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Abstract

Motivated by the surging popularity of commercial cloud garting services, a number of recent
works have studiednnotated data streanand variants thereof. In this setting, a computationallpkve
verifier (cloud user), lacking the resources to store and maniphlateassive input locally, accesses a
powerful but untrustegrover (cloud service). The verifier must work within the restretdata stream-
ing paradigm. The prover, who camnotatethe data stream as it is read, must not just supply the final
answer but also convince the verifier of its correctnessallgeboth the amount of annotation from the
prover and the space used by the verifier should be subling¢lae irelevant input size parameters.

A rich theory of such algorithms—which we calthemes-has started to emerge. Prior work has
shown how to leverage the prover’s power to efficiently sgiveblems that have no non-trivial stan-
dard data stream algorithms. However, even though optioiedrees are now known for several basic
problems, such optimality holds only for streams whose tlerigy commensurate with the size of the
data universeln contrast, many real-world data sets are relatigglgrse including graphs that contain
only o(n?) edges, and IP traffic streams that contain much fewer thatotaenumber of possible IP
addresses,’28in IPv6.

Here we design the first annotation schemes that allow betfatimotation and the space usage to
be sublinear in the total number of streapdatesrather than the size of the data universe. We solve
significant problems, including variations ®fDEX, SET-DISJOINTNESS andFREQUENCY¥MOMENTS,
plus several natural problems on graphs. On the other hamdjiwe a new lower bound that, for the
first time, rules out smooth tradeoffs between annotatiahspace usage for a specific problem. Our
technique brings out new nuances in Merlin—Arthur commaiide) complexity models, and provides a
separation between online versions of the MA and AMA models.

1 Introduction

The surging popularity of commercial cloud computing segsi has rendered the following scenario in-
creasingly plausible. A business—call it AliceSystemseegisses billions or trillions of transactions a day.
The volume is sufficiently high that AliceSystems cannot dt mot store and process the transactions on
its own. Instead, it offloads the processing to a commertsaicccomputing service.

The offloading of any computation raises issues of trustce8iystems may be concerned about rela-
tively benign errors: perhaps the cloud dropped some ofrreséctions, executed a buggy algorithm, or
experienced an uncorrected hardware fault. AlternativligeSystems may be more cautious and fear that
the cloud operator is deliberately deceptive or has beegrmedty compromised. Either way, each time
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AliceSystems poses a query to the cloud, it may demand teatidlud provide not only the answer but also
some proof that the returned answer is correct.

Motivated by this scenario, a number of recent works havdiatiannotated data streams and their
variants [7/ 9/ 10, 11, 21, 24]. In this setting, a computwlty weakverifier (modeling AliceSystems in
the above scenario), who lacks the resources to store thie gmgut locally, is given access to a powerful
but untrustedrover (modeling the cloud computing service). The verifier mustoete within the confines
of the restrictivedata streamingparadigm, i.e., it must process the input sequentially iateVver order it
arrives, using space that is substantially sublinear intdbed size of the input. The prover is allowed to
annotate the data stream as it is read, with the goal of comgrihe verifier of the correct answer. The
streaming restriction for the verifier fits the cloud compgtsetting well, as the verifier's streaming pass
over the input can occur while uploading data to the cloud.

Prior work [2,[7,09)10[ 22, 24] has provided considerableeusiinding of the power of annotated
data streams, revealing a surprisingly rich theory. A nunoibéundamental problems that possess no non-
trivial algorithms in the standard streaming model do haffieient schemesvhen the data stream may
be annotated by a prover: the term “scheme” refers to anitiigorinvolving verifier-prover interaction
as above. By exploiting powerful algebraic techniquesioally developed in the literature on interactive
proofs [18,26], these works have achieved essentiallyr@dtiradeoffs between annotation size and the
space usage of the verifier for problems ranging from frequemoments to bipartite perfect matching.

However, these schemes are only optimal for streams forhwhie total number of updates is large
relative to the size of thdata universeln contrast, many real-world data sets gparse for example, many
real-world graphs, though large, contain much fewer themtlaximum possible numbég) of edges, and
IP traffic streams contain much fewer than the total numbgossible IP addressest?®in IPv6.

In this paper, we give the first schemes in the annotationseirtbdt allow both the annotation size
and space usage to kablinear in the number of items with non-zero frequenchéndata streamrather
than the size of the data univenseOn the negative side, we also give a new lower bound thah#ofitst
time rules out smooth tradeoffs between annotation sizespade usage for a specific problem. The latter
result is derived from a new lower bound in the Merlin—ArtlfiitA) communication model that may be of
independent interest.

1.1 Related Work

Aaronson and Wigdersonl[2] gave a beautiful MA communicegimtocol for theSET-DISJIOINTNESSprob-

lem (henceforthpisJ) using algebraic techniques analogous to those in the farfsum-check protocol”
from the world of interactive proofs and probabilisticatiigeckable proofs [18]. Their protocol is nearly op-
timal, essentially matching a lower bound of Klauckl[22].eTAaronson—-Wigderson protocol has served as
the starting point for many schemes for annotated datarstre@/e will refer to such schemessan-check
schemesa typical example is Proposition 4.1 in this work.

Aaronson[[1] studied the hardness of the@EX problem in a restricted version of the MA communi-
cation model, as well as in a quantum variant of this modek d#assical model is similar to the online
MA communication model that we consider. Annotated dateasirs were introduced by Chakrabaati
al. [7], and studied further by Cormodkt al. [9]. These two papers gave essentially optimal annotation
schemes for problems ranging from exact computation of i&#tters and Frequency Moments to graph
problems like Bipartite Perfect Matching and ShoresPath. Cormode, Thaler and Yi[11] later extended
the annotations model to allow the prover and verifier to hgenversationand dubbed this interactive
model streaming interactive proofsThey demonstrated that streaming interactive proofs eae kexpo-
nentially smaller space and communication costs than atettata streams, and showed that a number of
powerful protocols from the literature on interactive piooan be made to work with streaming verifiers;
in particular, this applies to a powerful general-purpogeractive proof protocol due to Goldwasser, Kalai,



and Rothblum[[20]. Cormode, Mitzenmacher, and Thaler [@jlemented a number of protocols in both
the annotated data streams and streaming interactive pettifigs, demonstrating genuine scalability in
many cases. In particular, they developed an implementatidhe Goldwasseet al. protocol [20] that
approaches practicality. Most relevant to our work on aateat data streams, Cormode, Mitzenmacher, and
Thaler also used sophisticated FFT algorithms to dralticatiuce the prover’s runtime in the sum-check
schemes, which we make frequent use of.

Two recent works have considered variants of the annotattedstream model. Klauck and PrakésH [24]
study a restricted version of the annotations model in witiiehannotation must essentially end by the final
stream update. Gur and Raz[[21] give protocols for a classotii@ms in a model that is similar to annotated
data streams, but more powerful in that the verifier has adoelsoth public and private randomness. This
corresponds to the AMA communication model. We considetgmals in this model in Sectidn 7.2.

Early work on interactive proof systems studied the powespzice-bounded verifiers (the survey by
Condon [8] provides a comprehensive overview), but manyefarotocols developed in this line of work
require the verifier to store the input, and therefore do ravkvin the annotations model, where the verifier
must be streaming. An exception is work by Lipton][17], whbea on using fingerprinting techniques
to allow a log-space streaming verifier to ensure that thegeroorrectly plays back the transcript of an
algorithm in an appropriate computational model. This apph does not lead to protocols with sublinear
annotation length. More recently, Das Saretal. studied the “best order streaming model,” which can be
thought of as the annotations model where the annotatiastscted to be a permutation of the ingutl[13].

1.2 Overview of Results and Techniques

We give an informal overview of our results and the techrsgwe use to obtain them. Throughontill
denote the size of the data universe amthe number of items with non-zero frequency at the end of a dat
stream (we refer ton as the “sparsity” of the stream). A scheme in which the stiegraerifier uses at
mostc, bits of storage and requires at mogbits of annotation from the prover is called@, c,)-scheme.
Sectior 2 defines our models of computation carefully anslgeterminology.

Section[3contains our first set of results. We begin by precisely attar&zing the complexity of the
sparse BINTQUERY problem—a natural variant of the well-knowRDEX problem from communication
complexity—giving an(xlogn,ylogn)-scheme whenevety > m. We give similar upper bounds for the re-
lated problems SLECTION and HEAavY HITTERS. We also prove a lower bound showing tlaaty (cs, cy)-
scheme for these problems requigs, = Q(mlog(n/m)), improving by a logn/m) factor over lower
bounds that follow from prior work on “dense” streams. By &gk stream we mean one wheré not
much larger tham. This log\n/m) factor may seem minor, but a striking consequence is thafvéry)
sparseNDEX problem—where Alice’:1-bit string has Hamming weigh®(logn)—has one-way random-
ized communication complexity that is within a logarithnféctor of its online MA communication com-
plexity. This implies that no non-trivial tradeoffs betweklerlin’'s and Alice’s message sizes are possible
for this problem; to our knowledge this is the first problerattprovably exhibits this phenomenon.

Our scheme for sparseOMNTQUERY relies on universe reduction: the prover succinctly déssria
mappingh : [n] — [r] that maps the input stream, which is defined over the hugeutttarse[n], down to a
derived stream defined over a smaller univérgeBy design, if the prover is honest and the mapgirpes
not cause “too many collisions,” then the answer on the aigitream can be determined from the answer
on the derived stream. We then efficiently apply known sclseimedense streams to the derived stream.

For our lower bound in Sectidd 3, we give a novel reductiomftbe standard (dense)DEX problem
to sparseNDEX that is tailored to the MA communication model. We then aggsigwn lower bounds for
denseiINDEX. Our technigue also gives what is to our knowledge the fir§tnmmnial separation between
the online MA and AMA communication complexities of a spex{and natural) problem.



For clarity, the remainder of this overview omits factorgdathmic inn andmwhen stating the costs of
schemes. Though these factors are important for Sddtidve 2¢nsequences of our lower bound being most
significant whem = m®), we anticipate that in practiaeandmwill usually be polynomially related.

Sectiong % andEEontain our most interesting and technically involved lissmamely, efficient schemes
for siIzE-m-SET-DISJOINTNESS (henceforth,m-DIsJ) and kth Frequency Moments (hencefortR). The
schemes here are substantially more complex than thosectioSE8 and represent the main technical
contributions of this paper.

Sectiori % givegn?/3, m?/3)-schemes for both problems, but the schemes rely on “pre&eienotation,
i.e., annotation provided at the start of the stream thatép on the stream itself. The even more com-
plex schemes of Sectidh 5 eliminate the need for presciemitation and also achieve much more general

tradeoffs between annotation length and space usage fialbgi Sectiori’b givesma, Y z,cv)—schemes for
m-DIsJandF for anyc, < m. Notice that one recovers the costs achieved in Selction éttipgc, = m?/°.
These schemes are the first for these problems that allowtl®tinnotation length and space usage to

be sublinear iim. At a very high level, there are three interlocking ideas #ilaw us to achieve this.

1. The first idea is a careful application of universe redurctiWWe were able to use a simple version of
this idea to derive the upper bound for theIRTQUERY problem in Sectiohl3, but in the casemtJ
andF the universe-reduction mappiig [n] — [r] specified by the prover is more complicated, and
requires refinement in the form of the additional ideas diesdrbelow.

2. The second idea is addressed to ensuring that the proferrped the universe-reduction step in an
honest manner, in the sense that the answer on the origieahsttan indeed be determined from the
answer on the derived stream. The difficulty of ensufrig honest varies depending on the structure
of the problem at hand. Féi, the verifier has to make sure that the universe-reductigopmegh is
injective on the items appearing in the data stream. Thigires| developing an efficient way fof
to detect collisions undér, even thougly does not have the space to store all of the vah{gg for
stream updates. Form-DISJ, a notion weaker than injectiveness is sufficient.

3. The third idea pertains to allowinig to specify the universe-reduction mappingnline That is,
for many problems it would be much simplerRfcould determine the mappirgin advance i.e. if
P could be prescient, and sehdo V at the start of the stream so thatcan determine the derived
“mapped-down” stream on her own (this is the approach tak&ectiol #). Whe®® must specifyh
in an online fashion, additional insight is required. At gtnhlevel, our approach is to hatespecify
a “guess” as to the right hash function at the beginning ofstieam, and retroactively modify the
hash function after the stream has been observed. Themfialieaspect of this approach is to ensure
thatP’s retroactive modification of the hash function is consistgith the observed data stream, even
thoughV cannot refer back to the stream to enforce this.

We exploit similar ideas to allow to avoid storing the universe-reduction mappmgerself; this

is the key to achieving general tradeoffs between annotdtiogth and space usage in Secfibn 5. In
some schemes, storing this mapphmgould be the bottleneck iX'’s space usage. We show hdtv
can store only gartial description ofh, and askP to fill in the remainder of the description when
necessary.

Section[6 exploits all of these results, applying them to several grapblems, including counting
triangles and demonstrating a perfect matching. Our schdmaee costs that depend on the number of
edges in the graph, rather than the total number of possilgless and demonstrate that the ideas underlying
our m-DISJ and R schemes are broadly applicable. We state clearly how ownses improve over prior
work throughout.



Section[Tconsiders a more general stream update model, which altemsito have negative frequen-
cies. These negative frequencies potentially break thiisiom detection” sub-protocol used in the previous
sections, so we show how to exploit a source of public rand@m®ito allow these protocols to be carried out.
Essentially, the public randomness specifies a remappitigeahput, so that the prover is highly unlikely
to be able to use negative frequencies to “hide” collisi®@ecause the protocols of Sect[dn 7 require public
randomness, they work in the AMA communication and stregmiodels, as opposed to the MA models
in which all of our other protocols operate.

2 Models, Notation, and Terminology

Many of the algorithms (schemes) in this paper use randdioizén subtle ways, making it important to
properly formalize several models of computation. We begth Merlin—Arthur communication models, a
topic first studied by Babai, Frankl and Simoan [3], which wemwally use to derive lower bounds. We then
turn to annotated data stream models. At the end of the sagBcset up some notation and terminology for
the rest of the paper. Some of our discussion in this sectiorows from prior work/[[7].

2.1 Communication Models

Let F : X xY — {0,1} be a function, wherX andY are both finite sets. This naturally gives a 2-player
number-in-hand communication problem, where the firstgrailice, holds an input € X, and the second
player, Bob, holds an inpyte Y. The players wish to comput&(x,y) by executing a (possibly randomized)
communication protocol that correctly outp$x,y) with “high” probability. In Merlin—Arthur communi-
cation, there is additionally a “super-player,” called Nterwho knows the entire inputx,y), and can help
Alice and Bob by interacting with them. The precise pattdrimteraction matters greatly and gives rise to
distinct models. Merlin’s goal is to get Alice and Bob to auttfy1” regardless of the actual value Bfx,y),
and so Merlin is not to be blindly trusted.

One important departure we make from prior work is tatallow Merlin to use private random coins
during the protocol. Most prior work on MA (and AM) communiica [3,(22,[23] defined Merlin to be
deterministic, which does not make a difference in the bastting. But in this work we are concerned
with “online MA’ models, where the distinction does mattand these online MA models are in close
correspondence with the annotated data stream models¢hatiaeventual topic of study.

MA Communication. In a Merlin—Arthur protocol (henceforth, “MA protocol”) fd&=, Merlin begins by
sends a help messaféx,y,rv ), using a private random string, that is seen by both Alice and Bob. Then
Alice and Bob (the pair that constitutes the entity “Arthurtin a randomized communication protoda|
using a public random string,, eventually outputting a bit ol{(x,y,ra,b). Importantly,ra is not known
to Merlin at the time he sends The protocolP is d-sound andd.-complete if there exists a function
h: X xY x{0,1}* — {0,1}* such that the following conditions hold.

1. If F(x,y) = 1 then Py, 1, [out” (X,y,ra,h(X,y,rm)) = 0] < &.
2. If F(x,y) = 0thenvh' € {0,1}* : Pr,[out” (x,y,ra,h’) = 1] < &

We define erfP) to be the minimum value of m&x3s, &} such that the above conditions hold. Fol-
lowing [7], we define thenelp costhcostP) to be 1+ maxy,, |h(X,y,rm)| (forcing hcost> 1, even for
traditional Merlin-free protocols), and theerification costvcos{’P) to be the maximum number of bits
communicated by Alice and Bob over ally andra. We define MA;(F) = min{vcos{P) + hcostP) : P
is an MA protocol forF with err(P) < &}, and MA(F) = MA 1 3(F).



Online MA Communication.  An online MA protocol is defined to be an MA protocol, as abdug, with
the communication pattern required to obey the followingusmce. (1) Inpuk is revealed to Alice and
Merlin; (2) Merlin sends Alice a help messaggx,rv) using a private random stringy; (3) Inputy is
revealed to Bob; (4) Merlin sends Bob a help messgg@e y,rv ); (5) Alice sends a public-coin randomized
message to Bob, who then gives a 1-bit output. We see thislnasdee natural MA variant of one-way
communication, and the analogy with the gradual revelativanstreamed input should be obvious.

For such a protocoP, we define hcogP) to be 1+ maxcyr, (|h1(X,rm)| + [h2(%,Y;rm)|) We define
soundness, completeness,(&Y, and vcostP) as for MA. Define MAy’ (F) = min{hcostP) + vcostP) :
P is an online MA protocol foF with err(P) < &} and write MA™ (F) = MA/5(F).

Online AMA Communication.  An online AMA protocol is a souped-up version of an online M-
col, where public random coins can be tossed at the stadrédahy input is revealed. The number of such
coin tosses is added to the vcost of the protocol. This mdbelsost of an initial round of communication
between Arthur (i.e., Alice + Bob) and Merlin. Note that $econdoublic random string, used when Alice
talks to Bob, does not count towards the vcost.

On Merlin’s Use of Randomness. In an MA protocol, Merlin can deterministically choose apghelessage
that maximizes Arthur's acceptance probability. Howewerlin cannot do so in the online MA model,
because he does not know the entire input when he talks te@.Alltis is why we allow Merlin to use
randomness in these definitions.

Two recent papers [7, 24] use “online MA” to mean a more retsté model where a deterministic
Merlin talks only to Bob and not to Alice. With Merlin requitedo be deterministic, this communication
restriction is irrelevant, as Merlin cannot tell Alice ahiytg she does not already know. However, we permit
Merlin to be probabilistic, and in this case we do not knowt tarlin can avoid talking to Alice.

As noted earlier, our goal in defining the communication niedas way is to closely correspond to
annotated data stream models. In many of our online scheseesd.g., Sectidd 5), the helper provides ini-
tial annotation that specifies a random “hash” functigrand the completeness guarantee of the subsequent
protocol depends crucially dnhaving “low collision” properties. Since must be chosen without seeing all
of the input, such low collision properties cannot be gutead by picking a fixeth in advance. However, if
the helper choosdsat random, then we do have such guarantees for each fixed wiguhigh probability.

2.2 Data Stream Models

We now define our annotated data stream models. Recall ttrad#ipnal) data stream algorithm computes
a functionF of an input sequence € /N, whereN is the number of stream updates, dnds some data
universe, such af0,1}° or [n] = {0,...,n—1}: the algorithm uses a limited amount of working memory
and has access to a random string. The fundiianay or may not be Boolean.

An annotated data stream algorithm, oschemeis a pairA = (h,V), consisting of a help function
bh:UN x {0,1}* — {0,1}* used by grover (henceforthP) and a data stream algorithm run byexifier,
V. ProverP providesh(x,rp) as annotation to be read M. We think of h as being decomposed into
(h1,...,bn), where the functior; : /N — {0,1}* specifies the annotation suppliedMafter the arrival of
theith tokenx;. That is,h acts ornx (usingrp) to create amnnotated stream?'® defined as follows:

XPP 1= (X1, h1(X,1p), X2, h2(X,Tp), ..., Xn, Bn(X,Tp)).

Note that this is a stream ov&rU {0, 1}, of lengthN + i [hi(x,rp)|. The streaming verifiev, who usesw
bits of working memory and has oracle access to a (privateam stringry, then processes this annotated
stream, eventually giving an output 8(x"" ).



Prescient Schemes. The schemed = (h,V) is said to beds-sound and.-complete for the functiorr if
the following conditions hold:

1. Forallx e 4N, we have Ry, [out’ (X0 ry) # F(X)] < &.
2. Forallx e UN, ' = (b}, b5, .., hy) € ({0,1}*)N, we have Py [out! (X" ,ry) & {F(x)} U{L}] < &.

If & =0, the scheme satisfigerfect completenesstherwise it hasmperfect completenessn output of
“_1”indicates thaV rejectsP’s claims in trying to convinc® to output a particular value fdf (x).

We note two important things. First, the definition of a sckattows the annotatioly (x,rp) to depend
on the entire stream, thus modelingporesciencethe advice from the prover can depend on data which the
verifier has not seen yet. Secoidmust convincé/ of the value ofF (x) for all x. This is stricter than the
traditional definitions of interactive proofs and MA comnization complexity (including our own, above)
for decision problems, which place different requirementghe cases (x) = 0 andF(x) = 1. In Section
[, we briefly consider a relaxed definition of schemes that thé spirit of the traditional definition.

We define erfA) to be the minimum value of mgx@s, &} such that the above conditions are satisfied.
We define theannotation lengtthcost.A) = max,r. 3 [hi(X,rp)|, the total size oP’s communications, and
the verification space costcos{.4) = w, the space used by the verifi¢r We say that4 is a prescient
(Ca, Cy)-scheme if hcogtd) = O(ca), veos{A) = O(c,) and erfA) < 3.

Online Schemes. We call. A = (h,V) ad-error online scheme fd¥ if, in addition to the conditions in the
previous definition, each functidy depends only ofix,...,% ). We define error, hcost, and vcost as above
and say that is anonline (c,, ¢,)-scheméf hcost(.A) = O(ca), vcost.A) = O(c,), and erfA) < 1.

Unlike prior work [7], we do not always assume that the urseesizen and stream lengthl are poly-
nomially related; it is possible that Id)= o(logn). Therefore we must be much more careful about loga-
rithmic factors than in prior work. We do assume that: n always, because our focus is on sparse streams.

Notice that the help function can be made deterministic ires@ent scheme, but not necessarily so in
an online scheme. This is directly analogous to the sitnddoMA and online MA communication models,
as discussed at the end of Secfiod 2.1.

AMA Schemes. We also consider what we call AMA schemes, where there is amtmmsource of public
randomness, in addition to the verifier's private randormgoirhe AMA scheme model is identical to the
one considered by Gur and Raz][21], who referred to it as tmthiA—Merlin streaming model.”

An online AMA scheme is identical to a (standard) online sabeexcept that the data stream algorithm
and help function both have access to a source of public martts. The number of random bits used is
also counted in both the hcost and the vcost of the scheme.

On Practicality and the Plausibility of Prescience. Although our definition of a scheme allows anno-
tation to be sent after each stream update, all the schemes faet design in this paper only require
annotation before the start or after the end of the streama psactical matter, this avoids the need for
fine-grained coordination between the annotation and tteestieeam.

Online annotation schemes have the appealing propertyibatrover need not “see into the future” to
execute them; at any tintethe prover's message only depends on stream updatesriliatdrefore time.
While the online restriction appears most natural, pres@gehemes may still be suitable in some settings,
such as wheR has already seen the full input prioAfdoeginning to read it. Consider a volunteer computing
scenario where the verifier farms out many computations fenveers, and only inspects a particular input
if a volunteer has already looked at that input and claimsateHound something interest%gln brief, in
some settings the prover may naturally see the input belfi@redrifier, and in this case a prescient scheme
will be feasible.

1See, for examplé&ttp: //boinc.berkeley.edu/.
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2.3 Relationship Between MA Protocols and Schemes

Any prescient (resp. onlingcy, ¢,)-schemeA = (h,V) for a functionF can be converted into an MA
(resp. online MA) protocol foF in the natural way: Merlin sends the output of itie help functionb; to
Alice—who receives a prefix of the input stream—or Bob, deliggm on which of the players possesses
theith piece of the input. Alice runs the streaming algoritiinon her input as well as any annotation she
received, and sends the state of the algorithm to Bob. Babthsestate to continue runningon his input

and the annotation he received, and then outputs the entl rElse hcost of this protocol is at mostlogN,
since Merlin has to specify which stream updiaéach piece of annotation is associated with, and the vcost
of this protocol is at most,. Thus, lower bounds on usual (resp. online) MA communicapiootocols
imply related lower bounds on the costs of prescient (resfine) annotated data stream algorithms.

2.4 Additional Notation and Terminology

A data stream specifies an inpuincrementally. Typicallyx can be thought of as a vector (although more
generally it may represent a graph or a matrix). Each updetteei stream is of the forrfi, o) wherei € U
identifies an element of the universe, ahd 7 describes the change to the frequency. ofhe frequency
of universe itemi is defined adi(X) 1= ¥ (j, a0 ex:j—i - We refer to the vectof (x) = (f1(x),..., fn(X)) as
thefrequency vectoof x, wheren denotes the size of the data universe.

We consider several different update models. In the mostrgénpdate model, theon-strict turnstile
mode] the & values may be negative, and §omay also be negative. In ttsdrict turnstile modelthe &
values may be negative, but it is assumed that the frequefcdways remain non-negative. In thresert-
only model the d values must be non-negative. Orthogonal to these, irutiitupdateversion of each
model, thed values are assumed to have absolute value 1. Each of outsrapplies to a subset of these
models, and we specify within the statement of each theorbimhwpdate models it applies to.

Throughoutn will denote the size of the data univerdéwill denote the total number of stream updates,
mwill denote the total number of items with non-zero frequeatthe end of the stream, aitl will refer
to the total number of distinct items that ever appear widime stream update. We will refertbas the
lengthof the stream, tan assparsityof the stream, and tM as thefootprint of the stream. Notice that it is
always the case that < M < N. In the case of insert-only streanms,= M, but for streams in the (strict or
general) turnstile models it is possible forto be much smaller thakl. Note also that while we talk about
“sparse” streams, this refers to the relative size ahdm, not the absolute size. Indeed, we assumerthat
is typically large, too large fov to store the stream explicitly (else the problems can bedoinial).

We often make use dingerprintfunctions of streams, which enable a streaming verifiersbvdether
two large streams have the same frequency vector. The vetid®ses a fingerprint functiaix) at random
from some family of functions satisfying the property thatdr the random selection of the functigp

Prig(x) =a(y) | f(x) # f(y)] <1/p

for a parametep. Typically, g(x) is an element of a finite field of size pdly), and hence the number of
bits required to store the valggx) (as well ag itself) is O(log p). Further, there are known constructions
of fingerprint functions wherg(x) can be computed in spa€logp) by a streaming algorithm in the

non-strict turnstile update modél [7].

3 Point Queries, Index, Selection, and Heavy Hitters

3.1 Upper Bounds

Our first result is an efficient online annotation scheme lier ROINTQUERY problem, a generalization of
the familiariNDEX problem.



Definition 3.1. In the ROINTQUERY problem, the data streamconsists of a sequence of updates of the
form (i, 3), followed by an index, and the goal is to determine the frequerfefk) = 3 (j, 5)ex:j=1 -

A prescient(logn,logn)-scheme for this problem is trivial &can just telV the index: at the start of
the stream, an®l can track the frequency efwhile observing the stream. The vcost can be improved to
O(logm) if V retains a hashed value ofand tracks the frequency of matching updates. The firsinsehe
has perfect completeness, while the second has complsterres polynomially small irm.

The costs of the scheme below are in terms of the stream parsand not the stream lengtk or
the stream footprinM; this is significant ifm < M, which is the case, e.g., for the well-known straggler
and set-reconciliation problems that have been studiedhditional streaming and communication models
[14],[19]. Our lower bound in Theorelm 8.9 shows our schemesierdilly optimal for moderate universe
sizes, i.e. when the universe sizés sub-exponential in the sparsity.

Theorem 3.2. For any pair (c,, ¢y) such that g- ¢, > m, there is an onling¢c, logn, c,logn)-scheme in the
non-strict turnstile update model for tHBOINTQUERY problem with imperfect completeness. Any online
(Ca, Cy) scheme with £> logn for this problem requiresc ¢, = Q(mlog(n/m)).

Proof. V requiresP to specify at the start of the stream a hash functiofn] — [c,]. V requiresh to have
description lengtlO(c,), rejecting if this is not the case. We define the derived pised < UN based ori:
we setxl‘( = X iff h(xc) = j, and 0 otherwise. Intuitively, the hash functibpartitions the stream updates in
X into ¢, disjoint buckets, and the vectet describes the contents of tiigh bucketV maintains fingerprints
over a field of size pol§n) of each of theg, differentx] vectors.

At the end of the stream, given the desired indegRR provides a description of the (claimed) frequency
vector in theh(1)th derived streamf (x"(")). V computes a fingerprint of the claimed frequency vector, and
compares it to the fingerprint she computed from the datarstraccepting if and only if the fingerprints
match. Since eackl is sparse in expectation, the cost of this description calovseprovidedh does not
map more thai©(c,) items with non-zero frequency tg1), P can just specify the item id and frequency
of the items with non-zero frequency ii(x"(")). In this case, the annotation size is j@c,logn). If P
exceeds this amount of annotati®will halt and reject (outputl).

Soundness follows from the fingerprinting guarante® dbes not honestly providd(), \/'s fingerprint
of x"() computed from the data stream will not match her fingerprithe claimed vector of frequencies.

To show (imperfect) completeness, we study the probalitiay the output of an honest prover is re-
jected. This happens only ih(x"(")), the number of non-zero entries "), is much larger than its ex-
pectation. By the pairwise independencenpE[m(x""))] = m(x)/c, = ca. Thus, by Markov’s inequality,
Pim(x")) > 10c,] < 1/10. So by specifying a hash function chosen at random froniravisa indepen-
dent hash family, and then honestly playing back the iterasrttap to the same region g$° can convince
V to accept with probability A10.

Notice thatv does not need tenforcethatP picks the hash functioh at random from a pairwise-wise
independent hash family, &has no incentive not to pick the hash functions in this wayatTis, since
V will reject if too many items map to the same region ai is sufficientfor P to pick h at random from
a pairwise independent hash family in order to convikceo accept with constant probability. But it is
equally acceptable P wants to pickh another way; if he does s®, just risks thatv will reject with a
higher probability.

The lower bound follows from Theorelm 3.9, which we prove ict®am[3.2. O

The scheme of Theoren 8.2 yields nearly optimal schemeséHEAVY HITTERS and SELECTION
problems, described below. Table 1 summarizes these sesultcompares to prior work.



Problem Scheme Costs Completeness Prescience Source
POINTQUERY (logn,logn) Perfect Prescient 7]
POINTQUERY (mlogn,logn) Perfect Online [7]
POINTQUERY (calogn,cylogn): cacy > n Perfect Online [7]
POINTQUERY (calogn, cylogn): cacy > m Imperfect Online Theoreni 3.2

SELECTION (calogn,cylogn): cacy > n Perfect Online 7]

SELECTION (mlogn,logn) Perfect Online [7]

SELECTION (calogzn,cvlogn): CaCy > mlogn Imperfect Online Corollary[3.2
@-HEAVYHITTERS (¢ tlogn, @ tlogn): cacy > n Perfect Prescient [7]
@-HEAVY HITTERS (¢~ 1calogn,cylogn): cacy > n Perfect Online [7]
@-HEAVYHITTERS (mlogn,logn) Perfect Online [7]
¢@-HEAVYHITTERS (¢~ 1calogn,cylogn): cac, > mlogn Imperfect Online | Corollary[3.6
@-HEAVYHITTERS | (¢ tlogn+ calogn,cylogn): cac, > mlogn Imperfect Online | Corollary[5.6

Table 1: Comparison of our schemes to prior work. For alldlpeblems, ours are the first online schemes
to achieve both annotation and space usage sublinear itréla@ssparsityn whenm < /n, and we strictly
improve over the online MA communication cost of prior sclesrwhenevem= o(n). For brevity, we omit
factors of log (m) from the statement of costs of teHEAVY HITTERS scheme due to Corollaty 5.6

3.1.1 Selection

Our definition of the ELECTION problem assumes all frequencigs= 3 (j, 5,):j—i & are non-negative, and
so this definition is only valid for the strict turnstile ugdanodel.

Definition 3.3. The SELECTION problem is defined in terms of the quantly= Y.y fi, the sum of all
the frequencies. Given a desired rgmk [N], output an itemj from the streanx = ((j1,61),-..,(Jm,om)),

such thal (j, &,:ji<j & < P and (j go:j>j & = N —p.

Corollary 3.4. For any pair (ca,c,) such that gc, > mlogn, there is an onlinéc,log?n, ¢, logn)-scheme
for SELECTION in the strict turnstile update model.

The corollary follows from a standard observation to red@seECTION to answering prefix sum
queries, and hence to multiple instances of tkleN?QUERY problem.V treats each stream upddied)
in the streamx as an update t®(logn) dyadic ranges, where a dyadic range is a range of the form
[j2% (j 4+ 1)2 — 1] for somej andk. Thus, we can view the set of dyadic range updates impliest by
as a derived stream of sparsitjogn. Notice we are using the fact that this transformation fromdriginal
stream of sparsityn results in a derived stream of sparsity at mosbgn; a different derived stream was
used in[[7] to address theeBECTION problem, but the sparsity of that derived stream could bstsmkially
larger than the sparsity of the original stream.

For anyi, the quantityTi := ¥ j 5).j<i 0 can be written as the sum of the countsQ@ffogn) dyadic
ranges. Thus, at the end of the streBrmaan convincev that itemi has the desired; value by running
logn POINTQUERY protocols as in Theorefn 3.2 in parallel on the derived strefisparsitymlogn. The
verifier's space usage is the same as for a singleviPQUERY instance on this strean¥V fingerprints
each of the derived streams$ defined in the proof of Theorem 3.2, and uses these fingesgrirdll logn
instances of the ®INTQUERY scheme. The annotation length is totimes larger than that required for a
single PINTQUERY instance becaude may have to describe the frequency vectors of up taldgrived
streams.

Thus, we get an onling, log?n, ¢, logn)-scheme as long asc, = Q(mlogn).
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3.1.2 Frequent Iltems

Our definition of thep-HEAVY HITTERS problem also assumes all frequencfes= y (j, 5,):j,—i & are non-
negative, and so this definition is only valid for the striatriistile update model.

Definition 3.5. The g-HEAVY HITTERS problem (also known as frequent items) is to list those itegugh
that fi > N, i.e. whose frequency of occurrence exceeggfiaction of the total counN = y .y fi.

We give a preliminary result for thg-HEAVY HITTERS problem in Corollarny 36 below. We give a
substantially improved scheme in Sectidn 5 using the ideaenying our online scheme for frequency
moments.

Corollary 3.6. For all ca,c, such that gc, > mlogn, there is an onlindc,@~*logn, ¢, logn)-scheme for
solving-HEAVY HITTERS in the strict turnstile update model.

Corollary[3.6 follows from the following analysis.|[7, Them 6.1] describes how to redupeHEAVY HITTERS
to demonstrating the frequencies ©f@ 1) items in a derived stream. Moreover, the derived stream has
sparsityO(mlogn) if the original stream has sparsity. We use the BINTQUERY scheme of Theorem 3.2.

As in Corollary[3.4, the annotation length blows up by a fagio® relative to a single BINTQUERY, but
the space usage ¥fcan remain the same as in a singl@IRTQUERY instance. Hence, we obtain an online
(ca@~tlogn, c,logn)-scheme for ang,c, > mlogn.

3.2 Lower Bound

In this section, we prove a new lower bound on the online MA camication complexity of thém,n)-
SparsaNDEX problem.

Definition 3.7. In the (m,n)-SparsaNDEX problem, Alice is given a vectore {0,1}" of Hamming weight
at mostm, and Bob is given an index Their goal is to output the value.

We prove our lower bound by reducing the (dens&)ex problem (i.e. the&m,n)-SparsaNDEX prob-
lem withm= ©(n)) in the MA communication model to then, n)-SparsaNDEX problem for smalm. The
idea is to replace Alice’s dense input with a sparser inper avbigger universe, and then take advantage
of our sparse BINTQUERY protocol. A lower bound on the online MA communication coexily of the
denseINDEX problem was proven in [7, Theorem 3.1]; there, it was shovan amy online MA communi-
cation protocolP requires hcog®)vcos{P) > n. Combining this with our reduction of the denseEx
problem to the sparse version, we conclude that any profocsparsaNDEX must be costly.

Lemma 3.8. [[7| Theorem 3.1] Any online MA communication proto@lfor the (n,n)-SparseINDEX
problem must havcos{P)vcost(P) = Q(n).

Remark 1. The lower bound of Lemma 3.8 was originally proved by Cha&rtilet al. [7] in the commu-
nication model in which Merlin cannot send any message toeAliHowever, the proof easily extends to
our online MA communication model (where Merlin can send @&sage to Alice, but that message cannot
depend on Bob’s input).

Theorem 3.9. Any online MA communication protoc® for the (m,n)-SparseINDEX problem for which
hcostP) > logn must havéicostP) vcostP) = Q(mlog(n/m)).

Proof. Assume we have an online MA communication protoBofor (m,n)-sparseINDEX. We describe
how to use this online MA protocol for the sparseéDEX problem to design one for the denseDEX
problem on vectors of lengthl = mlog(n/m).

11



Letk =log(n/m). Given an inpuk to the denseNDEX problem, Alice partitions into n’ /k blocks of
lengthk, and constructs a 0-1 vectpof Hamming weightY /k over the universg0, 1}("/9-2 = {0, 1}" as
follows. She replaces each bloBkwith a 1-sparse vectof € {0, 1}2k, where each entry of corresponds
to one of the ® possible values of block;. That is, if blockB; of x equals the binary representation of the
numberj € [2¢], then Alice replaces block; with the vectore; € {0, 1}2k, wheree; denotes the vector with
a 1in coordinatg and Os elsewhere.

Alice now has am'’ /k = mrsparse derived inpytover the univers¢0,1}". Merlin looks at Bob’s input
to see what is the indexof the dense vector that Bob is interested in. Merlin then tells Bob the index
such that? = 2¢(1 — 1) + j, whereB; is the block that is located in, and blocB; of Alice’s input x equals
the binary representation of the numieg [24]. Notice that Merlin can specify using logn bits. If Bob is
convinced thay, = 1, then Bob can deduce the valueatifthe bits in blockB; of the original dense vector
X, and in particular, the value af.

The parties then run the assumed online MA protocol(farn)-SparseiINDEX. The total hcost of
this protocol is hcog®) + logn = O(hcostP)), and the total vcost is vedd®). Thus, by Lemm&_ 318,
hcostP)vcos{(P) = Q(n') = Q(mlog(n/m)) as claimed. O

Theoreni3.P should be contrasted with the following weliwkn upper bound.

Theorem 3.10. Assume r< m™. Then the one-way randomized communication complexityedfnt, n)-
SparseiNDEX Problem is Gmlogm).

Proof. Alice chooses a hash functidn [n] — [m®] at random from a pairwise independent family and tses
to perform “universe reduction”. Thatis, she sehddong with the seSof mvalues{h(j) : x; = 1}. Notice

h can be specified wit(logn) = O(mlogm) bits, andScan be specified wit(mlogm) bits. Bob outputs
1if h(1) € S and 0 otherwise. The correctness of the protocol followsnfthe pairwise independence
property ofh: if x, = 0, then with high probability will not collide underh with any j such thatx; = 1.
The total cost of this protocol ®(mlogm). O

3.3 Implications of the Lower Bound

Our lower bound in Theoref 3.9 has interesting consequemhes it is combined with the upper bound
in Theoren-3.10. Consider in particular tfe, n)-SparseiNDEX Problem, wheren = 2™. Theoren{3.10
implies that the one-way randomized communication coniiylex this problem isO(mlogm); that is,
without any need of Merlin, Alice and Bob can solve the prablgith O(mlogm) communication.
Meanwhile, Theorerh 3.9 implies that even if Merlin’s messag Bob has lengtif2(logn) = Q(m),
Alice’s message to Bob must have lengmlog(n/m)/m) = Q(m). Indeed, Theorerin 3.9 shows that for
any protocolP, if hcos{P) > logn = m, then we must have hcd#) vcostP) = Q(mlog(n/m)) = Q(m?P).
In particular, this means that if hcg®t) = m, vcos{P) must beQ(m). This trivially implies that for any
protocol P with hcostP) lessthanm, vcos{P) must still beQ(m); otherwise we could achieve a protocol
with hcostP) = mand vcostP) = o(m) simply by runningP and adding in extraneous bits to the proof to
bring the proof length up to.
Consequently, the online MA communication complexity aftproblem is at leas®(m), which is
at most a logarithmic factor smaller than the one-way randethcommunication complexity. To our
knowledge, this is the first problem that provably exhibitis tbehavior. Specifically, this rules out smooth
tradeoffs between annotation size and space usage in awoyageth streaming protocol for then, 2™)-
SparsaNDEX Problem.

Corollary 3.11. The one-way randomized communication complexity ofrth2™)-SparseNDeEX Problem
is O(mlogm). The online Merlin-Arthur communication complexityigm).
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3.3.1 Other Sparse Problems

A number of lower bounds irl_[7] are proved via reductions frovDEX that preserve stream length up
to logarithmic factors. This holds forEsecTION and HEAVYHITTERS, as well as for the problem of
determining the existence of a triangle in a graph. For alhquroblems, the lower bound of Theorém]3.9
implies corresponding new lower bounds for sparse streeensstreams for whicim = o(n). We omit the
details for brevity.

3.3.2 Separating Online MA and AMA Communication Complexity

Another implication of Theoreri 3.9 is a polynomial sepamatbetween online MA communication com-
plexity and online AMA communication complexity. Indeedhete is an online AMA protocol of cost
O(y/m) for the (m, 2V™)-SparsanDEX Problem, where th® notation hides factors polylogarithmic in:
the first message, which consists of public random coinssésl o specify a hash functidn: [n] — [m°]
from a pairwise independent hash family; this message ggh©(logn) = O(,/m). With high probabil-
ity, h is injective on the se{j : x; = 1}. The parties then run the online MA communication protodol o
Theoreni3.2 on the inputgx) andh(1) and output the result. The total cost of this protocddis/m) as
claimed. In AppendiX’A, we in fact show that up to logarithrfactors inm, this online AMA protocol is
optimal.

Meanwhile, the lower bound of Theordm 3.9 implies that thinenMA communication complexity
of this problem isQ(m*4). Indeed, if we have a protoc@ with hcost?) = m¥* > logn, Theoreni 3.9
implies that hcogP) vcostP) = Q(mlog(n/m)) = Q(m*?), and hence vco&P) > m¥/4,

To our knowledge, this is the first such separation betwedinedAMA and online MA communica-
tion complexity (we remark that polynomial separationsagein online MA and MAMA communication
complexity were already known, for problems includingex andpisJ[2,[7]). Indeed, all previous lower
bound methods that apply to online MA communication comipjeguch as the proof of [7, Theorem 3.1]
and the methods of Klauck and Prakashi [24], in fact yieldedent AMA lower bounds. At a high level,
the reason is that these methods work via round reductiory-rémove the need for Merlin’s message.
They therefore turn any online MA protocol for a functiéninto an online “A” protocol forF, which is
really just a one-way randomized protocol without a proefigwing one to invoke a known lower bound
on the one-way randomized communication complexitiz oSimilarly, they turn an online AMA protocol
for F into an online AA protocol, which is also just a one-way ramilzed protocol for-.

The reason Theorem 3.9 is capable of separating online AMA fMA communication complexity
is that the reduction in the proof of Theoréml3.9 turns annenNA protocol for the(m, n)-SparseNDEX
Problem into an online MA protocol for the (densepEX Problem with related costs. However, the natural
variant of the reduction applied to an online AMA protocot the (m,n)-SparseNDEX Problem yields an
online MAMA protocol for the denseNDEX Problem,not an online AMA protocol (see Appendix]A for
details). And the denseiDEx Problem has an online MAMA protocol that is polynomially raafficient
than any online AMA protocol (see e.@/[2,111]).

4 Prescient Schemes for Sparse Disjointness and Frequencyoktents

In this section and the next, we describe schemes fomtlEsjointness I+DIsJ) and Frequency Moment
(F«) problems. These schemes contain the main ideas of the. paper
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Scheme Costs | Completeness Presciencd  Source
(mlogm)?3, (mlogm)?/3): m= Q(logn) Perfect Prescient | Theoreni43

(calogn, c,logn): cacy > n Perfect Online rd|
(mlogn, logn) Perfect Online [
(calognlog, m, c,lognlog, m): ca = mq, ¥/ Imperfect Online | Theoreni 5.l

Table 2: Comparison of oun-DISJ schemes to prior work. Ours are the first schemes to achiewaation
length and space usage that are both sublinean far m < /n, and we strictly improve over the MA
communication cost (online or prescient) of prior schembsnevem = o(n).

4.1 Background: Optimal Schemes for Dense Problems

We begin with a scheme achieving optimal tradeoffs betweaotation length and space usage for a broad
class of dense problems. Though this scheme follows refxdity prior work [7,9], we describe it in detail
for completeness. This scheme is a good examplesafiacheck schenaess described in Sectign 1.1, and is
based on the Aaronson—Wigderson MA protocoldosJ [2].

Proposition 4.1. Let fU_... f(©) denote the frequency vectors fflata streams, each over the universe
[n]. Let g be ar/-variate polynomial of total degree d over the integers. [Eet z{‘zlg(fi(l),..., fi“)), and

let o be an a priori upper bound off|. Then for positive integers,ac, with c,c, > n, there is an online
(dca(logn—+logo), ¢c,(logn+logo))-scheme for computing F in the non-strict turnstile updatelet.

Proof. We work onFF, the finite field withg elements, for a suitably large primgthe choiceg > 2d(n+0)?
suffices.V treats eactm-dimensional vectorf (V) as ac, x ¢, array with entries irf, using any canonical
bijection betweeric,] x [c,] and[n], and interpreting integers as element&gin the natural way. Through
interpolation, this defines a unique bivariate polynonfidl (X,Y) € Fy[X,Y] of degreec, — 1 in X and
c,—1inY, such that for alk € [ca], y € [cy], FI (xy) = FD(xy).

The polynomialsf(i) can then be evaluated at locations outdigi¢x [c,], S0 in the schem¥ picks a
random positiorr € Fy, and evaluates!)(r,y) for all j € [¢/] andy € [c,]; V can do this using, words of
memory per vectof (1) in a streaming mann€r][7, Theorem 4.1]. getehote the total-degrepolynomial
overlFq that agrees witlg at all inputs mIE‘é P then presents a polynomib{X) of degree at most(c, — 1)
that is claimed to be identical ., G(fY(X,y),..., fO(X,y)).

V checks thab(r) = Yyeio, G(F(ry),.... fO(ry)). If this sum checlpasses, thel believesP's
claim and accept¥ (¢, b(X) as the correct answer. It is evident that this scheme satjséidect complete-
ness. The proof of soundness follows from the Schwartz&lifgmma: ifP’s claim is false, then

Pr[b(r): )3 g(f(l)(r,y),...,f(é)(r,y))} <d(ca—1)/q. O
yeloy]

4.2 A Prescient Scheme for Sparse Disjointness

An important special case of the communication probieisu is when Alice’s and Bob’s input sets are
promised to be small, i.e., have size at mmsk n. These should be thought of agarseinstances. The
sparsity parameten has typically been denoted by the letkan the communication complexity literature,
and the problem has typically been referred tdassJ rather thanm-Di1sJ, we usem rather thark for
consistency with our notation in the rest of the paper (whedenotes the sparsity of a data stream).
Among the original motivations for studying this varianitsrelation to the clique-vs.-independent-set
problem introduced by Yannakakis |27] to study linear pamgming formulations for combinatorial opti-
mization problems. More recent motivations include cotines to property testing [4]. A clever protocol
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of Hastad and Wigdersoh[116] gives an optin®m) communication protocol fom-DisJ, improving upon
the trivial O(mlogn) and the easy¥)(mlogm) bounds. This protocol requires considerable interacten b
tween Alice and Bob, a feature that turns out to be necesdaegent results of Buhrmaet al. [6] and
Dasgupteet al. [12] give tight®(mlogm) bounds fom-DisJin the one-way model. Very recently, Brody
al. [5] and Saglam and Tardds [25] have given tight roundszesxmunication tradeoffs fan-DisJ.

Here we obtain the first nontrivial bounds forDI1SJ in the annotated streams model, and thus also in
the online MA communication model.

Definition 4.2. In them-DISJproblem, the data stream specifies two multi-&TC [n], with |0, || T|lo <
m, where||S||o denotes the number of distinct itemsSnAn update of the forn{(0,i), ) is interpreted as
an insertion o® copies of item into setS, and an update of the forfi1,i), d) is interpreted as an insertion
of & copies of item into T. The goal is to determine whether or ri&andT are disjoint.

Notice Definition[4.2 allowsSand T to be multi-sets, but assumes the strict turnstile updatdeino
where the frequency of each item is non-negative.

Theorem 4.3. Assume m- logn. There is a prescienmlogm)%2, (mlogm)?3)-scheme for np1sJ with
perfect completeness in the strict turnstile update modeparticular, the MA-communication complexity
of misJis O((mlogm)?/3). Any prescientcy,c,) protocol requires go, = Q(m).

Proof. Obviously if SandT are not disjoint, the prescient prover can provide an iten8N T at the start
of the stream and the verifier can check thatdeed appears in botBandT. The total space usage and
annotation length is jusd(logn) in this case.

Suppose now th&andT are disjoint. We first recall that@/nlogn, v/nlogn)-scheme fobisJfollows
from Propositiori 4J1, withf (V) and f (2 set to the indicator vectors &andT respectively, andgj equal to
the product function. We refer to this as the dens& scheme because its cost does not improy8| iind
|T| are botho(n).

Our prescient scheme farbDisJworks as follows. At the start of the stream, the prover dbssra hash
functionh: [n] — [r], for some smaller universe], with the property thah is injective onSUT. We will
write h(S) to denote the result of applyirfgto every member o8 The parties can now run the derssJ
scheme wherebl convinces/ thath(S) andh(T) are disjoint. Given the existence of an injective function
h, perfect completeness follows from the fact thab&nd T are disjoint, so aré(S) andh(T ), combined
with the perfect completeness of the depsgi scheme. Soundness follows from the fact thatdfSNT,
thenh(i) € h(S)Nh(T) i.e. if SandT are not disjoint, then the same holds trivially faiS) andh(T).

The denseisJ scheme run oif(S) andh(T) requires annotation length and space ugagerlogr).
We now show that, for a suitable choiceroP’s description oh is also limited toO(+/r logr) communica-
tion, balancing out the cost of the rest of the scheme.

A family of functions F C [r]" is said to bex-perfect if, for allSC [n] with |S| < k, there exists a
function h € F that is injective when restricted & Fredman and Komlds$ [15] have shown that for all
n>r > K, there exists &-perfect family.F, with

Klogn
|F| < (1+0(2)) <_|og(1—t(r,K))> ’

t(r,K) == ‘Jijll <1—%>.

Forr > 2k, we can use the crude approximation

where

—log(1—t(r,k)) > t(r,k) > (1_$>K > e 2K2/r
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Scheme Costs | Completenes$ Presciencd  Source

(k°cqlogn, ka,logn): cacy > n Perfect Online |

(mlogn, logn) Perfect Online rd|
(k2m?/3logn, kn?/3logn) Perfect Prescient | Theorenl4b
(kzmc;71/zlognlogCV m, kg, lognlog,, m): ¢, > 1 Imperfect Online | Theoreni 5.l

Table 3: Comparison of oufc schemes to prior work. Ours are the first schemes to achievetation
length and space usage that are both sublinean far m < /n, and we strictly improve over the MA
communication cost of prior protocols (online or presgievtienevem = o(n).

to obtain the boundlF| = O(ke?*/ logn), which implies
log|F| = O(k?/r),

for k2/r = Q(logk) andk = Q(logn).

Let us pick a familyF that is (2m)-perfect. OnceP andV agree upon such a family, the prover,
upon seeing the input sefandT, can pickh € F that is injective orSU T. Describingh requiresO(n?/r)
bits; P sends this t&/ before the stream is seen, avicstores it while observing the stream in order to run
the densepisi scheme or(S) andh(T). To balance out this communication with tB&./rlogr) cost of
running the denseisJscheme om(S) andh(T), we choose so that

m_ O(y/rlogr).

This is achieved by setting= m4/3/logz/3 m. The resulting upper bound is that both the annotation kengt
and verifier's space usage @ (mlogm)?3).
The lower bound follows from known lower bounds for denseatns|[[7]. O

4.3 A Prescient Scheme for Frequency Moments

We now present prescient schemes forktieFrequency Moment problerfy.

Definition 4.4. In the R/, problem, the data strearconsists of a sequence of updates of the fGr), and
the frequency of itemis defined to befj = 3 (j, 5,)ex:j,—i O The goal is to computBx = i<y fi".

The idea behind the scheme, as in the case-bisy, is thatP is supposed to specify a “hash function”
h to reduce the universe size in a way that does not introduse ¢allisions. However, foF it is essential
thatV ensureh is truly injective on the items appearing in the data stredinis is in contrast tan-DISJ,
where a weaker notion than injectiveness was sufficientéoaguiee soundness. The fundamental difference
between the two problems is that fla¥DisJ, collisions only “hurt the prover’s claim” that the two setie
disjoint, whereas foFy the prover could try to use collisions to convince the veritfiet the answer to the
query is higher or lower than the true answer.

Theorem 4.5. There is a prescier{k?m?/2logn, kn?/3logn)-scheme for computing Bver a data stream of
sparsity m in the strict turnstile update model. This schaageperfect completeness. Any presciegtc,)
protocol requires gc, = Q(m).

Proof. The idea is to have the prover specify for the verifier a pe¢tash functiorh: [n] — [r], wherer is to
be determined later, i.€ specifies a hash functidmsuch that for alk # y appearing in at least one update
in the data streanh(x) # h(y). The verifier stores the descriptionmfand while observing the stream runs
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the densd scheme of Propositidn 4.1 on the derived stream in which epdate(i,d) is replaced with
the updateh(i), d).

As discussed above, it is essential thaensureh is injective on the set of items that have non-zero
frequency, as otherwide could try to introduce collisions to try to trick the verifiefo deal with this, we
introduce a mechanism by whishcan “detect” collisions.

Definition 4.6. Define the problemNJECTION as follows. We observe a stream of tuples ((x,b;), &).
Eacht; indicates that) copies of itemx; are placed in buckds; € [r]. We allow d to be negative, modeling
deletions, and refer to the quantify; ;) = 3. (x b)—(j,0) & @s thecountof pair (j,b). We assume the strict
turnstile model, so that for all pai(g, b) we havef; , > 0.

We say that the stream is an injection if for every two p&jr®) and(j’, b) with positive counts, it holds
that j = j’. Define the output as 1 if the stream defines an injection, asttérwise.

Lemma 4.7. For any Gc, > r, there is an onlingc,logr, ¢, logr)-scheme for determining whether a stream
in the strict turnstile model is an injection.

Proof. Say that buckeb is pureif there is at most ong € [n] such thatf(; ,, > 0. The stream defines an
injection if and only if every buckeb is pure.

Notice that a buckeb is pure if and only if the variance of the item identifiers miagpto the bucket
with positive count is zero. Intuitively, our scheme willmpute the sum of the these variances across all
bucketsb; this sum will be zero if and only if the stream defines an itiggt Details follow.

Define three -dimensional vectorg, v,w as follows:

U= > fijp),

J€n]
Yo=Y fip]i;
j€ln]

Wp = Z f(Jb)jz
J€n]

Itis easy to see that if buckbtis pure then/tz) = Up-Wp. Moreover, if buckeb is impure then/tz) < UpWh;
this holds by the Cauchy-Schwarz inequality applied tori#témensional vectors whosgh entries are
V/Tip) and /Ty, - j respectively (the strict inequality holds because for apure buckeb, the vector
given by ,/fjp - | is not a scalar multiple of the vector given RyT;y,). Here, we are exploiting the
assumption thaf; , > 0 for all pairs(i,b), as this allows us to conclude that W values are real
numbers.

It follows that 3 pe V2= Ybelr)Uo - Wp if @and only if the stream defined an injection. Both quarditie
can be computed using the “dense” scheme of Propogitidn Matice that each update= ((x,b;), &)
contributes independently to each of the vectary, andw, and hence it is possible fof to run the
scheme of Propositidn 4.1 on these vectors as required.yidigs an onling(c, logr, ¢, logr)-scheme for
the injection problem for ang,c, > r as claimed. O

Returning to ouFy schemeP specifies a hash functidnclaimed to be one-to-one on the set of items that
appear in one or more updates of the streaivi verifies thath is injective using the scheme of Lemmal4.7.
If this claim is true, ther(x) = F(h(x)), the frequency moment of the mapped-down stream,FRacan
prove this by running the scheme 0f [7, Theorem 4.1] on thvel@istrearmh(x).

Perfect completeness follows froRis ability to find a perfect hash function just as in Theorer. 4.
Soundness follows from the soundness of th&lc Tionscheme of Lemnia4.7, in addition to the soundness
property of theq, scheme of([7, Theorem 4.1].
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To analyze the costs, note that by using the hash family arfe® and Koml6g [15], the annotation
length and space cost due to specifying and storing the hawtidnh is O(nm?logn/r). The annotation
length and space cost of the derfigescheme of Propositidn 4.1 a@k’c,logr) andO(kg,logr) for any
CaCy > r. The annotation length and space cost of theecTION scheme can be set ©(c,logr) and
O(c,logr) respectively. Setting= m*/2 andc, = ¢, = m?/3 yields the desired costs. O

5 An Online Scheme for Frequency Moments

We now give an online version & scheme of Theorem 4.5. A simple modification of this scheratdlygi

the scheme fom-DisJwith analogous costs as claimed in Row 4 of Table 2. In aduitoavoiding the use

of prescience, our online scheme avoids requixinig explicitly store the hash function sent Byallowing

us to achieve a much wider range of tradeoffs between anmoize and space usage relative to Theorems
4.3 and 4.b.

Theorem 5.1. For any ¢, > 1, there is an onIine{kzmc;71/2 lognlog, m, ka,lognlog, m)-scheme for Ein
the strict turnstile model for a stream of sparsity m over &arse of size n. Any onlin&,, ¢y)-scheme for
this problem with g > logn requires gc, = Q(mlog(n/m)).

Notice that the annotation length is less tmalogn for anyc, = m?(, and therefore this protocol is not
subsumed by the simple “sparse” scheme (second row of [hirenhich P just replays the entire stream
in a sorted order, and checks this is done correctly using fingerprints. Notice #mt the product of the
space usage and annotation Iengtl@mcﬂ/ 2 IogznlogﬁV m, which is ino(n) for many interesting parameter
settings. This improves upon the dense sum-check schemster¢fiv of Tabld B) in such cases.

5.1 An Overview of the Scheme

In order to achieve an online scheme, we examine how to earigterfect hash functions such as those used
in the prescienE, scheme of Theorein 4.5. L&tbe the set ofmitems with non-zero frequency at the end
of the stream: we want the hash function to be one-to-on8 @hoose a hash functidmat random from
pairwise independent hash family mappingto [r], for r to be specified later — this requires j@logn)
bits to specify. We only expe@(n?/r) pairs to collide undeh, which means that with constant probability
there will beO(m?/r) collisions ifhis chosen as specified. The final hash functiois specified by writing
down h (which takes onlyO(logn) bits), followed by the items involved in a collision and sospecial
locations for them. The total (expected) bit length to sfyettiis hash function i©(n?log(n)/r).

In our onlineF, schemeP will send such ai at the start of the stream. Notibaloes not depend on the
stream itself — it is just a random pairwise independent asttion — soP is not using presciencé also
has no incentive not to chooket random from a pairwise independent hash family, sincemhepurpose
of choosingh in this manner is to minimize the number of collisions undelf P chooses in a different
way, P simply risks that there are too many collisions unldetausingV to reject.

Now whileV observes the stream, she runs the online sum-check schefggfeen in Proposition 411
on the mapped-down universe of sizaisingh as the mapping-down function. At the end of the streBm,
is asked to retroactively specify a hash functignthat is one-to-one o8 as follows. P provides a list_g
of all items inSthat were involved in a collision undér accompanied by their frequencies. Assuming that
these items and their frequencies are honestly specifidel Wycan compute their contribution f& and
remove thenfrom the stream. By desigh; is then (claimed to be) injective on the remaining iteMisan
confirm this tentatively using theubECcTION scheme of Lemma 4.7.

The remainder of the scheme is devoted to making the cogssim certainty by ensuring that the items
in Lo and their frequencies are as claimed (we stress that whilexqosition of the scheme is modular, all
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parts of the scheme are executed in parallel, with no comeation ever occurring fro to P). A naive
approach to checking the frequencies of the itemkgimvould be to run|Lo| independent BINTQUERY
schemes, one for each item lin however there are too many itemslig for this to be cost-effective.
Instead, we check all of the frequencies as a batch, withta)&heme whose cost is roughly equal to that
of a single NJECTION query.

This (sub-)scheme can be understood as proceeding in stétesach stageusing a different pairwise
independent hash functidn to map down the full original input. Say that an itgns isolatedby h; if j is
not involved in a collision unddm, with any other item with non-zero frequency in the originatalstream
X. The goal of stageis to isolate a large fraction of items which were not isalag any previous stage.

A key technical insight is that at each staget is possible forV to “ignore” all items that are not
isolated at that stage. This enableto check that the frequencies of all items thetisolated at stageare
as claimed. We bound the number of stages that are requiisdlabe all items ifP behaves as prescribed
— if P reaches an excessive number of stages, theill simply reject.

5.2 Details of the Scheme

Proof of Theorem[5.1: Letr = md/2. P sends a hash functidm [n] — [r] at the start of the stream, claimed
to be chosen at random from a pairwise independent hashyfavithile observing the strearv, runs the
dense online sum-check schemeFpigiven in Propositiol 4]1 on the mapped-down univérgeLet Sbhe
the set of items with non-zero frequency at the end of thastreAfter the stream is observeeljs asked to
provide a listL of all items with nonzero frequency that were involved in Hision, followed by a claimed
frequencyf;* for eachi € L.

Assuming that these items and their frequencies are hgngsécified inLy by P, V can compute
their contributionCoy = 3¢, f;* to K and then remove them from the stream by processing uptates
{(i,—f") :i € Lo} within the densdv scheme.h is injective on the remaining item&/ can confirm this
using the NJECTION scheme of Lemmia 4.7 (conditioned on the assumed correathkgs Thus the dense
F« scheme will outpu€; = ¥4, fi". Assuming all oV's checks within the dendg scheme pas¥, outputs
Co +C; as the answer.

The remainder of the scheme is directed towards determitfiagthe frequency of items ihgp are
correctly reported. We abstract this goal as the followirgbfem.

Definition 5.2. Define the/-MuLTIINDEX problem as follows. Consider a data streamlLg, whereo
denotes concatenatiorx is a usual data stream in the strict turnstile model, whgeas a list of ¢ pairs
(i, f;*). Let f be the frequency vector af The desired output is 1 it = f;* for all i € Lo, and O otherwise.

We defer our solution to th& MuULTIINDEX problem to Section 513. For now, we state our main result
about the problem in the following lemma.

Lemma 5.3. For all ¢, > 1, /-MULTIINDEX has an onIine(mq?l/zlogn log,, ¢, cylognlog,, £)-scheme in
the strict turnstile update model.

Analysis of Costs. Let S be the set of items with non-zero frequency when the streais. eRirst, we
argue that ifr is the size of the mapped-down universe, &whooses the hash functidrat random from a
pairwise independent hash family, then with probabilii @, there will be at most 1%’ /r items inSthat
collide underg. Indeed, by a union bound, the probability any itemith non-zero count is involved in a
collision is at mostn/r, and hence by linearity of expectation, the expected nurobgems involved in a
collision is at mostr?/r.

So by Markov’s inequality, with probability at least 9/18ettotal number of items involved in a collision
will be at most 1012/r = O(mq?l/z) under the setting = mcﬁ/z. Conditioned on this evenk can specify
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the listLp and the associated frequencies with annotation Ie@@llm?l/2 logn), andV can use the MLTI-

INDEX scheme of Lemmia 5.3 with= O(mc;?l/z) to verify the frequencies of the itemsli are as claimed.
For anyc, > 1, Lemmd5.B under this setting 6§ields an(mc, tlogn- log,, £, cvlogn-log,, ¢)-scheme.
Running all of the sum-check schemes (i.e., tkeelcTION scheme and th&, scheme itself) on the
mapped-down universe requires annota@krc; logr) and space(kg,logr) for V; in total, this pro-
vides an onlingm?logn/r 4 k?r logn/c, + kmg *logn- log,, m, c,logn-log,, M)-scheme.
Since we set = ma/?, we obtain a onlinékzmcf/2 log,, (M), ke, lognlog, (m))-scheme for ang, > 1.
The lower bound stated in Theordm15.1 follows from Theofebhahd an easy reduction from the
(m,n)-sparse@NDEX problem. O

5.3 A Scheme for Multiindex: Proof of Lemmal5.3

Before presenting an efficient online scheme fordiuLTI INDEX Problem, we define two “sub”problems,
which apply a function to only a subset of the desired input.

Definition 5.4. Define the problem $8INJECTIONas follows. We observe a stream of tupes (X, b, &),
followed by a vectoz € {0,1}". Asin the NJECTION problem, eacly indicates tha®; copies of itermx; are
placed in buckeb; € [r].

We say that the stream defineswbinjectionbased ore if for every b such thatz, > 1, for every two
pairs (x,b) and (y,b) with positive counts, it holds that=y. The SUBINJECTION problem is to decide
whether the stream defines a subinjection based on

Notice that the NJECTION problem is a special case of the & NJECTION problem withz = 1 for alli.

Lemma 5.5. For any Gc, > r, there is an onlingc,logr, ¢, logr)-scheme folSuBINJECTION N the strict
turnstile update model. Moreover, for any constant 6, this scheme can be instantiated to have soundness
error 1/rC.

Proof. Define vectorsy, ¢,, andw exactly as in the proof of Lemnia 4.7, and observe that tharstaefines

a sub-injection if and only ify e zbvg = Ybelr) ZUpWp. V can compute both quantities using the dense
scheme of Propositidn 4.1, with the same asymptotic costseascheme of Lemnia4.7. The soundness
error can be made smaller thafrfor any constant by running the scheme of Proposition}4.1 over a finite
field of size polyr), for a sufficiently fast-growing polynomial in O

We similarly define the problem U ®F, over a data universe of sizebased on a vectar € {0,1}"
asyicna f2, the sum of squared frequencies of items indicatedz. by his too is a low-degree polyno-
mial function of the input values, and so Proposition| 4.1 liegoSUuBF, can be computed by an online
(calogr,cylogr)-scheme in the general turnstile update model for @ng, such thatcac, > r (and the
soundness error in this protocol can be made smaller therfdr any desired constay).

Online scheme for/-MULTIINDEX. The scheme can be thought of as proceeding stages t( will be
specified later), although these stages merely serve titigratthe annotation: there is no communication
from V to P during these stages. Each stggeakes use of a corresponding hash functipn [n] — [r]

forr = mc%/ 2 Thet hash functions are provided W at the start of the stream, so thathas access to
them throughout the stream. Edchis claimed to be chosen at random from a pairwise indeperitesit
family: if they are, then there are unlikely to be too manylismins, soP has no incentive not to chookge
at random. Leff denote the vector of frequencies defined by the input straachletf(©) denote the vector
satisfyingf'” = f, for i € Lo, and f” = 0 fori ¢ Lo.

Stagej begins with a lisLj_; of items. We will refer to these items as “exceptionB’provides a new
list L; € Lj_1 of items which remain exceptions in stageP implicitly claims that no items irLj_1 \ L;
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collide with some other input items under hash functignLet ) denote the indicator vector of the list of
buckets corresponding tg_; \ Lj, i.e. zﬁ]’j)(i) =1ifi €Lj_1\Lj, andz) entries are 0 otherwise. To check
that no items irL;_1 \ L; collide underh;, V will use the SJBINJECTION scheme based on the indicator
vectorz)) over the full original inputf as mapped by the hash functibp Note that since the original input
stream is in the strict turnstile update model, so is thestren which the 8BINJECTIONSCheme is run (as
the SUBINJECTION scheme is simply run on the original input stream as mappetidoyash functiorn;,
based on the vectaf!)). Note also that ;_; andL; are provided explicitly, s¥ can compute!)) easil

Having established that the itemslin_1 \ L; are no longer exception¥, also wants to ensure that the
frequencies of these items were reported correctlyirifo do soV run the SyBF, scheme over the vector
f — f* as mapped by; to r buckets, based on treé) indicator vector. The result is zero if and only if
fi = £ for all i wherez!) = 1.

The stages continue until; = 0, and there are no more exceptions. Provided all schemeduce
correctly, and the number of stages to reagh= 0 is at most, V can accept the result, and output 1 for the
answer to the MLTIINDEX decision problem.

Lastly, note thaV does not need to explicitly store any of the likts In fact, P can implicitly specify
all of the listsL; while playing the listLo: for each item € Lo, he provides a numbgr, thereby implicitly
claiming thati € Ly for j’ < j, andi ¢ L for j’ > |.

Analysis of costs. If h; is chosen at random from a pairwise independent hash fathédyprobability an

itemiin Lj_1 is involved in a collision with the original streafmunderh; is O(m/r) = O(ch/z). Consider

the probability that any itemsurvives as an exception to stageThe probability of this i9(c, Y 2), and

summed over all items, the expected number@/c, Y 2). Invoking Markov’s inequality, with constant
probability it suffices to set= O(log, ¢) to ensure that we need at mostages before no more exceptions
need to be reported.

In stagej, the SuBINJECTION and SUBF, schemes cos(lmq?l/zlogn,c\,logn). Summing over thé
stages, we achieve for angy > 1 an(mc;71/2 log(n) - logy, (M), ¢ylog(n) - log,, (M))-scheme as claimed in the

statement of Lemma3.3.

Formal Proof of Soundness.The soundness error of the protocol can be bounded by thelpitity any
invocation of the BINJECTION scheme or the @8F, scheme returns an incorrect answer. The soundness
errors of both the 8BINJECTION scheme and the ®F, scheme can be made smaller thi,]arfor any
constant > 0, and therefore a union bound overta# O(log,, £) invocations of each protocol implies that
with high probability, no invocation of either scheme reuan incorrect answer.

5.4 Implications of the Online Scheme for Frequency Moments

Our online scheme fdF in Theoreni 5.1l has a number of important consequences.

Inner Product and Hamming Distance. Chakrabartiet al. [7] point out that computing inner products and
Hamming Distance can be directly reduced to (exact) contipataf the second Frequency Momét and
so Theoremk 415 aind 5.1 immediately yield schemes for thesdems of identical cost.

An improved scheme for g-HEAVY HITTERS. We can use Lemma 5.3 to yield an online scheme for the
@-HEAVY HITTERS problem.

Corollary 5.6. For all c4,¢y such that gc, > mlogn, there is an onlingcalogn - log (m) + ¢ tlogn,
cvlognlog,, (m))-scheme for solving-HEAVY HITTERS in the strict turnstile update model.

2For exampley can add one to the corresponding entrg®¥f for each item that is marked as an exception. This will caiide
to count the number of exceptions in each bucket, ratheritithoate them, but this does not affect the correctness.
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Corollary[5.6 follows from a similar analysis to Corolldnyg3 [7, Theorem 6.1] describes how to reduce
@-HEAVY HITTERS to demonstrating the frequencies@f@ ) items in a derived stream. Moreover, the
derived stream has sparsi@(mlogn) if the original stream has sparsitp. We use the MLTIINDEX
scheme of Lemmia 8.3 to verify these claimed frequencies.

Frequency-based functionsChakrabartit al. [[7, Theorem 4.5] also explain how to extend the sum-check
scheme of Propositidn 4.1 to efficiently compute arbitdfaeguency-based functionehich are functions

of the formF(x) = Ficiy 9(fi(x)) for an arbitraryg : (—[NJU[N]) — Z. A similar but more involved
extension applies in our setting, by replacing the déhseheme implied by Propositién 4.1 with the dense
frequency-based functions schemeldf [7, Theorem 4.5]. \&k apt the details below, restricting ourselves
to the prescient case for brevity; an online scheme withretisdly identical costs follows by using the ideas
underlying Theorerh 5l1.

Corollary 5.7. Let F(x) = ¢y 9( fi(x)) be a frequency-based function. Then there is a prescietit logn,

N®/4logn)-scheme for computing (&) in the strict unit-update turnstile model. This schemesiats perfect
completeness.

Proof. We use a natural modification of the frequency-based funstecheme of |7, Theorem 4.5P
specifies a hash functioh at the start of the stream mapping the univeigeinto [N%4]; P choosesh

to be injective on the set of items that have non-zero frequert the end of the stream. Using the per-
fect hash functions of Fredman and Komlbs|[15tan be represented wit(N?/rlogn) = O(N%/*logn)
bits. V storesh explicitly. After the stream is observe®, andV run the g-HEAVY HITTERS scheme of
Corollary[5.8, withp = N~Y/4. Using the fact thal; fi < N, by setting the parameters of Corolldry15.6
appropriately we can ensure that this part of the scheméresgannotation lengtt(N%“logn) and has
space cosO(N3/4Iog n). This scheme also allows to determine the exact frequencies of the itembljn
allowingV to compute corfH) := ¥ 9(fi(x)), which gives the contribution of the itemslkhto the out-
putF(x). Moreover, wheneveV learns the frequency; of an item ini € H, V treats this as a deletion &f
occurrences of item thereby obtaining a derived streanmn which all frequencies have absolute value at
mostNY/4,

P andV now run thepolynomial-agreemergcheme that was first presented(ih [9, Theorem 4.6] on the
“mapped-down” inpuh(z) over the universéN>4]. For anyc,c, > r, the polynomial agreement scheme can
achieve costFmax(z)calogn, c,logn), whereFyax(z) denotes max fi(z)|, the largest frequency in absolute
value of any item. Setting, = N%* andc, = N/4, we obtain a prescieriN®*logn,N®“logn)-scheme as
claimed.V computes the final answer B$x) = contH) + F(h(z)) — |H|g(0).

The final issue is thaf needs to verify thah is actually injective over the items that appeaxity can
accomplish this using thevbecTiON scheme of Lemm@a4.7. This does not affect the asymptotic afst
our scheme, as thesJECTION scheme can support annotation cagdbgr and space cogt, logr for any
CaCy = Q(N/4). O

Finally, we provide one additional corollary, which debes a protocol that will be useful in the next
section when building graph schemes.

Theorem 5.8. Let X,Y C [n] be sets withX| < |Y| < m. Then given a stream in the strict turnstile update

model with elements of X and Y arbitrarily interleaved, thex an online(mc;71/2 -log(n) - log,, (M), ¢y -
log(n) - log,, (m))-scheme for determining whetherXY for any ¢ > 1.

Proof. If X Y, P can specify ax € X\ Y and prove thax is indeed inX and noty with two point queries
using the scheme of Theordm3.2. For the other case, Chakrabal. show how to directly reduce the
caseX C Y to computation of frequency moments [7]. The claimed casitew from Theoreni 5J1. O

Table[4 provides a comparison of schemes for the<s& T problem in the dense and sparse cases.
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Scheme Costs | Completenesg Online/Prescien{  Source

(|X|logn, logn) Perfect Prescient [7]
(calogn, cylogn): cacy Perfect Online [7]
(mlogn, logn) Perfect Online [7]
(mc;,l/zlogcv(m) logn, c,lognlog, m): ¢, > 1 Imperfect Online Theoreni 5.B

Table 4. Comparison of our ®SET scheme to prior work. Ours is the first online scheme to aehiev
annotation length and space usage that are both sublineafonm < /n, and strictly improves over the
online MA communication cost of prior protocols whenewes o(n).

6 Graph Problems

We now describe some applications of the techniques deselapove to graph problems. The main purpose
of this section is to demonstrate that the techniques dpedlwithin thel, andm-DIsJschemes are broadly
applicable to a range of settings.

We begin with several non-trivial graph schemes that amctitonsequences of the Subset scheme of
Theoreni5.B. Recall that our definition of a scheme for a fandt requires a convincing proof of the value
of F(x) for all values Kx). This is stricter than the traditional definition of intetige proofs for decision
problems, which just require thathf(x) = 1 then there is some prover that will cause the verifier tofaicce
with high probability, and ifF (x) = 0 there is no such prover. Here, we consider a relaxed definitf
schemes that is in the spirit of the traditional definitione ¥quire only that a scheroé= (h,V) satisfy:

1. Forallx s.t. F(x) = 1, we have R r, [out’ (x)'® ry) # 1] < 1/3.
2. Forallx s.t. F(x) =0, = (h},h5,...,b}) € ({0,11)N, we have Ry, [out’ (X', ry) = 1] < 1/3.

Theorem 6.1. Under the above relaxed definition of a scheme, each of tHE#gMEBPERFECTMATCHING,
CONNECTIVITY, and NON-BIPARTITENESShas an(nlogn+ mg, L2 lognlog,, m, c,lognlog, m)-scheme
on graphs with n vertices and m edges for glbe1. All three schemes work in the strict turnstile update
model and improve over prior work if,e= w(log?m) and ¢ = o(m).

Proof. In the case of perfect matching, the prover can prove a gerfatching exists by sending a matching
M, which requiremnlogn bits of annotation. In order to prov#1 is a valid perfect matchind? needs to
prove that every node appears in exactly one edg#1ofand thatM C E, whereE is the set of edges
appearing in the streanv. can check the first condition by comparing a fingerprint ofribdes inM to a
fingerprint of the se{1,...,n}. V can check thatm C E using Theorerh 518.

In the case of connectivity, the prover demonstrates thphgig connected by specifying a spanning
treeT. V needs to checkK is spanning, which can be done aslih [7, Theorem 7.7], andsrteecheck that
T C E, which can be done using Theoréml5.8.

In the case of non-bipartitenegddemonstrates an odd cydeV needs to check is a cycleC has an
odd number of edges, and tHaiC E. The first condition can be checked by requiriadgo play the edges
of C in the natural order. The second condition can be checkedbrgtimg. The third condition can be
checked using Theorelm 5.8. O

Counting Triangles. Returning to our strict definition of a scheme, we give anr@bcheme for counting
the number of triangles in a graph.

Theorem 6.2. For any g > 1, there is an onlinéc,lognlogm, ¢,lognlogm)-scheme, with imperfect com-

pleteness, for counting the number of triangles in a grapmardes and m edges, wherg=€ mng, V2
The scheme is valid in the strict turnstile update model.
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Scheme Costs | Completenesg Online/Prescien{  Source |

(calogn,cylogn): cac, > n° Perfect Online [7]
(n?logn,logn) Perfect Online 171
(calog?n,c,log?n): ca =mng % |  Imperfect Online Theoreni6.R

Table 5: Comparison of prior work to our scheme for countihng humber of triangles in a graph
with n nodes andm edges. For concreteness, notice that by setting n, Theorem 62 achieves a
(mnt/2log? n, nlog? n)-scheme, which improves over prior work as longras: n%/2.

Proof. Chakrabartet al.[7, Theorem 7.4] show how to reduce counting the numberarfigiies in a graph to
computing the first three frequency moments of a derive@dstrel he derived stream has sparsitin — 2).
Using the online scheme of Theoréml5.1 to compute the reiésaquency moments of the derived stream
yields the claimed bounds. O

The scheme of Theorelm 6.2 should be compared térthéogn)-scheme from([7, Theorem 7.2] based
on matrix multiplication, referenced in Row 2 of Table 5 ahé th,v)-scheme for ang,c, > n® from [7,
Theorem 7.3], referenced in Row 1 of Table 5. To compare tddhmer, notice that Theorem 6.2 yields
a (calog®n, ¢, log? n)-scheme wittc, < n? as long asn < n,/Cy. To compare to the latter, note that in our
new schemeg,c, = mné/z, which is less tham® as long asf.:\l/2 < ”—:] In particular, if we set, = n, then
Theoreni6.R improves over both old schemes as lomg as®/2.

Unfortunately, Theorern 6.2 does not yield a non-trivial Ndfotocol for showing no triangle exists.
Indeed, equalizing annotation length and space usage inevuprotocol occurs by setting both quantities
to (mn)%3. ButQ ((mn)#3) < monly whenm> n?, which is to say that the MA communication complexity
of this protocol is always larger than, a cost that can be achieved by the trivial MA protocol wheezlivi
is ignored and Alice just sends her whole input to Bob. Thatis interest in the new protocol is that it can
lower the space usage Véfto less thanm without drastically blowing up the message lengttPdb n? as in
the matrix-multiplication based protocol from [7].

7 Non-strict Turnstile Update Model

All schemes in Sectiorid 4 ahdl 5 work in the strict turnstildatp model. The reason these schemes require
this update model is that they use thetcTioNn and SUBINJECTION schemes of Lemmala 4.7 dnd]5.5 as
sub-routines, and these sub-routines assume the stnstitarupdate model.

In this section, we consider two ways to circumvent thisesslo focus the discussion, we concentrate
on the online~, protocol of Theorerh 5]1.

7.1 An Online Scheme

One simple method for handling streams in the non-stricistile update model is the following. We use the
scheme of Theorem 3.1, but within the® NJECTION sub-routine, we treat deletions of items in the input
stream agnsertionsof items into the derived stream 0f;, b;, & ) updates. This ensures that thestcTION
and SuBINJECTIONSchemes correctly output 1 if the derived stream is a sutiinje (and the remainder of
the scheme computes the correct answer on the originahstrétowever it increases the expected number
of collisions under the universe-reduction mappihgsfrom m-|L;j_1|/r to M -|L;_1|/r. The result is that
we achieve the same costs as Thedremh 5.1, except the costgldampto the stream footpriM rather than
the stream sparsity (see Sectioh 214).
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Corollary 7.1. Forany g > 1, there is a(kzM(;Ql/2 -log(n) -log,, (M), kg, -log(n) - log,, (M)) online scheme

for F in the non-strict turnstile update model over a stream waibtirint M over a universe of size n.

7.2 An Online AMA Scheme

In this section, we describe an AMA scheme for tkedcTiONproblem that works in the non-strict turnstile
stream update model i.e., the input may define a frequendpivetiere some elements end with negative
frequency. The scheme fonJECTION of Lemma[4.Y breaks down here, since there may be some cases
where the checks performed by the protocol indicate thatcditis pure, when this is not the case: can-
cellations of item weights in the bucket may give the appeaeaf purity. To address this, we use public
randomness, thereby yielding an AMA scheme. In essenceyettifeer asks the prover to demonstrate the
purity of each of the buckets via fingerprints of the bucket contents. Howevenefallow the prover to
choose the fingerprint functio®, could pick a function which leads to false conclusions.dastV chooses
the fingerprinting function using public randomness. Thayeis then execute a newJECTION protocol
using the data remapped under the fingerprint function, kvisiintended to convinc¥é of the purity of the
buckets. This then allows us to construct protocols withctsat depend on the stream sparsityather
than the footprint as in Corollary 7.11.

In detail, the new AMA scheme proceeds as follows. ConsideritJECTION problem as defined in
Definition[4.6, but generalized to allow items with arbigramteger counts. Consider again a buckeand
for 1 < j < logn defineb=! to be the frequency vector of the subset of stream updagels, &) placing
items into buckeb, subject to the restriction that thj&h bit of x is equal tof. We observe the following
property: if buckeb is pure, then one dii=C andbi=! must be the zero vect®x, for eachj. Moreover, ifb
is not pure, then there existsjauch that botthi=° andb!=! are not the zero vector.

A natural way to compactly test whether these vectors araldéquzero (probabilistically) is to use
fingerprinting (discussed in Sectibn P.4). The verifiecould do this unaided for a single bucket, but we
wish to run this test in parallel far buckets. At a high level, we achieve this as follows. Givernreasn
of updates(x, b, &), we define two vectorg ando of lengthrlogn, such that each coordinate nando
corresponds to a (bucket, coordinate) gairj) € [r] x [logn]. In more detail, we will define ando such
that for each bucket and coordinatg € [logn)], the (b, j)th entry ofzis a fingerprint of the vectds'=°, and
the (b, j)th entry ofo is a fingerprint of the vectdn! =1,

We choose the fingerprinting functions to satisfy two prtiper

1. The fingerprint of the all-zeros vectOtis always 0. This ensures that if all buckets are pure, then th
inner product oz andois 0, asz, j - 0y j is O for all pairs(b, j) € [r] x [logn].

2. If there is an impure bucket, then the inner product ahdo will be non-zero with high probability
over the choice of fingerprint functions.

Therefore, in order to determine whether the stream defimggection, it suffices to comput®y, jc(r][logn| Z.; -
Op,j, Which can be computed using Proposifion 4.1 with annatdéagthc, logn and space cost, logn for
anycy - cy > rlogn.

The idea allowing us to achieve the second property is agwsll If bucketb is impure, then there is
at least one coordinatge [logn] such thato!=° andb!=? are both not equal to the all-zeros vecforBy
basic properties of fingerprints, this ensures that lagihandoy ; are non-zero with high probability over
the choice of fingerprint functions. Moreover, we choosefthgerprinting functions in such a way that
non-zero terms in the SUM, j)c(r) < logn Zb,j - Ob.j @re unlikely to “cancel out” to zero.

Consequently, we can state an analog of Lerhmia 4.7.

Lemma 7.2. For any Gc, > rlogn, there is an onlinéc,logn, ¢, logn)-scheme for determining whether a
stream in the non-strict turnstile model is an injection.
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Proof. Let [y be a finite field of sizey = poly(n), where the subsequent analysis determines the required
magnitude ofy. V uses public randomness to choose two field elemenéndB uniformly at random from
[Fq. For each bucket € [r], and each coordinatee [logn], we define two “fingerprinting” functiongp j o
andgy ; g mapping am-dimensional frequency vectéras follows:
Obja (X) _ an(b-logn-i—j) Z xzaf,
Leln]

and
Ob,j.p(X) = BP9 %, B,
Leln]

where each entry, of x is treated as an elementBfin the natural manner.

We now (conceptually) construct two vectarsand o of dimensionrlogn, where for each(b, j)
[r] x [logn], Z,j = Gb.j.a(b1=%) andopj = gn j(b/~1). That s, the(b, j)th entry ofz equals the fingerprint
of the frequency vector of items mapping to bucketith a 0 in thejth bit of their binary representation.
Observe thad, j.« (0) = gy j s(0) = 0 for all (b, j) € [r] x [logn], as required by Property 1 above.

We now show that Property 2 holds, i.e. if there is an impurekét) then the inner product afand
o will be non-zero with high probability over the choice @fand 3. In the following, for an itenv € [n|
and buckeb € [r], we let f,(b) denote the frequency with which itefris mapped to bucked, and we let;
denote thg’th bit in the binary representation éf We can write the inner product afando as

Ob.j.a (8700 j g (017
(b,j)e(r]x[logn]

-5 an<b~|ogn+j>3n<b-logn+i>( > fg(b)af>< > fz(b)l#)
(b.j) €T [logn] teln =0 e

_ an(b~logn+j)[3n(b-|ogn+j) Z fg(b) fg/(b)afﬁf/
(b.j)€(r]x[logn] (€£,6):6;=06{=1

We therefore see that the inner productzahdo is a polynomial ina and of total degree’rlogn in
each variable. Moreover, the coefficient of the texfiPlogn+i)+¢gn(blogn+i)+" ig preciselyf,(b) - f (b) if
¢;=0 andé’j =1, and is 0 otherwise.

Recall that if buckeb is not pure, then there is at least one coordirjate]logn|, and items/, ¢’ € [n|
with ¢; = 0 and /| = 1, such thatf,(b) # 0 and f,(b) # 0. The above analysis implies thato is a
non-zeropolynomial ina and, as the coefficient of"(blogn+i)+gn(blogn+ i)+ jg non-zero. Hence, by the
Schwartz-Zippel lemma, the probability over a random chaitor and thatz- o = 0 is at most?r logn/aq.
Settingq to be polynomial im, there is only negligible probability (over the choiceafind3) thatz-ois
zero if the stream is not an injection.

Finally, notice that the verifier can apply the scheme of Bsitpn[4.] to COMPULE (b jye[r]x[logn Zb.j °
Op,j, as each stream updale, b, &) can be treated as logupdates to the vectomsando. For example, if
the jth bit of X is 0, then updatéx,, b, &) causes, j to be incremented bg - a"(®109™ 1)+, O

Applications. We can apply this online scheme to compute Frequency Monfanésinner Product, Ham-
ming Distance, Heavy Hitters etc.) over sparse data in theshact turnstile update model. The costs
of the resulting online AMA scheme are similar to the costshef online schemes for the same problems
developed in previous sections. The only difference is Wmthave scaledn up by a log factor, to ac-
count for the fact that within the new AMA sub-scheme fapECTION, we must run the dense protocol of

26



Propositio 4.1l on vectorsando of lengthr logn, rather than on vectors of lengthas in prior sections,
and substitute the bounds from Lemimal 7.2. For example, thlegof Theorem 511 is that for amy > 1,
there is a(kzmq71/2 -log?(n) - log,, (M), kg, -log(n) - log,, (m)) online AMA scheme foiFy in the non-strict

turnstile model.

8 Conclusion

We have presented a number of protocols in the annotatedtassning model that for the first time allows
both the annotation length and the space usage of the vedftex sublinear in the stream sparsity, rather
than just the size of the data universe. Our protocols sntislig improve on the applicability of prior work

in natural settings where data streams are defined over aggg Liniverses, such as IP packet flows and
sparse graph data.

A number of interesting questions remain for future work.e iiggest open question is to determine
the precise dependence on the stream sparsity in probleshsasm-DiIsJ and frequency moments. When
setting the annotation length and the space usage of tHeevénibe equal, our protocols have cost roughly
m?/3, wheremiis the sparsity of the data stream. The best known lower bauralighlym/2. We conjec-
ture that our upper bound is tight up to logarithmic facttmst, proving any Merlin-Arthur communication
lower bound larger tham®/2 will require new lower bound techniques in communicatiomptexity. An-
other interesting open question is to give improved prdofm multiplying ann x n matrix A by a vector
X, whenA is sparse (i.e., has(n?) non-zero entries), but may be dense. Achieving this would yield im-
proved protocols for proving disconnectedness, bipais, or the non-existence of a perfect matching in
a bipartite graph. Currently we do not know of any protocolstifiese problems that leverage graph sparsity
in any way.
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A An Online AMA Lower Bound for (m,2v™)-SparseiNDEX

We prove that the onliné(\/ﬁ) protocol for the(m, Zm)—SparselNDEx problem is essentially optimal.
Our lower bound follows from a natural variant of the redotin Theoreni3]9. That is, we turn an
online AMA protocol for the(m, 2v™)-SparsanDex Problem into an online MAMA protocol for the dense
INDEX Problem. We then invoke a lower bound on the online MAMA comiuation complexity ofNDEX
Problem due to Klauck and Praka@[@].

Theorem A.1. The online AMA protocol complexity of i, 2v™)-SparseiNDEX problem isﬁ(\/m).

Proof. Let n=2v™M. Assume we have an online AMA communication protoBdior (m, n)-sparseNDEX
with hcost{P) = Q(,/m). We describe how to use this protocol for the spaxseEX problem to design one
for the denseNDEX problem on vectors of lengthf = mlog(n/m) = Q (m3/2).

Letk =log(n/m). As in the proof of Theorern 3.9, given an inputo the denseNDEX problem, Alice
partitionsx into n' /k blocks of lengthk, and constructs a vectgrof Hamming weight' /k over a universe
of size (' /k) - 2¢ as follows. She replaces each bld8kwith a 1-sparse vectar, € {0, 1}2k, where each
entry ofy; corresponds to one of th& Bossible values of block;. That is, if blockB; of x equals the binary
representation of the numbgre [2€], then Alice replaces block; with the vectore; € {0, 1}2k, wheree;
denotes the vector with a 1 in coordingtand Os elsewhere.

Thus, Alice now has an’ /k = m-sparse derived inpytover a universe of sizé /k) - 2€ = n. Merlin
looks at Bob'’s input to see what is the indewf the dense vectox that Bob is interested in. Merlin then
tells Bob the index such that’ = 2¢(1 — 1) + j, whereB; is the block that is located in, and blocl;
of Alice’s input x equals the binary representation of the numper[2X]. Notice ¢ can be specified with
logn = O(,/m) bits.

Alice and Bob’s now use the assumed AMA-protocol for spaispititness to establish whethgr= 1.

If they are convinced of this, then Bob can deduce the valul @he bits in blockB; of the original dense
vectorx, and in particular, the value of .

This yields an MAMA protocol for the densaiDEx problem onn’ = Q(m??) bits. A lower bound
of Klauck and PrakasH [24, Lemma 7] implies that the online N®A complexity of this problem is
Q((n)Y3) = Q(m/?). Notice also that the total hcost of our MAMA protocol @& /m+ hcostP)) =
O(hcostP)), while the vcost iO(vcos(P)). Thus, if hcostP) = Q(y/m), it must be the case that vcost
is Q(y/m) as well. This trivially implies that for any protoc@ with hcostlessthan/m, vcos{P) must
be Q(,/m). We conclude the online AMA communication complexity of gh@blem isQ(m®?2). This
completes the proof.

O

3 Like the lower bound of Lemmia 3.8, the lower bound of Klauckl &1akash was originally proved in the communication
model in which Merlin cannot send any message to Alice. Hanehe proof easily extends to our online MA communication
model (where Merlin can send a message to Alice, but thatagessannot depend on Bob’s input).
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