Pc) :



∑
r:(s,r)∈EL

ycsr ≤ λc0bcs/2 ∀s ∈ V c

ycipij,i + ycpij,ipij,j = cij ∀(i, j) ∈ E
ycpij,ipij,j + ycpij,jj = cij ∀(i, j) ∈ E
ycsr ≥ 0 ∀(s, r) ∈ Ec

and Pc :


∑

j:(i,j)∈E

yij ≤ λc0bi/2 ∀i ∈ V

yij ≤ cij ∀(i, j) ∈ E
yij ≥ 0 ∀(i, j) ∈ E

Given yc ∈ Long (Pc) define Short (yc) as yij ← yci,pij,i(= ycpij,j ,j). Observe that Short (yc) ∈
Pc. Likewise given a y ∈ Pc define Long (y) as yci,pij,i , y

c
pij,j ,j

← yij and ypij,i,pij,j ← (cij −
yij). Observe that Long (y) ∈ Long (Pc). Moreover Long (·) ,Short (·) are inverse operations;

29

Short (yc) = y iff Long (y) = yc and define bijections between Long (Pc) ,Pc and between
Long (Qc) ,Qc.

Moreover for any yc ∈ Long (Pc) (therefore also Long (Qc)) we have wTShort (yc) = (wc)Tyc.
Similarly for any y ∈ Pc (therefore also Qc) (wc)TLong (y) = wTy.
The next theorem provides the linear program we will use for capacitated b–matching.
Theorem 24. The maximum integral weighted capacitated b–matching problem is expressed by the
following linear programming relaxation on Long (G).

β∗,c = max
∑

(s,r)∈Ec
wcsry

c
sr

{Acyc ≤ bc} =


∑

r:(s,r)∈Ec
ycsr ≤ bcs ∀s ∈ V c

∑
(s,r)∈Ec:s,r∈U

ycsr ≤
⌊
‖U c‖b

2

⌋
∀U c ∈ Ocδ∑

(s,r)∈Ec:s,r∈U

ycsr ≤
⌊
‖U c‖b

2

⌋
∀U c ∈ Oc −Ocδ

Long (Qc) =



∑
r:(s,r)∈Ec

ycsr ≤ bcs ∀s ∈ V c

ycipij,i + ycpij,ipij,j = cij ∀(i, j) ∈ E
ycpij,ipij,j + ycpij,jj = cij ∀(i, j) ∈ E
ycsr ≥ 0 ∀(s, r) ∈ Ec

(LP9)

The final solution is given by y← Short (yc). Some of the constraints are redundant by design.
Proof: Given an integral feasible solution y for capacitated b–matching, the constraints {AcLong (y) ≤
bc} hold because Long (y) defines an integral uncapacitated b-matching over Long (G). The new
constraints Long (Qc) are satisfied since y is feasible, i.e., y ≤ c. Note that the objective function
value does not change as a consequence of Definition 7. This proves that β∗,c is an upper bound
on the maximum capacitated integral b–matching.

In the reverse direction, given a fractional solution yc with objective value β∗,c, observe that
yc satisfies the conditions of being in the uncapacitated b-matching polytope of Long (G) (recall
these constraints are in LP1). Therefore yc can be expressed as a convex combination of integral
uncapacitated b–matchings over Long (G). Since yc satisfies that the vertex capacities in V c − V
as an equality (see Long (Qc)) – every integral uncapacitated b–matching in the decomposition of
yc must satisfy the vertex capacities V c−V as equality. Therefore there exists at least one integral
uncapacitated b–matching ỹc in the decomposition of yc which has objective value at least β∗,c and
satisfies the vertex capacities for V c − V as equality. Now Short (ỹc) is an integral capacitated
b–matching in G of weight at least β∗,c. �
Approximate Satisfiability. Since we will not be satisfy the constraints LP9 exactly the next
lemma provides an ability to scale solutions.
Lemma 25. Let q be an arbitrary integer and let ζ ≥ 1. Suppose that we have a yc ∈ Long (Pc)
which for all U c ⊆ V c in Long (G) with ‖U c‖b ≤ q satisfies

ζ

⌊
‖U c‖b

2

⌋
≥

∑
(s,r)∈Ec,s,r∈Uc

ycsr

then ŷc = Long
(

1
ζShort (yc)

)
satisfies for all U c ⊆ V c in Long (G) with ‖U c‖b ≤ q,⌊
‖U c‖b

2

⌋
≥

∑
(s,r)∈Ec,s,r∈Uc

ŷcsr (14)

30

Algorithm 5 An approximation scheme for capacitated b–matching .
1: Define Long (Qc) ,Long (Pc) as in Definition 8. Define Acyc ≤ b̃c as:

{Acyc ≤ b̃c} =


∑

r:(s,r)∈Ec
ycsr ≤ b̃cs ∀s ∈ V c, where b̃cs = (1− 4δ)bcs∑

(s,r)∈Ec:s,r∈U

ycsr ≤ b̃cU ∀Uc ∈ Ocδ where b̃cU =
⌊
‖Uc‖b

2

⌋
− δ2‖Uc‖2

b
4

(LP10)

2: Fix δ ∈ (1√
5n ,

1
16]. Let λc0 = 16 ln 2

δ . Let α = 50δ−3 ln(2m+ n).
3: Find a solution yc ∈ Long (Pc) where β0 = (wc)Tyc and Acyc ≤ λ0b̃c.
4: Let ε = 1

8 (note ε ≥ δ) and t = 0.
5: while true do

6: Define λ = max{maxi λi,maxUc∈Oc
δ
λUc} where

{
λs =

∑
r:(s,r)∈Ec y

c
sr/b̃

c
s ∀s ∈ V c

λUc =
∑

(s,r)∈Ec:s,r∈Uc y
c
sr/b̃

c
U ∀U c ∈ Ocδ

7: Find a collection of odd sets Lc = {U c | U c ∈ Ocδ, λUc ≥ λ− δ3

10} (without computing all λUc).
8: If (λ ≤ 1 + 8δ) output (1−δ)

(1+8δ)Short (yc) and stop.
9: If λ < 1 + 8ε then a new superphase starts; repeatedly set ε← max{2ε/3, δ} till λ ≥ 1 + 8ε.

10: Set
{
xs = exp(αλs)/b̃cs if λs > λ− δ3/10 and 0 otherwise
zUc = exp(αλUc)/b̃cU if λUc > λ− δ3/10 and 0 otherwise . Let γc =

∑
s xsb̃

c
s+
∑
Uc∈Oc

δ
zUc b̃

c
U .

11: Define ηsr = (xcs+xcr+
∑

Uc∈Lc;s,r∈Uc
zUc). Find a solution ỹc of LP11, otherwise decrease β ← (1−δ)β.

 ∑
(s,r)∈Ec

wcsr ỹcsr ≥ (1− δ)β,
∑

(s,r)∈Ec
ỹcsrηsr ≤

γc

1− δ , ỹc ∈ Long (Pc)

 (LP11)

12: Set yc ← (1− σ)yc + σỹc where σ = ε/(4αλc0).
13: end while

Proof: Suppose not. Consider the subset U c with the smallest ‖U c‖b which violates the assertion
14. Observe that U c cannot contain both pij,i, pij,j for any edge (i, j) ∈ E (in the original G).
Because in that case U c − {pij,i, pij,j} will be a smaller set which violates the assertion – since
the LHS of Equation 14 will decrease by cij as well as the RHS! But if U c does not contain both
pij,i, pij,j for any edge (i, j) ∈ E (in G) then∑

(s,r)∈Ec,s,r∈Uc
ŷcsr ≤

1
ζ

∑
(s,r)∈Ec,s,r∈Uc

ycsr ≤
⌊
‖U c‖b

2

⌋
which is a contradiction. The lemma follows. �

Therefore the scaling operation still succeeds (on Short (yc)) but its proof is more global
compared to the proof in the uncapacitated case. Here we are proving the statement for all subsets
of a certain size simultaneously, whereas in the uncapacitated case the proof of feasibility of U c
followed from the bound of

∑
(i,j)∈E,i,j∈Uc yij for that particular subset U c itself.

7.1 Algorithm for Capacitated b–Matching

The algorithm is provided in Algorithm 5.
Note that Step 7 follows from Lemma 17. Moreover if we adjust α for the number of vertices,

Lemma 18 also follows. Note that λ∗ = min{λ | yc ∈ Long (Qc) ,Acyc ≤ λb̃c} is not 1. In
Lemma 27 we show that λ∗ ≤ 1/(1 − 4δ) and moreover we can always find a solution of LP11 for

31

β ≤ (1 − 4δ)β∗,c. However the choice of Acyc ≤ b̃c implied that we can reuse Lemma 17 and 18
without any modification.

Before discussing the algorithm for LP11 we argue that the returned solution returned in Line 8
of Algorithm 5 is a feasible capacitated b–matching. We apply Lemma 25 with ζ = (1 + 8δ) and
q = 1/δ. Consider yc,† = Long

(
1

1+8δShort (yc)
)
. Since Acyc ≤ (1 + 8δ)b̃c ≤ (1 + 8δ)bc. Note

that this operation will imply that all the vertex constraints in Vc are satisfied as well as constraints
corresponding to all U c ∈ Ocδ. For the odd subsets U c with ‖U c‖b ≥ 1/δ, since the vertex constraints
are satisfied we have: ∑

(s,r)∈Ec,s,r∈Uc
yc,†sr ≤

‖U c‖b
2 ≤ 1

(1− δ)

⌊
‖U c‖b

2

⌋
the violation is at most ζ = 1

(1−δ) for any odd set. We now apply the lemma again with ζ = 1
(1−δ)

for all odd sets, i.e., q =∞. The result of the two operations compose and correspond to the output
in Line 8.

Solving LP11. We now focus on the algorithm for solving LP11. Before providing the algorithm
we prove Lemma 26 which proves structural properties of the weights resulting from the dual
thresholding.
Lemma 26. Suppose that λ > 1 + 8δ (otherwise the algorithm has stopped) and the current can-
didate solution in Algorithm 5 is yc.
(a) xs = 0 for any s ∈ V c − V (the new vertices that are introduced).

(b) Suppose U c ∈ Ocδ contains pij,i, pij,j for some edge (i, j) ∈ E (of G). If neither i, j /∈ U ,
zUc = 0.

(c) If for some edge (i, j) ∈ E we have ycipij,i = ycpij,jj = 0, then neither pij,i, pij,j belong
to an add set U c ∈ Ocδ with zUc > 0. As a consequence, We can compute Lc in time
O(m′ poly{δ−1, logn}) where m′ = |{(i, j)|ycpij,jj 6= 0}| because the other edges cannot de-
fine any odd set in Lc.

(d) Let Short(η)ij = ηipij,i + ηpij,jj − ηpij,ipij,j . Then Short(η)ij ≥ 0 for every (i, j) ∈ E.

(e) Let Shift(η) =
∑

(i,j)∈E
cijηpij,ipij,j then γc

(1−δ) ≥ Shift(η).

Proof: Part (a) follows from the fact that λs = 1
1−4δ < λ− δ3/10.

For part (b) suppose that pij,i, pij,j ∈ U c, zUc 6= 0 for some U c ∈ Ocδ. Note ‖U c‖b ≤ 1/δ and
thus:∑
(s,r)∈Ec:s,r∈Uc

ycsr ≥
(
λ− δ3

10

)
b̃cU =

(
λ− δ3

10

)(⌊
‖U c‖b

2

⌋
−
δ2‖U c‖2

b,c

4

)
≥
(
λ− δ3

10

)
‖U c‖b − 1

2 − λ
δ2‖U‖2

b,c

4
(15)

Consider U c1 = U c − {pij,j , pij,i}. Let ‖U c1‖b = `. Note since ‖U c‖b is odd, ` ≥ 1 and ` is odd.
‖U‖b = `+ 2cij ≥ 3. Since ypij,ipij,j ≤ cij and i, j 6∈ U c,∑

(s,r)∈Ec:s,r∈Uc1

ycsr =
∑

(s,r)∈Ec:s,r∈U

ycsr − ypij,ipij,j ≥
∑

(s,r)∈Ec:s,r∈Uc
ycsr − cij (16)

If U c1 is a singleton node then the LHS of Equation (16) is 0. Using Equation (15) and 3 ≤ ‖U‖b,c ≤
1/δ,

0 =
∑

(s,r)∈Ec:s,r∈Uc
ycsr−ypij,ipij,j ≥

(
λ− δ3

10

)
b̃cU−cij ≥

(
λ− δ3

10

)
(1−δ)

⌊
`+ 2cij

2

⌋
−cij ≥ cij

((
λ− δ3

10

)
(1− δ)− 1

)

32

which is impossible for λ > 1 + 8δ. If U c1 is an odd set, then it is in Ocδ and thus

λ

(
`− 1

2 − δ2`2

4

)
= λb̃Uc1 ≥

(
λ− δ3

10

)
`+ 2cij − 1

2 − λδ
2(`+ 2cij)2

4 − cij (17)

but Equation 17 rearranges to

δ3

10

(
`− 1

2

)
+ λcijδ

2(cij + `) ≥
(
λ− δ3

10 − 1
)
cij

which in turn (if we divide by cij and use `+ 2cij ≤ 1/δ) implies 1 + δ3

10 + δ2

20 ≥ (1− δ)λ which is
impossible for λ > 1 + 8δ. Part (b) of the Lemma follows.

For part (c), suppose for contradiction, pij,i ∈ U c ycpij,ipij,j = cij and zUc > 0. Observe Equa-
tion (15) applies because zUc > 0. If pij,j ∈ U c then we consider U c1 = U c − {pij,i, pij,j} and in
part (b). Equation (16) of part (b) holds irrespective of i, j ∈ U c because neither pij,i, pij,j have
nonzero edges in yc to any other vertex. The remainder of part (b) applies as well and we have a
contradiction.

Therefore we need to only consider the case pij,j 6∈ U c. But then consider U c2 = U c −{pij,i}. In
this case, since pij,i has no non-zero edge to any vertex in U c2 :∑

(s,r)∈Ec:s,r∈Uc2

ycsr =
∑

(s,r)∈Ec:s,r∈Uc
ycsr > 0 (18)

Again let ‖U c2‖b = `, thus ‖U c‖b = `+ cij . Note ‖U c‖b ≤ 1/δ. Now

∑
(s,r)∈Ec:s,r∈Uc2

ycsr ≤
1
2
∑
s∈Uc2

∑
r:(s,r)∈Ec

ycsr ≤
1
2
∑
s∈Uc2

λb̃cs = (1− 4δ)`
2 λ

Combining the above with Equations 18 and (first part of) 15

(1− 4δ)`
2 λ ≥

(
λ− δ3

10

)
b̃Uc ≥

(
λ− δ3

10

)
(1− δ)

⌊
‖U c‖b

2

⌋
=
(
λ− δ3

10

)
(1− δ)

⌊
`+ cij

2

⌋
and since cij ≥ 1, the above implies

(1− 4δ)`
2 λ ≥

(
λ− δ3

10

)
(1− δ) `2 =⇒ (1− δ) δ

3

10 ≥ 3δλ

which is not possible for λ > 1 + 8δ. Part (c) follows.
For part (d) observe that:

Short(η)ij =

xi + xpij,i +
∑

Uc;i,pij,i∈Uc
zUc

+

xj + xpij,j +
∑

Uc;j,pij,j∈U
zUc


−

xpij,i + xpij,j +
∑

Uc;pij,i,pij,j∈Uc
zUc


= xi + xj +

∑
Uc;i,pij,i∈Uc

zUc +
∑

Uc;j,pij,j∈Uc
zUc −

∑
Uc;pij,i,pij,j∈Uc

zUc

but then Short(η)ij can be negative only if there exists a set U c ∈ Lc such that pij,i, pij,j ∈ U c,
neither i, j 6∈ U c and zUc > 0. The first part of Lemma rules out that possibility.

33

Finally for part (d) observe that there exists a solution ycpij,ipij,j = cij and yci,pij,i = yci,pij,j = 0.
This solution corresponds to not picking any edges in the original graph G. This solution belongs
to Qc and satisfies Acyc ≤ b̃c. Therefore for this solution, for every odd set U c ∈ Ocδ:∑

(s,r)∈Ec:s,r∈U

ycsr ≤
⌊
‖U‖b

2

⌋
≤ 1

(1− δ) b̃U
c (19)

Observe that ycsr 6= 0 only for (s, r) = (pij,i, pij,j) for every edge (i, j) ∈ E; and that ycsr = cij .
Therefore multiplying Equation 19 by zUc ≥ 0 and summing over all U c ∈ Ocδ we get:

∑
Uc∈Oc

δ

zU

 ∑
(i,j)∈E:pij,j ,pij,i∈Uc

cij

 ≤ 1
(1− δ)

∑
U∈Oc

δ

zUc b̃Uc ≤
1

(1− δ)γ
c =⇒

1
(1− δ)γ

c ≥
∑

(i,j)∈E

cij

 ∑
Uc∈Oc

δ
,pij,j ,pij,i∈Uc

zUc

 =
∑

(i,j)∈E

cij
(
ηpij,j ,pij,i − xpij,i − xpij,j

)
=

∑
(i,j)∈E

cijηpij,j ,pij,i

where the last part follows from xs = 0 for any s ∈ V c \ V (since λs = 1/(1 − 4δ) < λ − δ3/10).
The conclusion (c) follows from the definition of Shift(η). �

We now provide a solution for LP11, but notice that the solution is only provided for β ≤ (1 −
4δ)β̃c. This reduces the approximation ratio but the overall approximation remains a (1 − O(δ))
approximation.

Lemma 27. Recall LP11 in Algorithm 5. ∑
(s,r)∈Ec

wcsr ỹ
c
sr ≥ (1− δ)β

∑
(s,r)∈Ec

ỹcsrηsr ≤
γc

1− δ ỹc ∈ Long (Pc)

 (LP11)

where ηsr are as defined in Step 10. A solution of LP11 is always found for β ≤ (1− 4δ)β̃c. The
solution requires at most ` = O(ln2 1

δ) invocations of Theorem 13 and returns a solution ŷc such that
the subgraph (in G) Ê = {(i, j)|(i, j) ∈ E,Short (ŷc)ij > 0} satisfies

∑
(i,j)∈Ê wijcij ≤ (16`)β∗,c.

Recall that β∗,c is the weight of the optimum capacitated b–matching.

Proof: First observe that for any H1, H2 and y = Short (yc) (equivalently yc = Long (y)),

∑
(s,r)∈EL

wcsry
c
sr = H1∑

r:(s,r)∈EL

ηsry
c
sr = H2

yc ∈ Long (Pc) (resp. Long (Qc))


⇐⇒



∑
(i,j)∈E

wijyij = H1∑
(i,j)∈E

Short(η)ijyij = H2 − Shift(η)

y ∈ Pc (resp. Qc)

Suppose that we can provide a solution for the system:∑
(i,j)∈E

wijyij ≥ (1− δ)β
∑

(i,j)∈E

Short(η)ijyij ≤
γc

(1− δ) − Shift(η), y ∈ Pc (LP12)

for any β ≥ (1− 4δ)β∗, then we have proved the lemma by considering Long (y).
Consider the optimum capacitated b–matching yc,∗, and let yc,† = Long ((1− 4δ)Short (y∗,c)).

Observe yc,† ∈ Long (Qc). Note that for i ∈ V ,∑
r

yc,∗ir ≤ bi =⇒
∑
r

yc,†ir ≤ (1− 4δ)bi = b̃i

34

We argue that for any U c ∈ Ocδ such that if zUc > 0,∑
(s,r):s,r∈Uc

yc,∗sr ≥
∑

(s,r):s,r∈Uc
yc,†sr (20)

If for every edge (i, j) ∈ E both pij,i, pij,j are not present in U c then Equation (20) follows
immediately because in the transformation of yc,∗ to yc,† the only yc values that increase correspond
to ycpij,i,pij,j for some edge (i, j) ∈ E. On the other hand, suppose that for some (i, j) ∈ E
both pij,i, pij,j are present then using Lemma 26, either i or j ∈ U c. Without loss of generality,
suppose i ∈ U c. But then the increase in ycpij,i,pij,j cancels out the the decrease in ycipij,i . Therefore
Equation (20) follows.

Note
∑
r:(s,r)∈Ec w

c
rsy

c,†
sr = (1 − 4δ)β∗,c (discussion following Algorithm 5) and xs = 0 for s ∈

V c \ V (Lemma 26, part(a)). Omitting the implied U c ∈ Ocδ for notational simplicity in the sum
below, we get:

∑
r:(s,r)∈Ec

ηsry
c,†
sr =

∑
r:(s,r)∈Ec

xs + xr +
∑

Uc∈Lc;s,r∈U
zUc

 yc,†sr =
∑
s

xs

(∑
r

yc,†sr

)
+

∑
Uc:zUc>0

zUc

 ∑
(s,r):s,r∈Uc

yc,†sr


=
∑
i:xi>0

xi

(∑
r

yc,†ir

)
+

∑
Uc:zUc>0

zUc

 ∑
(s,r):s,r∈Uc

yc,†sr

 ≤ ∑
s:xs>0

xsb̃s +
∑

U :zUc>0
zUc

b̃Uc

(1− δ)

≤ 1
(1− δ)

 ∑
s:xs>0

xsb̃s +
∑

Uc:zUc>0
zUc b̃Uc

 = γc

(1− δ)

Therefore there exists a solution for ∑
(s,r)∈Ec

wcsry
c,†
sr = (1− 4δ)β∗,c

∑
r:(s,r)∈Ec

ηsry
c
sr ≤

γc

(1− δ) yc,† ∈ Long (Qc)


which, by the observation made in this proof, implies that for β ≤ (1 − 4δ)β∗,c there exists a
solution for ∑

(i,j)∈E

wijyij ≥ β,
∑

(i,j)∈E

Short(η)ijyij = γc

(1− δ) − Shift(η), y ∈ Qc


We can now apply Theorem 8 with f1 = β > 0, f2 = γc

(1−δ) − Shift(η) (by Lemma 26, f2 ≥ 0)
and P1 = Qc and P2 = Pc. Note that Short(η) ≥ 0 by Lemma 26. Finally 0 ∈ Qc ⊆ Pc. and
the algorithm desired by Theorem 8 is provided by Theorem 10. Therefore we have a solution of
LP12. The number of iterations in Theorem 8 is O(ln(2/δ)) each of which invokes Theorem 10.
Theorem 10 involves Theorem 13 repeatedly. The bound on

∑
(i,j)∈Ê wijcij follows from the fact

that we average solutions of Theorem 9 for which
∑

(i,j):yij>0wijcij ≤ 8β∗,cb (the bipartite maximum)
which can be bounded by 16β∗,c. �
We can now conclude Theorem 3.

Theorem 3. Given any non-bipartite graph, for any 3√
n
< δ ≤ 1/16, we find a (1 − O(δ))-

approximate fractional solution to LP9 using O(mR/δ+min{B,m} poly{δ−1, lnn}) time, additional
“work” space O(min{m,B} poly{δ−1, lnn}) making R = O(δ−4(ln2(1/δ)) lnn) passes over the list
of edges where B =

∑
i bi. The algorithm returns a solution {ŷij} = Short (yc) such that the

subgraph Ê = {(i, j)|(i, j) ∈ E, ŷij > 0} satisfies
∑

(i,j)∈Ê wijcij ≤ 16Rβ∗,c where β∗,c is the weight
of the optimum integral capacitated b–matching.

35

7.2 Rounding Capacitated b-Matchings

We prove Theorem 4 based on Algorithm 6.

Algorithm 6 Rounding capacitated b–matchings
1: First Phase: Removing edges with large multiplicities (no change from Algorithm 4 except tracking

edge capacities). Let t = d2/δe andM(0)
c = ∅.

(a) If yij ≥ t add ŷ(0)
ij = byijc − 1 copies of (i, j) toM(0)

c .

(b) Set y
(1)
ij =

{
0 if yij ≥ t
yij otherwise . Set b

(1)
i = min

{
bi −

∑
j ŷ

(0)
ij , d

∑
j y

(1)
ij e+ 1

}
and c

(1)
ij =

min{cij , dy(1)
ij e+ 1}. This describes the graph G(1)

c = (V,E(1)). Note c(1)
ij ≤ t+ 1.

2: Second Phase: Subdividing vertices with large multiplicities. (no change from Algorithm 4 except
tracking edge capacities). We set c(2)

i′j′ = c
(1)
ij where the edge (i, j) got assigned to i′ and j′ which are

copies of i and j respectively. This defines G(2)
c = (V (2), E(2)). Note only vertices are split, – the edges

are not split, even though they can be assigned to a copy of an original vertex, i.e., |E(1)| = |E(2)|. Let
W =

∑
(i,j)∈E(2) c

(2)
ij wij .

3: Third Phase: Reducing the problem to a weighted matching on small graph. (different from
Algorithm 4). Given G(2)

c , define G(3)
c as follows:

(a) For each i ∈ V (2) with b
(2)
i , create i(1), i(2), · · · , i(b(2)

i). For each edge e = (i, j), we create 2c(2)
ij

vertices pei,1, pei,2, · · · , pei,c(2)
ij

, pej,1, pej,2, · · · , pej,c(2)
ij

.

(b) Add edges (pei,`, pej,`) with edge weight wij . Add a complete bipartite graph between i1, i2, · · · and
pei,1, pei,2, · · · with edge weight wij .

(c) Run any fast approximation for finding a (1 − δ
32R)-approximate maximum weighted matching in

G(3)c . Let this matching beM(3)a
c of weight W .

(d) Observe that given any integral matching in G(3)c , we can construct a matching of same or greater
weight such that every one of the vertices pei,`, pej,` (for all e = (i, j), `) are matched – if for some e, `
neither pei,`, pej,` are matched then we can match them, if only one of the pair is matched then we
delete the matching edge incident to the other one in the pair and add the matching edge between
pei,`, pej,` which is of the same weight. Applying this procedure toM(3)a

c we getM(3)b
c of weight at

least W .

4: We now merge all the vertices i(`) to i, pei,` to pei and pej,` to pej for all e = (i, j), `. Observe G(3)
c

reduces to Long
(
G

(2)
c

)
with different edge weights, i.e., for an edge e = (i, j) of weight wij in the

original graph we have the weights of (i, pei), (peipej) and (pej , j) are all wij instead of 1
2wij , 0,

1
2wij as

in the definition of Long
(
G

(2)
c

)
.

However if we merge all the corresponding edges of M(3)b
c then we get a matching M(3) such that the

vertices pei and pej are matched to capacity cij for every edge e = (i, j). Note thatM(3)
c has weight at

least W . M(3) provides a b–matchingM(2)
c in G(2)

c of weight at least W −W , where we set y†ij = y†ipei .
M(2)

c provides a b–matchingM(1)
c in G(1)

c of same weight (merge vertices).
5: OutputM(0)

c ∪M(1)
c .

For example, in Step 3(b)

36

p

b = 3

q

b = 4

r

b = 3
c = 3

w = 1

c = 2

w = 2

p1

p2

p3

q1

q2

q3

q4

r1

r2

r3

1 1

1

1

1 2
2

2

2

which in turn reduces to

p

b = 3 b = 3 b = 3

q

b = 4 b = 2 b = 2

r

b = 3
1 1 1 2 2 2

Lemma 28. y(1)
ij is a feasible fractional capacitated b–matching in G(1)

c .

Proof: Consider Long
(
y(1)

)
and Long

(
G

(1)
c

)
with the new capacities b(1)

i , c
(1)
ij for the vertices

and edges in G
(1)
c . The only vertices whose capacities were affected in Long

(
G

(1)
c

)
are the fol-

lowing vertices: (i) the corresponding vertex in G has an edge incident to it in M(1)
c and (ii)

the corresponding edge (i, j) ∈ G had cij > dy(1)
ij e + 1. In both cases the difference between the

sum of the new edge multiplicities and the new capacities (the slack) is at least 1 and the first
part of Lemma 22 tells us that these vertices in Long

(
G

(1)
c

)
cannot be part of a violated odd-set

in Long
(
G

(1)
c

)
. Therefore y(1) is a feasible fractional (uncapacitated) b–matching. The lemma

follows from Theorem 24. �
Therefore the remaining task is to find a (1 − δ) approximate rounding of the fractional solution
y

(1)
ij on G(1)

c = (V,E(1)) with vertex and edge capacities {b(1)
ij } and {c

(1)
ij } respectively.

Lemma 29. Let W =
∑

(i,j)∈E(2) c
(2)
ij wij. Then W ≤ 16Rβ∗,c.

Proof: Observe that |E(2)| = |E(1)| and E(1) ⊆ Ê as defined in the statement of Theorem 4.
Moreover c(2)

i′j′ = c
(1)
ij ≤ cij . Therefore:

W =
∑

(i′,j′)∈E(2)

c
(2)
i′j′wi′j′ =

∑
(i,j)∈E(1)

c
(1)
ij wij ≤

∑
(i,j)∈E(1)

cijwij ≤
∑

(i,j)∈Ê

cijwij ≤ 16Rβ∗,c

�

Lemma 30. Algorithm 6 outputs a capacitated b–matching of weight at least (1−δ)
∑

(i,j)∈E wijyij−
δβ∗.

Proof: Let the weight of the maximum matching of this graph G(3)
c be w(M∗). Then

2W ≥ w(M∗) ≥
∑

(i,j)∈E(2)

wijy
(2)
ij + W

since each edge (i, j) ∈ G(2)
c can contribute at most 2c(2)

ij wij to w(M∗).
Suppose that we find a

(
1− δ

32R

)
-approximate maximum matching in G(3)

c , using the algorithm

in [9, 10] which takes time |E(G(3)
c)| times O(Rδ log(R/δ)) which is O(m′Rδ−3 log(R/δ)). This gives

us a matching of weight at least W where W ≥ w(M∗) − δ
32Rw(M∗) which corresponds to a

37

capacitated b–matching in G(2)
c with weight at least w(M∗)− δ

32Rw(M∗)−W . Now

w(M∗)− δ

32Rw(M∗)−W ≥
∑

(i,j)∈E(2)

wijy
(2)
ij + W − δ

32Rw(M∗)−W

=
∑

(i,j)∈E(2)

wijy
(2)
ij −

δw(M∗)
32R ≥

∑
(i,j)∈E(2)

wijy
(2)
ij − δβ

∗,c

Since the second phase is exactly the same as in the uncapacitated case in Section 6, we have∑
(i,j)∈E(2)

wijy
(2)
ij ≥ (1− δ)

∑
(i,j)∈E(1)

wijy
(1)
ij

Thus we get a matching M(1)
c in G

(1)
c of weight w(M(1)

c) ≥ (1 − δ)
∑

(i,j)∈E(1) wijy
(1)
ij − δβ∗,c.

Observe that w(M(0)
c) ≥ (1 − δ)

∑
(i,j)∈E wij

(
yij − y(1)

ij

)
where w(M(0)

c) =
∑

(i,j)∈E y
(0)
ij wij . Then

w(M(0)
c) + w(M(1)

c) is at least (1− δ)
∑

(i,j)∈E wijyij − δβ∗ as desired. This proves Lemma 30. �
Therefore we can conclude Theorem 4.

Theorem 4. Given a fractional capacitated b-matching yc which is feasible for LP9. Let
y = Short (yc) and Ê = {(i, j)|yij > 0}. Further suppose we are promised that

∑
(i,j)∈Ê wijcij ≤

16Rβ∗,c. We find an integral b-matching of weight at least (1−δ)
∑

(i,j)wijyij−δβ∗,c in O(m′Rδ−3 ln(R/δ))
time and O(m′/δ2) space where m′ = |Ê| is the number of nontrivial edges (as defined by the linear
program) in the fractional solution. As a consequence we have a (1 − O(δ))-approximate integral
solution.

References
[1] K. J. Ahn and S. Guha. Linear programming in the semi-streaming model with application to

the maximum matching problem. Inf. Comput., 222:59–79, 2013.

[2] K. J. Ahn and S. Guha. Near linear time approximation schemes for uncapacitated and
capacitated b–matching problems in nonbipartite graphs. Proc. SODA, previous version of
this manuscript, also at CORR, arXiv 1307.4355, 2014.

[3] K. J. Ahn and S. Guha. Access to data and the number of iterations: Dual primal algorithms
for maximum matching under resource constraints. Proc. SPAA, also at CORR, 1307.4359,
2015.

[4] R. P. Anstee. A polynomial algorithm for b-matchings: An alternative approach. Information
Processing Letters, 24(3):153 – 157, 1987.

[5] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: a meta algorithm
and applications. Theoretical Computer Science, 8(6):121–164, 2012.

[6] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. An Õ(mn) Gomory-Hu tree con-
struction algorithm for unweighted graphs. Proc. STOC, 2007.

[7] W. Cook. On box totally dual integral polyhedra. In Mathematical Programming, pages 48–61,
1986.

38

[8] W. H. Cunningham and A. B. Marsh. A primal algorithm for optimum matching. Polyhedral
Combinatorics, 8:50–72, 1978.

[9] R. Duan and S. Pettie. Approximating maximum weight matching in near-linear time. In
Proc. FOCS, pages 673–682, 2010.

[10] R. Duan, S. Pettie, and H.-H. Su. Scaling algorithms for approximate and exact maximum
weight matching. In Arxiv http://arxiv.org/abs/1112.0790, 2011.

[11] D. Foster and R. Vohra. Regret in the on-line decision problem. Games and Economic Behav-
ior, 29:7–35, 1999.

[12] Z. Füredi. Maximum degree and fractional matchings in uniform hypergraphs. Combinatorica,
1(2):155–162, 1981.

[13] Z. Füredi, J. Kahn, and P. D. Seymour. On the fractional matching polytope of a hypergraph.
Combinatorica, 13(2):167–180, 1993.

[14] H. N. Gabow. An efficient reduction technique for degree-constrained subgraph and bidirected
network flow problems. Proc. STOC, pages 448–456, 1983.

[15] H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching problems.
J. ACM, 38(4):815–853, 1991.

[16] F. R. Giles and W. R. Pulleyblank. Total dual integrality and integer polyhedra. Linear
Algebra and Applications, 25:191–196, 1979.

[17] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961.

[18] M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approximation algorithm
for matrix games. Operations Research Letters, 18:53–58, 1995.

[19] D. Gusfield. Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing, 19(1):143–155, 1990.

[20] R. Hariharan, T. Kavitha, and D. Panigrahi. Efficient algorithms for computing all low s-t
edge connectivities and related problems. Proc. SODA, 2007.

[21] S. Hougardy. Linear time approximation algorithms for degree constrained subgraph problems.
Research Trends in Comb. Opt., Springer, pages 185–200, 2008.

[22] C. Koufogiannakis and N. E. Young. Distributed fractional packing and maximum weighted
b-matching via tail-recursive duality. DISC, pages 221–238, 2009.

[23] A. N. Letchford, G. Reinelt, and D. O. Theis. A faster exact separation algorithm for blossom
inequalities. Proceedings of IPCO, LNCS 3064, pages 196–205, 2004.

[24] M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming.
Proc. STOC, pages 448–457, 1993.

[25] J. Mestre. Greedy in approximation algorithms. ESA, pages 528–539, 2006.

[26] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching algorithms: to-
wards a flexible software design. J. Exp. Algorithmics, 4, 1999.

39

[27] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics of
Operations Research, 7(1):67–80, 1982.

[28] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional
packing and covering problems. Math. of OR, 20:257–301, 1995.

[29] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency, volume 24 of Algorithms
and Combinatorics. Springer, 2003.

40

	1 Introduction
	1.1 Existing Approaches and Challenges
	1.2 Contributions

	2 Approximations to speed up Multiplicative Weights Method
	2.1 Existing Multiplicative Weights Methods
	2.2 Boosting Constant Factor Approximations to (1-)-approximations
	2.3 Proof of Theorem 8
	2.4 Proofs of Theorem 9 and 10

	3 Perturbations, Thresholding, and Non-bipartite b–matching
	3.1 A Dual Thresholding Framework
	3.2 Applying Algorithm 2 to Uncapacitated b–matching

	4 Proof of Theorem 5
	5 Proof of Theorem 6
	5.1 Proof Of Lemma 19
	5.2 Proof of Theorem 6

	6 Rounding Uncapacitated b-matchings
	7 The Capacitated b–Matching Problem
	7.1 Algorithm for Capacitated b–Matching
	7.2 Rounding Capacitated b-Matchings

