
ar
X

iv
:1

31
1.

03
66

v1
 [

cs
.D

S]
 2

 N
ov

 2
01

3

On the Lattice Isomorphism Problem

Ishay Haviv∗ Oded Regev†

Abstract

We study the Lattice Isomorphism Problem (LIP), in which given two lattices L1 and L2 the

goal is to decide whether there exists an orthogonal linear transformation mapping L1 to L2.

Our main result is an algorithm for this problem running in time nO(n) times a polynomial

in the input size, where n is the rank of the input lattices. A crucial component is a new

generalized isolation lemma, which can isolate n linearly independent vectors in a given subset

of Z
n and might be useful elsewhere. We also prove that LIP lies in the complexity class SZK.

1 Introduction

An m-dimensional lattice L of rank n is defined as the set of all integer combinations of n linearly

independent vectors b1, . . . , bn ∈ R
m, which form a basis of the lattice. This mathematical object,

despite its simplicity, hides a rich geometrical structure, which was extensively studied in the last

decades by the theoretical computer science community. This was initiated by the discovery of the

famous LLL algorithm in 1982 [27] and was further motivated by Ajtai’s cryptographic application

of lattices in 1996 [3]. To date, lattices have numerous applications in several areas of computer

science including algorithms, computational complexity and cryptography.

One of the most fundamental lattice problems is the Shortest Vector Problem (SVP), where

given a lattice basis the goal is to find a shortest nonzero vector in the lattice. This problem is

known to be NP-hard (under randomized reductions) for approximation factors which are almost

polynomial in the lattice rank n [23, 20, 30] and to be solved in its exact version by algorithms of

running time exponential in n [22, 32]. However, SVP with approximation factors of
√

n/ log n

and
√

n is known to be in coAM and in coNP respectively [18, 1], hence is not NP-hard for these

factors unless the polynomial time hierarchy collapses. A major challenge in the area is to un-

derstand how hard SVP and related lattice problems are for polynomial approximation factors, as

this is what lattice-based cryptography relies on.

This paper is concerned with the Lattice Isomorphism Problem (LIP). Two lattices L1 and L2

are isomorphic if there exists an orthogonal linear transformation mapping L1 to L2. In LIP one

wishes to decide whether two given lattices are isomorphic or not. The problem was studied by

Plesken and Souvignier [38] (using ideas from the earlier work [37]) who suggested algorithms

∗School of Computer Science, The Academic College of Tel Aviv-Yaffo, Tel Aviv 61083, Israel.
†Courant Institute of Mathematical Sciences, New York University. This material is based upon work supported by

the National Science Foundation under Grant No. CCF-1320188. Any opinions, findings, and conclusions or recom-

mendations expressed in this material are those of the authors and do not necessarily reflect the views of the National

Science Foundation.

1

http://arxiv.org/abs/1311.0366v1

that can solve the problem in low dimensions for specific lattices of interest. The asymptotic

complexity of the problem was later considered by Dutour Sikirić, Schürmann, and Vallentin [15],

and it also showed up in cryptographic applications of lattices [41]. Recently, Lenstra, Schoof, and

Silverberg presented an efficient algorithm that can decide if a given lattice is isomorphic to Z
n,

assuming some information about its symmetries is provided as a hint [28].

Deciding whether two given combinatorial or algebraic structures are isomorphic is a notori-

ous question in the theory of computing. A well-known special case of this problem is the Graph

Isomorphism Problem (GIP), in which given two graphs G1 and G2 one has to decide whether

there exists an edge-preserving bijection from the vertex set of G1 to that of G2. The best known

worst-case running time of an algorithm for GIP is 2Õ(
√

n), where n stands for the number of ver-

tices [7]. It was shown in [19] that GIP lies in the complexity class coAM. This implies that, unless

the polynomial time hierarchy collapses, GIP is not NP-hard, and it is a long-standing open ques-

tion whether there exists a polynomial time algorithm solving it (see, e.g., [5]). Interestingly, it was

shown in [15] that the isomorphism problem on lattices is at least as hard as that on graphs.

Another isomorphism problem of interest is the Code Equivalence Problem, in which given

two n-dimensional linear codes C1 and C2 over some field F the goal is to decide whether there

exists a permutation on the coordinates mapping C1 to C2. This problem was studied by Petrank

and Roth [36], who showed that it lies in coAM and is at least as hard as GIP. Recently, Babai

showed an algorithm solving it in time (2 + o(1))n (see [6, Appendix 7.1]).

1.1 Our Results

Our main result is an algorithm that given two lattices computes all orthogonal linear transforma-

tions mapping one lattice to another and, in particular, decides LIP.

Theorem 1.1. There exists an algorithm that given two bases of lattices L1 and L2 of rank n, outputs all

orthogonal linear transformations O : span(L1) → span(L2) for which L2 = O(L1) in running time

nO(n) · sO(1) and in polynomial space, where s denotes the input size. In addition, the number of these

transformations is at most nO(n).

We note that the bound in Theorem 1.1 on the number of orthogonal linear transformations map-

ping one lattice to another is tight up to the constant in the exponent. To see this, observe that the

isomorphisms from the lattice Z
n to itself are precisely all the 2n · n! = nΩ(n) sign permutations.

This implies that the running time of the algorithm from Theorem 1.1 is optimal, up to the constant

in the exponent, given that it outputs all isomorphisms between the two input lattices. However,

the challenge of finding a more efficient algorithm which only decides LIP is left open.

The algorithm from Theorem 1.1 is crucially based on a new version of the celebrated isolation

lemma of Valiant and Vazirani [43]. A standard version of the lemma says that for every set C ⊆ Z
n

of short vectors (in ℓ∞ norm), most short integer vectors z have a single vector in C that minimizes

the inner product with z over all vectors in C. The isolation lemma has appeared in the literature

in several variations for various applications, ranging from the design of randomized algorithms,

e.g., [33, 34, 12, 24], to results in computational complexity, e.g., [42, 44, 40, 4] (for a survey see [21]).

Whereas the lemma is usually used to isolate one vector, for our application we need to isolate n

linearly independent vectors in C. The lemma below guarantees the existence of a vector z and

2

a sequence of n linearly independent vectors in C, each of which uniquely minimizes the inner

product with z over all vectors in C which are not in the linear span of the previous ones.

Lemma 1.2. Let C ⊆ Z
n be a set of vectors satisfying ‖c‖∞ ≤ K for every c ∈ C and span(C) = R

n. Let

z = (z1, . . . , zn) be a random vector such that each zi is independently chosen from the uniform distribution

over {1, . . . , R} for R = K(2K + 1)n3/ε. Then, with probability at least 1 − ε, there are n linearly

independent vectors x1, . . . , xn ∈ C such that for every 1 ≤ j ≤ n, the minimum inner product of z with

vectors in C \ span(x1, . . . , xj−1) is uniquely achieved by xj.

We actually prove this in a more general setting, in which span can be replaced by any function

satisfying some condition. This more general statement includes as special cases some of the

previously known variations of the isolation lemma, and might be useful elsewhere. See Section 3

for details.

Finally, we prove that LIP, which naturally lies in NP, has a statistical zero-knowledge proof

system and hence belongs to the complexity class SZK. This result was independently observed

by Greg Kuperberg [25].

Theorem 1.3. LIP is in SZK.

It is well known that SZK ⊆ AM∩ coAM [16, 2]. As a result, just like many other lattice problems

(e.g., the problem of approximating the length of a shortest nonzero vector to within polynomial

factors, which is central in lattice-based cryptography), LIP is unlikely to be NP-hard. We note,

though, that the reduction from the Graph Isomorphism Problem (GIP) [15] gives some evidence

that LIP is a hard problem, evidence that is lacking for other lattice problems.

1.2 Overview of Proofs and Techniques

1.2.1 The Algorithm for LIP

The input of LIP consists of two lattices L1 and L2 of rank n, and the goal is to decide if there

exists an orthogonal linear transformation O satisfying L2 = O(L1). In order to find such an O it

suffices to find n linearly independent vectors in L1 and their image in L2 according to O. Since

O preserves lengths, a possible approach is to compute n linearly independent short vectors of L1

and try to map them to all n-tuples of short vectors of L2.

Consider the case where the lattices L1 and L2 have only one shortest nonzero vector (up to

sign). In this case, there are only two possible choices for how an isomorphism from L1 to L2 can

act on these vectors. Hence, one can recursively solve the problem by considering the lattices L1

and L2 projected to the spaces orthogonal to their shortest vectors. This demonstrates that the

hard instances of the problem are those where the lattices have n linearly independent shortest

vectors, so in the rest of this discussion let us assume that we are in this case.

Given the lattices L1 and L2 it is possible to compute the sets A1 and A2 of all shortest nonzero

vectors in L1 and L2 respectively. Indeed, by the algorithm of [32], the running time needed to

compute A1 and A2 is 2O(n) (or nO(n), if we insist on polynomial space complexity [22]). Now,

consider the algorithm that for certain n linearly independent vectors in A1 tries all the linear

transformations that map them to n linearly independent vectors in A2 and checks if at least one

of them is orthogonal and maps L1 to L2. Notice that the running time of this algorithm crucially

3

depends on the number of shortest nonzero vectors in the lattices, which is usually referred to as

their kissing number. It is easy to see that the kissing number of a lattice of rank n is at most 2n+1.1

This implies that the suggested algorithm has running time whose dependence on n is bounded by

2O(n2). However, the true worst-case running time of this algorithm is a function of the maximum

possible kissing number of a lattice of rank n, whose value is an open question. The best currently

known lower bound is nΩ(log n) [9] (see also [14, Page 151]), hence even if this lower bound were

tight (which does not seem particularly likely), the algorithm would run in time nΩ(n log n), which

is still asymptotically slower than our algorithm.

We improve on the above naive algorithm by showing a way to isolate n linearly independent

vectors in the sets A1 and A2. In Theorem 4.2 we prove, using our isolation lemma (Lemma 1.2),

that for a lattice L1 as above there exists a relatively short vector v in the dual lattice L∗1 that

uniquely defines n linearly independent vectors x1, . . . , xn in A1. These vectors are defined as fol-

lows: for every 1 ≤ j ≤ n, the minimum inner product of v with vectors in A1 \ span(x1, . . . , xj−1)

is uniquely achieved by xj. Given such a v (which can be found by enumerating all short vectors

in L∗1), we try all vectors of norm ‖v‖ in L∗2 , of which there are at most nO(n). Once we find the

image of v under O, we use it to apply the same process as above with A2 obtaining n linearly

independent vectors in A2. Since O preserves inner products, these vectors must be the images of

x1, . . . , xn under O, which allows us to find O.

1.2.2 LIP is in SZK

We turn to discuss the proof of Theorem 1.3 which says that LIP lies in the complexity class SZK.

Since SZK is known to be closed under complement [35], it suffices to show a statistical zero-

knowledge proof system that enables an efficient verifier to verify that two given lattices are not

isomorphic. The high level idea is similar to known proof systems of the complement of other

isomorphism problems, e.g., Graph Isomorphism and Code Equivalence [43, 36]. In these proof

systems the verifier picks uniformly at random one of the two objects given as input and sends

to the prover a random representative of its isomorphism class. The verifier accepts if and only if

the prover identifies which of the two objects was chosen. A crucial observation is that if the two

objects are isomorphic then the prover gets a sample which is independent of the chosen object,

hence she is not able to identify it with probability higher than 1/2. On the other hand, if the

objects are not isomorphic, then the object sent by the verifier is isomorphic to exactly one of the

two, hence a computationally unbounded prover is able to answer correctly. Moreover, the correct

answer is known in advance to the verifier, who therefore does not learn anything new from the

prover’s answer.

In the lattice analogue of the above proof system, in addition to choosing a lattice that forms

a representative of the isomorphism class, the verifier also has to choose a basis that generates

the lattice. Observe that the basis should be chosen in a way that does not provide any useful

information for the prover, and in particular, must not depend on the input bases. To deal with this

difficulty we use known efficient algorithms to sample lattice vectors from the discrete Gaussian

distribution [17] (see also [10]), and prove that polynomially many samples suffice to obtain a

generating set for the lattice (Lemma 5.4). We can then send a random rotation of this set of

1Indeed, if there are more than 2n+1 shortest nonzero lattice vectors then at least two of them belong to the same

coset of 2L and have nonzero average, hence their average is a shorter lattice vector, in contradiction.

4

vectors. In fact, to avoid issues of accuracy, we instead send the matrix of all pairwise inner

products of these vectors (the Gram matrix).

1.3 Outline

The rest of the paper is organized as follows. In Section 2 we gather basic definitions and results we

shall later use. In Section 3 we prove our new generalized isolation lemma and derive Lemma 1.2.

In Section 4 we present our algorithm for LIP and prove Theorem 1.1. This is done in two steps,

where in the first we assume that the input lattices contain n linearly independent shortest vectors

(i.e., λ1 = λn), and in the second we extend the algorithm to the general case. Finally, in Section 5

we prove Theorem 1.3.

2 Preliminaries

2.1 General

An orthogonal linear transformation (or isometry) O : V1 → V2 is a linear transformation that pre-

serves inner products, that is, 〈x, y〉 = 〈O(x), O(y)〉 for every x, y ∈ V1. For a set A ⊆ V1 we use

the notation O(A) = {O(x) | x ∈ A}. For a matrix B we denote its ith column by bi, and O(B)

stands for the matrix whose ith column is O(bi). The Gram matrix of a matrix B is defined to be the

matrix G = BT · B, or equivalently, Gi,j = 〈bi, bj〉 for every i and j. The Gram matrix of a matrix

B determines its columns up to an orthogonal linear transformation, as stated below. Note that

span(B) stands for the subspace spanned by the columns of B.

Fact 2.1. Let B and D be two matrices satisfying BT · B = DT · D. Then there exists an orthogonal linear

transformation O : span(B)→ span(D) for which D = O(B).

2.2 Lattices

An m-dimensional lattice L ⊆ R
m is the set of all integer combinations of a set of linearly indepen-

dent vectors {b1, . . . , bn} ⊆ R
m, i.e., L = {∑n

i=1 aibi | ∀i. ai ∈ Z}. The set {b1, . . . , bn} is called a

basis of L and n, the number of vectors in it, is the rank of L. Let B be the m by n matrix whose ith

column is bi. We identify the matrix and the basis that it represents and denote by L(B) the lattice

that B generates. The norm of a basis B is defined by ‖B‖ = maxi ‖bi‖. A basis of a lattice is not

unique. It is well known that two bases B1 and B2 generate the same lattice of rank n if and only

if B1 = B2 ·U for a unimodular matrix U ∈ Z
n×n, i.e., an integer matrix satisfying |det(U)| = 1.

The determinant of a lattice L is defined by det(L) =
√

det(BTB), where B is a basis that gener-

ates L. It is not difficult to verify that det(L) is independent of the choice of the basis. A set of

(not necessarily linearly independent) vectors that generate a lattice is called a generating set of the

lattice. A latticeM is a sublattice of a lattice L ifM ⊆ L, and it is a strict sublattice ifM (L. If

a lattice L and its sublattice M span the same subspace, then the index ofM in L is defined by

|L : M| = det(M)/ det(L). It is easy to see that ifM is a sublattice of L such that |L : M| = 1

thenM = L.

5

The length of a shortest nonzero vector in L is denoted by λ1(L) = min{‖u‖ | u ∈ L \ {0}}.
The following simple and standard fact provides an upper bound on the number of short vectors

in a lattice of rank n (see, e.g., [32]).

Fact 2.2. For every lattice L of rank n and for every t ≥ 0, the number of vectors in L of norm at most

t · λ1(L) is at most (2t + 1)n.

Proof. Consider all the (open) balls of radius λ1(L)/2 centered at the lattice points of distance at

most t · λ1(L) from the origin. These balls are pairwise disjoint and are all contained in the ball

centered at the origin whose radius is (t + 1/2) · λ1(L). This implies that their number is at most

((t + 1/2) · λ1(L)
λ1(L)/2

)n
= (2t + 1)n.

The definition of λ1 is naturally extended to the successive minima λ1, . . . , λn defined as follows:

λi(L) = inf{r > 0 | rank(span(L ∩ (r · B))) ≥ i},

where B denotes the ball of radius 1 centered at the origin. A somewhat related lattice parameter,

denoted bl(L), is defined as the minimum norm of a basis that generates L. It is known that bl is

related to the nth successive minimum by λn(L) ≤ bl(L) ≤
√

n
2 · λn(L) (see, e.g., [11]).

As mentioned before, two lattices L1 and L2 are isomorphic if there exists an orthogonal linear

transformation O : span(L1) → span(L2) for which L2 = O(L1). In this paper we study the

computational problem, called the Lattice Isomorphism Problem (LIP), defined as follows. The input

consists of two lattices L1 and L2 and we are asked to decide if they are isomorphic or not. One

subtle issue is how to specify the input to the problem. One obvious way is to follow what is

commonly done with other lattice problems, namely, the lattices are given as a set of basis vectors

whose entries are given as rational numbers. This however leads to what we feel is an unneces-

sarily restricted definition: orthogonal matrices typically involve irrational entries, hence bases of

two isomorphic lattices will typically also include irrational entries. Such bases, however, can-

not be specified exactly as an input. Instead, we follow a much more natural definition (which

is clearly as hard as the previous one, making our results stronger) in which the input bases are

specified in terms of their Gram matrices. Notice that a Gram matrix specifies a basis only up to

rotation, but this is clearly inconsequential for LIP.

Definition 2.3. In the Lattice Isomorphism Problem (LIP) the input consists of two Gram matrices G1 and

G2, and the goal is to decide if there exists a unimodular matrix U for which G1 = UT · G2 ·U.

For clarity, in our algorithms we assume that the input is given as a basis, and we ignore is-

sues of precision. This is justified because (1) an arbitrarily good approximation of a basis can be

extracted from a Gram matrix using the Cholesky decomposition; and (2) given a good enough

approximation of a purported orthogonal transformation it is possible to check if it corresponds

to a true lattice isomorphism by extracting the corresponding (integer-valued) unimodular matrix

U that converts between the bases and checking the equality G1 = UTG2U, which only involves

exact arithmetic. We note that an alternative, possibly more disciplined, solution is to avoid work-

ing with lattice vectors directly and instead work with their integer coefficients in terms of a lattice

basis, and use the Gram matrix to compute norms and inner products (see, e.g., [13, Page 80]).

6

2.3 Dual Lattices

The dual lattice of a lattice L, denoted by L∗, is defined as the set of all vectors in span(L) that have

integer inner product with all the lattice vectors of L, that is,

L∗ = {u ∈ span(L) | ∀v ∈ L. 〈u, v〉 ∈ Z}.

The dual basis of a lattice basis B is denoted by B∗ and is defined as the one which satisfies BT · B∗ =
I and span(B) = span(B∗), that is, B∗ = B(BTB)−1. It is well known that the dual basis generates

the dual lattice, i.e., L(B)∗ = L(B∗).
In [8] Banaszczyk proved relations between parameters of lattices and parameters of their dual.

Such results are known as transference theorems. One of his results, which is known to be tight up

to a multiplicative constant, is the following.

Theorem 2.4 ([8]). For every lattice L of rank n, 1 ≤ λ1(L) · λn(L∗) ≤ n.

2.4 Korkine-Zolotarev Bases

Before defining Korkine-Zolotarev bases we need to define the Gram-Schmidt orthogonalization pro-

cess. For a sequence of vectors b1, . . . , bn define the corresponding Gram-Schmidt orthogonalized

vectors b̃1, . . . , b̃n by

b̃i = bi −
i−1

∑
j=1

µi,jb̃j, µi,j =
〈bi, b̃j〉
〈b̃j, b̃j〉

.

In words, b̃i is the component of bi orthogonal to b1, . . . , bi−1. A Korkine-Zolotarev basis is defined

as follows.

Definition 2.5. Let B be a basis of a lattice L of rank n and let B̃ be the corresponding Gram-Schmidt

orthogonalized basis. For 1 ≤ i ≤ n define the projection function π
(B)
i (x) = ∑

n
j=i 〈x, b̃j〉 · b̃j/‖b̃j‖2 that

maps x to its projection on span(b̃i, . . . , b̃n). A basis B is a Korkine-Zolotarev basis if for all 1 ≤ i ≤ n,

• b̃i is a shortest nonzero vector in π
(B)
i (L) = {π(B)

i (u) | u ∈ L},

• and for all j < i, the Gram-Schmidt coefficients µi,j of B satisfy |µi,j| ≤ 1
2 .

A basis B is a dual Korkine-Zolotarev basis if its dual B∗ is a Korkine-Zolotarev basis.

Lagarias, Lenstra and Schnorr [26] related the norms of the vectors in a Korkine-Zolotarev

basis to the successive minima of the lattice, as stated below.

Theorem 2.6 ([26]). If B is a Korkine-Zolotarev basis of a lattice L of rank n, then for all 1 ≤ i ≤ n,

‖bi‖ ≤
√

i · λi(L).

The following lemma provides an upper bound on the coefficients of short lattice vectors in

terms of a dual Korkine-Zolotarev basis.

7

Lemma 2.7. Let B be a dual Korkine-Zolotarev basis of a lattice L of rank n and let a1, . . . , an be integer

coefficients of a vector v = ∑
n
i=1 ai · bi of L satisfying ‖v‖ ≤ t · λ1(L). Then, for every 1 ≤ i ≤ n,

|ai| ≤ t · n3/2.

Proof. Since the dual basis B∗ satisfies BT · B∗ = I, it follows that ai = 〈v, b∗i 〉 for every 1 ≤ i ≤ n.

By the Cauchy-Schwarz inequality, we obtain that

|ai| = |〈v, b∗i 〉| ≤ ‖v‖ · ‖b∗i ‖ ≤ t · λ1(L) ·
√

n · λn(L∗) ≤ t · n3/2,

where the second inequality follows from Theorem 2.6, and the third one from Theorem 2.4.

Lemma 2.8. Let B be a dual Korkine-Zolotarev basis of a lattice L of rank n satisfying λ1(L) = λn(L),
and let B∗ be its dual. Then, for every integer coefficients a1, . . . , an satisfying |ai| ≤ K for every 1 ≤ i ≤ n,

the vector v = ∑
n
i=1 ai · b∗i ∈ L∗ satisfies ‖v‖ ≤ n5/2 · K · λ1(L∗).

Proof. First, use Theorem 2.4 twice to obtain

λn(L∗) ≤
n

λ1(L)
=

n

λn(L)
≤ n · λ1(L∗).

Now, by the triangle inequality and Theorem 2.6 applied to the Korkine-Zolotarev basis B∗, it

follows that

‖v‖ ≤
n

∑
i=1

|ai| · ‖b∗i ‖ ≤ n · K ·
√

n · λn(L∗) ≤ n5/2 · K · λ1(L∗).

2.5 Gaussian Measures on Lattices

For n ∈ N and s > 0 let ρs : R
n → (0, 1] be the Gaussian function centered at the origin scaled by a

factor of s defined by

∀x ∈ R
n. ρs(x) = e−π‖x/s‖2

.

We define the discrete Gaussian distribution with parameter s on a lattice L of rank n by its proba-

bility function

∀x ∈ L. DL,s(x) =
ρs(x)

ρs(L)
,

where for a set A we denote ρs(A) = ∑x∈A ρs(x). Notice that the sum ρs(L) over all lattice vectors

is finite, as follows from the fact that
∫

Rn ρs(x)dx = sn. It can be shown that DL,s has expectation

zero and expected squared norm close to s2n/2π if s is large enough. We need the following

concentration result of Banaszczyk [8].

Lemma 2.9 ([8], Lemma 1.5(i)). Let L be a lattice of rank n, and let u be a vector chosen from DL,s. Then,

the probability that ‖u‖ ≥ s · √n is 2−Ω(n).

We also need the following simple claim, which follows from techniques in [8].

Claim 2.10 ([8]). For every n-dimensional lattice L, a real s > 0 and a vector w ∈ R
n,

ρs(w + L) ≥ ρs(w) · ρs(L).

8

Proof. The claim follows from the following calculation.

ρs(w + L) = ∑
x∈L

e−π‖w+x‖2/s2
=

1

2
· ∑

x∈L

(
e−π‖x+w‖2/s2

+ e−π‖x−w‖2/s2
)

= e−π‖w‖2/s2 · ∑
x∈L

(
e−π‖x‖2/s2 · cosh(2π〈x, w〉/s2)

)
≥ ρs(w) · ρs(L),

where the inequality holds since cosh(α) ≥ 1 for every α.

The problem of efficient sampling from the discrete Gaussian distribution was studied by Gen-

try, Peikert and Vaikuntanathan [17]. They showed a sampling algorithm whose output distribu-

tion is statistically close to the discrete Gaussian distribution on a given lattice, assuming that the

parameter s is sufficiently large. For convenience, we state below a recent result of Brakerski et

al. [10] providing an exact sampling algorithm from the discrete Gaussian distribution.

Lemma 2.11 ([10], Lemma 2.3). There exists a probabilistic polynomial time algorithm SampleD that

given a basis B of a lattice L of rank n and s ≥ maxi ‖b̃i‖ ·
√

ln(2n + 4)/π outputs a sample distributed

according to DL,s.

2.6 Lattice Algorithms

The following two lemmas provide efficient algorithms for computing lattice bases. In the first,

the lattice is given by a generating set, and in the second it is given as an intersection of a lattice

and a subspace. Both algorithms are based on what is known as matrices of Hermite normal form

(see, e.g., [31, Chapter 8]).

Lemma 2.12. There is a polynomial time algorithm that given a set of vectors computes a basis for the

lattice that they generate.

Lemma 2.13 ([29], Lemma 1). There is a polynomial time algorithm that given a basis of an m-dimensional

lattice L and a subspace S of R
m computes a basis of the lattice L ∩ S.

The following theorem of Kannan [22] provides an algorithm for the Shortest Vector Problem

with running time nO(n) and polynomial space complexity. We note that a faster algorithm with

running time 2O(n) was obtained by Micciancio and Voulgaris in [32], however its space complex-

ity is exponential in n.

Theorem 2.14 ([22]). There exists an algorithm that given a basis of a lattice L of rank n computes a

shortest nonzero vector of L in running time nO(n) · sO(1) and in polynomial space, where s denotes the

input size.

The definition of Korkine-Zolotarev bases (Definition 2.5) immediately implies that a Korkine-

Zolotarev basis generating a given lattice of rank n can be efficiently computed using n calls to an

algorithm that finds a shortest nonzero vector in a lattice. This gives us the following corollary.

Corollary 2.15. There exists an algorithm that given a basis of a lattice L of rank n computes a Korkine-

Zolotarev basis generating L in running time nO(n) · sO(1) and in polynomial space, where s denotes the

input size.

9

Another corollary of Theorem 2.14 is the following.

Corollary 2.16. There exists an algorithm that given a basis of a lattice L of rank n and a number t ≥ 1,

outputs all the lattice vectors v ∈ L satisfying ‖v‖ ≤ t · λ1(L) in running time (t · n)O(n) · sO(1) and in

polynomial space, where s denotes the input size.

Proof. Given a lattice L of rank n it is possible to compute λ1(L) using Theorem 2.14 and a dual

Korkine-Zolotarev basis B generating L using Corollary 2.15. Now, consider the algorithm that

goes over all the linear integer combinations of the vectors in B with all coefficients of absolute

value at most t · n3/2 and outputs the ones that have norm at most t · λ1(L). The correctness of the

algorithm follows from Lemma 2.7.

By Theorem 2.14 and Corollary 2.15, the space complexity needed to compute λ1(L) and B is

polynomial in the input size s, and the running time is nO(n) · sO(1). The number of iterations in the

algorithm above is (2t · n3/2 + 1)n = (t · n)O(n). It follows that the algorithm has space complexity

polynomial in s and running time (t · n)O(n) · sO(1), as required.

3 A Generalized Isolation Lemma

In this section we prove a new generalized version of the isolation lemma of [43]. The situation

under study is the following. Let C be a set of vectors in Z
n with bounded entries, and let E :

P(Zn) → P(Zn) be some function from the power set of Z
n to itself, which we refer to as an

elimination function. It might be useful to think of E as the linear span function restricted to Z
n, as

for this function we will obtain Lemma 1.2.

Our goal is to show that a random integer n-dimensional vector z with bounded entries with

high probability uniquely defines a sequence of vectors x1, . . . , xd in C as follows. The vector x1

is the unique vector in C \ E(∅) that achieves the minimum inner product of z with vectors in

C \ E(∅). Once x1 is chosen, it cannot be chosen anymore, and, moreover, a certain subset of C,

denoted E({x1}), is eliminated from C so that its elements cannot be chosen in the next steps.

Similarly, x2 is the unique vector in C \ E({x1}) that achieves the minimum inner product of z

with vectors in C \ E({x1}), and, as before, the elements in the set E({x1, x2}) cannot be chosen

from now on. This process proceeds until we obtain d vectors x1, . . . , xd which eliminate the whole

C, that is, C ⊆ E({x1, . . . , xd}), and satisfy xj ∈ C \ E({x1, . . . , xj−1}) for every 1 ≤ j ≤ d.

The above process is a generalization of several known cases of the isolation lemma. For ex-

ample, if the function E is defined to output the empty set on itself and Z
n on every other set, then

the process above will give us a single vector x1 ∈ C that uniquely minimizes the inner product

with z, just like the standard isolation lemma. As another example, consider the function E which

is defined to act like the identity function on sets of size smaller than d and to output Z
n on every

other set. With this E we will obtain d vectors which uniquely achieve the minimum d inner prod-

ucts of vectors in C with z. Another example for a function E, which is the one used for Lemma 1.2,

is defined by E(A) = span(A) ∩ Z
n. Using this elimination function we obtain d linearly inde-

pendent vectors x1, . . . , xd in C, such that xj uniquely achieves the minimum inner product of z

with vectors in C \ span({x1, . . . , xj−1}) for every 1 ≤ j ≤ d where d = rank(span(C)).

We turn to define the type of elimination functions considered in our isolation lemma.

10

Definition 3.1. For a set family F ⊆ P(Zn), which is closed under intersection and satisfies Z
n ∈ F ,

define its elimination function E : P(Zn)→ P(Zn) by E(A) =
⋂{X ∈ F | A ⊆ X} ∈ F .

We note that all the elimination functions considered in the examples above can be defined as

in Definition 3.1. For the standard isolation lemma take F = {∅, Z
n}, for the d uniquely achieved

minimum inner products take F = {X ⊆ Z
n | |X| < d} ∪ {Zn}, and for the span elimination

function take F to be the family of all sets S ∩Z
n where S is a linear subspace of R

n. It is easy to

see that all these set families are closed under intersection and include Z
n.

Claim 3.2. Let F ⊆ P(Rn) be a set family as in Definition 3.1, and let E : P(Zn) → P(Zn) be its

elimination function. Then, for every A, B ∈ P(Zn),

1. A ⊆ E(A),

2. A ⊆ E(B) implies E(A) ⊆ E(B), and

3. A ⊆ B implies E(A) ⊆ E(B).

Proof. Item 1 is immediate from the definition of E. For Item 2, assume A ⊆ E(B). By the definition

of E, E(A) is contained in every set of F which contains A, hence, in particular, it is contained in

E(B). For Item 3, assume A ⊆ B. This implies that every set of F which contains B contains A as

well, therefore E(A) ⊆ E(B).

Remark 3.3. It can be shown that for every function E : P(Zn)→ P(Zn) which satisfies Items 1 and 2 in

Claim 3.2 there exists a set family F which is closed under intersection and induces E as in Definition 3.1.

The following definition will be used in the statement of our isolation lemma.

Definition 3.4. For an elimination function E : P(Zn)→ P(Zn) as in Definition 3.1 and a set C ⊆ Z
n,

a chain of length d in C is a sequence of d vectors x1, . . . , xd ∈ C such that xj /∈ E({x1, . . . , xj−1}) for

every 1 ≤ j ≤ d. If, in addition, C ⊆ E({x1, . . . , xd}) we say that the chain is maximal. We say that

a vector z ∈ Z
n uniquely defines a chain x1, . . . , xd in C if for every 1 ≤ j ≤ d, the minimum inner

product of z with vectors in C \ E({x1, . . . , xj−1}) is uniquely achieved by xj.

Lemma 3.5 (A Generalized Isolation Lemma). Let E : P(Zn)→ P(Zn) be an elimination function as

in Definition 3.1. Let C ⊆ Z
n be a set of vectors satisfying ‖c‖∞ ≤ K for every c ∈ C, such that every

chain in C has length at most m. Let z = (z1, . . . , zn) be a random vector such that each zi is independently

chosen from the uniform distribution over {1, . . . , R} for R = K(2K + 1)m2n/ε. Then, with probability

at least 1− ε, z uniquely defines a maximal chain in C.

We need the following additional notations to be used in the proof.

Definition 3.6. For a set C ⊆ Z
n and a vector z ∈ Z

n, we let Cz[r] denote the set of all vectors in C

whose inner product with z is r, that is, Cz[r] = {c ∈ C | 〈z, c〉 = r}. For an elimination function

E : P(Zn)→ P(Zn) as in Definition 3.1, we say that a set Cz[r] is contributing to C if it is not contained

in the set obtained by applying E to the set of vectors in C whose inner product with z is smaller than r,

equivalently, Cz[r] * E(∪r′ :r′<rCz[r′]).

11

Proof of Lemma 3.5. For a vector z = (z1, . . . , zn), we say that an index 1 ≤ i ≤ n is singular if (1)

z uniquely defines a chain x1, . . . , xj in C for some j ≥ 0, but (2) there are at least two vectors in

C \ E({x1, . . . , xj}) that differ in the ith coordinate and achieve the minimum inner product with z

among the vectors in C \ E({x1, . . . , xj}). We prove below that for every 1 ≤ i ≤ n, the probability

that i is singular is at most ε/n. By the union bound, with probability at least 1− ε none of the

indices is singular, thus the lemma follows.

From now on fix an arbitrary index 1 ≤ i ≤ n and the values of z1, . . . , zi−1, zi+1, . . . , zn. For

every −K ≤ t ≤ K denote

C(t) = {c ∈ C | ci = t}.

Partition every C(t) into the sets C
(t)
z [r], and note that every c, c′ ∈ C(t) are in the same set if and

only if ∑j:j 6=i zjcj = ∑j:j 6=i zjc
′
j, independently of the value of zi. Similarly, the order of the sets

C
(t)
z [r] in a non-decreasing value of r is independent of zi. Finally, observe that for every t 6= t′ and

every two sets in the partitions of C(t) and C(t′), there is at most one value of zi for which the inner

products of z with the vectors in the two sets are equal.

For every t we denote by A
(t)
z the set of all integers r for which C

(t)
z [r] is contributing to C(t).

Using Item 3 of Claim 3.2, one can choose one vector from every set C
(t)
z [r] for r ∈ A

(t)
z to obtain a

chain of length |A(t)
z |. Hence, our assumption on C implies that |A(t)

z | ≤ m. This gives us 2K + 1

sets A
(t)
z , each of which is of size at most m. Hence, there are at most m2 · (2K+1

2) = m2(2K + 1)K

possible values of zi for which two distinct sets A
(t)
z intersect. Since zi is uniformly chosen from

{1, . . . , R}, the probability that two distinct sets A
(t)
z intersect is at most m2(2K + 1)K/R = ε/n.

To complete the proof, it suffices to show that if i is singular for a vector z, then there exist two

distinct intersecting sets A
(t)
z . Assume that i is singular for a vector z. This implies that z uniquely

defines a chain x1, . . . , xj in C for some j ≥ 0, but there are two vectors b, c satisfying bi 6= ci that

achieve the minimum inner product of z with vectors in C \ E({x1, . . . , xj}). Partition C into the

sets Cz[r], and let Az be the set of all integers r for which Cz[r] is contributing to C. Using Item 2

of Claim 3.2, it follows that there exists some r ∈ Az for which the contributing set Cz[r] contains

b and c which both do not belong to E(∪r′ :r′<rCz[r′]). In particular, since C
(t)
z [r] ⊆ Cz[r] for every t

and r, Item 3 of Claim 3.2 implies that C
(bi)
z [r] is contributing to C(bi) and that C

(ci)
z [r] is contributing

to C(ci). Hence, r belongs to both A
(bi)
z and A

(ci)
z , as required.

Now, we turn to derive the special case of the previous lemma, which is used in the next section

(Lemma 1.2). To state it, we use the following definition which is analogous to Definition 3.4 for

the span elimination function.

Definition 3.7. For a set A ⊆ R
m and a vector v ∈ R

m, we say that v uniquely defines a linearly

independent chain of length n in A if there are n vectors x1, . . . , xn ∈ A such that for every 1 ≤ j ≤ n,

the minimum inner product of v with vectors in A \ span(x1, . . . , xj−1) is uniquely achieved by xj.

Corollary 3.8. Let C ⊆ Z
n be a set of vectors satisfying ‖c‖∞ ≤ K for every c ∈ C and span(C) =

R
n. Let z = (z1, . . . , zn) be a random vector such that each zi is independently chosen from the uniform

distribution over {1, . . . , R} for R = K(2K + 1)n3/ε. Then, with probability at least 1− ε, z uniquely

defines a linearly independent chain of length n in C.

12

Proof. Consider the set family F = {S ∩Z
n | S is a subspace of R

n}. The family F includes Z
n

and is closed under intersection since subspaces of R
n are. The elimination function E that F

induces is defined by E(A) = span(A) ∩Z
n. Observe that the vectors of every chain in C (with

respect to this E) are linearly independent, thus its length is at most n. Apply Lemma 3.5 with

m = n to obtain that the random vector z, with probability 1 − ε, uniquely defines a maximal

linearly independent chain in C. Finally, the assumption span(C) = R
n implies that the length of

every maximal linearly independent chain in C is n.

4 The Algorithm

In this section we present our algorithm for LIP proving Theorem 1.1.

4.1 The Case λ1 = λn

We start with the special case of lattices of rank n that satisfy λ1 = λn (i.e., contain n linearly

independent shortest vectors), and prove the following.

Theorem 4.1. There exists an algorithm that given two bases of lattices L1 and L2 of rank n satisfying

λ1 = λn, outputs all orthogonal linear transformations O : span(L1) → span(L2) for which L2 =

O(L1) in running time nO(n) · sO(1) and in polynomial space, where s denotes the input size. In addition,

the number of these transformations is at most nO(n).

The algorithm that implies Theorem 4.1 relies on the following theorem (recall Definition 3.7).

Theorem 4.2. Let L be a lattice of rank n satisfying λ1(L) = λn(L), and let A denote the set of all shortest

nonzero vectors of L. Then there exists a vector v ∈ L∗ that uniquely defines a linearly independent chain

of length n in A and satisfies ‖v‖ ≤ 5n17/2 · λ1(L∗).

Proof. Let B be a dual Korkine-Zolotarev basis generating the lattice L, and let C be the set of

coefficients of shortest nonzero vectors of L in terms of the basis B, that is,

C = {x ∈ Z
n | Bx ∈ A}.

Observe that Lemma 2.7 applied with t = 1 implies that all the entries of the integer vectors in

C have absolute value at most n3/2. Since λ1(L) = λn(L), A contains n linearly independent

vectors, hence their coefficient vectors in C are linearly independent as well, so span(C) = R
n.

We apply the isolation lemma (Corollary 3.8) with K = n3/2 and, say, ε = 1/2. We obtain that for

R = 2K(2K + 1)n3 ≤ 5n6, there exists a vector z ∈ {1, . . . , R}n that uniquely defines a linearly

independent chain of length n in C. Since 〈x, y〉 = 〈Bx, B∗y〉 for every x, y ∈ R
n, it follows that the

vector

v = B∗z =
n

∑
i=1

zi · b∗i ∈ L∗

uniquely defines a linearly independent chain of length n in A. Finally, since B is a dual Korkine-

Zolotarev basis generating L and λ1(L) = λn(L), Lemma 2.8 implies that

‖v‖ ≤ n5/2 · 5n6 · λ1(L∗) = 5n17/2 · λ1(L∗).

13

Proof of Theorem 4.1. LetL1 andL2 be the lattices generated by the input bases B1 and B2. Consider

the algorithm that acts as follows (see Algorithm 1). For i ∈ {1, 2}, the algorithm computes the set

Ai of all shortest nonzero vectors of Li and the set Wi of all vectors in the dual lattice L∗i of norm at

most 5n17/2 · λ1(L∗i). These sets can be computed using the algorithm from Corollary 2.16. Given

these sets, the algorithm finds a w1 ∈ W1 that uniquely defines a linearly independent chain of

length n in A1 and the corresponding chain x1, . . . , xn ∈ A1. The existence of w1 is guaranteed

by Theorem 4.2. Then, the algorithm goes over all vectors w2 ∈ W2 and for every w2 which

uniquely defines a linearly independent chain y1, . . . , yn ∈ A2 it checks if the linear transformation

O : span(L1) → span(L2), defined by O(xi) = yi for every 1 ≤ i ≤ n, is orthogonal and maps L1

to L2. If this is the case, then O is inserted to the output set.

Algorithm 1 Lattice Isomorphism – Special Case

Input: Two bases of lattices L1 and L2 of rank n satisfying λ1(L1) = λn(L1) and λ1(L2) = λn(L2).

Output: The set Output of all orthogonal linear transformations O : span(L1) → span(L2) for

which L2 = O(L1).

1: for all i = 1, 2 do

2: Ai ← {x ∈ Li | ‖x‖ = λ1(Li)} ⊲ Corollary 2.16

3: Wi ← {x ∈ L∗i | ‖x‖ ≤ 5n17/2 · λ1(L∗i)} ⊲ Corollary 2.16

4: end for

5: for all w1 ∈ W1 do

6: if w1 uniquely defines a linearly independent chain of length n in A1 then

7: (x1, . . . , xn)← the maximal linearly independent chain that w1 uniquely defines in A1

8: goto line 11

9: end if

10: end for

11: for all w2 ∈ W2 do

12: if w2 uniquely defines a linearly independent chain of length n in A2 then

13: (y1, . . . , yn)← the maximal linearly independent chain that w2 uniquely defines in A2

14: O← the linear transformation that maps xi to yi for every 1 ≤ i ≤ n

15: if O is orthogonal and satisfies L2 = O(L1) then

16: Output← Output ∪ {O}
17: end if

18: end if

19: end for

We turn to prove the correctness of the algorithm. It is clear from the algorithm that any linear

transformation in the output is orthogonal and maps L1 to L2. We claim that every orthogonal

linear transformation that maps L1 to L2 is in the output. To see this, let O : span(L1)→ span(L2)

be such a transformation. Consider the vector u = O(w1) where w1 ∈ L∗1 is the vector which is

computed by the algorithm and uniquely defines a linearly independent chain x1, . . . , xn in A1.

Since O preserves inner products, it follows that u ∈ L∗2 and that

‖u‖ = ‖w1‖ ≤ 5n17/2 · λ1(L∗1) = 5n17/2 · λ1(L∗2).

Therefore, u belongs to W2. Since A2 = O(A1), it follows that u uniquely defines a linearly inde-

14

pendent chain of length n in A2, and that this chain is O(x1), . . . , O(xn). Thus, the chain y1, . . . , yn,

which is computed by the algorithm for u, satisfies O(xi) = yi for every 1 ≤ i ≤ n, so the algorithm

includes O in its output.

Now we analyze the running time and the space complexity of Algorithm 1. We start with the

running time, and focus on its dependence on the rank n, ignoring terms which are polynomial in

the input size s. By Corollary 2.16, the running time needed to compute the sets Ai is nO(n) and to

compute the sets Wi is (5n17/2 · n)O(n) = nO(n). By Fact 2.2, we have |Ai| = 2O(n) and |Wi| = nO(n).

Given a vector w and a set A, it is possible to check in time polynomial in |A| and in the input

size if w uniquely defines a linearly independent chain of length n in A, and if so to compute

the chain. Hence the total running time is nO(n). For the space complexity of the algorithm recall

that the algorithm from Corollary 2.16 requires only polynomial space. In order to have only

polynomial space complexity in Algorithm 1, it should be implemented in a way that the sets Ai

and Wi are not stored at any step of the algorithm. Instead, whenever the algorithm checks if a

vector uniquely defines a linearly independent chain of length n in a set Ai, this set should be

recomputed. Since the number of calls to this procedure is nO(n), the running time remains nO(n).

Similarly, the sets Wi should not be stored, as it suffices to enumerate their elements in order to

implement the algorithm. Therefore, the algorithm can be implemented in a way that requires

only polynomial space complexity and the stated running time. Finally, observe that the number

of returned orthogonal linear transformations is bounded from above by |W2|, hence is at most

nO(n).

4.2 The General Case

Now, we turn to deal with the general case, where the successive minima of the input lattices are

not necessarily all equal. We start with the following simple lemma.

Lemma 4.3. Let L1 and L2 be two lattices, and let O : span(L1) → span(L2) be an orthogonal linear

transformation satisfying L2 = O(L1). For i ∈ {1, 2}, let Vi be the linear subspace spanned by all shortest

nonzero vectors of Li, and let πi denote the projection of span(Li) to the orthogonal complement to Vi.

Then,

1. The restriction O|V1
of O to V1 is an orthogonal linear transformation mapping the lattice L1 ∩V1 to

the lattice L2 ∩V2. In addition, the lattices L1 ∩V1 and L2 ∩V2 have the same rank k and they both

satisfy λ1 = λk.

2. The restriction O|π1(span(L1)) of O to π1(span(L1)) is an orthogonal linear transformation mapping

the lattice π1(L1) to the lattice π2(L2).

Proof. Since O preserves lengths, v is a shortest nonzero vector of L1 if and only if O(v) is a short-

est nonzero vector of L2, thus O(V1) = V2. This implies that O satisfies O(L1 ∩ V1) = L2 ∩ V2,

so does its restriction O|V1
. Therefore, the lattices L1 ∩V1 and L2 ∩ V2 are isomorphic and, in par-

ticular, have the same rank k. Since these lattices contain k linearly independent shortest nonzero

vectors, it follows that they both satisfy λ1 = λk. Now, observe that every x ∈ span(L1) satisfies

O(π1(x)) = π2(O(x)). Hence,

O(π1(L1)) = π2(O(L1)) = π2(L2),

15

so O|π1(span(L1)) is an orthogonal linear transformation mapping π1(L1) to π2(L2).

Equipped with Lemma 4.3, Theorem 1.1 follows quite easily.

Proof of Theorem 1.1. LetL1 andL2 be the lattices generated by the input bases B1 and B2. Consider

the algorithm that acts as follows (see Algorithm 2). For i ∈ {1, 2}, the algorithm computes the

linear subspace Vi spanned by all shortest nonzero vectors of Li and the projection πi of span(Li)

to the orthogonal complement to Vi. This can be done using the algorithm from Corollary 2.16 for

computing shortest nonzero vectors of a given lattice. If the lattices L1 ∩ V1 and L2 ∩ V2 do not

have the same rank, then the algorithm outputs that the lattices L1 and L2 are not isomorphic.

Otherwise, the algorithm computes, using the algorithm from Theorem 4.1, all orthogonal linear

transformations O1 that map L1 ∩ V1 to L2 ∩ V2, and recursively computes all orthogonal linear

transformations O2 that map π1(L1) to π2(L2). Finally, the algorithm checks for every such pair

(O1, O2) if the transformation O, defined on span(L1) by O|V1
= O1 and O|π1(span(L1)) = O2, maps

L1 to L2, and if so, inserts it to the output set.

Algorithm 2 Lattice Isomorphism – General Case

Input: Two bases of lattices L1 and L2 of rank n.

Output: The set Output of all orthogonal linear transformations O : span(L1) → span(L2) for

which L2 = O(L1).

1: for all i = 1, 2 do

2: Vi ← span({x ∈ Li | ‖x‖ = λ1(Li)}) ⊲ Corollary 2.16

3: πi ← the projection of span(Li) to the orthogonal complement to Vi

4: end for

5: if rank(L1 ∩V1) 6= rank(L2 ∩V2) then

6: return ∅

7: end if

8: Output1 ← Lattice Isomorphism Special Case(L1 ∩V1,L2 ∩V2) ⊲ Algorithm 1 (Theorem 4.1)

9: Output2 ← Lattice Isomorphism General Case(π1(L1), π2(L2)) ⊲ A recursive call

10: Output← ∅

11: for all O1 ∈ Output1, O2 ∈ Output2 do

12: O← the linear transformation defined on span(L1) by O|V1
= O1 and O|π1(span(L1)) = O2

13: if O satisfies L2 = O(L1) then

14: Output ← Output ∪ {O}
15: end if

16: end for

17: return Output

It is easy to see that the rank of the input lattices decreases in every recursive call of the algo-

rithm. Therefore, the algorithm terminates, and its correctness follows from Lemma 4.3.

We turn to show that the running time of Algorithm 2 on lattices of rank n is nO(n) · sO(1),

where s denotes the input size. As before, we ignore in the analysis terms which are polynomial

in s. Denote by r ≤ n the number of recursive calls, let ni denote the rank of the input lattices of

16

the ith recursive call, and observe that ∑
r
i=1 ni = n. We analyze the total running time of every

step of Algorithm 2 in all the r recursive calls together.

Using Corollary 2.16, it can be shown that the running time of computing the subspaces V1

and V2 and the projections π1 and π2 in the ith recursive call is n
O(ni)
i . Hence, the total running

time of the loop in line 1 is nO(n). Given Vi and πi, by Lemmas 2.13 and 2.12, it is possible to

compute in polynomial time bases for the lattices Li ∩Vi and πi(Li). By Theorem 4.1, the output

of Algorithm 1 (line 8) in the ith recursive call has size n
O(ni)
i , and its computation requires running

time n
O(ni)
i . This implies that the total running time of the calls to Algorithm 1 is nO(n), and that

the total running time of the loop in line 11 is at most

r

∏
i=1

n
O(ni)
i ≤

r

∏
i=1

nO(ni) = nO(n),

so the total running time of Algorithm 2 is bounded by nO(n) · sO(1), as required. In addition, it

follows that the number of linear transformations that the algorithm outputs is at most nO(n).

We finally note that it is not difficult to see that Algorithm 2 can be implemented in polynomial

space and in running time as before. To do so, for computing Vi (line 2) one has to enumerate the

shortest nonzero vectors of Li and to store only the ones which are linearly independent of the

previously stored ones. Similarly, in the loop of line 11, the elements of the Outputi’s should not

be stored but should be recursively enumerated in parallel. Since the depth of the recursion is at

most n, all the linear transformations which together define a purported O can be simultaneously

stored in space complexity polynomial in the input size.

5 The Lattice Isomorphism Problem is in SZK

In this section we present an SZK proof system for the complement of LIP implying Theorem 1.3.

To do so, we need some properties of the discrete Gaussian distribution on lattices, proven in the

following section.

5.1 Gaussian-Distributed Generating Sets

In Lemma 5.4 below we bound the number of samples from the discrete Gaussian distribution

DL,s needed in order to get a generating set of Lwith high probability. We start with the following

lemma.

Lemma 5.1. For every lattice L of rank n and a strict sublatticeM (L,

1. If span(M) (span(L) and s ≥ c · λn(L) then Prx∈DL,s
[x ∈ M] ≤ 1

1+e−πc−2 .

2. If s ≥ c · bl(L) then Prx∈DL,s
[x ∈ M] ≤ 1

1+e−πc−2 .

Proof. For a lattice L and a strict sublatticeM, let w be a vector in L \M. Then, the latticeM and

its coset w +M are disjoint and are both contained in L. Using Claim 2.10, we obtain that

ρs(L) ≥ ρs(M) + ρs(w +M) ≥ (1 + ρs(w)) · ρs(M),

17

which implies that

Pr
x∈DL,s

[x ∈ M] =
ρs(M)

ρs(L)
≤ 1

1 + ρs(w)
.

For Item 1, observe that if span(M) (span(L) then there exists a vector w ∈ L \M such that

‖w‖ ≤ λn(L). Applying the above argument with this w for s ≥ c · λn(L) completes the proof.

For Item 2, recall that the lattice L is generated by a basis all of whose vectors are of norm at most

bl(L). Since M is a strict sublattice of L at least one of these vectors does not belong to M, so

there exists a vector w ∈ L \M such that ‖w‖ ≤ bl(L). Apply again the above argument for

s ≥ c · bl(L), and we are done.

Remark 5.2. Note that the bounds given in Lemma 5.1 converge to 1/2 as the parameter s increases.

The following corollary resembles Corollary 3.16 in [39].

Corollary 5.3. For every lattice L of rank n and s ≥ λn(L), the probability that a set of n2 vectors chosen

independently from DL,s contains no n linearly independent vectors is 2−Ω(n).

Proof. Let u1, . . . , un2 denote n2 samples from DL,s. For every 1 ≤ i ≤ n let Ai be the event that

rank(span(u1, . . . , u(i−1)n)) = rank(span(u1, . . . , uin)) < n.

Fix some i and condition on a fixed choice of u1, . . . , u(i−1)n that span a subspace of rank smaller

than n. Observe that, by Item 1 of Lemma 5.1, the probability that

u(i−1)n+1, . . . , uin ∈ L ∩ span(u1, . . . , u(i−1)n)

is at most (1 + e−π)−n = 2−Ω(n). This implies that the event Ai happens with probability 2−Ω(n).

Therefore, except with probability 2−Ω(n), none of the Ai’s happens, thus u1, . . . , un2 contain n

linearly independent vectors.

Lemma 5.4. For every lattice L of rank n satisfying det(L) ≥ 1 and every s ≥ bl(L), the probability that

a set of

n2 + n log(s
√

n)(n + 20 log log(s
√

n))

vectors chosen independently from DL,s does not generate L is 2−Ω(n).

Proof. Let u1, . . . , un2 denote the first n2 samples from DL,s. Since s ≥ bl(L) ≥ λn(L), Corol-

lary 5.3 implies that, except with probability 2−Ω(n), they contain n linearly independent vectors.

By Lemma 2.9 and the union bound, with a similar probability, each of these vectors has norm

at most s · √n. Denote by M0 ⊆ L the sublattice generated by u1, . . . , un2 . By the assumption

det(L) ≥ 1, we obtain that the index ofM0 in L satisfies

|L :M0| =
det(M0)

det(L) ≤ (s ·
√

n)n.

Now, define h = n log(s
√

n) and ℓ = n + 20 log log(s
√

n), and let v1, . . . , vh·ℓ be the remaining

h · ℓ vectors chosen from DL,s. For every 1 ≤ i ≤ h define the sublattice

Mi = L(u1, . . . , un2 , v1, . . . , vi·ℓ) ⊆ L,

18

and let Ai be the event thatMi−1 =Mi (L. If none of the Ai’s happens, then Mi = L for some i

or |Mi :Mi−1| ≥ 2 for every i. In the latter case it follows that

|L :Mh| ≤ (s
√

n)n · 2−h = 1.

Therefore, in both cases the lattice Mh, which is generated by the n2 + h · ℓ samples from DL,s,

equals the lattice L.

In order to complete the proof it remains to show that the probability of every event Ai is at

most 2−Ω(n)−log log(s
√

n), as this implies by the union bound that the probability that at least one Ai

happens is at most

h · 2−Ω(n)−log log(s
√

n) ≤ 2−Ω(n).

So fix some i, condition on a fixed choice of v1, . . . , v(i−1)ℓ which do not generate L, and apply

Item 2 of Lemma 5.1 to obtain that the probability that all the vectors v(i−1)·ℓ+1, . . . , vi·ℓ belong to

Mi−1 is at most (1 + e−π)−ℓ ≤ 2−Ω(n)−log log(s
√

n). Thus, this is an upper bound on the probability

that the event Ai happens, so we are done.

5.2 LIP is in SZK

Theorem 5.5. LIP is in SZK.

Proof. It is sufficient to prove that the complement of LIP has a statistical zero-knowledge proof

system with respect to a honest verifier (HVSZK) [35]. This follows from the HVSZK proof system

given in Algorithm 3. Let B1 and B2 be two bases of lattices of rank n, and define

s = max(‖B1‖, ‖B2‖) ·
√

ln(2n + 4)/π,

where ‖B‖ denotes the norm of a longest vector in a basis B. It can be assumed without loss of

generality that the lattices have determinant 1, since if their determinants are distinct then they

are clearly not isomorphic, and otherwise they can be scaled to have determinant 1.

In the proof system, the verifier chooses uniformly at random an i ∈ {1, 2} and sends to the

prover the Gram matrix G = WT ·W, where the columns of W are

N = n2 + n log(s
√

n)(n + 20 log log(s
√

n))

lattice vectors of L(Bi) independently chosen from DL(Bi),s using the algorithm SampleD from

Lemma 2.11. Finally, the verifier accepts if and only if the prover correctly guesses i.

By Lemma 5.4, except with probability 2−Ω(n), the set W generates the lattice L(Bi), so for

simplicity we assume from now on that this is the case. The running time needed by the verifier

in the protocol is clearly polynomial in the input size. So we turn to prove correctness, that is, that

for every prover’s strategy the verifier rejects YES instances with some non-negligible probability,

whereas NO instances are accepted for some prover’s strategy.

Assume that (B1, B2) is a YES instance. This means that the lattices L(B1) and L(B2) are iso-

morphic, so there exists an orthogonal linear transformation O : span(B1) → span(B2) mapping

L(B1) to L(B2). Recall that the matrix W is chosen either from DN
L(B1),s

or from DN
O(L(B1)),s

. Since O

preserves inner products, the Gram matrix of W equals the Gram matrix of O(W). Therefore, the

19

Algorithm 3 An HVSZK Proof System for the complement of LIP

Input: Two bases B1 and B2 of lattices of rank n with determinant 1.

1: s← max(‖B1‖, ‖B2‖) ·
√

ln(2n + 4)/π ⊲ Lemma 2.11

2: Verifier chooses uniformly at random i ∈ {1, 2}
3: N ← n2 + n log(s

√
n)(n + 20 log log(s

√
n)) ⊲ Lemma 5.4

4: for all 1 ≤ j ≤ N do

5: wj ← SampleD(Bi, s) ⊲ Lemma 2.11

6: end for

7: Verifier sends G = WT ·W to the prover

8: Prover returns i′ ∈ {1, 2}
9: Verifier accepts if and only if i = i′

distribution of the matrix G, which is sent to the prover, is independent of i. Hence, the probability

that the verifier accepts is at most 1/2.

Now, assume that (B1, B2) is a NO instance, and consider the following strategy for the com-

putationally unbounded prover: Given G, the prover returns the i′ for which there exists a vector

set W of size N that generates L(Bi′) and satisfies G = WT ·W. To complete the proof it re-

mains to show that this i′ is unique whenever L(B1) and L(B2) are not isomorphic. Indeed, if

WT
1 ·W1 = WT

2 ·W2 then by Fact 2.1 there exists an orthogonal linear transformation O mapping

W1 to W2, and this implies that the lattices generated by the sets W1 and W2 are isomorphic.

To complete the proof, it remains to observe that the presented proof system is statistical zero-

knowledge, that is, the honest verifier “learns nothing” from the interaction with the prover other

than the fact that the lattices are not isomorphic. To see this, consider the probabilistic polynomial-

time simulator that runs the proof system playing the roles of both the honest verifier and the

prover, where as prover it returns i′ which equals the i chosen by the simulated verifier. Observe

that the distribution of the transcript obtained from this simulation is statistically close to the one

obtained from a run by a honest verifier and a prover.

Remark 5.6. We remark that by fixing the answer of the prover in the unlikely event that the set W does

not generate the lattice, it follows that the complement of LIP has a honest verifier perfect zero-knowledge

proof system.

Acknowledgement

We would like to thank Frank Vallentin for useful comments.

References

[1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. Journal of the ACM,

52(5):749–765, 2005. Preliminary version in FOCS’04.

[2] W. Aiello and J. Håstad. Statistical zero-knowledge languages can be recognized in two

rounds. J. Comput. Syst. Sci., 42(3):327–345, 1991. Preliminary version in FOCS’87.

20

[3] M. Ajtai. Generating hard instances of lattice problems. In Complexity of computations and

proofs, volume 13 of Quad. Mat., pages 1–32. Dept. Math., Seconda Univ. Napoli, Caserta,

2004. Preliminary version in STOC’96.

[4] V. Arvind and P. Mukhopadhyay. Derandomizing the isolation lemma and lower bounds for

circuit size. In APPROX-RANDOM, pages 276–289, 2008.

[5] L. Babai. Automorphism groups, isomorphism, reconstruction. In R. L. Graham,

M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, chapter 27, pages 1447–1540.

North-Holland, Amsterdam, 1996.

[6] L. Babai, P. Codenotti, J. A. Grochow, and Y. Qiao. Code equivalence and group isomorphism.

In SODA, pages 1395–1408, 2011.

[7] L. Babai and E. M. Luks. Canonical labeling of graphs. In STOC, pages 171–183, 1983.

[8] W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(4):625–635, 1993.

[9] E. S. Barnes and N. J. A. Sloane. New lattice packings of spheres. Canadian J. Math., 35(1):117–

130, 1983.

[10] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé. Classical hardness of learning

with errors. In STOC, pages 575–584, 2013.

[11] J.-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for lattice

problems. In FOCS, pages 468–477, 1997.

[12] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation with

applications to perfect matching and related problems. SIAM J. Comput., 24(5):1036–1050,

1995. Preliminary version in STOC’93.

[13] H. Cohen. A Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics.

Springer-Verlag, 1993.

[14] J. H. Conway and N. J. Sloane. Sphere packings, lattices and groups. Springer Verlag, 3rd edition,

1998.

[15] M. Dutour Sikirić, A. Schürmann, and F. Vallentin. Complexity and algorithms for computing

Voronoi cells of lattices. Math. Comput., 78(267):1713–1731, 2009.

[16] L. Fortnow. The complexity of perfect zero-knowledge. In S. Micali, editor, Advances in

Computing Research, volume 5, pages 327–343. JAC Press, Inc., 1989. Preliminary versions in

SCTC’87 and STOC’87.

[17] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and new crypto-

graphic constructions. In STOC, pages 197–206, 2008.

[18] O. Goldreich and S. Goldwasser. On the limits of nonapproximability of lattice problems. J.

Comput. System Sci., 60(3):540–563, 2000. Preliminary version in STOC’98.

21

[19] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity for

all languages in NP have zero-knowledge proof systems. Journal of the ACM, 38(3):691–729,

1991. Preliminary version in FOCS’86.

[20] I. Haviv and O. Regev. Tensor-based hardness of the shortest vector problem to within almost

polynomial factors. Theory of Computing, 8(23):513–531, 2012. Preliminary version in STOC’07.

[21] L. A. Hemaspaandra and M. Ogihara. The isolation technique. In The Complexity Theory

Companion, chapter 4, pages 67–89. Springer-Verlag, 2002.

[22] R. Kannan. Minkowski’s convex body theorem and integer programming. Math. Oper. Res.,

12(3):415–440, 1987.

[23] S. Khot. Hardness of approximating the shortest vector problem in lattices. Journal of the

ACM, 52(5):789–808, Sept. 2005. Preliminary version in FOCS’04.

[24] A. Klivans and D. A. Spielman. Randomness efficient identity testing of multivariate poly-

nomials. In STOC, pages 216–223, 2001.

[25] G. Kuperberg. Personal communication, 2013.

[26] J. C. Lagarias, H. W. Lenstra, Jr., and C.-P. Schnorr. Korkin-Zolotarev bases and successive

minima of a lattice and its reciprocal lattice. Combinatorica, 10(4):333–348, 1990.

[27] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational coeffi-

cients. Math. Ann., 261(4):515–534, 1982.

[28] H. Lenstra, R. Schoof, and A. Silverberg. Lattices with symmetry. 2013. Unpublished.

[29] D. Micciancio. Efficient reductions among lattice problems. In SODA, pages 84–93, 2008.

[30] D. Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic

reduction. Theory of Computing, 8(22):487–512, 2012.

[31] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryptographic Perspective,

volume 671 of The Kluwer International Series in Engineering and Computer Science. Kluwer

Academic Publishers, Boston, MA, 2002.

[32] D. Micciancio and P. Voulgaris. A deterministic single exponential time algorithm for most

lattice problems based on Voronoi cell computations. SIAM J. Comput., 42(3):1364–1391, 2013.

Preliminary version in STOC’10.

[33] K. Mulmuley, U. V. Vazirani, and V. V. Vazirani. Matching is as easy as matrix inversion.

Combinatorica, 7(1):105–113, 1987. Preliminary version in STOC’87.

[34] H. Narayanan, H. Saran, and V. V. Vazirani. Randomized parallel algorithms for matroid

union and intersection, with applications to arboresences and edge-disjoint spanning trees.

SIAM J. Comput., 23(2):387–397, 1994. Preliminary version in SODA’92.

[35] T. Okamoto. On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci.,

60(1):47–108, 2000. Preliminary version in STOC’96.

22

[36] E. Petrank and R. M. Roth. Is code equivalence easy to decide? IEEE Transactions on Informa-

tion Theory, 43(5):1602–1604, 1997.

[37] W. Plesken and M. Pohst. Constructing integral lattices with prescribed minimum. I. Mathe-

matics of Computation, 45(171):209–221, 1985.

[38] W. Plesken and B. Souvignier. Computing isometries of lattices. J. Symb. Comput., 24(3-4):327–

334, 1997.

[39] O. Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal

of the ACM, 56(6):34, 2009. Preliminary version in STOC’05.

[40] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM J. Comput.,

29(4):1118–1131, 2000. Preliminary version in FOCS’97.

[41] M. Szydlo. Hypercubic lattice reduction and analysis of GGH and NTRU signatures. In

EUROCRYPT, pages 433–448. Springer-Verlag, 2003.

[42] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877, 1991.

Preliminary version in FOCS’89.

[43] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput.

Sci., 47(3):85–93, 1986. Preliminary version in STOC’85.

[44] A. Wigderson. NL/poly ⊆ ⊕ L/poly. In Structure in Complexity Theory Conference (SCTC),

pages 59–62, 1994.

23

	1 Introduction
	1.1 Our Results
	1.2 Overview of Proofs and Techniques
	1.2.1 The Algorithm for LIP
	1.2.2 LIP is in SZK

	1.3 Outline

	2 Preliminaries
	2.1 General
	2.2 Lattices
	2.3 Dual Lattices
	2.4 Korkine-Zolotarev Bases
	2.5 Gaussian Measures on Lattices
	2.6 Lattice Algorithms

	3 A Generalized Isolation Lemma
	4 The Algorithm
	4.1 The Case Lambda1 = Lambdan
	4.2 The General Case

	5 The Lattice Isomorphism Problem is in SZK
	5.1 Gaussian-Distributed Generating Sets
	5.2 LIP is in SZK

