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Abstract

Motivated by the surging popularity of commercial cloud computing services, a number of recent
works have studiedannotated data streamsand variants thereof. In this setting, a computationally weak
verifier (cloud user), lacking the resources to store and manipulatehis massive input locally, accesses a
powerful but untrustedprover(cloud service). The verifier must work within the restrictive data stream-
ing paradigm. The prover, who canannotatethe data stream as it is read, must not just supply the final
answer but also convince the verifier of its correctness. Ideally, both the amount of annotation from the
prover and the space used by the verifier should be sublinear in the relevant input size parameters.

A rich theory of such algorithms—which we callschemes—has started to emerge. Prior work has
shown how to leverage the prover’s power to efficiently solveproblems that have no non-trivial stan-
dard data stream algorithms. However, even though optimal schemes are now known for several basic
problems, such optimality holds only for streams whose length is commensurate with the size of the
data universe. In contrast, many real-world data sets are relativelysparse, including graphs that contain
only o(n2) edges, and IP traffic streams that contain much fewer than thetotal number of possible IP
addresses, 2128 in IPv6.

Here we design the first annotation schemes that allow both the annotation and the space usage to
be sublinear in the total number of streamupdatesrather than the size of the data universe. We solve
significant problems, including variations ofINDEX, SET-DISJOINTNESS, andFREQUENCY-MOMENTS,
plus several natural problems on graphs. On the other hand, we give a new lower bound that, for the
first time, rules out smooth tradeoffs between annotation and space usage for a specific problem. Our
technique brings out new nuances in Merlin–Arthur communication complexity models, and provides a
separation between online versions of the MA and AMA models.

1 Introduction

The surging popularity of commercial cloud computing services has rendered the following scenario in-
creasingly plausible. A business—call it AliceSystems—processes billions or trillions of transactions a day.
The volume is sufficiently high that AliceSystems cannot or will not store and process the transactions on
its own. Instead, it offloads the processing to a commercial cloud computing service.

The offloading of any computation raises issues of trust. AliceSystems may be concerned about rela-
tively benign errors: perhaps the cloud dropped some of the transactions, executed a buggy algorithm, or
experienced an uncorrected hardware fault. Alternatively, AliceSystems may be more cautious and fear that
the cloud operator is deliberately deceptive or has been externally compromised. Either way, each time
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AliceSystems poses a query to the cloud, it may demand that the cloud provide not only the answer but also
some proof that the returned answer is correct.

Motivated by this scenario, a number of recent works have studied annotated data streams and their
variants [7, 9, 10, 11, 21, 24]. In this setting, a computationally weakverifier (modeling AliceSystems in
the above scenario), who lacks the resources to store the entire input locally, is given access to a powerful
but untrustedprover (modeling the cloud computing service). The verifier must execute within the confines
of the restrictivedata streamingparadigm, i.e., it must process the input sequentially in whatever order it
arrives, using space that is substantially sublinear in thetotal size of the input. The prover is allowed to
annotate the data stream as it is read, with the goal of convincing the verifier of the correct answer. The
streaming restriction for the verifier fits the cloud computing setting well, as the verifier’s streaming pass
over the input can occur while uploading data to the cloud.

Prior work [2, 7, 9, 10, 22, 24] has provided considerable understanding of the power of annotated
data streams, revealing a surprisingly rich theory. A number of fundamental problems that possess no non-
trivial algorithms in the standard streaming model do have efficient schemeswhen the data stream may
be annotated by a prover: the term “scheme” refers to an algorithm involving verifier-prover interaction
as above. By exploiting powerful algebraic techniques originally developed in the literature on interactive
proofs [18, 26], these works have achieved essentially optimal tradeoffs between annotation size and the
space usage of the verifier for problems ranging from frequency moments to bipartite perfect matching.

However, these schemes are only optimal for streams for which the total number of updates is large
relative to the size of thedata universe. In contrast, many real-world data sets aresparse: for example, many
real-world graphs, though large, contain much fewer than the maximum possible number

(n
2

)

of edges, and
IP traffic streams contain much fewer than the total number ofpossible IP addresses, 2128 in IPv6.

In this paper, we give the first schemes in the annotations model that allow both the annotation size
and space usage to besublinear in the number of items with non-zero frequency in the data stream, rather
than the size of the data universen. On the negative side, we also give a new lower bound that for the first
time rules out smooth tradeoffs between annotation size andspace usage for a specific problem. The latter
result is derived from a new lower bound in the Merlin–Arthur(MA) communication model that may be of
independent interest.

1.1 Related Work

Aaronson and Wigderson [2] gave a beautiful MA communication protocol for theSET-DISJOINTNESSprob-
lem (henceforth,DISJ) using algebraic techniques analogous to those in the famous “sum-check protocol”
from the world of interactive proofs and probabilisticallycheckable proofs [18]. Their protocol is nearly op-
timal, essentially matching a lower bound of Klauck [22]. The Aaronson–Wigderson protocol has served as
the starting point for many schemes for annotated data streams. We will refer to such schemes assum-check
schemes; a typical example is Proposition 4.1 in this work.

Aaronson [1] studied the hardness of theINDEX problem in a restricted version of the MA communi-
cation model, as well as in a quantum variant of this model. His classical model is similar to the online
MA communication model that we consider. Annotated data streams were introduced by Chakrabartiet
al. [7], and studied further by Cormodeet al. [9]. These two papers gave essentially optimal annotation
schemes for problems ranging from exact computation of Heavy Hitters and Frequency Moments to graph
problems like Bipartite Perfect Matching and Shortests-t Path. Cormode, Thaler and Yi [11] later extended
the annotations model to allow the prover and verifier to havea conversation, and dubbed this interactive
modelstreaming interactive proofs. They demonstrated that streaming interactive proofs can have expo-
nentially smaller space and communication costs than annotated data streams, and showed that a number of
powerful protocols from the literature on interactive proofs can be made to work with streaming verifiers;
in particular, this applies to a powerful general-purpose interactive proof protocol due to Goldwasser, Kalai,
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and Rothblum [20]. Cormode, Mitzenmacher, and Thaler [10] implemented a number of protocols in both
the annotated data streams and streaming interactive proofsettings, demonstrating genuine scalability in
many cases. In particular, they developed an implementation of the Goldwasseret al. protocol [20] that
approaches practicality. Most relevant to our work on annotated data streams, Cormode, Mitzenmacher, and
Thaler also used sophisticated FFT algorithms to drastically reduce the prover’s runtime in the sum-check
schemes, which we make frequent use of.

Two recent works have considered variants of the annotated data stream model. Klauck and Prakash [24]
study a restricted version of the annotations model in whichthe annotation must essentially end by the final
stream update. Gur and Raz [21] give protocols for a class of problems in a model that is similar to annotated
data streams, but more powerful in that the verifier has access to both public and private randomness. This
corresponds to the AMA communication model. We consider protocols in this model in Section 7.2.

Early work on interactive proof systems studied the power ofspace-bounded verifiers (the survey by
Condon [8] provides a comprehensive overview), but many of the protocols developed in this line of work
require the verifier to store the input, and therefore do not work in the annotations model, where the verifier
must be streaming. An exception is work by Lipton [17], who relied on using fingerprinting techniques
to allow a log-space streaming verifier to ensure that the prover correctly plays back the transcript of an
algorithm in an appropriate computational model. This approach does not lead to protocols with sublinear
annotation length. More recently, Das Sarmaet al.studied the “best order streaming model,” which can be
thought of as the annotations model where the annotation is restricted to be a permutation of the input [13].

1.2 Overview of Results and Techniques

We give an informal overview of our results and the techniques we use to obtain them. Throughout,n will
denote the size of the data universe andm the number of items with non-zero frequency at the end of a data
stream (we refer tom as the “sparsity” of the stream). A scheme in which the streaming verifier uses at
mostcv bits of storage and requires at mostca bits of annotation from the prover is called a(ca,cv)-scheme.
Section 2 defines our models of computation carefully and sets up terminology.

Section 3contains our first set of results. We begin by precisely characterizing the complexity of the
sparse POINTQUERY problem—a natural variant of the well-knownINDEX problem from communication
complexity—giving an(xlogn,ylogn)-scheme wheneverxy≥ m. We give similar upper bounds for the re-
lated problems SELECTION and HEAVY HITTERS. We also prove a lower bound showing thatany(ca,cv)-
scheme for these problems requirescacv = Ω(mlog(n/m)), improving by a log(n/m) factor over lower
bounds that follow from prior work on “dense” streams. By a dense stream we mean one wheren is not
much larger thanm. This log(n/m) factor may seem minor, but a striking consequence is that the(very)
sparseINDEX problem—where Alice’sn-bit string has Hamming weightO(logn)—has one-way random-
ized communication complexity that is within a logarithmicfactor of its online MA communication com-
plexity. This implies that no non-trivial tradeoffs between Merlin’s and Alice’s message sizes are possible
for this problem; to our knowledge this is the first problem that provably exhibits this phenomenon.

Our scheme for sparse POINTQUERY relies on universe reduction: the prover succinctly describes a
mappingh : [n]→ [r] that maps the input stream, which is defined over the huge datauniverse[n], down to a
derived stream defined over a smaller universe[r]. By design, if the prover is honest and the mappingh does
not cause “too many collisions,” then the answer on the original stream can be determined from the answer
on the derived stream. We then efficiently apply known schemes for dense streams to the derived stream.

For our lower bound in Section 3, we give a novel reduction from the standard (dense)INDEX problem
to sparseINDEX that is tailored to the MA communication model. We then applyknown lower bounds for
denseINDEX. Our technique also gives what is to our knowledge the first polynomial separation between
the online MA and AMA communication complexities of a specific (and natural) problem.
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For clarity, the remainder of this overview omits factors logarithmic inn andmwhen stating the costs of
schemes. Though these factors are important for Section 3 (the consequences of our lower bound being most
significant whenn= mω(1)), we anticipate that in practicen andmwill usually be polynomially related.

Sections 4 and 5contain our most interesting and technically involved results, namely, efficient schemes
for SIZE-m-SET-DISJOINTNESS(henceforth,m-DISJ) and kth Frequency Moments (henceforth,Fk). The
schemes here are substantially more complex than those in Section 3 and represent the main technical
contributions of this paper.

Section 4 gives(m2/3,m2/3)-schemes for both problems, but the schemes rely on “prescient” annotation,
i.e., annotation provided at the start of the stream that depends on the stream itself. The even more com-
plex schemes of Section 5 eliminate the need for prescient annotation and also achieve much more general
tradeoffs between annotation length and space usage. Specifically, Section 5 gives(mc−1/2

v ,cv)-schemes for
m-DISJ andFk for anycv < m. Notice that one recovers the costs achieved in Section 4 by settingcv = m2/3.

These schemes are the first for these problems that allow boththe annotation length and space usage to
be sublinear inm. At a very high level, there are three interlocking ideas that allow us to achieve this.

1. The first idea is a careful application of universe reduction. We were able to use a simple version of
this idea to derive the upper bound for the POINTQUERY problem in Section 3, but in the case ofDISJ

andFk the universe-reduction mappingh : [n]→ [r] specified by the prover is more complicated, and
requires refinement in the form of the additional ideas described below.

2. The second idea is addressed to ensuring that the prover performed the universe-reduction step in an
honest manner, in the sense that the answer on the original stream can indeed be determined from the
answer on the derived stream. The difficulty of ensuringP is honest varies depending on the structure
of the problem at hand. ForFk, the verifier has to make sure that the universe-reduction mappingh is
injective on the items appearing in the data stream. This requires developing an efficient way forV
to detect collisions underh, even thoughV does not have the space to store all of the valuesh(xi) for
stream updatesxi . Form-DISJ, a notion weaker than injectiveness is sufficient.

3. The third idea pertains to allowingP to specify the universe-reduction mappingh online. That is,
for many problems it would be much simpler ifP could determine the mappingh in advance i.e. if
P could be prescient, and sendh to V at the start of the stream so thatV can determine the derived
“mapped-down” stream on her own (this is the approach taken in Section 4). WhenP must specifyh
in an online fashion, additional insight is required. At a high level, our approach is to haveP specify
a “guess” as to the right hash function at the beginning of thesteam, and retroactively modify the
hash function after the stream has been observed. The challenging aspect of this approach is to ensure
thatP’s retroactive modification of the hash function is consistent with the observed data stream, even
thoughV cannot refer back to the stream to enforce this.

We exploit similar ideas to allowV to avoid storing the universe-reduction mappingh herself; this
is the key to achieving general tradeoffs between annotation length and space usage in Section 5. In
some schemes, storing this mappingh would be the bottleneck inV ’s space usage. We show howV
can store only apartial description ofh, and askP to fill in the remainder of the description when
necessary.

Section 6exploits all of these results, applying them to several graph problems, including counting
triangles and demonstrating a perfect matching. Our schemes have costs that depend on the number of
edges in the graph, rather than the total number of possible edges, and demonstrate that the ideas underlying
our m-DISJ andFk schemes are broadly applicable. We state clearly how our schemes improve over prior
work throughout.
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Section 7considers a more general stream update model, which allows items to have negative frequen-
cies. These negative frequencies potentially break the “collision detection” sub-protocol used in the previous
sections, so we show how to exploit a source of public randomness to allow these protocols to be carried out.
Essentially, the public randomness specifies a remapping ofthe input, so that the prover is highly unlikely
to be able to use negative frequencies to “hide” collisions.Because the protocols of Section 7 require public
randomness, they work in the AMA communication and streaming models, as opposed to the MA models
in which all of our other protocols operate.

2 Models, Notation, and Terminology

Many of the algorithms (schemes) in this paper use randomization in subtle ways, making it important to
properly formalize several models of computation. We beginwith Merlin–Arthur communication models, a
topic first studied by Babai, Frankl and Simon [3], which we eventually use to derive lower bounds. We then
turn to annotated data stream models. At the end of the section we set up some notation and terminology for
the rest of the paper. Some of our discussion in this section borrows from prior work [7].

2.1 Communication Models

Let F : X ×Y → {0,1} be a function, whereX andY are both finite sets. This naturally gives a 2-player
number-in-hand communication problem, where the first player, Alice, holds an inputx∈ X, and the second
player, Bob, holds an inputy∈Y. The players wish to computeF(x,y) by executing a (possibly randomized)
communication protocol that correctly outputsF(x,y) with “high” probability. In Merlin–Arthur communi-
cation, there is additionally a “super-player,” called Merlin, who knows the entire input(x,y), and can help
Alice and Bob by interacting with them. The precise pattern of interaction matters greatly and gives rise to
distinct models. Merlin’s goal is to get Alice and Bob to output “1” regardless of the actual value ofF(x,y),
and so Merlin is not to be blindly trusted.

One important departure we make from prior work is thatwe allow Merlin to use private random coins
during the protocol. Most prior work on MA (and AM) communication [3, 22, 23] defined Merlin to be
deterministic, which does not make a difference in the basicsetting. But in this work we are concerned
with “online MA” models, where the distinction does matter,and these online MA models are in close
correspondence with the annotated data stream models that are our eventual topic of study.

MA Communication. In a Merlin–Arthur protocol (henceforth, “MA protocol”) for F, Merlin begins by
sends a help messageh(x,y, rM), using a private random stringrM , that is seen by both Alice and Bob. Then
Alice and Bob (the pair that constitutes the entity “Arthur”) run a randomized communication protocolP,
using a public random stringrA, eventually outputting a bit outP(x,y, rA,h). Importantly,rA is not known
to Merlin at the time he sendsh. The protocolP is δs-sound andδc-complete if there exists a function
h : X×Y×{0,1}∗ →{0,1}∗ such that the following conditions hold.

1. If F(x,y) = 1 then PrrM,rA[outP(x,y, rA,h(x,y, rM)) = 0]≤ δc.

2. If F(x,y) = 0 then∀h′ ∈ {0,1}∗ : PrrA[outP(x,y, rA,h
′) = 1]≤ δs.

We define err(P) to be the minimum value of max{δs,δc} such that the above conditions hold. Fol-
lowing [7], we define thehelp costhcost(P) to be 1+maxx,y,rM |h(x,y, rM)| (forcing hcost≥ 1, even for
traditional Merlin-free protocols), and theverification costvcost(P) to be the maximum number of bits
communicated by Alice and Bob over allx,y andrA. We define MAδ (F) = min{vcost(P)+hcost(P) : P
is an MA protocol forF with err(P)≤ δ}, and MA(F) = MA1/3(F).
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Online MA Communication. An online MA protocol is defined to be an MA protocol, as above,but with
the communication pattern required to obey the following sequence. (1) Inputx is revealed to Alice and
Merlin; (2) Merlin sends Alice a help messageh1(x, rM) using a private random stringrM ; (3) Input y is
revealed to Bob; (4) Merlin sends Bob a help messageh2(x,y, rM); (5) Alice sends a public-coin randomized
message to Bob, who then gives a 1-bit output. We see this model as the natural MA variant of one-way
communication, and the analogy with the gradual revelationof a streamed input should be obvious.

For such a protocolP, we define hcost(P) to be 1+maxx,y,rM (|h1(x, rM)|+ |h2(x,y, rM)|) We define
soundness, completeness, err(P), and vcost(P) as for MA. Define MA→δ (F) = min{hcost(P)+vcost(P) :
P is an online MA protocol forF with err(P) ≤ δ} and write MA→(F) = MA→

1/3(F).

Online AMA Communication. An online AMA protocol is a souped-up version of an online MA proto-
col, where public random coins can be tossed at the start, before any input is revealed. The number of such
coin tosses is added to the vcost of the protocol. This modelsthe cost of an initial round of communication
between Arthur (i.e., Alice + Bob) and Merlin. Note that thesecondpublic random string, used when Alice
talks to Bob, does not count towards the vcost.

On Merlin’s Use of Randomness. In an MA protocol, Merlin can deterministically choose a help message
that maximizes Arthur’s acceptance probability. However,Merlin cannot do so in the online MA model,
because he does not know the entire input when he talks to Alice. This is why we allow Merlin to use
randomness in these definitions.

Two recent papers [7, 24] use “online MA” to mean a more restrictive model where a deterministic
Merlin talks only to Bob and not to Alice. With Merlin required to be deterministic, this communication
restriction is irrelevant, as Merlin cannot tell Alice anything she does not already know. However, we permit
Merlin to be probabilistic, and in this case we do not know that Merlin can avoid talking to Alice.

As noted earlier, our goal in defining the communication models this way is to closely correspond to
annotated data stream models. In many of our online schemes (see, e.g., Section 5), the helper provides ini-
tial annotation that specifies a random “hash” function,h, and the completeness guarantee of the subsequent
protocol depends crucially onh having “low collision” properties. Sinceh must be chosen without seeing all
of the input, such low collision properties cannot be guaranteed by picking a fixedh in advance. However, if
the helper choosesh at random, then we do have such guarantees for each fixed input, with high probability.

2.2 Data Stream Models

We now define our annotated data stream models. Recall that a (traditional) data stream algorithm computes
a functionF of an input sequencex ∈ UN, whereN is the number of stream updates, andU is some data
universe, such as{0,1}b or [n] = {0, . . . ,n−1}: the algorithm uses a limited amount of working memory
and has access to a random string. The functionF may or may not be Boolean.

An annotated data stream algorithm, or ascheme, is a pairA = (h,V), consisting of a help function
h : UN ×{0,1}∗ → {0,1}∗ used by aprover (henceforth,P) and a data stream algorithm run by averifier,
V. ProverP providesh(x, rP) as annotation to be read byV. We think of h as being decomposed into
(h1, . . . ,hN), where the functionhi : UN → {0,1}∗ specifies the annotation supplied toV after the arrival of
the ith tokenxi . That is,h acts onx (usingrP) to create anannotated streamxh,rP defined as follows:

xh,rP := (x1, h1(x, rP), x2, h2(x, rP), . . . , xN, hN(x, rP)) .

Note that this is a stream overU ∪{0,1}, of lengthN+∑i |hi(x, rP)|. The streaming verifierV, who usesw
bits of working memory and has oracle access to a (private) random stringrV , then processes this annotated
stream, eventually giving an output outV(xh,rP, rV).
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Prescient Schemes. The schemeA = (h,V) is said to beδs-sound andδc-complete for the functionF if
the following conditions hold:

1. For allx ∈ UN, we have PrrP,rV [outV(xh,rP, rV) 6= F(x)] ≤ δc.

2. For allx ∈ UN, h′ = (h′1,h
′
2, . . . ,h

′
N) ∈ ({0,1}∗)N, we have PrrV [outV(xh

′
, rV) 6∈ {F(x)}∪{⊥}]≤ δs.

If δc = 0, the scheme satisfiesperfect completeness; otherwise it hasimperfect completeness. An output of
“⊥” indicates thatV rejectsP’s claims in trying to convinceV to output a particular value forF(x).

We note two important things. First, the definition of a scheme allows the annotationhi(x, rP) to depend
on the entire streamx, thus modelingprescience: the advice from the prover can depend on data which the
verifier has not seen yet. Second,P must convinceV of the value ofF(x) for all x. This is stricter than the
traditional definitions of interactive proofs and MA communication complexity (including our own, above)
for decision problems, which place different requirementson the casesF(x) = 0 andF(x) = 1. In Section
6, we briefly consider a relaxed definition of schemes that is in the spirit of the traditional definition.

We define err(A) to be the minimum value of max{δs,δc} such that the above conditions are satisfied.
We define theannotation lengthhcost(A) = maxx,rP ∑i |hi(x, rP)|, the total size ofP’s communications, and
the verification space costvcost(A) = w, the space used by the verifierV. We say thatA is a prescient
(ca,cv)-scheme if hcost(A) = O(ca), vcost(A) = O(cv) and err(A)≤ 1

3.

Online Schemes. We callA= (h,V) aδ -error online scheme forF if, in addition to the conditions in the
previous definition, each functionhi depends only on(x1, . . . ,xi). We define error, hcost, and vcost as above
and say thatA is anonline(ca,cv)-schemeif hcost(A) = O(ca), vcost(A) = O(cv), and err(A)≤ 1

3.
Unlike prior work [7], we do not always assume that the universe sizen and stream lengthN are poly-

nomially related; it is possible that logN = o(logn). Therefore we must be much more careful about loga-
rithmic factors than in prior work. We do assume thatN < n always, because our focus is on sparse streams.

Notice that the help function can be made deterministic in a prescient scheme, but not necessarily so in
an online scheme. This is directly analogous to the situation for MA and online MA communication models,
as discussed at the end of Section 2.1.

AMA Schemes. We also consider what we call AMA schemes, where there is a common source of public
randomness, in addition to the verifier’s private random coins. The AMA scheme model is identical to the
one considered by Gur and Raz [21], who referred to it as the “Arthur–Merlin streaming model.”

An online AMA scheme is identical to a (standard) online scheme, except that the data stream algorithm
and help function both have access to a source of public random bits. The number of random bits used is
also counted in both the hcost and the vcost of the scheme.

On Practicality and the Plausibility of Prescience. Although our definition of a scheme allows anno-
tation to be sent after each stream update, all the schemes wein fact design in this paper only require
annotation before the start or after the end of the stream. Asa practical matter, this avoids the need for
fine-grained coordination between the annotation and the data stream.

Online annotation schemes have the appealing property thatthe prover need not “see into the future” to
execute them; at any timet, the prover’s message only depends on stream updates that arrived before timet.
While the online restriction appears most natural, prescient schemes may still be suitable in some settings,
such as whenPhas already seen the full input prior toV beginning to read it. Consider a volunteer computing
scenario where the verifier farms out many computations to volunteers, and only inspects a particular input
if a volunteer has already looked at that input and claims to have found something interesting1. In brief, in
some settings the prover may naturally see the input before the verifier, and in this case a prescient scheme
will be feasible.

1See, for example,http://boinc.berkeley.edu/.
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2.3 Relationship Between MA Protocols and Schemes

Any prescient (resp. online)(ca,cv)-schemeA = (h,V) for a functionF can be converted into an MA
(resp. online MA) protocol forF in the natural way: Merlin sends the output of theith help functionhi to
Alice—who receives a prefix of the input stream—or Bob, depending on which of the players possesses
the ith piece of the input. Alice runs the streaming algorithmV on her input as well as any annotation she
received, and sends the state of the algorithm to Bob. Bob uses this state to continue runningV on his input
and the annotation he received, and then outputs the end result. The hcost of this protocol is at mostca logN,
since Merlin has to specify which stream updatei each piece of annotation is associated with, and the vcost
of this protocol is at mostcv. Thus, lower bounds on usual (resp. online) MA communication protocols
imply related lower bounds on the costs of prescient (resp. online) annotated data stream algorithms.

2.4 Additional Notation and Terminology

A data stream specifies an inputx incrementally. Typically,x can be thought of as a vector (although more
generally it may represent a graph or a matrix). Each update in the stream is of the form(i,δ ) wherei ∈ U
identifies an element of the universe, andδ ∈ Z describes the change to the frequency ofi. The frequency
of universe itemi is defined asfi(x) := ∑( jk,δk)∈x: jk=i δk. We refer to the vectorf (x) = ( f1(x), . . . , fn(x)) as
the frequency vectorof x, wheren denotes the size of the data universe.

We consider several different update models. In the most general update model, thenon-strict turnstile
model, theδ values may be negative, and sofi may also be negative. In thestrict turnstile model, the δ
values may be negative, but it is assumed that the frequencies fi always remain non-negative. In theinsert-
only model, the δ values must be non-negative. Orthogonal to these, in theunit-updateversion of each
model, theδ values are assumed to have absolute value 1. Each of our results applies to a subset of these
models, and we specify within the statement of each theorem which update models it applies to.

Throughout,n will denote the size of the data universe,N will denote the total number of stream updates,
m will denote the total number of items with non-zero frequency at the end of the stream, andM will refer
to the total number of distinct items that ever appear withinsome stream update. We will refer toN as the
lengthof the stream, tom assparsityof the stream, and toM as thefootprint of the stream. Notice that it is
always the case thatm≤ M ≤ N. In the case of insert-only streams,m= M, but for streams in the (strict or
general) turnstile models it is possible form to be much smaller thanM. Note also that while we talk about
“sparse” streams, this refers to the relative size ofn andm, not the absolute size. Indeed, we assume thatm
is typically large, too large forV to store the stream explicitly (else the problems can becometrivial).

We often make use offingerprint functions of streams, which enable a streaming verifier to test whether
two large streams have the same frequency vector. The verifier chooses a fingerprint functiong(x) at random
from some family of functions satisfying the property that (over the random selection of the functiong),

Pr[g(x) = g(y) | f (x) 6= f (y)]< 1/p

for a parameterp. Typically, g(x) is an element of a finite field of size poly(p), and hence the number of
bits required to store the valueg(x) (as well asg itself) is O(logp). Further, there are known constructions
of fingerprint functions whereg(x) can be computed in spaceO(logp) by a streaming algorithm in the
non-strict turnstile update model [7].

3 Point Queries, Index, Selection, and Heavy Hitters

3.1 Upper Bounds

Our first result is an efficient online annotation scheme for the POINTQUERY problem, a generalization of
the familiarINDEX problem.
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Definition 3.1. In the POINTQUERY problem, the data streamx consists of a sequence of updates of the
form (i,δ ), followed by an indexι , and the goal is to determine the frequencyfι(x) = ∑( jk,δk)∈x: jk=ι δk.

A prescient(logn, logn)-scheme for this problem is trivial asP can just tellV the indexι at the start of
the stream, andV can track the frequency ofι while observing the stream. The vcost can be improved to
O(logm) if V retains a hashed value ofι , and tracks the frequency of matching updates. The first scheme
has perfect completeness, while the second has completeness error polynomially small inm.

The costs of the scheme below are in terms of the stream sparsity m, and not the stream lengthN or
the stream footprintM; this is significant ifm≪ M, which is the case, e.g., for the well-known straggler
and set-reconciliation problems that have been studied in traditional streaming and communication models
[14, 19]. Our lower bound in Theorem 3.9 shows our scheme is essentially optimal for moderate universe
sizes, i.e. when the universe sizen is sub-exponential in the sparsitym.

Theorem 3.2. For any pair(ca,cv) such that ca ·cv ≥ m, there is an online(ca logn,cv logn)-scheme in the
non-strict turnstile update model for thePOINTQUERY problem with imperfect completeness. Any online
(ca,cv) scheme with ca ≥ logn for this problem requires ca ·cv = Ω(mlog(n/m)).

Proof. V requiresP to specify at the start of the stream a hash functionh : [n] → [cv]. V requiresh to have
description lengthO(ca), rejecting if this is not the case. We define the derived streamsx j ∈ UN based onh:
we setx j

k = xk iff h(xk) = j, and 0 otherwise. Intuitively, the hash functionh partitions the stream updates in
x into cv disjoint buckets, and the vectorx j describes the contents of thejth bucket.V maintains fingerprints
over a field of size poly(n) of each of thecv differentx j vectors.

At the end of the stream, given the desired indexι , P provides a description of the (claimed) frequency
vector in theh(ι)th derived stream,f (xh(ι)). V computes a fingerprint of the claimed frequency vector, and
compares it to the fingerprint she computed from the data stream, accepting if and only if the fingerprints
match. Since eachx j is sparse in expectation, the cost of this description can below: providedh does not
map more thanO(ca) items with non-zero frequency toh(ι), P can just specify the item id and frequency
of the items with non-zero frequency inf (xh(ι)). In this case, the annotation size is justO(ca logn). If P
exceeds this amount of annotation,V will halt and reject (output⊥).

Soundness follows from the fingerprinting guarantee: ifP does not honestly providexh(ι),V ’s fingerprint
of xh(ι) computed from the data stream will not match her fingerprint of the claimed vector of frequencies.

To show (imperfect) completeness, we study the probabilitythat the output of an honest prover is re-
jected. This happens only ifm(xh(ι)), the number of non-zero entries inxh(ι), is much larger than its ex-
pectation. By the pairwise independence ofh, E[m(xh(ι))] = m(x)/cv = ca. Thus, by Markov’s inequality,
Pr[m(xh(ι)) > 10ca] < 1/10. So by specifying a hash function chosen at random from a pairwise indepen-
dent hash family, and then honestly playing back the items that map to the same region asι , P can convince
V to accept with probability 9/10.

Notice thatV does not need toenforcethatP picks the hash functionh at random from a pairwise-wise
independent hash family, asP has no incentive not to pick the hash functions in this way. That is, since
V will reject if too many items map to the same region asι , it is sufficientfor P to pick h at random from
a pairwise independent hash family in order to convinceV to accept with constant probability. But it is
equally acceptable ifP wants to pickh another way; if he does so,P just risks thatV will reject with a
higher probability.

The lower bound follows from Theorem 3.9, which we prove in Section 3.2.

The scheme of Theorem 3.2 yields nearly optimal schemes for the HEAVY HITTERS and SELECTION

problems, described below. Table 1 summarizes these results and compares to prior work.
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Problem Scheme Costs Completeness Prescience Source
POINTQUERY (logn, logn) Perfect Prescient [7]
POINTQUERY (mlogn, logn) Perfect Online [7]
POINTQUERY (ca logn,cv logn): cacv ≥ n Perfect Online [7]
POINTQUERY (ca logn,cv logn): cacv ≥ m Imperfect Online Theorem 3.2
SELECTION (ca logn,cv logn): cacv ≥ n Perfect Online [7]
SELECTION (mlogn, logn) Perfect Online [7]
SELECTION (ca log2n,cv logn): cacv ≥ mlogn Imperfect Online Corollary 3.4

φ -HEAVY HITTERS (φ−1 logn,φ−1 logn): cacv ≥ n Perfect Prescient [7]
φ -HEAVY HITTERS (φ−1ca logn,cv logn): cacv ≥ n Perfect Online [7]
φ -HEAVY HITTERS (mlogn, logn) Perfect Online [7]
φ -HEAVY HITTERS (φ−1ca logn,cv logn): cacv ≥ mlogn Imperfect Online Corollary 3.6
φ -HEAVY HITTERS (φ−1 logn+ ca logn,cv logn): cacv ≥ mlogn Imperfect Online Corollary 5.6

Table 1: Comparison of our schemes to prior work. For all three problems, ours are the first online schemes
to achieve both annotation and space usage sublinear in the stream sparsitymwhenm≪√

n, and we strictly
improve over the online MA communication cost of prior schemes wheneverm= o(n). For brevity, we omit
factors of logcv

(m) from the statement of costs of theφ -HEAVY HITTERS scheme due to Corollary 5.6

3.1.1 Selection

Our definition of the SELECTION problem assumes all frequenciesfi := ∑( jk,δk): jk=i δk are non-negative, and
so this definition is only valid for the strict turnstile update model.

Definition 3.3. The SELECTION problem is defined in terms of the quantityN = ∑i∈[n] fi , the sum of all
the frequencies. Given a desired rankρ ∈ [N], output an itemj from the streamx = 〈( j1,δ1), . . . ,( jm,δm)〉,
such that∑( jk,δk): jk< j δk < ρ and∑( jk,δk): jk> j δk ≥ N−ρ .

Corollary 3.4. For any pair (ca,cv) such that cacv ≥ mlogn, there is an online(ca log2 n,cv logn)-scheme
for SELECTION in the strict turnstile update model.

The corollary follows from a standard observation to reduceSELECTION to answering prefix sum
queries, and hence to multiple instances of the POINTQUERY problem.V treats each stream update(i,δ )
in the streamx as an update toO(logn) dyadic ranges, where a dyadic range is a range of the form
[ j2k,( j + 1)2k − 1] for some j and k. Thus, we can view the set of dyadic range updates implied byx
as a derived stream of sparsitymlogn. Notice we are using the fact that this transformation from the original
stream of sparsitym results in a derived stream of sparsity at mostmlogn; a different derived stream was
used in [7] to address the SELECTION problem, but the sparsity of that derived stream could be substantially
larger than the sparsity of the original stream.

For any i, the quantityTi := ∑( j,δ ): j≤i δ can be written as the sum of the counts ofO(logn) dyadic
ranges. Thus, at the end of the streamP can convinceV that item i has the desiredTi value by running
logn POINTQUERY protocols as in Theorem 3.2 in parallel on the derived streamof sparsitymlogn. The
verifier’s space usage is the same as for a single POINTQUERY instance on this stream:V fingerprints
each of the derived streamsx j defined in the proof of Theorem 3.2, and uses these fingerprints in all logn
instances of the POINTQUERY scheme. The annotation length is logn times larger than that required for a
single POINTQUERY instance becauseP may have to describe the frequency vectors of up to logn derived
streams.

Thus, we get an online(ca log2n,cv logn)-scheme as long ascacv = Ω(mlogn).
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3.1.2 Frequent Items

Our definition of theφ -HEAVY HITTERS problem also assumes all frequenciesfi := ∑( jk,δk): jk=i δk are non-
negative, and so this definition is only valid for the strict turnstile update model.

Definition 3.5. Theφ -HEAVY HITTERS problem (also known as frequent items) is to list those itemsi such
that fi ≥ φN, i.e. whose frequency of occurrence exceeds aφ fraction of the total countN = ∑i∈[n] fi .

We give a preliminary result for theφ -HEAVY HITTERS problem in Corollary 3.6 below. We give a
substantially improved scheme in Section 5 using the ideas underlying our online scheme for frequency
moments.

Corollary 3.6. For all ca,cv such that cacv ≥ mlogn, there is an online(caφ−1 logn,cv logn)-scheme for
solvingφ -HEAVY HITTERS in the strict turnstile update model.

Corollary 3.6 follows from the following analysis. [7, Theorem 6.1] describes how to reduceφ -HEAVY HITTERS

to demonstrating the frequencies ofO(φ−1) items in a derived stream. Moreover, the derived stream has
sparsityO(mlogn) if the original stream has sparsitym. We use the POINTQUERY scheme of Theorem 3.2.
As in Corollary 3.4, the annotation length blows up by a factor φ−1 relative to a single POINTQUERY, but
the space usage ofV can remain the same as in a single POINTQUERY instance. Hence, we obtain an online
(caφ−1 logn,cv logn)-scheme for anycacv ≥ mlogn.

3.2 Lower Bound

In this section, we prove a new lower bound on the online MA communication complexity of the(m,n)-
SparseINDEX problem.

Definition 3.7. In the(m,n)-SparseINDEX problem, Alice is given a vectorx∈ {0,1}n of Hamming weight
at mostm, and Bob is given an indexι . Their goal is to output the valuexι .

We prove our lower bound by reducing the (dense)INDEX problem (i.e. the(m,n)-SparseINDEX prob-
lem withm= Θ(n)) in the MA communication model to the(m,n)-SparseINDEX problem for smallm. The
idea is to replace Alice’s dense input with a sparser input over a bigger universe, and then take advantage
of our sparse POINTQUERY protocol. A lower bound on the online MA communication complexity of the
denseINDEX problem was proven in [7, Theorem 3.1]; there, it was shown that any online MA communi-
cation protocolP requires hcost(P)vcost(P) ≥ n. Combining this with our reduction of the denseINDEX

problem to the sparse version, we conclude that any protocolfor sparseINDEX must be costly.

Lemma 3.8. [7, Theorem 3.1] Any online MA communication protocolP for the (n,n)-SparseINDEX

problem must havehcost(P)vcost(P) = Ω(n).

Remark 1. The lower bound of Lemma 3.8 was originally proved by Chakrabarti et al. [7] in the commu-
nication model in which Merlin cannot send any message to Alice. However, the proof easily extends to
our online MA communication model (where Merlin can send a message to Alice, but that message cannot
depend on Bob’s input).

Theorem 3.9. Any online MA communication protocolP for the (m,n)-SparseINDEX problem for which
hcost(P)≥ logn must havehcost(P)vcost(P) = Ω(mlog(n/m)).

Proof. Assume we have an online MA communication protocolP for (m,n)-sparseINDEX. We describe
how to use this online MA protocol for the sparseINDEX problem to design one for the denseINDEX

problem on vectors of lengthn′ = mlog(n/m).
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Let k= log(n/m). Given an inputx to the denseINDEX problem, Alice partitionsx into n′/k blocks of
lengthk, and constructs a 0-1 vectory of Hamming weightn′/k over the universe{0,1}(n′/k)·2k

= {0,1}n as
follows. She replaces each blockBi with a 1-sparse vectorvi ∈ {0,1}2k

, where each entry ofvi corresponds
to one of the 2k possible values of blockBi. That is, if blockBi of x equals the binary representation of the
number j ∈ [2k], then Alice replaces blockBi with the vectorej ∈ {0,1}2k

, whereej denotes the vector with
a 1 in coordinatej and 0s elsewhere.

Alice now has ann′/k= m-sparse derived inputy over the universe{0,1}n. Merlin looks at Bob’s input
to see what is the indexι of the dense vectorx that Bob is interested in. Merlin then tells Bob the indexℓ
such thatℓ= 2k(ι −1)+ j, whereBi is the block thatι is located in, and blockBi of Alice’s input x equals
the binary representation of the numberj ∈ [2k]. Notice that Merlin can specifyℓ using logn bits. If Bob is
convinced thatyℓ = 1, then Bob can deduce the value ofall the bits in blockBi of the original dense vector
x, and in particular, the value ofxι .

The parties then run the assumed online MA protocol for(m,n)-SparseINDEX. The total hcost of
this protocol is hcost(P) + logn = O(hcost(P)), and the total vcost is vcost(P). Thus, by Lemma 3.8,
hcost(P)vcost(P) = Ω(n′) = Ω(mlog(n/m)) as claimed.

Theorem 3.9 should be contrasted with the following well-known upper bound.

Theorem 3.10. Assume n< mm. Then the one-way randomized communication complexity of the (m,n)-
SparseINDEX Problem is O(mlogm).

Proof. Alice chooses a hash functionh : [n]→ [m3] at random from a pairwise independent family and usesh
to perform “universe reduction”. That is, she sendsh along with the setSof mvalues{h( j) : x j = 1}. Notice
h can be specified withO(logn) = O(mlogm) bits, andScan be specified withO(mlogm) bits. Bob outputs
1 if h(ι) ∈ S, and 0 otherwise. The correctness of the protocol follows from the pairwise independence
property ofh: if xι = 0, then with high probabilityι will not collide underh with any j such thatx j = 1.
The total cost of this protocol isO(mlogm).

3.3 Implications of the Lower Bound

Our lower bound in Theorem 3.9 has interesting consequenceswhen it is combined with the upper bound
in Theorem 3.10. Consider in particular the(m,n)-SparseINDEX Problem, wheren = 2m. Theorem 3.10
implies that the one-way randomized communication complexity of this problem isO(mlogm); that is,
without any need of Merlin, Alice and Bob can solve the problem with O(mlogm) communication.

Meanwhile, Theorem 3.9 implies that even if Merlin’s message to Bob has lengthΩ(logn) = Ω(m),
Alice’s message to Bob must have lengthΩ(mlog(n/m)/m) = Ω(m). Indeed, Theorem 3.9 shows that for
any protocolP, if hcost(P)≥ logn= m, then we must have hcost(P)vcost(P) = Ω(mlog(n/m)) = Ω(m2).
In particular, this means that if hcost(P) = m, vcost(P) must beΩ(m). This trivially implies that for any
protocolP with hcost(P) lessthanm, vcost(P) must still beΩ(m); otherwise we could achieve a protocol
with hcost(P) = mand vcost(P) = o(m) simply by runningP and adding in extraneous bits to the proof to
bring the proof length up tom.

Consequently, the online MA communication complexity of this problem is at leastΩ(m), which is
at most a logarithmic factor smaller than the one-way randomized communication complexity. To our
knowledge, this is the first problem that provably exhibits this behavior. Specifically, this rules out smooth
tradeoffs between annotation size and space usage in any annotated streaming protocol for the(m,2m)-
SparseINDEX Problem.

Corollary 3.11. The one-way randomized communication complexity of the(m,2m)-SparseINDEX Problem
is O(mlogm). The online Merlin-Arthur communication complexity isΩ(m).
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3.3.1 Other Sparse Problems

A number of lower bounds in [7] are proved via reductions fromINDEX that preserve stream length up
to logarithmic factors. This holds for SELECTION and HEAVY HITTERS, as well as for the problem of
determining the existence of a triangle in a graph. For all such problems, the lower bound of Theorem 3.9
implies corresponding new lower bounds for sparse streams,i.e. streams for whichm= o(n). We omit the
details for brevity.

3.3.2 Separating Online MA and AMA Communication Complexity

Another implication of Theorem 3.9 is a polynomial separation between online MA communication com-
plexity and online AMA communication complexity. Indeed, there is an online AMA protocol of cost
Õ(

√
m) for the(m,2

√
m)-SparseINDEX Problem, where thẽO notation hides factors polylogarithmic inm:

the first message, which consists of public random coins, is used to specify a hash functionh : [n] → [m3]
from a pairwise independent hash family; this message has lengthO(logn) = O(

√
m). With high probabil-

ity, h is injective on the set{ j : x j = 1}. The parties then run the online MA communication protocol of
Theorem 3.2 on the inputsh(x) andh(ι) and output the result. The total cost of this protocol isÕ(

√
m) as

claimed. In Appendix A, we in fact show that up to logarithmicfactors inm, this online AMA protocol is
optimal.

Meanwhile, the lower bound of Theorem 3.9 implies that the online MA communication complexity
of this problem isΩ(m3/4). Indeed, if we have a protocolP with hcost(P) = m3/4 > logn, Theorem 3.9
implies that hcost(P)vcost(P) = Ω(mlog(n/m)) = Ω(m3/2), and hence vcost(P) > m3/4.

To our knowledge, this is the first such separation between online AMA and online MA communica-
tion complexity (we remark that polynomial separations between online MA and MAMA communication
complexity were already known, for problems includingINDEX andDISJ [2, 7]). Indeed, all previous lower
bound methods that apply to online MA communication complexity, such as the proof of [7, Theorem 3.1]
and the methods of Klauck and Prakash [24], in fact yield equivalent AMA lower bounds. At a high level,
the reason is that these methods work via round reduction – they remove the need for Merlin’s message.
They therefore turn any online MA protocol for a functionF into an online “A” protocol forF, which is
really just a one-way randomized protocol without a prover,allowing one to invoke a known lower bound
on the one-way randomized communication complexity ofF. Similarly, they turn an online AMA protocol
for F into an online AA protocol, which is also just a one-way randomized protocol forF.

The reason Theorem 3.9 is capable of separating online AMA from MA communication complexity
is that the reduction in the proof of Theorem 3.9 turns an online MA protocol for the(m,n)-SparseINDEX

Problem into an online MA protocol for the (dense)INDEX Problem with related costs. However, the natural
variant of the reduction applied to an online AMA protocol for the(m,n)-SparseINDEX Problem yields an
online MAMA protocol for the denseINDEX Problem,not an online AMA protocol (see Appendix A for
details). And the denseINDEX Problem has an online MAMA protocol that is polynomially more efficient
than any online AMA protocol (see e.g. [2, 11]).

4 Prescient Schemes for Sparse Disjointness and Frequency Moments

In this section and the next, we describe schemes for them-Disjointness (m-DISJ) and Frequency Moment
(Fk) problems. These schemes contain the main ideas of the paper.
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Scheme Costs Completeness Prescience Source
(mlogm)2/3, (mlogm)2/3): m= Ω(logn) Perfect Prescient Theorem 4.3

(ca logn, cv logn): cacv ≥ n Perfect Online [7]
(mlogn, logn) Perfect Online [7]

(ca logn logcv
m, cv logn logvm): ca = mc−1/2

v Imperfect Online Theorem 5.1

Table 2: Comparison of ourm-DISJ schemes to prior work. Ours are the first schemes to achieve annotation
length and space usage that are both sublinear inm for m≪ √

n, and we strictly improve over the MA
communication cost (online or prescient) of prior schemes wheneverm= o(n).

4.1 Background: Optimal Schemes for Dense Problems

We begin with a scheme achieving optimal tradeoffs between annotation length and space usage for a broad
class of dense problems. Though this scheme follows readilyfrom prior work [7, 9], we describe it in detail
for completeness. This scheme is a good example of asum-check schemeas described in Section 1.1, and is
based on the Aaronson–Wigderson MA protocol forDISJ [2].

Proposition 4.1. Let f(1), . . . , f (ℓ) denote the frequency vectors ofℓ data streams, each over the universe
[n]. Let g be anℓ-variate polynomial of total degree d over the integers. LetF = ∑n

i=1 g( f (1)i , . . . , f (ℓ)i ), and
let o be an a priori upper bound on|F|. Then for positive integers ca,cv with cacv ≥ n, there is an online
(dca(logn+ logo), ℓcv(logn+ logo))-scheme for computing F in the non-strict turnstile update model.

Proof. We work onFq, the finite field withqelements, for a suitably large primeq; the choiceq> 2d(n+o)2

suffices.V treats eachn-dimensional vectorf ( j) as aca× cv array with entries inFq, using any canonical
bijection between[ca]× [cv] and[n], and interpreting integers as elements ofFq in the natural way. Through
interpolation, this defines a unique bivariate polynomialf̃ ( j)(X,Y) ∈ Fq[X,Y] of degreeca − 1 in X and
cv−1 in Y, such that for allx∈ [ca], y∈ [cv], f̃ ( j)(x,y) = f ( j)(x,y).

The polynomialsf̃ ( j) can then be evaluated at locations outside[ca]× [cv], so in the schemeV picks a
random positionr ∈ Fq, and evaluatesf ( j)(r,y) for all j ∈ [ℓ] andy∈ [cv]; V can do this usingcv words of
memory per vectorf ( j) in a streaming manner [7, Theorem 4.1]. Let ˜g denote the total-degree-d polynomial
overFq that agrees withg at all inputs inFℓ

q. P then presents a polynomialb(X) of degree at mostd(ca−1)

that is claimed to be identical to∑y∈[cv] g̃( f̃ (1)(X,y), . . . , f̃ (ℓ)(X,y)).

V checks thatb(r) = ∑y∈[cv] g̃
(

f̃ (1)(r,y), . . . , f̃ (ℓ)(r,y)
)

. If this sum checkpasses, thenV believesP’s
claim and accepts∑x∈[ca]b(x) as the correct answer. It is evident that this scheme satisfies perfect complete-
ness. The proof of soundness follows from the Schwartz-Zippel lemma: ifP’s claim is false, then

Pr

[

b(r) = ∑
y∈[cv]

g̃
(

f̃ (1)(r,y), . . . , f̃ (ℓ)(r,y)
)

]

≤ d(ca−1)/q.

4.2 A Prescient Scheme for Sparse Disjointness

An important special case of the communication problemDISJ is when Alice’s and Bob’s input sets are
promised to be small, i.e., have size at mostm≪ n. These should be thought of assparseinstances. The
sparsity parameterm has typically been denoted by the letterk in the communication complexity literature,
and the problem has typically been referred to ask-DISJ rather thanm-DISJ; we usem rather thank for
consistency with our notation in the rest of the paper (wheremdenotes the sparsity of a data stream).

Among the original motivations for studying this variant isits relation to the clique-vs.-independent-set
problem introduced by Yannakakis [27] to study linear programming formulations for combinatorial opti-
mization problems. More recent motivations include connections to property testing [4]. A clever protocol
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of Håstad and Wigderson [16] gives an optimalO(m) communication protocol form-DISJ, improving upon
the trivial O(mlogn) and the easyO(mlogm) bounds. This protocol requires considerable interaction be-
tween Alice and Bob, a feature that turns out to be necessary.Recent results of Buhrmanet al. [6] and
Dasguptaet al. [12] give tightΘ(mlogm) bounds form-DISJ in the one-way model. Very recently, Brodyet
al. [5] and Sağlam and Tardos [25] have given tight rounds-vs.-communication tradeoffs form-DISJ.

Here we obtain the first nontrivial bounds form-DISJ in the annotated streams model, and thus also in
the online MA communication model.

Definition 4.2. In them-DISJproblem, the data stream specifies two multi-setsS,T ⊆ [n], with ‖S‖0,‖T‖0 ≤
m, where‖S‖0 denotes the number of distinct items inS. An update of the form((0, i),δ ) is interpreted as
an insertion ofδ copies of itemi into setS, and an update of the form((1, i),δ ) is interpreted as an insertion
of δ copies of itemi into T. The goal is to determine whether or notSandT are disjoint.

Notice Definition 4.2 allowsS and T to be multi-sets, but assumes the strict turnstile update model,
where the frequency of each item is non-negative.

Theorem 4.3. Assume m> logn. There is a prescient((mlogm)2/3,(mlogm)2/3)-scheme for m-DISJ with
perfect completeness in the strict turnstile update model.In particular, the MA-communication complexity
of m-DISJ is O((mlogm)2/3). Any prescient(ca,cv) protocol requires cacv = Ω(m).

Proof. Obviously if SandT are not disjoint, the prescient prover can provide an itemi ∈ S∩T at the start
of the stream and the verifier can check thati indeed appears in bothS andT. The total space usage and
annotation length is justO(logn) in this case.

Suppose now thatSandT are disjoint. We first recall that a(
√

nlogn,
√

nlogn)-scheme forDISJ follows
from Proposition 4.1, withf (1) and f (2) set to the indicator vectors ofSandT respectively, andg equal to
the product function. We refer to this as the denseDISJ scheme because its cost does not improve if|S| and
|T| are botho(n).

Our prescient scheme form-DISJ works as follows. At the start of the stream, the prover describes a hash
function h : [n] → [r], for some smaller universe[r], with the property thath is injective onS∪T. We will
write h(S) to denote the result of applyingh to every member ofS. The parties can now run the denseDISJ

scheme wherebyP convincesV thath(S) andh(T) are disjoint. Given the existence of an injective function
h, perfect completeness follows from the fact that ifSandT are disjoint, so areh(S) andh(T), combined
with the perfect completeness of the denseDISJ scheme. Soundness follows from the fact that ifi ∈ S∩T,
thenh(i) ∈ h(S)∩h(T) i.e. if SandT are not disjoint, then the same holds trivially forh(S) andh(T).

The denseDISJ scheme run onh(S) andh(T) requires annotation length and space usageO(
√

r logr).
We now show that, for a suitable choice ofr, P’s description ofh is also limited toO(

√
r logr) communica-

tion, balancing out the cost of the rest of the scheme.
A family of functionsF ⊆ [r][n] is said to beκ-perfect if, for all S⊆ [n] with |S| ≤ κ , there exists a

function h ∈ F that is injective when restricted toS. Fredman and Komlós [15] have shown that for all
n≥ r ≥ κ , there exists aκ-perfect familyF , with

|F| ≤ (1+o(1))

(

κ logn
− log(1− t(r,κ))

)

,

where

t(r,κ) :=
κ−1

∏
j=1

(

1− j
r

)

.

For r ≥ 2κ , we can use the crude approximation

− log(1− t(r,κ)) ≥ t(r,κ) ≥
(

1− κ
r

)κ
≥ e−2κ2/r
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Scheme Costs Completeness Prescience Source
(k2ca logn, kcv logn): cacv ≥ n Perfect Online [7]

(mlogn, logn) Perfect Online [7]
(k2m2/3 logn, km2/3 logn) Perfect Prescient Theorem 4.5

(k2mc−1/2
v logn logcv

m, kcv logn logcv
m): cv > 1 Imperfect Online Theorem 5.1

Table 3: Comparison of ourFk schemes to prior work. Ours are the first schemes to achieve annotation
length and space usage that are both sublinear inm for m≪ √

n, and we strictly improve over the MA
communication cost of prior protocols (online or prescient) wheneverm= o(n).

to obtain the bound|F|= O(κe2κ2/r logn), which implies

log|F| = O(κ2/r) ,

for κ2/r = Ω(logκ) andκ = Ω(logn).
Let us pick a familyF that is(2m)-perfect. OnceP andV agree upon such a familyF , the prover,

upon seeing the input setsSandT, can pickh∈ F that is injective onS∪T. Describingh requiresO(m2/r)
bits; P sends this toV before the stream is seen, andV stores it while observing the stream in order to run
the denseDISJ scheme onh(S) andh(T). To balance out this communication with theO(

√
r logr) cost of

running the denseDISJ scheme onh(S) andh(T), we chooser so that

m2

r
= Θ(

√
r logr) .

This is achieved by settingr = m4/3/ log2/3 m. The resulting upper bound is that both the annotation length
and verifier’s space usage areO

(

(mlogm)2/3
)

.
The lower bound follows from known lower bounds for dense streams [7].

4.3 A Prescient Scheme for Frequency Moments

We now present prescient schemes for thekth Frequency Moment problem,Fk.

Definition 4.4. In theFk problem, the data streamx consists of a sequence of updates of the form(i,δ ), and
the frequency of itemi is defined to befi = ∑( jℓ,δℓ)∈x: jℓ=i δℓ. The goal is to computeFk = ∑i∈[n] f k

i .

The idea behind the scheme, as in the case ofm-DISJ, is thatP is supposed to specify a “hash function”
h to reduce the universe size in a way that does not introduce false collisions. However, forFk it is essential
thatV ensureh is truly injective on the items appearing in the data stream.This is in contrast tom-DISJ,
where a weaker notion than injectiveness was sufficient to guarantee soundness. The fundamental difference
between the two problems is that form-DISJ, collisions only “hurt the prover’s claim” that the two setsare
disjoint, whereas forFk the prover could try to use collisions to convince the verifier that the answer to the
query is higher or lower than the true answer.

Theorem 4.5.There is a prescient(k2m2/3 logn,km2/3 logn)-scheme for computing Fk over a data stream of
sparsity m in the strict turnstile update model. This schemehas perfect completeness. Any prescient(ca,cv)
protocol requires cacv = Ω(m).

Proof. The idea is to have the prover specify for the verifier a perfect hash functionh : [n]→ [r], wherer is to
be determined later, i.e.P specifies a hash functionh such that for allx 6= y appearing in at least one update
in the data stream,h(x) 6= h(y). The verifier stores the description ofh, and while observing the stream runs
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the denseFk scheme of Proposition 4.1 on the derived stream in which eachupdate(i,δ ) is replaced with
the update(h(i),δ ).

As discussed above, it is essential thatV ensureh is injective on the set of items that have non-zero
frequency, as otherwiseP could try to introduce collisions to try to trick the verifier. To deal with this, we
introduce a mechanism by whichV can “detect” collisions.

Definition 4.6. Define the problem INJECTION as follows. We observe a stream of tuplesti = ((xi ,bi),δi).
Eachti indicates thatδi copies of itemxi are placed in bucketbi ∈ [r]. We allowδi to be negative, modeling
deletions, and refer to the quantityf( j,b) = ∑i:(xi ,bi)=( j,b) δi as thecountof pair ( j,b). We assume the strict
turnstile model, so that for all pairs( j,b) we havef( j,b) ≥ 0.

We say that the stream is an injection if for every two pairs( j,b) and( j ′,b) with positive counts, it holds
that j = j ′. Define the output as 1 if the stream defines an injection, and 0otherwise.

Lemma 4.7. For any cacv ≥ r, there is an online(ca logr,cv logr)-scheme for determining whether a stream
in the strict turnstile model is an injection.

Proof. Say that bucketb is pure if there is at most onej ∈ [n] such thatf( j,b) > 0. The stream defines an
injection if and only if every bucketb is pure.

Notice that a bucketb is pure if and only if the variance of the item identifiers mapping to the bucket
with positive count is zero. Intuitively, our scheme will compute the sum of the these variances across all
bucketsb; this sum will be zero if and only if the stream defines an injection. Details follow.

Define threer-dimensional vectorsu,v,w as follows:

ub = ∑
j∈[n]

f( j,b),

vb = ∑
j∈[n]

f( j,b) j,

wb = ∑
j∈[n]

f( j,b) j2.

It is easy to see that if bucketb is pure thenv2
b = ub ·wb. Moreover, if bucketb is impure thenv2

b < ubwb;
this holds by the Cauchy-Schwarz inequality applied to then-dimensional vectors whosejth entries are
√

f( j,b) and
√

f( j,b) · j respectively (the strict inequality holds because for an impure bucketb, the vector
given by

√

f( j,b) · j is not a scalar multiple of the vector given by
√

f( j,b)). Here, we are exploiting the
assumption thatf( j,b) ≥ 0 for all pairs(i,b), as this allows us to conclude that all

√

f( j,b) values are real
numbers.

It follows that ∑b∈[r ] v
2
b = ∑b∈[r ]ub ·wb if and only if the stream defined an injection. Both quantities

can be computed using the “dense” scheme of Proposition 4.1.Notice that each updateti = ((xi ,bi),δi)
contributes independently to each of the vectorsu, v, and w, and hence it is possible forV to run the
scheme of Proposition 4.1 on these vectors as required. Thisyields an online(ca logr,cv logr)-scheme for
the injection problem for anycacv ≥ r as claimed.

Returning to ourFk scheme,Pspecifies a hash functionhclaimed to be one-to-one on the set of items that
appear in one or more updates of the streamx. V verifies thath is injective using the scheme of Lemma 4.7.
If this claim is true, thenFk(x) = Fk(h(x)), the frequency moment of the mapped-down stream, andP can
prove this by running the scheme of [7, Theorem 4.1] on the derived streamh(x).

Perfect completeness follows fromP’s ability to find a perfect hash function just as in Theorem 4.3.
Soundness follows from the soundness of the INJECTIONscheme of Lemma 4.7, in addition to the soundness
property of theFk scheme of [7, Theorem 4.1].
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To analyze the costs, note that by using the hash family of Fredman and Komlós [15], the annotation
length and space cost due to specifying and storing the hash functionh is O(m2 logn/r). The annotation
length and space cost of the denseFk scheme of Proposition 4.1 areO(k2ca logr) andO(kcv logr) for any
cacv ≥ r. The annotation length and space cost of the INJECTION scheme can be set toO(ca logr) and
O(cv logr) respectively. Settingr = m4/3 andca = cv = m2/3 yields the desired costs.

5 An Online Scheme for Frequency Moments

We now give an online version ofFk scheme of Theorem 4.5. A simple modification of this scheme yields
the scheme form-DISJ with analogous costs as claimed in Row 4 of Table 2. In addition to avoiding the use
of prescience, our online scheme avoids requiringV to explicitly store the hash function sent byP, allowing
us to achieve a much wider range of tradeoffs between annotation size and space usage relative to Theorems
4.3 and 4.5.

Theorem 5.1. For any cv > 1, there is an online(k2mc−1/2
v logn logcv

m, kcv logn logcv
m)-scheme for Fk in

the strict turnstile model for a stream of sparsity m over a universe of size n. Any online(ca,cv)-scheme for
this problem with ca ≥ logn requires cacv = Ω(mlog(n/m)).

Notice that the annotation length is less thanmlogn for anycv =mΩ(1), and therefore this protocol is not
subsumed by the simple “sparse” scheme (second row of Table 3) in which P just replays the entire stream
in a sorted order, andV checks this is done correctly using fingerprints. Notice also that the product of the
space usage and annotation length isk3mc1/2

v log2nlog2
cv

m, which is ino(n) for many interesting parameter
settings. This improves upon the dense sum-check scheme (first row of Table 3) in such cases.

5.1 An Overview of the Scheme

In order to achieve an online scheme, we examine how to construct perfect hash functions such as those used
in the prescientFk scheme of Theorem 4.5. LetSbe the set ofm items with non-zero frequency at the end
of the stream: we want the hash function to be one-to-one onS. Choose a hash functionh at random from
pairwise independent hash family mapping[n] to [r], for r to be specified later – this requires justO(logn)
bits to specify. We only expectO(m2/r) pairs to collide underh, which means that with constant probability
there will beO(m2/r) collisions ifh is chosen as specified. The final hash functionh∗ is specified by writing
down h (which takes onlyO(logn) bits), followed by the items involved in a collision and somespecial
locations for them. The total (expected) bit length to specify this hash function isO(m2 log(n)/r).

In our onlineFk scheme,P will send such anh at the start of the stream. Noticeh does not depend on the
stream itself – it is just a random pairwise independent hashfunction – soP is not using prescience.P also
has no incentive not to chooseh at random from a pairwise independent hash family, since theonly purpose
of choosingh in this manner is to minimize the number of collisions underh. If P choosesh in a different
way,P simply risks that there are too many collisions underh, causingV to reject.

Now whileV observes the stream, she runs the online sum-check scheme for Fk given in Proposition 4.1
on the mapped-down universe of sizer, usingh as the mapping-down function. At the end of the stream,P
is asked to retroactively specify a hash functionh∗ that is one-to-one onSas follows. P provides a listL0

of all items inSthat were involved in a collision underh, accompanied by their frequencies. Assuming that
these items and their frequencies are honestly specified byP, V can compute their contribution toFk and
remove themfrom the stream. By design,h∗ is then (claimed to be) injective on the remaining items.V can
confirm this tentatively using the INJECTION scheme of Lemma 4.7.

The remainder of the scheme is devoted to making the correctness a certainty by ensuring that the items
in L0 and their frequencies are as claimed (we stress that while our exposition of the scheme is modular, all
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parts of the scheme are executed in parallel, with no communication ever occurring fromV to P). A naive
approach to checking the frequencies of the items inL0 would be to run|L0| independent POINTQUERY

schemes, one for each item inL; however there are too many items inL0 for this to be cost-effective.
Instead, we check all of the frequencies as a batch, with a (sub-)scheme whose cost is roughly equal to that
of a single INJECTION query.

This (sub-)scheme can be understood as proceeding in stages, with each stagei using a different pairwise
independent hash functionhi to map down the full original input. Say that an itemj is isolatedby hi if j is
not involved in a collision underhi with any other item with non-zero frequency in the original data stream
x. The goal of stagei is to isolate a large fraction of items which were not isolated by any previous stage.

A key technical insight is that at each stagei, it is possible forV to “ignore” all items that are not
isolated at that stage. This enablesV to check that the frequencies of all items thatare isolated at stagei are
as claimed. We bound the number of stages that are required toisolate all items ifP behaves as prescribed
– if P reaches an excessive number of stages, thenV will simply reject.

5.2 Details of the Scheme

Proof of Theorem 5.1:Let r =mc1/2
v . P sends a hash functionh : [n]→ [r] at the start of the stream, claimed

to be chosen at random from a pairwise independent hash family. While observing the stream,V runs the
dense online sum-check scheme forFk given in Proposition 4.1 on the mapped-down universe[r]. Let Sbe
the set of items with non-zero frequency at the end of the stream. After the stream is observed,P is asked to
provide a listL0 of all items with nonzero frequency that were involved in a collision, followed by a claimed
frequencyf ∗i for eachi ∈ L0.

Assuming that these items and their frequencies are honestly specified inL0 by P, V can compute
their contributionC0 = ∑i∈L0

f ∗i to Fk and then remove them from the stream by processing updatesU =
{(i,− f ∗i ) : i ∈ L0} within the denseFk scheme.h is injective on the remaining items.V can confirm this
using the INJECTIONscheme of Lemma 4.7 (conditioned on the assumed correctnessof L0). Thus the dense
Fk scheme will outputC1 = ∑i 6∈L0

f k
i . Assuming all ofV ’s checks within the denseFk scheme pass,V outputs

C0+C1 as the answer.
The remainder of the scheme is directed towards determiningthat the frequency of items inL0 are

correctly reported. We abstract this goal as the following problem.

Definition 5.2. Define theℓ-MULTI INDEX problem as follows. Consider a data streamx ◦ L0, where◦
denotes concatenation.x is a usual data stream in the strict turnstile model, whileL0 is a list of ℓ pairs
(i, f ∗i ). Let f be the frequency vector ofx. The desired output is 1 iffi = f ∗i for all i ∈ L0, and 0 otherwise.

We defer our solution to theℓ-MULTI INDEX problem to Section 5.3. For now, we state our main result
about the problem in the following lemma.

Lemma 5.3. For all cv > 1, ℓ-MULTI INDEX has an online(mc−1/2
v logn logcv

ℓ, cv lognlogcv
ℓ)-scheme in

the strict turnstile update model.

Analysis of Costs. Let S be the set of items with non-zero frequency when the stream ends. First, we
argue that ifr is the size of the mapped-down universe, andP chooses the hash functionh at random from a
pairwise independent hash family, then with probability 9/10, there will be at most 10m2/r items inS that
collide underg. Indeed, by a union bound, the probability any itemi with non-zero count is involved in a
collision is at mostm/r, and hence by linearity of expectation, the expected numberof items involved in a
collision is at mostm2/r.

So by Markov’s inequality, with probability at least 9/10, the total number of items involved in a collision
will be at most 10m2/r = O(mc−1/2

v ) under the settingr = mc1/2
v . Conditioned on this event,P can specify
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the listL0 and the associated frequencies with annotation lengthO(mc−1/2
v logn), andV can use the MULTI -

INDEX scheme of Lemma 5.3 withℓ=O(mc−1/2
v ) to verify the frequencies of the items inL0 are as claimed.

For anycv > 1, Lemma 5.3 under this setting ofℓ yields an(mc−1
v logn· logcv

ℓ,cv logn· logcv
ℓ)-scheme.

Running all of the sum-check schemes (i.e., the INJECTION scheme and theFk scheme itself) on the
mapped-down universe requires annotationO(k2rc−1

v logr) and spaceO(kcv logr) for V; in total, this pro-
vides an online(m2 logn/r +k2r logn/cv+kmc−1

v logn· logcv
m,cv logn· logcv

M)-scheme.

Since we setr = mc1/2
v , we obtain a online(k2mc−1/2

v logcv
(m),kcv lognlogv(m))-scheme for anycv > 1.

The lower bound stated in Theorem 5.1 follows from Theorem 3.9 and an easy reduction from the
(m,n)-sparseINDEX problem.

5.3 A Scheme for MultiIndex: Proof of Lemma 5.3

Before presenting an efficient online scheme for theℓ-MULTI INDEX Problem, we define two “sub”problems,
which apply a function to only a subset of the desired input.

Definition 5.4. Define the problem SUBINJECTIONas follows. We observe a stream of tuplesti = (xi ,bi ,δi),
followed by a vectorz∈ {0,1}r . As in the INJECTIONproblem, eachti indicates thatδi copies of itemxi are
placed in bucketbi ∈ [r].

We say that the stream defines asubinjectionbased onz if for every b such thatzb ≥ 1, for every two
pairs (x,b) and(y,b) with positive counts, it holds thatx = y. The SUBINJECTION problem is to decide
whether the stream defines a subinjection based onz.

Notice that the INJECTION problem is a special case of the SUBINJECTION problem withzi = 1 for all i.

Lemma 5.5. For any cacv ≥ r, there is an online(ca logr,cv logr)-scheme forSUBINJECTION in the strict
turnstile update model. Moreover, for any constant c> 0, this scheme can be instantiated to have soundness
error 1/rc.

Proof. Define vectorsu, cv, andw exactly as in the proof of Lemma 4.7, and observe that the stream defines
a sub-injection if and only if∑b∈[r ]zbv2

b = ∑b∈[r ] zbubwb. V can compute both quantities using the dense
scheme of Proposition 4.1, with the same asymptotic costs asthe scheme of Lemma 4.7. The soundness
error can be made smaller than 1/rc for any constantc by running the scheme of Proposition 4.1 over a finite
field of size poly(r), for a sufficiently fast-growing polynomial inr.

We similarly define the problem SUBF2 over a data universe of sizen based on a vectorz∈ {0,1}n

as ∑i∈[n] zi f 2
i , the sum of squared frequencies of items indicated byz. This too is a low-degree polyno-

mial function of the input values, and so Proposition 4.1 implies SUBF2 can be computed by an online
(ca logr,cv logr)-scheme in the general turnstile update model for anyca,cv such thatcacv ≥ r (and the
soundness error in this protocol can be made smaller than 1/rc for any desired constantc).

Online scheme forℓ-MULTI INDEX. The scheme can be thought of as proceeding int stages (t will be
specified later), although these stages merely serve to partition the annotation: there is no communication
from V to P during these stages. Each stagej makes use of a corresponding hash functionh j : [n] → [r]

for r = mc1/2
v . The t hash functions are provided byP at the start of the stream, so thatV has access to

them throughout the stream. Eachh j is claimed to be chosen at random from a pairwise independenthash
family: if they are, then there are unlikely to be too many collisions, soP has no incentive not to chooseh j

at random. Letf denote the vector of frequencies defined by the input stream,and let f (0) denote the vector
satisfying f (0)i = fi for i ∈ L0, and f (0)i = 0 for i 6∈ L0.

Stagej begins with a listL j−1 of items. We will refer to these items as “exceptions”.P provides a new
list L j ⊆ L j−1 of items which remain exceptions in stagej; P implicitly claims that no items inL j−1 \L j
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collide with some other input items under hash functionh j . Let z( j) denote the indicator vector of the list of

buckets corresponding toL j−1\L j , i.e. z( j)
hj (i)

= 1 if i ∈ L j−1\L j , andz( j) entries are 0 otherwise. To check

that no items inL j−1 \L j collide underh j , V will use the SUBINJECTION scheme based on the indicator
vectorz( j) over the full original inputf as mapped by the hash functionh j . Note that since the original input
stream is in the strict turnstile update model, so is the stream on which the SUBINJECTIONscheme is run (as
the SUBINJECTION scheme is simply run on the original input stream as mapped bythe hash functionh j ,
based on the vectorz( j)). Note also thatL j−1 andL j are provided explicitly, soV can computez( j) easily.2

Having established that the items inL j−1\L j are no longer exceptions,V also wants to ensure that the
frequencies of these items were reported correctly inL0. To do so,V run the SUBF2 scheme over the vector
f − f ∗ as mapped byh j to r buckets, based on thez( j) indicator vector. The result is zero if and only if

fi = f ( j)
i for all i wherez( j)

i = 1.
The stages continue untilL j = /0, and there are no more exceptions. Provided all schemes conclude

correctly, and the number of stages to reachL j = /0 is at mostt, V can accept the result, and output 1 for the
answer to the MULTI INDEX decision problem.

Lastly, note thatV does not need to explicitly store any of the listsL j . In fact,P can implicitly specify
all of the listsL j while playing the listL0: for each itemi ∈ L0, he provides a numberj, thereby implicitly
claiming thati ∈ L j ′ for j ′ ≤ j, andi 6∈ L j ′ for j ′ > j.

Analysis of costs. If h j is chosen at random from a pairwise independent hash family,the probability an

item i in L j−1 is involved in a collision with the original streamf underh j is O(m/r) = O(c−1/2
v ). Consider

the probability that any itemi survives as an exception to staget. The probability of this isO(c−t/2
v ), and

summed over allℓ items, the expected number isO(ℓc−t/2
v ). Invoking Markov’s inequality, with constant

probability it suffices to sett = O(logcv
ℓ) to ensure that we need at mostt stages before no more exceptions

need to be reported.
In stage j, the SUBINJECTION and SUBF2 schemes cost(mc−1/2

v logn,cv logn). Summing over thet

stages, we achieve for anycv > 1 an(mc−1/2
v log(n) · logcv

(m),cv log(n) · logcv
(m))-scheme as claimed in the

statement of Lemma 5.3.

Formal Proof of Soundness.The soundness error of the protocol can be bounded by the probability any
invocation of the SUBINJECTION scheme or the SUBF2 scheme returns an incorrect answer. The soundness
errors of both the SUBINJECTION scheme and the SUBF2 scheme can be made smaller than1

rc for any
constantc> 0, and therefore a union bound over allt = O(logcv

ℓ) invocations of each protocol implies that
with high probability, no invocation of either scheme returns an incorrect answer.

5.4 Implications of the Online Scheme for Frequency Moments

Our online scheme forFk in Theorem 5.1 has a number of important consequences.

Inner Product and Hamming Distance.Chakrabartiet al. [7] point out that computing inner products and
Hamming Distance can be directly reduced to (exact) computation of the second Frequency MomentF2, and
so Theorems 4.5 and 5.1 immediately yield schemes for these problems of identical cost.

An improved scheme forφ -HEAVY HITTERS. We can use Lemma 5.3 to yield an online scheme for the
φ -HEAVY HITTERS problem.

Corollary 5.6. For all ca,cv such that cacv ≥ mlogn, there is an online(ca logn · logcv
(m) + φ−1 logn,

cv lognlogcv
(m))-scheme for solvingφ -HEAVY HITTERS in the strict turnstile update model.

2For example,V can add one to the corresponding entry ofz( j) for each item that is marked as an exception. This will causez( j)

to count the number of exceptions in each bucket, rather thanindicate them, but this does not affect the correctness.
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Corollary 5.6 follows from a similar analysis to Corollary 3.6. [7, Theorem 6.1] describes how to reduce
φ -HEAVY HITTERS to demonstrating the frequencies ofO(φ−1) items in a derived stream. Moreover, the
derived stream has sparsityO(mlogn) if the original stream has sparsitym. We use the MULTI INDEX

scheme of Lemma 5.3 to verify these claimed frequencies.

Frequency-based functions.Chakrabartiet al. [7, Theorem 4.5] also explain how to extend the sum-check
scheme of Proposition 4.1 to efficiently compute arbitraryfrequency-based functions, which are functions
of the form F(x) = ∑i∈[n] g( fi(x)) for an arbitraryg : (−[N]∪ [N]) → Z. A similar but more involved
extension applies in our setting, by replacing the denseFk scheme implied by Proposition 4.1 with the dense
frequency-based functions scheme of [7, Theorem 4.5]. We spell out the details below, restricting ourselves
to the prescient case for brevity; an online scheme with essentially identical costs follows by using the ideas
underlying Theorem 5.1.

Corollary 5.7. Let F(x)=∑i∈[n] g( fi(x)) be a frequency-based function. Then there is a prescient(N3/4 logn,

N3/4 logn)-scheme for computing F(x) in the strict unit-update turnstile model. This scheme satisfies perfect
completeness.

Proof. We use a natural modification of the frequency-based functions scheme of [7, Theorem 4.5].P
specifies a hash functionh at the start of the stream mapping the universe[n] into [N5/4]; P choosesh
to be injective on the set of items that have non-zero frequency at the end of the stream. Using the per-
fect hash functions of Fredman and Komlós [15],h can be represented withO(N2/r logn) = O(N3/4 logn)
bits. V storesh explicitly. After the stream is observed,P andV run theφ -HEAVY HITTERS scheme of
Corollary 5.6, withφ = N−1/4. Using the fact that∑i fi < N, by setting the parameters of Corollary 5.6
appropriately we can ensure that this part of the scheme requires annotation lengthO(N3/4 logn) and has
space costO(N3/4 logn). This scheme also allowsV to determine the exact frequencies of the items inH,
allowingV to compute cont(H) := ∑i∈H g( fi(x)), which gives the contribution of the items inH to the out-
put F(x). Moreover, wheneverV learns the frequencyfi of an item ini ∈ H, V treats this as a deletion offi
occurrences of itemi, thereby obtaining a derived streamz in which all frequencies have absolute value at
mostN1/4.

P andV now run thepolynomial-agreementscheme that was first presented in [9, Theorem 4.6] on the
“mapped-down” inputh(z) over the universe[N5/4]. For anycacv ≥ r, the polynomial agreement scheme can
achieve cost(Fmax(z)ca logn,cv logn), whereFmax(z) denotes maxi | fi(z)|, the largest frequency in absolute
value of any item. Settingcv = N3/4 andca = N1/4, we obtain a prescient(N3/4 logn,N3/4 logn)-scheme as
claimed.V computes the final answer asF(x) = cont(H)+F(h(z))−|H|g(0).

The final issue is thatV needs to verify thath is actually injective over the items that appear inx. V can
accomplish this using the INJECTION scheme of Lemma 4.7. This does not affect the asymptotic costs of
our scheme, as the INJECTION scheme can support annotation costca logr and space costcv logr for any
cacv = Ω(N5/4).

Finally, we provide one additional corollary, which describes a protocol that will be useful in the next
section when building graph schemes.

Theorem 5.8. Let X,Y ⊆ [n] be sets with|X| ≤ |Y| ≤ m. Then given a stream in the strict turnstile update

model with elements of X and Y arbitrarily interleaved, there is an online(mc−1/2
v · log(n) · logcv

(m),cv ·
log(n) · logcv

(m))-scheme for determining whether X⊆Y for any cv > 1.

Proof. If X 6⊆Y, P can specify anx∈ X \Y and prove thatx is indeed inX and notY with two point queries
using the scheme of Theorem 3.2. For the other case, Chakrabarti et al. show how to directly reduce the
caseX ⊆Y to computation of frequency moments [7]. The claimed costs follow from Theorem 5.1.

Table 4 provides a comparison of schemes for the SUBSET problem in the dense and sparse cases.
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Scheme Costs Completeness Online/Prescient Source
(|X| logn, logn) Perfect Prescient [7]

(ca logn, cv logn): cacv ≥ n Perfect Online [7]
(mlogn, logn) Perfect Online [7]

(mc−1/2
v logcv

(m) logn, cv lognlogcv
m): cv > 1 Imperfect Online Theorem 5.8

Table 4: Comparison of our SUBSET scheme to prior work. Ours is the first online scheme to achieve
annotation length and space usage that are both sublinear inm for m≪√

n, and strictly improves over the
online MA communication cost of prior protocols wheneverm= o(n).

6 Graph Problems

We now describe some applications of the techniques developed above to graph problems. The main purpose
of this section is to demonstrate that the techniques developed within theFk andm-DISJ schemes are broadly
applicable to a range of settings.

We begin with several non-trivial graph schemes that are direct consequences of the Subset scheme of
Theorem 5.8. Recall that our definition of a scheme for a function F requires a convincing proof of the value
of F(x) for all values F(x). This is stricter than the traditional definition of interactive proofs for decision
problems, which just require that ifF(x) = 1 then there is some prover that will cause the verifier to accept
with high probability, and ifF(x) = 0 there is no such prover. Here, we consider a relaxed definition of
schemes that is in the spirit of the traditional definition. We require only that a schemeA= (h,V) satisfy:

1. For allx s.t. F(x) = 1, we have PrrP,rV [outV(xh,rP, rV) 6= 1]≤ 1/3.

2. For allx s.t. F(x) = 0, h′ = (h′1,h
′
2, . . . ,h

′
N) ∈ ({0,1}∗)N, we have PrrV [outV(xh

′
, rV) = 1]≤ 1/3.

Theorem 6.1. Under the above relaxed definition of a scheme, each of the problemsPERFECT-MATCHING,
CONNECTIVITY, and NON-BIPARTITENESShas an(nlogn+mc−1/2

v logn logcv
m, cv logn logcv

m)-scheme
on graphs with n vertices and m edges for all cv > 1. All three schemes work in the strict turnstile update
model and improve over prior work if cv = ω(log2m) and cv = o(m).

Proof. In the case of perfect matching, the prover can prove a perfect matching exists by sending a matching
M, which requiresnlogn bits of annotation. In order to proveM is a valid perfect matching,P needs to
prove that every node appears in exactly one edge ofM, and thatM ⊆ E, whereE is the set of edges
appearing in the stream.V can check the first condition by comparing a fingerprint of thenodes inM to a
fingerprint of the set{1, . . . ,n}. V can check thatM⊆ E using Theorem 5.8.

In the case of connectivity, the prover demonstrates the graph is connected by specifying a spanning
treeT. V needs to checkT is spanning, which can be done as in [7, Theorem 7.7], and needs to check that
T ⊆ E, which can be done using Theorem 5.8.

In the case of non-bipartiteness,P demonstrates an odd cycleC. V needs to checkC is a cycle,C has an
odd number of edges, and thatC ⊆ E. The first condition can be checked by requiringP to play the edges
of C in the natural order. The second condition can be checked by counting. The third condition can be
checked using Theorem 5.8.

Counting Triangles. Returning to our strict definition of a scheme, we give an online scheme for counting
the number of triangles in a graph.

Theorem 6.2. For any cv > 1, there is an online(ca lognlogm, cv lognlogm)-scheme, with imperfect com-

pleteness, for counting the number of triangles in a graph onn nodes and m edges, where ca = mnc−1/2
v .

The scheme is valid in the strict turnstile update model.
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Scheme Costs Completeness Online/Prescient Source
(ca logn,cv logn): cacv ≥ n3 Perfect Online [7]
(n2 logn, logn) Perfect Online [7]

(ca log2n,cv log2n): ca = mnc−1/2
v Imperfect Online Theorem 6.2

Table 5: Comparison of prior work to our scheme for counting the number of triangles in a graph
with n nodes andm edges. For concreteness, notice that by settingcv = n, Theorem 6.2 achieves a
(mn1/2 log2 n,nlog2 n)-scheme, which improves over prior work as long asm≪ n3/2.

Proof. Chakrabartiet al.[7, Theorem 7.4] show how to reduce counting the number of triangles in a graph to
computing the first three frequency moments of a derived stream. The derived stream has sparsitym(n−2).
Using the online scheme of Theorem 5.1 to compute the relevant frequency moments of the derived stream
yields the claimed bounds.

The scheme of Theorem 6.2 should be compared to the(n2, logn)-scheme from [7, Theorem 7.2] based
on matrix multiplication, referenced in Row 2 of Table 5 and the (h,v)-scheme for anycacv ≥ n3 from [7,
Theorem 7.3], referenced in Row 1 of Table 5. To compare to theformer, notice that Theorem 6.2 yields
a (ca log2n,cv log2 n)-scheme withca < n2 as long asm< n

√
cv. To compare to the latter, note that in our

new scheme,cacv = mnc1/2
v , which is less thann3 as long asc1/2

v < n2

m . In particular, if we setcv = n, then
Theorem 6.2 improves over both old schemes as long asm< n3/2.

Unfortunately, Theorem 6.2 does not yield a non-trivial MA-protocol for showing no triangle exists.
Indeed, equalizing annotation length and space usage in ournew protocol occurs by setting both quantities
to (mn)2/3. ButΩ

(

(mn)2/3
)

<monly whenm> n2, which is to say that the MA communication complexity
of this protocol is always larger thanm, a cost that can be achieved by the trivial MA protocol where Merlin
is ignored and Alice just sends her whole input to Bob. That is, the interest in the new protocol is that it can
lower the space usage ofV to less thanmwithout drastically blowing up the message length ofP to n2 as in
the matrix-multiplication based protocol from [7].

7 Non-strict Turnstile Update Model

All schemes in Sections 4 and 5 work in the strict turnstile update model. The reason these schemes require
this update model is that they use the INJECTION and SUBINJECTION schemes of Lemmata 4.7 and 5.5 as
sub-routines, and these sub-routines assume the strict turnstile update model.

In this section, we consider two ways to circumvent this issue. To focus the discussion, we concentrate
on the onlineFk protocol of Theorem 5.1.

7.1 An Online Scheme

One simple method for handling streams in the non-strict turnstile update model is the following. We use the
scheme of Theorem 5.1, but within the SUBINJECTION sub-routine, we treat deletions of items in the input
stream asinsertionsof items into the derived stream of(xi ,bi ,δi) updates. This ensures that the INJECTION

and SUBINJECTION schemes correctly output 1 if the derived stream is a subinjection (and the remainder of
the scheme computes the correct answer on the original stream). However it increases the expected number
of collisions under the universe-reduction mappingshi , from m· |Li−1|/r to M · |Li−1|/r. The result is that
we achieve the same costs as Theorem 5.1, except the costs depend on to the stream footprintM rather than
the stream sparsitym (see Section 2.4).
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Corollary 7.1. For any cv > 1, there is a(k2Mc−1/2
v · log(n) · logcv

(M),kcv · log(n) · logcv
(M)) online scheme

for Fk in the non-strict turnstile update model over a stream with footprint M over a universe of size n.

7.2 An Online AMA Scheme

In this section, we describe an AMA scheme for the INJECTIONproblem that works in the non-strict turnstile
stream update model i.e., the input may define a frequency vector where some elements end with negative
frequency. The scheme for INJECTION of Lemma 4.7 breaks down here, since there may be some cases
where the checks performed by the protocol indicate that a bucket is pure, when this is not the case: can-
cellations of item weights in the bucket may give the appearance of purity. To address this, we use public
randomness, thereby yielding an AMA scheme. In essence, theverifier asks the prover to demonstrate the
purity of each of ther buckets via fingerprints of the bucket contents. However, ifwe allow the prover to
choose the fingerprint function,P could pick a function which leads to false conclusions. Instead,V chooses
the fingerprinting function using public randomness. The players then execute a new INJECTION protocol
using the data remapped under the fingerprint function, which is intended to convinceV of the purity of the
buckets. This then allows us to construct protocols with costs that depend on the stream sparsitym rather
than the footprintM as in Corollary 7.1.

In detail, the new AMA scheme proceeds as follows. Consider the INJECTION problem as defined in
Definition 4.6, but generalized to allow items with arbitrary integer counts. Consider again a bucketb, and
for 1≤ j ≤ logn defineb j=ℓ to be the frequency vector of the subset of stream updates(xk,b,δk) placing
items into bucketb, subject to the restriction that thej ’th bit of xk is equal toℓ. We observe the following
property: if bucketb is pure, then one ofb j=0 andb j=1 must be the zero vector0, for eachj. Moreover, ifb
is not pure, then there exists aj such that bothb j=0 andb j=1 are not the zero vector.

A natural way to compactly test whether these vectors are equal to zero (probabilistically) is to use
fingerprinting (discussed in Section 2.4). The verifierV could do this unaided for a single bucket, but we
wish to run this test in parallel forr buckets. At a high level, we achieve this as follows. Given a stream
of updates(xk,b,δk), we define two vectorsz ando of lengthr logn, such that each coordinate ofz ando
corresponds to a (bucket, coordinate) pair(b, j) ∈ [r]× [logn]. In more detail, we will definez ando such
that for each bucketb and coordinatej ∈ [logn], the(b, j)th entry ofz is a fingerprint of the vectorb j=0, and
the(b, j)th entry ofo is a fingerprint of the vectorb j=1.

We choose the fingerprinting functions to satisfy two properties.

1. The fingerprint of the all-zeros vector0 is always 0. This ensures that if all buckets are pure, then the
inner product ofzando is 0, aszb, j ·ob, j is 0 for all pairs(b, j) ∈ [r]× [logn].

2. If there is an impure bucket, then the inner product ofz ando will be non-zero with high probability
over the choice of fingerprint functions.

Therefore, in order to determine whether the stream defines an injection, it suffices to compute∑(b, j)∈[r ]×[logn] zb, j ·
ob, j , which can be computed using Proposition 4.1 with annotation lengthca logn and space costcv logn for
anyca ·cv ≥ r logn.

The idea allowing us to achieve the second property is as follows. If bucketb is impure, then there is
at least one coordinatej ∈ [logn] such thatb j=0 andb j=1 are both not equal to the all-zeros vector0. By
basic properties of fingerprints, this ensures that bothzb, j andob, j are non-zero with high probability over
the choice of fingerprint functions. Moreover, we choose thefingerprinting functions in such a way that
non-zero terms in the sum∑(b, j)∈[r ]×[logn] zb, j ·ob, j are unlikely to “cancel out” to zero.

Consequently, we can state an analog of Lemma 4.7.

Lemma 7.2. For any cacv ≥ r logn, there is an online(ca logn,cv logn)-scheme for determining whether a
stream in the non-strict turnstile model is an injection.
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Proof. Let Fq be a finite field of sizeq = poly(n), where the subsequent analysis determines the required
magnitude ofq. V uses public randomness to choose two field elementsα , andβ uniformly at random from
Fq. For each bucketb∈ [r], and each coordinatej ∈ [logn], we define two “fingerprinting” functionsgb, j,α
andgb, j,β mapping ann-dimensional frequency vectorF as follows:

gb, j,α (x) = αn(b·logn+ j) ∑
ℓ∈[n]

xℓαℓ,

and
gb, j,β (x) = β n(b·logn+ j) ∑

ℓ∈[n]
xℓβ ℓ,

where each entryxℓ of x is treated as an element ofF in the natural manner.
We now (conceptually) construct two vectorsz and o of dimensionr logn, where for each(b, j) ∈

[r]× [logn], zb, j = gb, j,α (b j=0) andob, j = gb, j (b
j=1
i ). That is, the(b, j)th entry ofz equals the fingerprint

of the frequency vector of items mapping to bucketb with a 0 in the jth bit of their binary representation.
Observe thatgb, j,α (0) = gb, j,β (0) = 0 for all (b, j) ∈ [r]× [logn], as required by Property 1 above.

We now show that Property 2 holds, i.e. if there is an impure bucket, then the inner product ofz and
o will be non-zero with high probability over the choice ofα andβ . In the following, for an itemℓ ∈ [n]
and bucketb∈ [r], we let fℓ(b) denote the frequency with which itemℓ is mapped to bucketb, and we letℓ j

denote thej ’th bit in the binary representation ofℓ. We can write the inner product ofz ando as

∑
(b, j)∈[r ]×[logn]

gb, j,α (b
j=0)gb, j,β (b

j=1)

= ∑
(b, j)∈[r ]×[logn]

αn(b·logn+ j)β n(b·logn+ j)

(

∑
ℓ∈[n],ℓ j=0

fℓ(b)αℓ

)(

∑
ℓ∈[n],ℓ j=1

fℓ(b)β ℓ

)

= ∑
(b, j)∈[r ]×[logn]

αn(b·logn+ j)β n(b·logn+ j) ∑
(ℓ,ℓ′):ℓ j=0,ℓ′j=1

fℓ(b) fℓ′(b)αℓβ ℓ′

We therefore see that the inner product ofz ando is a polynomial inα andβ of total degreen2r logn in
each variable. Moreover, the coefficient of the termαn(b·logn+ j)+ℓβ n(b·logn+ j)+ℓ′ is preciselyfℓ(b) · fℓ′(b) if
ℓ j = 0 andℓ′j = 1, and is 0 otherwise.

Recall that if bucketb is not pure, then there is at least one coordinatej ∈ [logn], and itemsℓ,ℓ′ ∈ [n]
with ℓ j = 0 and ℓ′j = 1, such thatfℓ(b) 6= 0 and fℓ′(b) 6= 0. The above analysis implies thatz· o is a

non-zeropolynomial inα andβ , as the coefficient ofαn(b·logn+ j)+ℓβ n(b·logn+ j)+ℓ′ is non-zero. Hence, by the
Schwartz-Zippel lemma, the probability over a random choice ofα andβ thatz·o= 0 is at mostn2r logn/q.
Settingq to be polynomial inn, there is only negligible probability (over the choice ofα andβ ) thatz·o is
zero if the stream is not an injection.

Finally, notice that the verifier can apply the scheme of Proposition 4.1 to compute∑(b, j)∈[r ]×[logn] zb, j ·
ob, j , as each stream update(xk,b,δk) can be treated as logn updates to the vectorsz ando. For example, if
the jth bit of xk is 0, then update(xk,b,δk) causeszb, j to be incremented byδk ·αn(b·logn+ j)+xk.

Applications. We can apply this online scheme to compute Frequency Moments(and Inner Product, Ham-
ming Distance, Heavy Hitters etc.) over sparse data in the non-strict turnstile update model. The costs
of the resulting online AMA scheme are similar to the costs ofthe online schemes for the same problems
developed in previous sections. The only difference is thatwe have scaledm up by a logn factor, to ac-
count for the fact that within the new AMA sub-scheme for INJECTION, we must run the dense protocol of
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Proposition 4.1 on vectorsz ando of lengthr logn, rather than on vectors of lengthr as in prior sections,
and substitute the bounds from Lemma 7.2. For example, the analog of Theorem 5.1 is that for anycv > 1,
there is a(k2mc−1/2

v · log2(n) · logcv
(m),kcv · log(n) · logcv

(m)) online AMA scheme forFk in the non-strict
turnstile model.

8 Conclusion

We have presented a number of protocols in the annotated datastreaming model that for the first time allows
both the annotation length and the space usage of the verifierto be sublinear in the stream sparsity, rather
than just the size of the data universe. Our protocols substantially improve on the applicability of prior work
in natural settings where data streams are defined over very large universes, such as IP packet flows and
sparse graph data.

A number of interesting questions remain for future work. The biggest open question is to determine
the precise dependence on the stream sparsity in problems such asm-DISJ and frequency moments. When
setting the annotation length and the space usage of the verifier to be equal, our protocols have cost roughly
m2/3, wherem is the sparsity of the data stream. The best known lower boundis roughlym1/2. We conjec-
ture that our upper bound is tight up to logarithmic factors,but proving any Merlin-Arthur communication
lower bound larger thanm1/2 will require new lower bound techniques in communication complexity. An-
other interesting open question is to give improved protocols for multiplying ann×n matrix A by a vector
x, whenA is sparse (i.e., haso(n2) non-zero entries), butx may be dense. Achieving this would yield im-
proved protocols for proving disconnectedness, bipartiteness, or the non-existence of a perfect matching in
a bipartite graph. Currently we do not know of any protocols for these problems that leverage graph sparsity
in any way.
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A An Online AMA Lower Bound for (m,2
√

m)-SparseINDEX

We prove that the onlinẽO(
√

m) protocol for the(m,2
√

m)-SparseINDEX problem is essentially optimal.
Our lower bound follows from a natural variant of the reduction in Theorem 3.9. That is, we turn an
online AMA protocol for the(m,2

√
m)-SparseINDEX Problem into an online MAMA protocol for the dense

INDEX Problem. We then invoke a lower bound on the online MAMA communication complexity ofINDEX

Problem due to Klauck and Prakash [24].3

Theorem A.1. The online AMA protocol complexity of the(m,2
√

m)-SparseINDEX problem isΩ̃(
√

m).

Proof. Let n= 2
√

m. Assume we have an online AMA communication protocolP for (m,n)-sparseINDEX

with hcost(P) = Ω(
√

m). We describe how to use this protocol for the sparseINDEX problem to design one
for the denseINDEX problem on vectors of lengthn′ = mlog(n/m) = Ω

(

m3/2
)

.
Let k= log(n/m). As in the proof of Theorem 3.9, given an inputx to the denseINDEX problem, Alice

partitionsx into n′/k blocks of lengthk, and constructs a vectory of Hamming weightn′/k over a universe
of size(n′/k) ·2k as follows. She replaces each blockBi with a 1-sparse vectorvi ∈ {0,1}2k

, where each
entry ofvi corresponds to one of the 2k possible values of blockBi. That is, if blockBi of x equals the binary
representation of the numberj ∈ [2k], then Alice replaces blockBi with the vectorej ∈ {0,1}2k

, whereej

denotes the vector with a 1 in coordinatej and 0s elsewhere.
Thus, Alice now has ann′/k = m-sparse derived inputy over a universe of size(n′/k) ·2k = n. Merlin

looks at Bob’s input to see what is the indexι of the dense vectorx that Bob is interested in. Merlin then
tells Bob the indexℓ such thatℓ = 2k(ι − 1)+ j, whereBi is the block thatι is located in, and blockBi

of Alice’s input x equals the binary representation of the numberj ∈ [2k]. Notice ℓ can be specified with
logn= O(

√
m) bits.

Alice and Bob’s now use the assumed AMA-protocol for sparse disjointness to establish whetheryℓ = 1.
If they are convinced of this, then Bob can deduce the value ofall the bits in blockBi of the original dense
vectorx, and in particular, the value ofxι .

This yields an MAMA protocol for the denseINDEX problem onn′ = Ω(m3/2) bits. A lower bound
of Klauck and Prakash [24, Lemma 7] implies that the online MAMA complexity of this problem is
Ω((n′)1/3) = Ω(m1/2). Notice also that the total hcost of our MAMA protocol isO(

√
m+ hcost(P)) =

O(hcost(P)), while the vcost isO(vcost(P)). Thus, if hcost(P) = Ω(
√

m), it must be the case that vcost
is Ω(

√
m) as well. This trivially implies that for any protocolP with hcostlessthan

√
m, vcost(P) must

be Ω(
√

m). We conclude the online AMA communication complexity of theproblem isΩ(m1/2). This
completes the proof.

3 Like the lower bound of Lemma 3.8, the lower bound of Klauck and Prakash was originally proved in the communication
model in which Merlin cannot send any message to Alice. However, the proof easily extends to our online MA communication
model (where Merlin can send a message to Alice, but that message cannot depend on Bob’s input).
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