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Abstract
Chemical reaction networks (CRNs) formally model chem-
istry in a well-mixed solution. CRNs are widely used to
describe information processing occurring in natural cellular
regulatory networks, and with upcoming advances in syn-
thetic biology, CRNs are a promising programming language
for the design of artificial molecular control circuitry. Due
to a formal equivalence between CRNs and a model of dis-
tributed computing known as population protocols, results
transfer readily between the two models.

We show that if a CRN respects finite density (at
most O(n) additional molecules can be produced from
n initial molecules), then starting from any dense initial
configuration (all molecular species initially present have
initial count Ω(n), where n is the initial molecular count and
volume), every producible species is produced in constant
time with high probability.

This implies that no CRN obeying the stated constraints

can function as a timer, able to produce a molecule, but

doing so only after a time that is an unbounded function

of the input size. This has consequences regarding an open

question of Angluin, Aspnes, and Eisenstat concerning the

ability of population protocols to perform fast, reliable leader

election and to simulate arbitrary algorithms from a uniform

initial state.

1 Introduction

1.1 Background of the field The engineering of
complex artificial molecular systems will require a so-
phisticated understanding of how to program chemistry.
A natural language for describing the interactions of
molecular species in a well-mixed solution is that of (fi-
nite) chemical reaction networks (CRNs), i.e., finite sets
of chemical reactions such as A+B → A+C. When the
behavior of individual molecules is modeled, CRNs are
assigned semantics through stochastic chemical kinet-
ics [15], in which reactions occur probabilistically with
rate proportional to the product of the molecular count
of their reactants and inversely proportional to the vol-
ume of the reaction vessel. The kinetic model of CRNs
is based on the physical assumption of well-mixedness
that is valid in a dilute solution. Thus, we assume the
finite density constraint, which stipulates that a vol-
ume required to execute a CRN must be proportional
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to the maximum molecular count obtained during ex-
ecution [24]. In other words, the total concentration
(molecular count per volume) is bounded. This realisti-
cally constrains the speed of the computation achievable
by CRNs.

Traditionally CRNs have been used as a descriptive
language to analyze naturally occurring chemical reac-
tions, as well as numerous other systems with a large
number of interacting components such as gene regula-
tory networks and animal populations. However, recent
investigations have viewed CRNs as a programming lan-
guage for engineering artificial systems. These works
have shown CRNs to have eclectic algorithmic abili-
ties. Researchers have investigated the power of CRNs
to simulate Boolean circuits [20], neural networks [16],
and digital signal processing [17]. Other work has shown
that bounded-space Turing machines can be simulated
with an arbitrarily small, non-zero probability of er-
ror by a CRN with only a polynomial slowdown [4].1

It is EXPSPACE-hard to predict whether a particular
species is producible [19]. Space- and energy-efficient
simulation of space-bounded Turing machines can be
done by CRNs implementable by logically and thermo-
dynamically reversible DNA strand displacement reac-
tions, and as a consequence this prediction problem is
PSPACE-hard even when restricted to such CRNs [26].
Even Turing-universal computation is possible with an
arbitrarily small probability of error over all time [24].
The computational power of CRNs also provides insight
on why it can be computationally difficult to simulate
them [23], and why certain questions are frustratingly
difficult to answer (e.g. undecidable) [13, 28]. The pro-
gramming approach to CRNs has also, in turn, resulted
in novel insights regarding natural cellular regulatory
networks [7].

1.2 Focus of this paper Informally, our main theo-
rem shows that CRNs “respecting finite density” (mean-
ing that the total molecular count obtainable is bounded
by a constant times the initial molecular count) start-

1This is surprising since finite CRNs necessarily must represent
binary data strings in a unary encoding, since they lack positional

information to tell the difference between two molecules of the
same species.
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ing from any dense initial configuration (meaning that
any species present initially has count Ω(n), where n is
the initial molecular count and volume) will create Ω(n)
copies of every producible species in constant time with
high probability. We now explain the significance of this
result in the context of an open question regarding the
ability of stochastic CRNs to do fast, reliable computa-
tion.

Many of the fundamental algorithmic abilities and
limitations of CRNs were elucidated under the guise
of a related model of distributed computing known
as population protocols. Population protocols were
introduced by Angluin, Aspnes, Diamadi, Fischer, and
Peralta [1] as a model of resource-limited mobile sensors;
see Aspnes and Ruppert [5] for an excellent survey of
the model. A population protocol consists of a set
of n agents with finite state set Λ (where we imagine
|Λ| is constant with respect to n), together with a
transition function δ : Λ2 → Λ2, with (r1, r2) = δ(q1, q2)
indicating that if two agents in states q1 and q2 interact,
then they change to states r1 and r2, respectively.
Multiple semantic models may be overlaid on this
syntactic definition, but the randomized model studied
by Angluin, Aspnes, and Eisenstat [4], in which the next
two agents to interact are selected uniformly at random,
coincides precisely with the model of stochastic chemical
kinetics [15], so long as the CRN’s reactions each have
two reactants and two products,2 i.e., q1 + q2 → r1 + r2.
In fact, every population protocol, when interpreted
as a CRN, respects finite density, because the total
molecular count is constant over time. Therefore,
although we state our result in the language of CRNs,
the results apply a fortiori to population protocols.

Angluin, Aspnes, and Eisenstat [4], and indepen-
dently Soloveichik, Cook, Winfree, and Bruck [24]
showed that arbitrary Turing machines may be simu-
lated by randomized population protocols/CRNs with
only a polynomial-time slowdown. Because a binary
input x ∈ {0, 1}∗ to a Turing machine must be spec-
ified in a CRN by a unary molecular count n ∈ N,
where n ≈ 2|x|, this means that each construction is
able to simulate each step of the Turing machine in
time O(polylog(n)), i.e. polynomial in |x|. Both con-
structions make essential use of the ability to specify
arbitrary initial configurations, where a configuration is
a vector c ∈ NΛ specifying the initial count c(S) of each
species S ∈ Λ. In particular, both constructions require
a certain species to be present with initial count 1, a
so-called “leader” (hence the title of the former paper).

2This turns out not to be a significant restriction on CRNs

when considering their computational ability; see the introduction
of [8] for a discussion of the issue.

A test tube with a single copy of a certain type
of molecule is experimentally difficult to prepare. The
major open question of [4] asks whether this restriction
may be removed: whether there is a CRN starting from
a uniform initial configuration (i.e., with only a single
species present, whose count is equal to the volume n)
that can simulate a Turing machine.

Angluin, Aspnes, and Eisenstat [4] observe that a
leader may be elected from a uniform initial configura-
tion of n copies of L by the reaction L + L → L + N ;
in other words, when two candidate leaders encounter
each other, one drops out. However, this scheme has
problems:

1. The expected time until a single leader remains
is Θ(n), i.e., exponential in m, where m ≈ log n
is the number of bits required to represent the
input n. In contrast, if a leader is assumed
present from the start, the computation takes time
O(t(log n) · log5 n), where t(m) is the running time
of the Turing machine on an m-bit input, i.e., the
time is polynomial in t. Therefore for polynomial-
time computations, electing a leader in this manner
incurs an exponential slowdown.

2. There is no way for the leader to “know” when
it has been elected. Therefore, even if a single
leader is eventually elected, and even if the CRN
works properly under the assumption of a single
initial leader, prior to the conclusion of the election,
multiple leaders will be competing and introducing
unwanted behavior.

These problems motivate the need for a timer CRN,
a CRN that, from a uniform initial configuration of size
n, is able to produce some species S, but the expected
time before the first copy of S is produced is t(n),
for some unbounded function t : N → N. If a CRN
exists that can produce a copy of S after Ω(n) time,
then by adding the reaction S + L → Lactive, a leader
election can take place among “inactive” molecules of
type L, and the remaining species of the leader-driven
CRNs of [4] or [24] can be made to work only with
the “active” species Lactive, which will not appear (with
high probability) until there is only a single copy of L
to be activated. This shows how a timer CRN could
alleviate the second problem mentioned above. In fact,
even the first problem, the slowness of the näıve leader
election algorithm, is obviated in the presence of a timer
CRN. If a timer CRN produces S after t(n) = Ω(logn)
time from a uniform initial configuration of n copies
of X, then this can be used to construct a CRN that
elects a leader in time O(t(n)) [10]. In other words,
the problem of constructing a timer CRN is “leader-
election-hard”.
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Unfortunately, timer CRNs cannot be constructed
under realistic conditions. The main theorem of this
paper, stated informally, shows the following (the formal
statement is Theorem 3.1 in Section 3): Let C be a
CRN with volume and initial molecular count n that
respects finite density (no sequence of reactions can
produce more than O(n) copies of any species) with an
initial configuration that is dense (all species initially
present have initial count Ω(n)). Then with probability
≥ 1 − 2−Ω(n), every producible species is produced
(in fact, attains count Ω(n)) in time O(1). Since a
uniform initial configuration is dense, timer CRNs that
respect finite density cannot be constructed. It should
be noted that the condition of respecting finite density
is physically realistic; it is obeyed, for instance, by
every CRN that obeys the law of conservation of mass.
As noted previously, all population protocols respect
finite density, which implies that, unconditionally, no
population protocol can function as a timer.

This theorem has the following consequences for
CRNs respecting finite density that start from a dense
initial configuration with n molecules:

1. No such CRN can decide a predicate “monotoni-
cally”. By this we mean that if the CRN solves a
decision problem (a yes/no question about an input
encoded in its initial configuration) by producing
species Y if the answer is yes and species N if the
answer is no, then the CRN cannot be guaranteed
to produce only the correct species.3 It necessarily
must produce both but eventually dispose of the in-
correct species. This implies that composing such
a CRN with a downstream CRN that uses the an-
swer necessarily requires the downstream CRN to
account for the possibility that the upstream CRN
will “change its mind” before converging on the cor-
rect answer.

2. No CRN leader election algorithm can “avoid war”:
any CRN that elects a unique leader (in any
amount of time) must necessarily have at least 2
(in fact, at least Ω(n)) copies of the leader species
for some time before the unique leader is elected.
This implies that any downstream CRN requiring
a leader must be designed to work in the face of
multiple leaders being present simultaneously for
some amount of time before a unique leader is
finally elected.

3This assumes the incorrect species is producible at all. This

is not a strong assumption. From any initial state x in which
the correct answer is yes (for example), if any substate x′ < x
has correct answer no, then N is producible from x because the

presence of additional molecules cannot prevent a sequence of
reactions from being possible to execute.

We emphasize that we are not claiming “O(1)-time
leader election is impossible” as a consequence of our
main theorem.4 The two consequences above merely
outline what sort of behavior one can expect from a
CRN with a uniform initial configuration, due to our
main theorem.

Angluin, Aspnes, Diamadi, Fischer, and Peralta, in
an unpublished technical report [2, Lemma 5], sketched
an informal argument for a similar result in a related
model called urn automata. However, this was a limiting
argument without bounds on convergence, whereas we
give (and formally prove) probability bounds that scale
exponentially in the size of the system. It may also be
possible to derive a different proof of our main result
using Kurtz’s theorem [18] that every stochastic CRN,
in the limit of large volume and molecular count scaling,
for some amount of time will likely track closely the
behavior of a deterministic mass-action system whose
behavior is given by differential equations. A similar,
more recent, result known as Wormald’s theorem [27]
might also be useful in this sense. However, these are
also limit arguments. Furthermore, we believe that
a direct proof in the stochastic model, rather than
appealing to approximations by differential equations,
gives insight as to why the result is true and enhances
our understanding of the behaviors stochastic CRNs
allow.

Another line of research that has illustrated a strik-
ing difference between “chemical computation” and
standard computational models has been the role of ran-
domness. The model of stochastic chemical kinetics is
one way to impose semantics on CRNs, but another
reasonable alternative is to require that all possible se-
quences of reactions – and not just those likely to oc-
cur by the model of chemical kinetics – should allow
the CRN to carry out a correct computation. Under
this more restrictive deterministic model of CRN com-
putation, Angluin, Aspnes, and Eisenstat [3] showed
that precisely the semilinear predicates φ : Nk →
{0, 1} (those definable in the first-order theory of Pres-
burger arithmetic [22]) are deterministically computed
by CRNs. This was subsequently extended to func-
tion computation by Chen, Doty, and Soloveichik [8],
who showed that precisely the functions f : Nk → Nl
whose graph is a semilinear set are deterministically
computed by CRNs. Since semilinear sets are compu-

4This claim is easy to show using a simpler argument: Ω(logn)

time is required for every agent to interact with every other. Fur-

thermore, the claim does not even follow directly from our main
theorem, since (assuming ignorance of the Ω(logn) argument), a

priori, it is conceivable that all species are produced in the first

second, then in the next four seconds all leaders but one are elim-
inated.
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tationally very weak (one characterization is that they
are finite unions of “periodic” sets, suitably generalizing
the definition of periodic to multi-dimensional spaces),
this shows that introducing randomization adds massive
computational ability to CRNs.

This strongly contrasts other computational mod-
els. Turing machines decide the decidable languages
whether they are required to be deterministic or ran-
domized (or even nondeterministic). In the case of
polynomial-time Turing machines, it is widely conjec-
tured [21] that P = BPP, i.e., that randomization adds
at most a polynomial speedup to any predicate com-
putation. Since it is known that P ⊆ BPP ⊆ EXP,
even the potential exponential gap between determin-
istic and randomized polynomial-time computation is
dwarfed by the gap between deterministic CRN compu-
tation (semilinear sets, which are all decidable in linear
time by a Turing machine) and randomized CRN com-
putation (which can decide any decidable problem).

Along this line of thinking (“What power does
the stochastic CRN model have over the deterministic
model?”), our main theorem may also be considered
a stochastic extension of work on deterministic CRNs
by Condon, Hu, Maňuch, and Thachuk [11] and Con-
don, Kirkpatrick, and Maňuch [12]. Both of those pa-
pers showed results of the following form: every CRN
in a certain restricted class (the class being different in
each paper, but in each case is a subset of the class of
CRNs respecting finite density) with k species and ini-
tial configuration i ∈ Nk has the property that every
producible species is producible from initial configura-
tion m · i through at most t reactions, where m and t
are bounded by a polynomial in k. In other words, if
the goal of the CRN is to delay the production of some
species until ω(poly(k)) reactions have occurred (such
as the “Gray code counter” CRN of [11], which iter-
ates through 2k states before producing the first copy
of a certain species), then the CRN cannot be multi-
copy tolerant, since m copies of the CRN running in
parallel can “short-circuit” and produce every species
in poly(k) reactions, if the reactions are carefully cho-
sen. Our main theorem extends these deterministic im-
possibility results to the stochastic model, showing that
not only is there a short sequence of reactions that will
produce every species, but furthermore that the laws of
chemical kinetics will force such a sequence to actually
happen in constant time with high probability.

The paper is organized as follows. Section 2 defines
the model of stochastic chemical reaction networks. Sec-
tion 3 states and proves the main theorem, Theorem 3.1,
that every CRN respecting finite density, starting from
a dense initial configuration, likely produces every pro-
ducible species in constant time. Appendix A proves

a Chernoff bound on continuous-time stochastic expo-
nential decay processes, Lemma A.1, used in the proof
of Theorem 3.1. Appendix B proves a Chernoff bound
on continuous-time biased random walks, Lemma B.6,
a messy-to-state consequence of which (Lemma B.7) is
used in the proof of Theorem 3.1. Section 4 discusses
questions for future work.

2 Preliminaries

2.1 Chemical reaction networks If Λ is a finite
set of chemical species, we write NΛ to denote the set of
functions f : Λ→ N. Equivalently, we view an element
c ∈ NΛ as a vector of |Λ| nonnegative integers, with
each coordinate “labeled” by an element of Λ. Given
S ∈ Λ and c ∈ NΛ, we refer to c(S) as the count of
S in c. Let ‖c‖ = ‖c‖1 =

∑
S∈Λ c(S) represent the

total count of species in c. We write c ≤ c′ to denote
that c(S) ≤ c′(S) for all S ∈ Λ. Given c, c′ ∈ NΛ, we
define the vector component-wise operations of addition
c+c′, subtraction c−c′, and scalar multiplication nc for
n ∈ N. If ∆ ⊂ Λ, we view a vector c ∈ N∆ equivalently
as a vector c ∈ NΛ by assuming c(S) = 0 for all
S ∈ Λ\∆. For all c ∈ NΛ, let [c] = { S ∈ Λ | c(S) > 0 }
be the set of species with positive counts in c, so that
S ∈ [c] ⇐⇒ c(S) > 0.

Given a finite set of chemical species Λ, a reaction
over Λ is a triple β = (r,p, k) ∈ NΛ×NΛ×R+, specify-
ing the stoichiometry of the reactants and products, re-
spectively, and the rate constant k. For instance, given

Λ = {A,B,C}, the reaction A + 2B
4.7→ A + 3C is the

triple ((1, 2, 0), (1, 0, 3), 4.7). A (finite) chemical reaction
network (CRN) is a pair C = (Λ, R), where Λ is a finite
set of chemical species, and R is a finite set of reactions
over Λ. A configuration of a CRN C = (Λ, R) is a vector
c ∈ NΛ. When the configuration c is clear from context,
we write #X to denote c(X).

Given a configuration c and reaction β = (r,p, k),
we say that β is applicable to c if r ≤ c (i.e., c contains
enough of each of the reactants for the reaction to
occur). If β is applicable to c, then write β(c) to denote
the configuration c + p− r (i.e., the configuration that
results from applying reaction β to c). If c′ = β(c) for
some reaction β ∈ R, we write c→C c′, or merely c→ c′

when C is clear from context. An execution (a.k.a.,
execution sequence) E is a finite or infinite sequence
of one or more configurations E = (c0, c1, c2, . . .) such
that, for all i ∈ {1, . . . , |E|}, ci−1 → ci. If a finite
execution sequence starts with c and ends with c′, we
write c →∗C c′, or merely c →∗ c′ when the CRN C
is clear from context. In this case, we say that c′ is
reachable from c.

We say that a reaction β = (r,p, k) produces
S ∈ Λ if p(S) − r(S) > 0, and that β consumes S if

775 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

10
/1

0/
16

 to
 6

7.
5.

19
5.

66
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



r(S) − p(S) > 0. When a CRN C = (Λ, R) and an
initial configuration i ∈ NΛ are clear from context, we
say a species S ∈ Λ is producible if there exists c such
that i→∗C c and c(S) > 0.

2.2 Kinetic model The following model of stochas-
tic chemical kinetics is widely used in quantitative biol-
ogy and other fields dealing with chemical reactions in
which stochastic effects are significant [15]. It ascribes
probabilities to execution sequences, and also defines
the time of reactions, allowing us to study the running
time of CRNs in Section 3.

A reaction is unimolecular if it has one reactant
and bimolecular if it has two reactants. We assume no
higher-order reactions occur.5 The kinetic behavior of a
CRN is described by a continuous-time Markov process,
whose states are configurations of the CRN, as follows.
Given a fixed volume v > 0 and current configuration c,

the propensity of a unimolecular reaction β : X
k→ . . .

in configuration c is ρ(c, β) = kc(X). The propensity

of a bimolecular reaction β : X + Y
k→ . . ., where

X 6= Y , is ρ(c, β) = k
v c(X)c(Y ). The propensity of

a bimolecular reaction β : X + X
k→ . . . is ρ(c, β) =

k
v
c(X)(c(X)−1)

2 .6 The propensity function determines the
evolution of the system as follows. The time until the
next reaction occurs is an exponential random variable
with rate ρ(c) =

∑
β∈R ρ(c, β). The probability that

next reaction will be a particular βnext is ρ(c,βnext)
ρ(c) .

3 CRNs that produce all species in constant
time

We say a CRN respects finite density if there is a
constant ĉ such that, for any initial configuration i and
any configuration c such that i →∗ c, ‖c‖ ≤ ĉ‖i‖.
That is, the maximum molecular count attainable is
bounded by a constant multiplicative factor of the initial
counts, implying that if the volume is sufficiently large
to contain the initial molecules, then within a constant
factor, it is sufficiently large to contain all the molecules
ever produced. We therefore safely assume that for any
CRN respecting finite density with initial configuration
i, the volume is ‖i‖.

CRNs respecting finite density constitute a wide
class of CRNs that includes, for instance, all mass-
conserving CRNs: CRNs for which there exists a mass

5This assumption is not critical to the proof of the main

theorem; the bounds derived on reaction rates hold asymptotically

even higher-order reactions are permitted, although the constants
would change.

6Intuitively, ρ(c, β) without the k and v terms counts the

number of ways that reactants can collide in order to react (with
unimolecular reactants “colliding” with only themselves).

function m : Λ → R+ such that
∑
S∈rm(S) =∑

S∈pm(S) for all reactions (r,p, k). This includes all
population protocols [5].

In this section we prove that no CRN respecting
finite density, starting from an initial configuration with
“large” species counts, can delay the production of any
producible species for more than a constant amount of
time. All producible species are produced in time O(1)
with high probability.

Let α > 0. We say that a configuration c is α-dense
if for all S ∈ Λ, S ∈ [c] =⇒ c(S) ≥ α‖c‖, i.e., all
species present initially occupy a constant (α) fraction
of the total volume. Given initial configuration i ∈ NΛ,
let Λ∗i = { S ∈ Λ | (∃c) i→∗ c and c(S) > 0 } denote
the set of species producible from i. For all t > 0 and
S ∈ Λ, let #tS be the random variable representing the
count of S after t seconds, if i is the initial configuration
at time 0.

The following is the main theorem of this paper.

Theorem 3.1. Let α > 0 and C = (Λ, R) be a CRN
respecting finite density. Then there are constants
ε, δ, t > 0 such that, for all sufficiently large n (how
large depending only on α and C), for all α-dense initial
configurations i with ||i|| = n, Pr[(∀S ∈ Λ∗i ) #tS ≥
δn] ≥ 1− 2−εn.

Proof. The handwaving intuition of the proof is as
follows. We first show that every species initially
present, because they have count Ω(n) and decay at
an at most exponential rate, remain at count Ω(n)
(for some smaller constant fraction of n) for a constant
amount of time. Because of this, during this entire time,
the reactions for which they are reactants are running
at rate Ω(n). Therefore the products of those reactions
are produced quickly enough to get to count Ω(n) in
time O(1). Because those species (the products) decay
at an at most exponential rate, they have count Ω(n)
for a constant amount of time. Therefore the reactions
for which they are reactants are running at rate Ω(n).
Since there are a constant number of reactions, this
will show that all producible species are produced in
constant time with high probability. The tricky part
is to show that although species may be consumed and
go to lower counts, every species produced has count
Ω(n) for Ω(1) time, sufficient for it to execute Ω(n)
reactions of which it is a reactant and produce Ω(n)
of the products of that reaction.

On to the gritty details. Because C respects finite
density, the maximum count obtained by any species
is O(n). Let ĉ be a constant such that all species
have count at most ĉn in any configuration reachable
from i. Let K̂ =

∑
(r,p,k)∈R k be the sum of the rate

constants of every reaction. Let k̂ = min(r,p,k)∈R k
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be the minimum rate constant of any reaction. For
any ∆ ⊆ Λ, define PROD(∆) = {S ∈ Λ | (∃β =
(r,p, k) ∈ R) β produces S and [r] ⊆ ∆} to be the
set of species producible by a single reaction assuming
that only species in ∆ are present, and further assuming
that those species have sufficient counts to execute the
reaction.

Define subsets Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λm−1 ⊂ Λm ⊆ Λ
as follows. Let Λ0 = [i]. For all i ∈ Z+, define
Λi = Λi−1 ∪ PROD(Λi−1). Let m be the smallest
integer such that PROD(Λm) ⊆ Λm. Therefore for all
i ∈ {1, . . . ,m}, |Λi| > |Λi−1|, whence m < |Λ|.

By the hypothesis of the theorem, all S ∈ Λ0 satisfy
i(S) ≥ αn. S may be produced and consumed. To
establish that #S remains high for a constant amount
of time, in the worst case we assume that S is only
consumed. Let λ = ĉK̂. We will assume that λ ≥ 1
since we can choose ĉ ≥ 1

K̂
if it is not already greater

than 1
K̂

. This assumption is required in Lemma B.7,
which is employed later in the proof. We also assume
that ĉ ≥ 1, implying λ ≥ K̂.

For all S ∈ Λ, the rate of any unimolecular
reaction consuming S is at most K̂#S ≤ λ#S, and
the rate of any bimolecular reaction consuming S is

at most K̂
n (ĉn)#S = λ#S, whence the expected time

for any reaction consuming S is at least 1
λ#S . We can

thus upper bound the overall consumption of S by an
exponential decay process with rate λ, i.e., this process
will consume copies of S at least as quickly as the actual
CRN consumes copies of S.

Let c = 4eλ(m+1). Let δ0 = α
c . Fix a particular

S ∈ Λ0. Let N = αn and δ = 1
c in Lemma A.1. Then

by the fact that the rate of decay of S is bounded by
an exponential decay process with rate λ and initial
value αn (the process DN

λ as defined in Section A) and
Lemma A.1,

Pr[(∃t ∈ [0,m+ 1]) #tS < δ0n]

≤ Pr

[
Dαn
λ (m+ 1) <

1

c
αn

]
<

(
2

1

c
eλ(m+1)

)αn/c−1

= 2−δ0n+1.

By the union bound,
(3.1)
Pr[(∃S ∈ Λ0)(∃t ∈ [0,m+1]) #tS < δ0n] < |Λ0|2−δ0n+1.

That is, with high probability, all species in Λ0 have
“high” count (at least δ0n) for the entire first m + 1
seconds. Call this event H(Λ0) (i.e., the complement of
the event in (3.1)).

We complete the proof by a “probabilistic induc-

tion”7 on i ∈ {0, 1, . . . ,m} as follows. Inductively
assume that for all X ∈ Λi and all t ∈ [i,m + 1],
#tX ≥ δin for some δi > 0. Call this event H(Λi).
Then we will show that for all S ∈ Λi+1 and all
t ∈ [i + 1,m + 1], assuming H(Λi) is true, with high
probability #tS ≥ δi+1n for some δi+1 > 0. We will use
Lemma B.7 to choose particular values for the δi’s, and
these values will not depend on n.

The base case is established by (3.1) for δ0 = α
c . Fix

a particular species S ∈ Λi+1. By the definition of Λi+1,
it is produced by either at least one reaction of the form
X → S+ . . . for some X ∈ Λi or by X+Y → S+ . . . for
some X,Y ∈ Λi. By the induction hypothesis H(Λi),
for all t ∈ [i,m + 1], #tX ≥ δin and #tY ≥ δin for
some δi > 0. In the case of a unimolecular reaction,
the propensity of this reaction is at least k̂δin. In the
case of a bimolecular reaction, the propensity is at least
k̂
n (δin)2 = k̂δ2

i n if X 6= Y or k̂
n
δin(δin−1)

2 = k̂
2 (δ2

i n − 1)
if X = Y .

The last of these three possibilities is the worst case
(i.e., the smallest). Because δi is a constant independent
of n, for sufficiently large n (n ≥ 2/δ2

i ), δ2
i n−1 ≥ δ2

i n/2,

whence the calculated rate is at least k̂
4 δ

2
i n.

Let δf =
k̂δ2
i

4 and δr =
δf
4λ . Similar to the argument

above concerning the maximum rate of decay of any
S ∈ Λ0, the rate at which reactions consuming S ∈ Λi+1

occur is at most λ#S. Also, by the above arguments,
the minimum rate at which reactions producing S
proceed is at least δfn. Therefore we may lower bound
the net production of S (i.e., its total count) by a
continuous-time random walk on N that starts at 0, has
constant forward rate δfn from every state i to i + 1,
and has reverse rate λi from i to i − 1, defined as the
process Wn

δf ,λ
in Section B, Lemma B.7. By this lower

bound and Lemma B.78 (recall that we have assumed
λ ≥ 1),

Pr

[
max

t̂∈[i,i+1]
#t̂S < δrn

]
≤ Pr

[
max
t̂∈[0,1]

WN
δf ,λ

(t̂) < δrn

]
(3.2)

< 2−δfn/22+1(3.3)

= 2−k̂δ
2
i n/88+1.(3.4)

7The author made up this phrase. It means the following. We
show that if the induction hypothesis fails with low probability
p, and if the induction step fails with low probability q, given

that the induction hypothesis holds, then by the union bound,
the induction step fails with probability at most p+ q.

8Although Lemma B.7 is stated for times between 0 and 1,
here we use it for times between i and i + 1 (just shift all times
down by i).
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Therefore with high probability #S reaches count
at least δrn at some time t̂ ∈ [i, i + 1]. Let δi+1 = δr

c .
As before, we can bound the decay rate of S from time
t̂ until time m+ 1 by an exponential decay process with
rate λ and initial value δrn, proceeding for m+1 seconds
(since t̂ ≥ 0). By Lemma A.1,

Pr[(∃t ∈ [t̂, m+ 1]) #tS < δi+1n]

≤ Pr

[
Dδrn
λ (m+ 1) <

λ

c
δrn

]
(3.5)

<

(
2

1

c
eλ(m+1)

)λδrn/c−1

(3.6)

= 2−δi+1n+1.(3.7)

Fix a particular S ∈ Λi+1. By the union bound
applied to (3.4) and (3.7) and the fact that t̂ ≤ i + 1,
the probability that #tS < δi+1n at any time t ∈
[i+1,m+1], given that the induction hypothesis H(Λi)
holds (i.e., given that #tX ≥ δin for all X ∈ Λi and

all t ∈ [i,m + 1]), is at most 2−k̂δ
2
i n/88+1 + 2−δi+1n+1.

Define H(Λi+1) to be the event that this does not
happen for any S ∈ Λi+1, i.e., that (∀S ∈ Λi+1)(∀t ∈
[i,m + 1]) #tS ≥ δi+1n. By the union bound over all
S ∈ Λi+1,

Pr [¬H(Λi+1)|H(Λi)]

< |Λi+1|
(

2−k̂δ
2
i n/88+1 + 2−δi+1n+1

)
(3.8)

By the union bound applied to (3.1) and (3.8), and
the fact that δm < δi for all i ∈ {0, . . . ,m − 1}, the
probability that any step of the induction fails is at most

Pr[¬H(Λ0)] +

m∑
i=1

Pr[¬H(Λi)|H(Λi−1)]

< |Λ0|2−δ0n+1(3.9)

+
m∑
i=1

|Λi|
(

2−k̂δ
2
i−1n/88+1 + 2−δin+1

)
< |Λ|

(
2−δmn+1 + 2−k̂δ

2
mn/88+1

)
(3.10)

< |Λ|
(

2−k̂δ
2
mn/88+2

)
.(3.11)

At this point we are essentially done. The remain-
der of the proof justifies that the various constants in-
volved can be combined into a single constant ε that
does not depend on n (although it depends on C and α)
as in the statement of the theorem.

By our choice of δi+1, we have

δi+1 =
δr
c

=
δf
4λc

=
δ2
i k̂

16λc
>

(
δik̂

16λc

)2

.

Recall that δ0 = α
c . Therefore, for all i ∈

{1, . . . ,m}, δi >
(

αk̂
16λc2

)2i

. So

(3.12) δm >

(
αk̂

16λc2

)2m

≥

(
αk̂

16λc2

)2|Λ|−1

.

Therefore, if n >
(

αk̂
16λc2

)2|Λ|−1

, then by (3.11)

and (3.12), the failure probability in (3.11) is at most

|Λ|2−k̂δ
2
mn/88+2 < |Λ|2

−k̂
((

αk̂
16λc2

)2|Λ|−1
)2

n/88+2

= |Λ|2−k̂
(

αk̂
16λc2

)2|Λ|
n/88+2

= |Λ|2
−k̂
(

αk̂

16λ(4eλ(m+1))
2

)2|Λ|

n/88+2

= |Λ|2−k̂
(

αk̂

256λe2λ(m+1)

)2|Λ|
n/88+2

≤ |Λ|2
−k̂
(

αk̂

256K̂ĉe2K̂ĉ|Λ|

)2|Λ|

n/88+2
.

Letting ε′ = k̂
88

(
αk̂

256K̂ĉe2K̂ĉ|Λ|

)2|Λ|

implies failure

probability at most |Λ|2−ε′n+2. For n ≥ 2+2 log |Λ|
ε′ ,

|Λ|2−ε′n+2 ≤ 2−(ε′/2)n. Letting t = m + 1, δ = δm,
and ε = ε′/2 completes the proof.

We have chosen t = m + 1 (i.e., t depends on C);
however, the same proof technique works if we choose
t = 1 (or any other constant independent of C), although
this results in smaller values for δ and ε.

Although the choice of ε is very small, the analysis
used many very loose bounds for the sake of simplifying
the argument. A more careful analysis would show that
a much larger value of ε could be chosen, but for our
purposes it suffices that ε depends on C and α but not
on the volume n.

However, it does seem fundamental to the analysis

that ε ≤ γ2|Λ| for some 0 < γ < 1. Consider the CRN
with n initial copies of X1 in volume n and reactions

X1 → ∅
X2 → ∅

. . .

Xm → ∅
X1 +X1 → X2

X2 +X2 → X3

. . .

Xm +Xm → Xm+1
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This is a CRN in which the number of stages m is actu-
ally equal to its worst-case value |Λ| − 1, and in which
each species is being produced at the minimum rate pos-
sible – by a bimolecular reaction – and consumed at the
fastest rate possible – by a unimolecular reaction (in ad-
dition to a bimolecular reaction). Therefore extremely
large values of n are required for the “constant fraction
of n” counts in the proof to be large enough to work, i.e.,
for the production reactions to outrun the consumption
reactions. This appears to be confirmed in stochastic
simulations as well.

4 Conclusion

The reason we restrict attention to CRNs respecting
finite density is that the proof of Theorem 3.1 relies on
bounding the rate of consumption of any species by an
exponential decay process, i.e., no species S is consumed
faster than rate λ#S, where λ > 0 is a constant. This is
not true if the CRN is allowed to violate finite density,
because a reaction consuming S such as X + S → X
proceeds at rate #X#S/n in volume n, and if #X is
an arbitrarily large function of the volume, then for any
constant λ, this rate will eventually exceed λ#S.

In fact, for the proof to work, the CRN need not
respect finite density for all time, but only for some
constant time after t = 0. This requirement is fulfilled
even if the CRN has non-mass-conserving reactions such
as X → 2X. Although such a CRN eventually violates
finite density, for all constant times t > 0, there is
a constant c > 0 such that #tX ≤ c#0X with high
probability.

The assumption that the CRN respects finite den-
sity is a perfectly realistic constraint satisfied by all real
chemicals,9 and as noted, many non-mass-conserving
CRNs respect finite density for a constant amount of
initial time. Nevertheless, it is interesting to note that
there are syntactically correct CRNs that violate even
this seemingly mild constraint. Consider the reaction
2X → 3X. This reaction has the property that with
high probability, #X goes to infinity in less than 1
second (assuming a sufficiently large rate constant).
Therefore it is conceivable that such a reaction could
be used to consume a species Y via X + Y → X at
such a fast rate that, although species S is producible
via Y → S, with high probability S is never produced,
because copies of Y are consumed quickly by X before
they can undergo the unimolecular reaction that pro-

9The reader may notice that recent work has proposed concrete

chemical implementations of arbitrary CRNs using DNA strand
displacement [6, 25]. However, these implementations assume a
large supply of “fuel” DNA complexes supplying mass and energy

for reactions such as X → 2X that violate the laws of conservation
of mass and energy.

duces S. We have not explored this issue further since
such CRNs are not physically implementable by chemi-
cals. However, it would be interesting to know whether
such a CRN violating finite density could be used to
construct a counterexample to Theorem 3.1.

An open problem is to precisely characterize the
class of CRNs obeying Theorem 3.1; as noted, those re-
specting finite density with dense initial configurations
are a strict subset of this class.

One may ask whether a dense initial configuration
is a realistic assumption for a wet lab,10 although as we
have pointed out, the language of CRNs can be used
to describe other distributed computing systems [1].
The strongest possible violation of this assumption is a
leader: a species with initial count 1. A weaker violation
is a large but sublinear initial count. If one starts in an
initial configuration of volume n that has n copies of F1

and
√
n

logn copies of F2, the following CRN acts as both a
timer and a leader election algorithm, producing a single
copy of L with high probability in time O(log2 n):

F2 + F2 → L(4.13)

L+ F1 → L+ S(4.14)

S + F1 → S + S(4.15)

S + F2 → S + S(4.16)

Reaction (4.13) takes expected time n
(

logn√
n

)2

= log2 n

(hence is a timer that produces L only after log2 n
seconds). Reaction (4.14) takes expected time O(1) and
initiates an epidemic (see [4] for a discussion of these
ideas) through reactions (4.15) and (4.16) to convert all
F1 and F2 to S in expected time O(log n), preventing
the production of a second copy of L from a second
occurrence of reaction (4.13). Hence the CRN is also
a leader election algorithm. An interesting question is
how large initial counts may be while allowing a timer
to be constructed; for example, does n

logn suffice?
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Technical appendix

A Chernoff bound for exponential decay

In this section, we prove a Chernoff bound on the
probability that an exponential decay process reduces to
a constant fraction of its initial value after some amount
of time.

For all N ∈ Z+ and λ > 0, let DN
λ (t) be a Markov

process on {0, 1, . . . , N} governed by exponential decay,
with initial value N and decay constant λ; i.e., DN

λ (t) =
N for all t ∈ [0,T1), DN

λ (t) = N−1 for all t ∈ [T1,T1 +
T2), DN

λ (t) = N−2 for all t ∈ [T1 +T2,T1 +T2 +T3),
etc., where for i ∈ {1, . . . , N}, Ti is an exponential
random variable with rate λ(N − i+ 1).

Lemma A.1. Let N ∈ Z+, λ, t > 0, and 0 < δ <
1.Then

Pr[DN
λ (t) < δN ] < (2δeλt)δN−1.

Proof. Let ε be the largest number such that ε < δ and
εN ∈ N. Then εN < δN ≤ εN + 1.

Define Tδ =
∑N−εN
i=1 Ti as the random variable

representing the time required for N − εN decay events
to happen, i.e., for DN

λ to decay to strictly less than δN
from its initial value N .

If X is an exponential random variable with rate
λ′, then the moment-generating function MX : R → R
of X is MX(θ) = E[eθX] = λ′

λ′−θ , defined whenever
|θ| < λ′ [9]. Therefore

MTi(θ) =
λ(N − i+ 1)

λ(N − i+ 1)− θ
=

N − i+ 1

N − i+ 1− θ
λ

,

defined whenever |θ| < λ(N − i+ 1). In particular, the
smallest such value is λ(N− (N−εN)+1) = λ(εN+1),
so we must choose |θ| < λ(εN + 1).

Because each Ti is independent, the moment-
generating function of Tδ is

MTδ(θ) = E[eθT
δ

]

= E[eθ
∑N−εN
i=1 Ti ]

= E

[
N−εN∏
i=1

eθTi

]

=
N−εN∏
i=1

E[eθTi ]

=
N−εN∏
i=1

N − i+ 1

N − i+ 1− θ
λ

=

N∏
i=εN+1

i

i− θ
λ

.

For any t > 0, the event that Tδ < t (it takes fewer
than t seconds for N − εN decay events to happen) is
equivalent to the event that DN

λ (t) < δN (DN
λ , which

started at DN
λ (0) = N , has experienced at least N− εN

decay events after t seconds to arrive at DN
λ (t) < δN).

Using Markov’s inequality, for all θ < 0,

Pr[DN
λ (t) < δN ] = Pr[Tδ < t]

= Pr[eθT
δ

> eθt]

≤ E[eθT
δ

]

eθt

=
1

eθt

N∏
i=εN+1

i

i− θ
λ

Let θ = −λεN . This implies |θ| = λεN <
λ(εN + 1) as required for MTi(θ) to be defined for all
i ∈ {1, . . . , N − εN}.

Then

Pr[DN
λ (t) < δN ] ≤ eλεNt

N∏
i=εN+1

i

i+ εN

= eλεNt
(

εN + 1

εN + εN + 1

)(
εN + 2

εN + εN + 2

)
. . .

(
N − 1

N + εN − 1

)(
N

N + εN

)
= eλεNt

(εN + 1)(εN + 2) . . . (εN + εN − 1)(εN + εN)

(N + 1)(N + 2) . . . (N + εN − 1)(N + εN)

cancel terms

< eλεNt
(2εN)εN

N εN
=
(
2εeλt

)εN
<
(
2δeλt

)δN−1
,

which completes the proof.

B Chernoff bounds for biased random walks

This section proves Chernoff bounds for biased random
walks that are used in Section 3. Lemma B.6 shows that
a random walk on Z with forward rate f̂ and reverse rate
r̂ has a high probability to take at least Ω((f̂ − r̂)t)
net forward steps after t seconds. Lemma B.7 uses
Lemma B.6 to show that a random walk on N (i.e.,
with a reflecting barrier at state 0) with reverse rate in
state i proportional to i, has a high probability to reach
state j in time t, where j is sufficiently small based on
the backward rate and t.

We require the following Chernoff bound on Poisson
distributions, due to Franceschetti, Dousse, Tse, and
Thiran [14].

Theorem B.1. ( [14]) Let P(λ) be a Poisson random
variable with rate λ. Then for all n ∈ N

Pr [P(λ) ≥ n] ≤ e−λ
(
eλ

n

)n
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R

T  

1
x

x
1+δ1

1

1
1+δ

1− 1
1+δ

(a) Lemma B.4:
∫ 1+δ
1

1
x
dx < area(R)− area(T ).

R

T

 

1
x

x
11−δ

1

δ

1
1−δ

(b) Lemma B.5:
∫ 1
1−δ

1
x
dx > area(R) + area(T ).

Figure 1: Illustration of Lemmas B.4 and B.5 (not to
scale).

if n > λ and

Pr [P(λ) ≤ n] ≤ e−λ
(
eλ

n

)n
if n < λ.

The following corollaries are used in the proof of
Lemma B.6.

Corollary B.2. Let 0 < γ < 1. Then Pr[P(λ) ≤

γλ] ≤ e−λ
(
eλ
γλ

)γλ
=

(
e
1− 1

γ

γ

)γλ
.

Corollary B.3. Let γ > 1. Then Pr[P(λ) ≥ γλ] ≤

e−λ
(
eλ
γλ

)γλ
=

(
e
1− 1

γ

γ

)γλ
.

We require the following bound on the natural
logarithm function.

Lemma B.4. Let δ > 0. Then

ln(1 + δ) <
δ

2
+

δ

2(1 + δ)
.

Proof. See Figure 1a for an illustration of the geometric
intuition. Recall that for a ≥ 1, ln a =

∫ a
1

1
x dx. Since

1
x is convex, the area defined by this integral is at most
the area of R, the rectangle of width δ and height 1,
minus the area of T , the right triangle of width δ and
height 1− 1

1+δ . Therefore

ln(1 + δ) =

∫ 1+δ

1

1

x
dx < δ − 1

2
δ

(
1− 1

1 + δ

)
=

δ

2
+

δ

2(1 + δ)
.

A often-useful upper bound is ln(1 + δ) < δ, i.e.,
using the area of R as an upper bound. Interestingly,
shaving δ down to δ

2 + δ
2(1+δ) by subtracting area(T ) is

crucial for proving Lemma B.6; using the weaker bound
ln(1 + δ) < δ in the proof of Lemma B.6 gives only
the trivial upper bound of 1 for the probability in that
proof. The same holds true for the next lemma (i.e., the

term δ2

2 is crucial), which is employed similarly in the
proof of Lemma B.6.

Lemma B.5. Let 0 < δ < 1. Then

ln(1− δ) < −δ − δ2

2
.

Proof. See Figure 1b for an illustration of the geometric

intuition. Recall that for 0 < a ≤ 1, − ln a =
∫ 1

a
1
x dx.

The area defined by this integral is at least the area of
R, the rectangle of width δ and height 1, plus the area
of T , the right triangle of width δ and height δ. This is
because d

dx
1
x = −1 at the value x = 1 and d

dx
1
x < −1

for all 0 < x < 1, so the hypotenuse of T touches the
curve at x = 1 and lies strictly underneath the curve for
all 1− δ ≤ x < 1. Therefore

− ln(1− δ) =

∫ 1

1−δ

1

x
dx > δ +

δ2

2
.

B.1 Chernoff bound for biased random walk
on Z Let f̂ , r̂ > 0. Let Uf̂ ,r̂(t) be a continuous-time

Markov process with state set Z in which Uf̂ ,r̂(0) = 0,

with transitions from state i to i+ 1 with rate f̂ for all
i ∈ Z, and with transitions from state i+1 to i with rate
r̂ for all i ∈ Z. In other words, Uf̂ ,r̂(t) is a continuous

time biased random walk on Z, with forward bias f̂ and
reverse bias r̂.

Lemma B.6. For all f̂ > r̂ > 0 and all t, ε̂ > 0,

Pr
[
Uf̂ ,r̂(t) < (1− ε̂)(f̂ − r̂)t

]
< 2e

− ε̂
2(f̂−r̂)2

8f̂
t
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Proof. Since the forward and reverse rates of Uf̂ ,r̂ are
constants independent of the state, the total number of
forward transitions F and the total number of reverse
transitions R in the time interval [0, t] are independent
random variables, such that F − R = Uf̂ ,r̂(t). F is a

Poisson distribution with rate f = f̂ t (hence E[F] = f)
and R is a Poisson distribution with rate r = r̂t.

Let ε = ε̂/2. Let d = f − r > 0. Let γ = f−εd
f =

(1−ε)f+εr
f . Let λ = f . Let δ = ε(f−r)

(1−ε)f+εr , and note that

1 + δ = f
(1−ε)f+εr . By Corollary B.2,

Pr[F ≤ γλ] ≤

(
e1− 1

γ

γ

)γλ

=

fexp
(

1− f
(1−ε)f+εr

)
(1− ε)f + εr

(1−ε)f+εr

= ((1 + δ)exp (1− (1 + δ)))
(1−ε)f+εr

= exp (ln(1 + δ)− δ))(1−ε)f+εr

< exp

(
δ

2
+

δ

2(1 + δ)
− δ
)(1−ε)f+εr

by Lemma B.4

= exp

(
δ − δ(1 + δ)

2(1 + δ)

)(1−ε)f+εr

= exp

(
−δ2

2(1 + δ)

)(1−ε)f+εr

= exp

 −
(

ε(f−r)
(1−ε)f+εr

)2

2
(

1 + ε(f−r)
(1−ε)f+εr

)


(1−ε)f+εr

= exp

 −
(

ε(f−r)
(1−ε)f+εr

)2

2
(

(1−ε)f+εr+ε(f−r)
(1−ε)f+εr

)


(1−ε)f+εr

= exp

−
(

ε(f−r)
(1−ε)f+εr

)2

2f
(1−ε)f+εr


(1−ε)f+εr

= exp

(
− (ε(f − r))2

2f((1− ε)f + εr)

)(1−ε)f+εr

= exp

(
−(ε(f − r))2

2f

)
.(B.1)

Let γ′ = r+εd
r = εf+(1−ε)r

r and λ′ = r. Let

δ = ε(f−r)
εf+(1−ε)r , and note that 1 − δ = r

εf+(1−ε)r . By

Corollary B.3,

Pr[R ≥ γ′λ′] ≤

(
e

1− 1
γ′

γ′

)γ′λ′

=

rexp
(

1− r
εf+(1−ε)r

)
εf + (1− ε)r

εf+(1−ε)r

= ((1− δ)exp (1− (1− δ)))εf+(1−ε)r

= exp (ln(1− δ) + δ)
εf+(1−ε)r

< exp

(
−δ − δ2

2
+ δ

)εf+(1−ε)r

by Lemma B.5

= exp

(
−(ε(f − r))2

2(εf + (1− ε)r)2

)εf+(1−ε)r

= exp

(
−(ε(f − r))2

2(εf + (1− ε)r)

)
< exp

(
−(ε(f − r))2

2(εf + (1− ε)f)

)
= exp

(
−(ε(f − r))2

2f

)
.(B.2)

Observe that γλ − γ′λ′ = f − r − 2ε(f − r) =
(1− 2ε)(f − r). By (B.1), (B.2), and the union bound,

Pr[F − R ≤ (1 − 2ε)(f − r)] < 2 · exp
(
− ε̂

2(f−r)2

2f

)
.

Substituting the definitions f = f̂ t, r = r̂t, and ε = ε̂/2
completes the proof.

B.2 Chernoff bound for random walk on N
with state-dependent reverse bias Let N ∈ Z+,
let δf , λr > 0, and let WN

δf ,λr
(t) for t > 0 be a

continuous-time Markov process with state set N in
which WN

δf ,λr
(0) = 0, with transitions from state i

to state i + 1 with rate δfN for all i ∈ N, and with
transitions from state i + 1 to i with rate λri for all
i ∈ N. In other words, WN

δf ,λr
is a continuous time

random walk on N with a reflecting barrier at 0, in which
the rate of going forward is a constant δfN , and the rate
of going in reverse from state i is proportional to i (with
constant of proportionality λr).

Lemma B.7. Let λr ≥ 1, let δf , δr > 0 such that

δr ≤ δf
4λr

. Then for all N ∈ Z+ such that N ≥ 6/(δf ),

Pr

[
max
t̂∈[0,1]

WN
δf ,λr

(t̂) < δrN

]
< 2−δfN/22+1.

Proof. Consider the event that (∀t̂ ∈ [0, 1]) WN
δf ,λr

(t̂) <
δrN . Then in this case, the maximum reverse transition
rate is at most λrδrN ≤ δfN/4.
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For t̂ ∈ [0, 1], consider the random walk
UδfN,δfN/4(t̂) defined as in Lemma B.6 as a Markov
process on Z (i.e., the states are allowed to go negative)
in which the forward rate from any state i ∈ Z is δfN as
in WN

δf ,λr
(t̂), but the reverse rate from any state i ∈ Z

is δfN/4, which is an upper bound on the reverse rate
of WN

δf ,λr
(t̂) from any state i ∈ {1, . . . , δrN}.

Therefore Pr[(∀t̂ ∈ [0, 1]) WN
δf ,λr

(t̂) < δrN ] <

Pr[(∀t̂ ∈ [0, 1]) UδfN,δfN/4(t̂) < δrN ], since UδfN,δfN/4

has a strictly higher reverse rate and does not have a
reflecting barrier at state i = 0, hence is strictly less
likely never to reach the state δrN at any time t̂ ∈ [0, 1].

We prove the theorem by bounding
Pr[Uδf ,δfN/4(1) < δrN ].

Lemma B.6, with ε̂ = 2
3 , t = 1, f̂ = δfN and

r̂ = δfN/4 implies that

Pr

[
UδfN,δfN/4(1) <

δfN

4

]
= Pr

[
UδfN,δfN/4(1) <

(
1− 2

3

)
(δfN − δfN/4)

]

< 2e
− ( 2

3 )
2
(δfN−δfN/4)2

8δfN by Lemma B.6

= 2e
−

(3δf /4)2

18δf
N

= 2e−δfN/32.

Note that e−n/32 = 2−n/(32 ln 2) < 2−n/22 for all n > 0.
Therefore,

Pr

[
UδfN,δfN/4(1) <

δfN

4

]
< 2·2−δfN/22 = 2−δfN/22+1.

Since δf ≥ 4λrδr and λr ≥ 1, δfN/4 ≥ λrδrN ≥ δrN,
so

Pr
[
UδfN,δfN/4(1) < δrN

]
≤ 2−δfN/22+1.

By our observation that Pr[(∀t̂ ∈ [0, 1]) WN
δf ,λr

(t̂) <

δrN ] < Pr[(∀t̂ ∈ [0, 1]) UδfN,δfN/4(t̂) < δrN ], and since
UδfN,δfN/4(1) ≥ δrN is a counterexample to the latter

event with t̂ = 1,

Pr

[
max
t̂∈[0,1]

WN
δf ,λr

(t̂) < δrN

]
≤ 2−δfN/22+1,

completing the proof.
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