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Abstract. We present the first polynomial uniform random sampling algorithm for simple branched
coverings of the sphere by itself of degree n. More precisely, our algorithm generates in linear time
increasing quadrangulations, which are equivalent combinatorial structures.
Our result is based on the identification of some canonical labelled spanning trees, and yields a construc-
tive proof of a celebrated formula of Hurwitz for the number of some factorizations of permutations
in transpositions. The previous approaches were either non constructive or lead to exponential time
algorithms for the sampling problem.

Branched coverings of the sphere are 2-dimensional topological structures that have raised a lot
of interest ever since the work of Hurwitz at the end of the 19th century. For instance, Okounkov
and Pandharipande [17] have used these objects to derive an alternative to Kontsevitch’s proof
of Witten’s celebrated conjecture. More recently, their relations to intersection numbers of moduli
spaces and integrable hierachies as studied in mathematical physics have suggested that large
random simple branched coverings provide an alternative model of discrete 2-dimensional pure
quantum geometry (see e.g. [21] for a relatively accessible exposition).
Our aim in the present article is to provide means to effectively sample these alternative random
geometries, but since our approach is purely combinatorial we trade the topological definition of
branched coverings for Hurwitz fundamental combinatorial representation (see however the ap-
pendix, and the complete and elegant treatment in [12]). Define a factorization in transpositions
of the identity permutation idn on {1, . . . , n} to be a m-uple of transpositions τ1, . . . , τm such that
τm · · · τ1 = idn. It is transitive if the graph Gτ on {1, . . . , n} with m edges given by the τi is con-
nected, and minimal if m = 2n− 2. It can be checked that indeed this is the minimum number of
transpositions in a transitive factorization of idn.

Theorem 1 (Hurwitz (1891)). Simple branched coverings of the sphere by itself of degree n are
encoded up to homeomorphisms of the domain by minimal transitive factorizations in transpositions
of the identity of Sn, and their number, called n-th Hurwitz number, is nn−3(2n− 2)!.

The usual model of quantum geometries is the uniform distribution on fixed size unlabelled planar
quadrangulations, which was first studied analytically [3] and via Markov chain simulations [2].
Only later has it become possible to perform rigourous exact simulations via efficient (linear time)
perfect random sampling [19, 18, 9]. The algorithmic technics underlying these samplers, mainly the
identification of carefully chosen canonical spanning plane trees, have in turn triggered important
progresses in the comprehension of the intrinsic geometries of random unlabelled quadrangulations
[7], culminating with the construction of their continuum limit, the Brownian map [13, 15, 14].
We show here that a similar approach can be undertaken for simple branched coverings of the
sphere: starting from a variant of the standard representation of factorizations as graphs embedded
on surfaces, we first recast the problem in terms of some increasing quadrangulations. We then show
that these labelled quadrangulations, which do not fit in the earlier framework, can be decomposed
using labelled trees (akin to Cayley trees) instead of plane trees. We so obtain the first constructive
proof of Hurwitz formula. Previous proofs were either non constructive (via differential equation
hierachies [16], geometric considerations [11], or matrix integrals [5]) or yield exponential generation
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(a) An indexed labelled quadrangulation,
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Fig. 1. Labelled quadrangulations and minimal transitive factorizations in transpositions. Quadrangulations in Fig-
ures (a) and (b) are endowed with their descent orientation, with descents highlighted.

algorithms (via cut-and-join decompositions [10, 20], or exclusion/inclusion [6]). We then show that
the resulting algorithm can be implemented in linear time.
From an algorithmic perspective our contribution is twofold. On the one hand we give a new and
unexpected example of the versatility of the canonical spanning trees that derive from minimal
α-orientations of plane graphs: these structures appear to underlie a whole chunk of efficient planar
algorithmics, from random sampling to graph drawing or optimal coding. On the other hand, we
illustrate further the dichotomy between random samplers based on Markov chain simulation and
those based on constructive enumeration: while the formers, admittingly much easier to design,
are expected to perform at best in quadratic or cubic time, the latters lead to extremely efficient
algorithms when they apply. Finally, from the probabilistic and quantum gravity perspective, we
believe that our construction, apart from the simulations it allows to perform, could provide a
starting point to study the intrinsic geometry of increasing quadrangulations, in the same way as
the constructive enumeration of unlabelled quadrangulations has lead to the Brownian map.

1 Preliminaries

Planar maps and labelled quadrangulations. A planar map is a proper embedding of a
connected graph in the sphere, considered up to orientation preserving homeomorphisms of the
sphere. The connected components of the complement of the graph in the sphere are called faces
and are homeomorphic to discs. A corner is an angular sector between two successive edges around
a vertex. The degree of a vertex or of a face is its number of corners. A (bicolored) quadrangulation
is a map such that all faces have degree 4 and vertices are bicolored in black and white, with
adjacent vertices having different colors. We require moreover that it be simple, that is, without
double edges: all faces are real quadrangles with 4 distinct edges and 4 distinct vertices. By Euler’s
formula, a planar quadrangulation with k black and ` white vertices has m = k + `− 2 faces.
Define a labelled quadrangulation as a planar quadrangulation whose m faces have distinct labels
{1, . . . ,m}. It is indexed if its n black vertices have distinct labels {x1, . . . , xn}. We will be inter-
ested in the arrangement of face labels around vertices. The descent orientation D of a labelled
quadrangulation is such that each oriented edge has its incident face with larger label on its left,
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see Figure 1. An edge is a descent if it is oriented from its white to its black end in D. A labelled
quadrangulation is increasing if each vertex is incident to exactly one descent – which implies that
descent edges provide a perfect matching of black and white vertices. As opposed to the labelled
quadrangulation of Figure 1(a), that of Figure 1(b) is increasing. Let In denote the set of indexed
increasing quadrangulations with n black and n white vertices.

Graphical representations of transitive factorizations. Let Q be an element of In. Then for
all k ≤ 2n−2, let τk be the transposition (i, j) given by the labels xi and xj of the two black vertices
incident to the unique face of Q with label k. This correspondence is illustrated by Figure 1(c).

Proposition 1 (Reformulated folklore). The above construction is a one-to-one correspon-
dence between indexed increasing quadrangulations in In and minimal transitive factorizations of
the identity idn.

Increasing quadrangulations can thus be considered as graphical representations of minimal tran-
sitive factorizations of the identity in transpositions. From now on we adopt this point of view and
concentrate on increasing quadrangulations.

Plane maps and orientations. A plane map is the representation of a planar map in the plane,
considered up to orientation preserving homeomorphisms of the plane. Plane maps are in one-to-one
correspondence with planar maps with a distinguished face, that indicates which face of the planar
map is taken as outer (unbounded) face in the plane map.
A circuit in an oriented map is an oriented cycle of edges (i.e. a cycle that can be traversed following
the orientations of the edges). A simple circuit is a circuit that does not visit twice the same vertex.
In a plane map, each simple circuit divides the plane into two components, the left one and right
one (w.r.t. the orientation of the circuit), and one of these two components contains the outer face,
while the other is bounded. A circuit is clockwise if its right hand side component is bounded, and
counterclockwise otherwise.
Similarly, given a spanning tree T of an oriented map and an edge e not in T , we say that e turns
counterclockwise around T if the bounded region delimited by e and T lies on the left hand side
of e. Observe that this property is independant of the orientation or rooting of T if any.

2 From increasing quadrangulations to Hurwitz trees

Properties of the descent orientation. Given an orientation O of a map M and a vertex
v of M , the in-degree of v in O, denoted by inO(v), is the number of its incoming edges with
respect to O. Its out-degree outO(v) is defined accordingly. Let us define a 1-1-orientation of a
bipartite map as an orientation O such that for any black vertex v• and any white vertex v◦:
inO(v•) = outO(v◦) = 1. Observe that such a 1-1-orientation actually provides a perfect matching
of black and white vertices. With this definition, a labelled quadrangulation is increasing if and
only if its descent orientation is a 1-1-orientation. Moreover:

Proposition 2. The descent orientation of any labelled quadrangulation is strongly connected.

Proof. Otherwise, let v be a vertex that is not accessible from all vertices, and let C1 and C2 be the
(disjoint) sets of vertices from which v can (resp., cannot) be accessed. All edges between vertices
in C1 and C2 are oriented from C1 to C2. Extract from these a simple co-circuit, that is a sequence
of edges e1, . . . , ek such that for any i ≥ 1, ei separates faces fi−1 and fi, and fk = f0. Then for
any i ≥ 1, the label of fi is strictly larger than that of fi−1, a contradiction. �
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(a) The minimal orientation. (b) Spanning tree and closure edges.

Fig. 2. Minimal 1-1-orientation of a quadrangulation and bipartition of its edges.

α-orientations of plane maps. 1-1-orientations are actually a special case of so-called α-
orientations that have been introduced by Felsner [8]. This terminology refers to orientations O
with prescribed inO and outO functions, α usually denoting the outO prescription. The following
theorem reveals the remarkable structure of the set of α-orientations of a given graph:

Theorem 2 (Felsner [8]). Given a plane map M and a feasible mapping α, the set of all α-
orientations of M has a lattice structure for the partial order generated by clockwise circuit reversal.
In particular, if M admits an α-orientation then it has a unique α-orientation without clockwise
circuit, which is the minimum of the lattice.

Since circuit reversal does not affect the accessibility, this implies moreover that for a given α,
either all α-orientations of M are strongly connected, or none of them are. This proves interesting
in light of the following theorem:

Theorem 3 (Bernardi [4]). Let M be a plane map, endowed with an orientation O without
clockwise circuit, in which r is an accessible vertex. Then the set of edges of M can be uniquely
partitioned into a spanning tree T , oriented towards its root r, and a set C of edges that turn
counterclockwise around T . Moreover, edges in C are in one-to-one correspondence with inner
faces of M , each edge corresponding to the face on its left.

Edges in C are called closure edges, since each one closes a bounded face of the plane map.

Application to increasing quadrangulations. LetQ be an increasing quadrangulation of size n,
and let us embed Q in the plane by choosing as outer face its face with the largest label among
the ones incident to xn. Let O be its minimal 1-1-orientation. By Proposition 2 and Theorem 2, O
is strongly connected, hence Theorem 3 may be applied to (Q,O, xn), so as to obtain an oriented
spanning tree T rooted at xn, and a set C of closure edges. T is a bipartite tree on n labelled black
vertices and n unlabelled white ones, hence it has 2n− 1 edges, while C has cardinality 2n− 3.
Now let us transfer to each edge the label of the face on its black-to-white left hand side.

Lemma 1. One edge in C and one in T have label i, for any i but the label of the outer face.

Proof. First observe that, since for any white vertex v◦, outO(v◦) = 1, each white-to-black oriented
edge belongs to T – which implies that edges in C are all black-to-white oriented, meaning that
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(a) Edge labelling,
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(b) and the resulting labelled tree.

Fig. 3. Construction of the Hurwitz tree corresponding to the increasing quadrangulation of Figure 1(b).

their black-to-white left hand side is precisely their left hand side according to O. Since edges in C
are in one-to-one correspondence with bounded faces on their left, they do receive distinct labels,
and hence edges in T as well, except for the two edges with the outer face on their black-to-white
left hand side that both belong to T . �

Let us define a Hurwitz tree of size n as any (unrooted) bicolored tree with n unlabelled white
vertices, n− 1 labelled black vertices of degree 2, and 2n− 2 labelled edges, and denote by Hn the
set of such trees. Then the tree H obtained from T after the edge labelling and the removal of the
black root vertex xn is clearly a Hurwitz tree of size n. Let Φ denote the map from In to Hn that
associates with any increasing quadrangulation Q of size n the Hurwitz tree H as above.

Theorem 4. Φ is a bijection between indexed increasing quadrangulations of size n and Hurwitz
trees of size n.

The proof of this theorem will be given in Section 4, when we have described our sampling algorithm,
or equivalently, the inverse of Φ.

3 Sampling trees and mapping them on quadrangulations

Random Hurwitz trees. A Cayley tree is a spanning tree of the complete graph with vertices
{1, . . . , n}. There are nn−2 Cayley trees of size n, see eg [1].

Proposition 3. There is a n-to-1 correspondence between pairs (T, π) formed of a Cayley tree t
with n vertices and a permutation π in S2n−2, and Hurwitz trees of size n. In particular the number
of Hurwitz trees of size n is the n-th Hurwitz number nn−3(2n− 2)!.

Proof. Let T be a Cayley tree on n white vertices, and π a permutation of S2n−2. Let yi denote
the white vertex with label i. Root T at yn, and for all i = 1, . . . , n− 1, insert a black vertex with
label xi on the middle of the first edge on the path from yi to yn, and give the labels π(2i − 1)
and π(2i) to the two resulting edges. Upon forgetting the (redundant) labels of white vertices we
obtain a rooted Hurwitz tree H with n unlabelled white vertices, n − 1 black vertices of degree 2
with distinct labels in {x1, . . . , xn−1} and 2n− 2 edges with distinct labels in {1, . . . , 2n− 2}. This
construction is clearly bijective. Upon forgetting H’s root position, we get a n-to-1 correspondence
with (unrooted) Hurwitz trees. �
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Fig. 4. The local closure of two half-edges at distance 3.

Corollary 1. Hurwitz trees of size n can be generated uniformly at random in linear time.

Proof. Sampling permutations uniformly at random in linear time is a classical textbook exercise.
For Cayley trees, it can be done e.g. following Joyal’s bijective proof of Cayley formula [1].

A general technique to build planar maps out of trees. In order to describe how to construct
a quadrangulation out of a tree, we will consider intermediate objects. A pre-map is a plane bicolored
map with some distinguished pending edges in the outer face called half-edges (and whose loose
endpoint will not count as vertices). A half-edge is either black or white according to the vertex it
is attached to. We say that the half-edges h◦ and h• are consecutive if, while travelling clockwise
from h◦ on the boundary of the outer face, h• is the first encountered half-edge; they are at distance
p ≥ 0 if moreover h• is reached after travelling along p sides of edges.

Let us describe our basic operation on pre-maps. Given two consecutive white and black half-edges
h◦ and h• in the outer face f of a pre-map M , let us merge h• and h◦ into a black-to-white oriented
edge e in the unique way that preserves planarity, and divides f into a face fe on the left hand side
of e and a new outer face f ′ on its right hand side. Then immediately:

Proposition 4. If h◦ and h• are consecutive and at distance p, then the bounded face fe has degree
p+ 1 and contains no half-edges.

The local closure of h◦ and h• is the resulting pre-map M ′ = M ∪ {e} \ {h•, h◦}. In the case of
labelled pre-maps, the local closure is compatible with the labelling provided that h◦ and h• have
the same label. In this case, the label of e is this common label.

The closure of a Hurwitz tree. Given a Hurwitz tree T of size n (with edges labels {1, . . . ,m},
for m = 2n−2), let the associated hairy tree T̄ be obtained by inserting labelled half-edges at every
vertex to complete the cycle of incident labels to be (1, . . . ,m) in clockwise (resp. counterclockwise)
direction around every white (resp. black) vertex.

A pre-map M with labelled edges and half-edges is said valid if around every white (resp. black)
vertex, incident labels form the clockwise (resp. counterclockwise) cycle (1, . . . ,m), and if for all
i ∈ {1, . . . ,m}, at most one edge with label i has its black-to-white left hand side incident to the
outer face. In the following, we will actually consider that each edge carries its label (in the face) on
its black-to-white left hand side. With this convention, the second condition defining valid pre-maps
is that each label occurs at most once in the outer face.

Lemma 2. In a valid pre-map, any two consecutive half-edges h◦ and h• are at distance 1 or 3
and have the same label, and their local closure produces a valid pre-map.

Proof. If h◦ has label i, then edges between h◦ and h• have alternatively label i+ 1 or i because of
the cyclical labelling rules. Hence h• has label i, and since only one label i may appear in the outer
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RandomQuad(n)

uses an initially empty stack S of half-edges, a current pre-map M and a current half-edge h.

1. Generate a uniform random Hurwitz tree T of size n.
2. Let M be the hairy tree T̄ associated to T, and h any of its half-edges.
3. Repeat the following loop: (loop invariant: M is a valid pre-map with m more white than black half-edges)

(a) If h is a white half-edge,
i. If h is already marked, go to Step 4. (all black half-edges have been matched)

ii. Otherwise, mark h and insert it in S.
(b) Otherwise, if S is not empty, pop the last half-edge h◦ from S.

(h◦ and h are consecutive, hence at distance 1 or 3, and have equal labels)
Let M be the local closure of h and h◦, and give their common label to the new face.

(c) Let h be the next half-edge around M in clockwise direction.
4. (S contains m white half-edges, and the successive ones are at distance 0 or 2) Match the m white half-edges in

S to the m black half-edges of a new black vertex of degree m in the outer face to get a new pre-map M.
5. (M is a valid pre-map without half-edges and with faces of degree 2 and 4) Contract all faces of degree 2 of M and

forget the orientation of closure edges to get an indexed labelled quadrangulation Q.

Fig. 5. The algorithm RandomQuad (assertions leading to the proof of Theorem 5 are emphasized)

face, the distance is at most 3. The local closure of h◦ and h• creates an edge that has the outer
face on its black-to-white right hand side, so that no new label is created in the outer face and the
pre-map remains valid. �

From the definitions, the following lemma is immediate:

Lemma 3. Hairy trees are valid pre-maps.

The first algorithm. We can now state and analyse the first algorithm, given in Figure 5. The
first steps of an execution are given in Figure 6.

Theorem 5. Steps 2-5 of the algorithm RandomQuad describe a mapping from Hn to In which
is the inverse of the mapping Φ of Theorem 4. RandomQuad(n) thus generates indexed increasing
quadrangulations of size n uniformly at random.

Proof. Let us first check the emphasized assertions in the algorithm. The first assertion is a clear
loop invariant since the half-edges are only modified in Step 3(b) by a local closure, which preserves
validity by Lemma 2, and removes simultaneously one black and one white half-edges. Assertion in
3(b) follows from the fact that white half edges are stored in a (last in, first out) stack, so that h◦
is always the last inserted white half-edge among those that have not yet been matched. Since M
is a valid pre-map, Lemma 2 applies. Assertion in 3(a)i follows from the observation that between
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Fig. 6. A Hurwitz tree, the associated hairy tree, and two steps of RandomQuad.
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Fig. 7. A partial comparison of the local closures involved in the two algorithms.

two visits to the same white half-edge h, a full turn around the pre-map is performed, and all black
half-edges are considered. Since the stack contains (at least) h during this full turn, it is never
empty, hence all black half-edges are matched. Assertion in Step 4 follows from the fact that M is
valid. The last assertion follows immediately from the previous ones.

Step 3(b) creates exactly one face of degree 4 for each label i in {1, . . . ,m}, since the original hairy
tree has exactly one edge with label i, and this label disappears from the outer face at the exact
step when the face with label i is created. As M is a valid pre-map, the labels of faces around each
white (resp. black) vertex in clockwise (resp. counterclockwise) direction form a cyclic subsequence
of (1, . . . ,m). Hence Q is an increasing quadrangulation.

This proves the first half of the theorem, namely that the algorithm indeed correctly produces an
increasing quadrangulation. The proof that the correspondence is one-to-one and inverse of Φ is
delayed to the next section. �

Proposition 5. The algorithm RandomQuad can be implemented in linear time and space with
respect to the number of edges and half-edges of T̄ . Since there are n white vertices and m = 2n− 2
half-edges incident to each white vertex, it has quadratic complexity in n.

4 The linear complexity algorithm

In this section we give an alternative description of the bijection producing an increasing quadran-
gulation out of a Hurwitz tree. The idea is to create the half-edges only when they lead to faces of
degree 4. In order to do this we analyse more finely the previous algorithm.

Let us consider an edge e with label j, having its white-to-black left hand side in the outer face.
Let i and k be the labels of the previous and next edges (not half-edges) e− and e+ around the
outer face (the relative positions of i, j and k are illustrated by Figure 8). We wish to understand
how the first algorithm deals with white half-edges between e− and e, and black half-edges between
e and e+. Observe that j can be equal to i but not to k because white vertices can be leaves in a
Hurwitz tree while black vertices cannot (they all have degree 2). There are two main cases:

– First suppose i = j (ie the white endpoint of e has degree 1) or the cycle (i, j, k) is a subcycle of
(m, . . . , 1) (ie i > j > k, j > k > i or k > i > j). Then there are more white half-edges between

i k
j

k

(a) Case i ≥ j > k: creation of a
white half-edge with label k.

i k
j

ii

(b) Case i < j < k: creation of a face with label i.

Fig. 8. The two local rules of FastRandomQuad depending on the (cyclical) order of i, j, k.
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FastRandomQuad(n)

uses a stack S of half-edges, a current pre-map M and a current arc e.

1. Generate a uniform random Hurwitz tree T of size n; let M← T.
2. Let e be an arbitrary edge of M. Orient e from its white to its black endpoint, and repeat the following loop:

(at this point e has the outer face on its left hand side)
– If e is a white half-edge then go to Step 3. (at this point a white half-edge has been encountered twice).
– Let e− and e+ be the previous and next edges around the outer face.
– Let i, j and k be the labels of e−, e and e+.
– If i = j or the cycle (i, j, k) is a subcycle of (m, . . . , 1), create a half-edge h◦ with label k on the white

endpoint of e and insert h◦ in S. Set e to the edge or half-edge following e+.
– Otherwise (i.e. if the cycle (i, j, k) is a subcycle of (m, . . . , 1)),

(a) If S is empty then set e to the edge or half-edge following e+.
(b) Otherwise pop from S a half-edge h◦ and create a half-edge h• with label k on the black endpoint of e.

Match h• and h◦ to create a closure edge e′ enclosing a face of degree 4 with label k, and let e← e′.
3. (at this point S contains at least one white half-edge)

Match the p ≥ 1 white half-edges in S to the p black half-edges of a new black vertex in the outer face to form p
new edges and p new faces of degree 4.

Fig. 9. The algorithm FastRandomQuad (emphasized texts are again assertions)

e− and e than black half-edges between e and e+. The white half-edge with label k will be the
first of the half-edges between e and e− to be matched at distance 3.
This case is illustrated with (i, j, k) = (9, 6, 2) in Figure 7(a): half-edges with labels 5, 4, 3 are
matched at distance 1 and the half-edge with label 2 is the first to be matched at distance 3.

– Now suppose (i, j, k) is a subcycle of (1, . . . ,m) (ie i < j < k, j < k < i, or k < i < j). Then
there are more black half-edges between e and e+ than white ones between e− and e. The black
half-edge with label i will be the first not to match a white half-edge at distance 1: it will either
remain unmatched or match a half-edge at distance 3.
This case is illustrated with (i, j, k) = (2, 4, 8) in Figure 7(a): the half-edge with label 3 is
matched at distance 1, while the half-edge with label 2 gets matched at distance 3.

Upon iterating this lemma all the closure edges that produce faces of degree 4 can be constructed
without constructing those that produce faces of degree 2. Our second algorithm FastRandomQuad,
as presented in Figure 9, exactly performs this iteration until all closure edges have been created.
The first steps of the execution of this algorithm on the Hurwitz tree of Figure 3(b) are given in
Figure 10 in the Appendix.

Proposition 6. Steps 2-3 of FastRandomQuad are equivalent to Steps 2-5 of RandomQuad. More-
over FastRandomQuad can be implemented to work in linear time and space with respect to the size
n of the constructed increasing quadrangulation.

Proof. The equivalence is a direct consequence of the previous discussion: FastRandomQuad exactly
performs the subset of the stack operations performed by RandomQuad that concern half-edges
whose closure yield faces of degree 4. This implies that a white half-edge is indeed encountered
twice at some point, and that FastRandomQuad stops and produces an increasing quadrangulation.
To check that FastRandomQuad works in linear time we observe that less than n closure edges are
produced, and that Step (a) is performed at most 2n times because RandomQuad visits at most
twice each edge side.

End of the proof of Theorem 4 and 5. To conclude the proof we only need to understand why the
increasing quadrangulation Q produced by RandomQuad from a tree T is such that Φ(Q) = T . But
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this follows immediately from the alternative description given by FastRandomQuad. Indeed Step 2
only adds to the tree T closure edges that turn clockwise around T when oriented from their black
to their white endpoint: orienting one of the final edges e toward the extra vertex xn, and all the
edges of the tree toward e, we can apply the uniqueness condition of Theorem 3 to conclude. �

Corollary 2. The numbers of indexed increasing quadrangulations of size n, of minimal transitive
factorizations of the identity in Sn, and of simple branched coverings of degree n of the sphere by
itself, are nn−3(2n− 2)!, and all these objects can be generated uniformly at random in linear time.

References

1. M. Aigner and G. Ziegler. Proofs from the Book. Springer, Berlin, 1998.
2. J. Ambjørn, P. Bia las, J. Jurkiewicz, Z. Burda, and B. Petersson. Effective sampling of random surfaces. Physics

Letters B, 325(3):337–346, 1994.
3. J. Ambjørn, B. Durhuus, and T. Jonsson. Quantum geometry: a statistical field theory approach. Cambridge

University Press, 1997.
4. O. Bernardi. Bijective counting of tree-rooted maps and shuffles of parenthesis systems. Elec. J. of Combinatorics,

14(1):R9, 2007.
5. G. Borot, B. Eynard, M. Mulase, and B. Safnuk. A matrix model for simple Hurwitz numbers, and topological

recursion. Journal of Geometry and Physics, 61(2):522–540, 2011.
6. M. Bousquet-Mélou and G. Schaeffer. Enumeration of planar constellations. Advances in Applied Mathematics,

24(4):337–368, 2000.
7. P. Chassaing and G. Schaeffer. Random planar lattices and integrated superbrownian excursion. Probability

Theory and Related Fields, 128(2):161–212, 2004.
8. S. Felsner. Lattice structures from planar graphs. Elec. J. Comb., 11(1):R15, 2004.
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A Branched coverings of the sphere by itself

We give here for completeness a definition of branched coverings, but refer again to [12] for a gentle
introduction to the topological and combinatorial aspects of their mathematical theory.

A covering of degree n of a surface I by another surface D is a mapping φ : D → I such that
each value y of I has n preimages, and each point x of D has a neiborhood Vx such that φ is
an homeomorphism from Vx to φ(Vx). A branched covering of degree n of the sphere by itself is
a mapping from S2 to itself such that there is a finite set of values Y = {y1, . . . , ym} ⊂ S2 such
that φ|S2\φ−1(Y ) is a covering of degree n and for every x in φ−1(Y ) there is an integer k, an open
neighborhood Vx of x and two homeomorphisms h : C→ Vx and h′ : φ(Vx)→ C such that h′ ◦φ ◦h
is the mapping z → zk of the complex plane. In this case the preimage x is said to have order k. A
preimage with order 1 is a regular point. By continuity the sum of the orders of all the preimages
of a value y by φ has to be n, and the multiset of these orders is called the type of the critical
value y. A critical value y is said to be simple if all its preimages but one are regular and the only
non regular one has order 2: equivalently a critical value is simple if its type is 1n−2 2. A simple
branched covering is a branched covering whose critical values are all simple.

In order to dispose of symmetry problems we follow the approach of Hurwitz: we fix a regular
value and label its preimage with integers 1 to the degree. Finally we consider these coverings up to
homeomorphisms of the sphere. The resulting equivalence classes are the simple branched coverings
considered by Hurwitz in Theorem 1, for which he gave the quoted formula.

In his work Hurwitz also considered more generally the case where one critical value is non simple, of
type λ = 1`1 . . . n`n (where `i denotes the number of preimages of order i). In terms of permutations,
these almost simple coverings correspond to minimal transitive factorizations into transpositions
of a permutation with cycle type λ. Hurwitz provided also a formula for their number, and our
approach extends almost directly to prove this general formula.

B Large random increasing quadrangulations

From the probabilistic and quantum gravity perspective, the main concern is to understand the
geometry of natural discrete models of random surfaces.

In order to compare our approach to the existing literature, let Xn (resp. Yn) denote a uniform
random increasing (resp. planar) quadrangulation with 2n− 2 faces and let dXn(., .) be the graph
distance on the set of vertices of Xn.

It is known that the expected distance ∆Yn between two uniform random vertices of Yn is of order
n1/4. More precisely, as n goes to infinity the random variable ∆Ynn

−1/4 converges in law to a
continuous positive random variable D. The analog question is unsettled for increasing quadran-
gulations and numerical simulation were out of reach with previous approaches. Our linear time
algorithm makes it possible to check experimentally the hypothesis that the distances ∆Xnn

−1/4

converge to the same limit.

In the case of Yn, much more precise results have been obtained in the recent years. In particular
upon setting the edge length to n−1/4, the random uniform quandrangulation Yn converges as a
metric space to a continuum limit, the Brownian map, which is a random space with the topology
of the sphere [13, 15, 14].

Conjecture. The pair (Xn, n
−1/4dXn) converges to the Brownian map in the sense of [13, 15, 14].
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In other terms we conjecture that large increasing quadrangulations behave very much like large
unlabelled quadrangulations. This should be understood as a statement analogous to the well known
statement that both random uniform binary trees and uniform random Cayley trees, although quite
different at a discrete level, converge upon rescaling edge length to a same continuum limit, the
continuum random tree (CRT), when their size go to infinity.

Proving the above convergence would be a remarkable achievement as it would on the one hand
give a strong support to the belief of the community that the Brownian map is a new universal
limit object, in the same sense as the Brownian motion or the CRT, and on the other hand it would
make more precise the connection between the realm of branched coverings and Hurwitz numbers,
and that of quantum gravity.

The bijection between Hurwitz trees and increasing quadrangulations that we propose in the present
paper can be seen as labelled counterparts to the bijections between plane trees and families of
maps that are the basic building blocks of the approach that culminated with [13, 15, 14]. Hopefully
they can lead to a proof of the above conjecture.
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Fig. 10. Execution of FastRandomQuad on the Hurwitz tree of Figure 3(b). At each step, the current edge is the bold
green one, and the created (half-)edge is the thin green one.
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