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Abstract

The NP-hard Minimum Common String Partition problem asks whether two strings x
and y can each be partitioned into at most k substrings such that both partitions use exactly
the same substrings in a different order. We present the first fixed-parameter algorithm for
Minimum Common String Partition using only parameter k.

1 Introduction

Computing the evolutionary distance between two genomes is a fundamental problem in compar-
ative genomics [7]. Herein, the genomes are usually represented as either strings or permutations
and the task is to determine how many operations of a certain kind are needed to transform one
genome into the other. If the input is a pair of permutations, these problems can be formulated
as sorting problems, such as Sorting by Transpositions [2] and Sorting by Reversals [1].
In this work, we study a problem in this context whose input is a pair of strings x and y.
Informally, the operation to transfer x into y is to cut x into nonoverlapping substrings and to
reorder these substrings such that the concatenation of the reordered substrings is exactly y.
This transformation is formalized by the notion of common string partition (CSP): a partition P
of two strings x and y into blocks x1x2 · · ·xk and y1y2 · · · yk is a common string partition if there
is a bijection M between {xi | 1 ≤ i ≤ k} and {yi | 1 ≤ i ≤ k} such that xi is the same string
as M(xi) for all 1 ≤ i ≤ k (see Figure 1 for an example). Herein, k is called the size of the
common string partition P. We study the problem of finding a minimum-size CSP:

Minimum Common String Partition (MCSP)
Input: Two strings x and y of length n, and an integer k.
Question: Is there a common string partition (CSP) P of size at most k of x and y?

MCSP was introduced independently by Chen et al. [4] and Swenson et al. [14] (who call
the problem Sequence Cover). MCSP is NP-hard and APX-hard even when each letter
occurs at most twice [10]. Damaschke [6] initiated the study of MCSP in the context of
parameterized algorithmics by showing that MCSP is fixed-parameter tractable with respect
to the combined parameter “partition size k and repetition number r of the input strings”.
Subsequently, Jiang et al. [11] showed that MCSP can be solved in (d!)k ·poly(n) time, where d is
the maximum number of occurrences of any letter in either input string. This was later improved
to a d2k poly(n)-time algorithm that can solve biologically relevant input instances [3]. MCSP
can be solved in 2n · poly(n) time [9]. The current best approximation ratio is O(log n log∗ n)
and follows from the work of Cormode and Muthukrishnan [5]. An approximation ratio of O(d)
can also be achieved [12].

A greedy heuristic for MCSP was presented by Shapira and Storer [13]. In this work, we
answer an open question [6, 9, 11] by showing that MCSP is fixed-parameter tractable when
parameterized only by k, that is, we present an algorithm with running time f(k) · poly(n).
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ababcd abadcbbaa babab ababa

ababcdabadcbbaabababababa

Figure 1: An instance of MCSP with a common string partition of size four.

Basic Notation. A marker is an occurrence of a letter at a specific position in a string; we
denote the marker at position i in a string x by x[i]. For all i, 1 ≤ i < n, the markers x[i]
and x[i+ 1] are called consecutive. An adjacency is a pair of consecutive markers. An interval
is a set of consecutive markers, that is, an interval is a set {x[i], x[i+ 1], . . . , x[j]} for some i ≤ j.
We say that an interval contains an adjacency if it contains both markers of the adjacency. We
write [a, b] to denote the interval whose first marker is a and whose last marker is b. The length
‖I‖ of an interval I is the number of markers it contains. Given two markers a and b in the same
string x, we write ab to denote the signed distance between a and b, that is, ab = ‖[a, b]‖− 1 if a
appears before b in x, and ab = −‖[b, a]‖+ 1, otherwise. Given two intervals s and t, we write
s ≡ t if they represent the same string of letters (if they have the same contents) and s = t if
they are the same interval, that is, they are substrings of the same string z and start and end at
the same position of z. Similarly, for two markers a and b we write a ≡ b if their letters are the
same, and a = b if the markers are identical. We say that a string s has period π if s = ρπiτ ,
where i ≥ 1, ρ is a (possibly empty) suffix of π, and τ is a (possibly empty) prefix of π. The
following lemma is useful when dealing with periodic strings and follows from the periodicity
lemma [8].

Lemma 1. Let s and t be two strings such that s has period πs and t has period πt. If s has
a suffix of length at least ‖πs‖+ ‖πt‖ that is also a prefix of t, then t has period πs and s has
period πt.

We define offset operators . and /: For each marker e and integer d, e′ = e . d is the marker
such that ee′ = d, and e / d := e . (−d).

2 Fundamental Definitions and an Outline of the Algorithm.

In this section, we first present the most fundamental definitions used by our algorithm and
then give a brief outline of the main algorithmic strategy followed by the algorithm.

Some Fundamental Definitions. Let P = {x1x2 . . . x`; y1y2 . . . y`;M} be a CSP of strings x
and y. A breakpoint of P is an adjacency in x (or y) that contains the last marker of some
block xi (yi) and the first marker of the next block xi+1 (yi+1). We say that P matches two
blocks xi and yj if M(xi) = yj . Furthermore, we say that P matches two markers a and b if a
and b are at the same position in matched blocks. By the definition of a CSP, this implies a ≡ b.

The algorithm works on subdivisions of both strings into shorter parts. These subdivisions
are formalized as follows.

Definition 1. A splitting of a string (or an interval) z is a list of intervals [a1, b1], [a2, b2], . . . ,
[am, bm], each of length at least two, called pieces such that a1 = z[1], aj+1 = bj for all j < m,
and bm = z[‖z‖].

Note that successive pieces overlap by one marker. Thus, every adjacency of z is included
in one piece. In fact, a splitting can be seen as a partition of the adjacencies of a string (or an
interval) such that each part contains only consecutive adjacencies.

The strategy of the algorithm is to infer more and more information about a small CSP. To
put it another way, it makes more and more restrictions on the CSP that it tries to construct. To
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Figure 2: Left: Example of alignment between two pieces s and s′. Reference markers are marked with
a star, the shift is 2. Intervals having the same content as the pieces according to this alignment are
marked in gray. Note that there also exists an alignment of shift −3, where the reference marker in y is
the first occurrence of a. Right: A constraint with three pairs of solid pieces illustrated by boxes. Two
of these pairs are fixed and one is repetitive (rep). Matched solid pieces are linked with edges. The
fragile pieces (red and dashed lines) contain the breakpoints (red crosses) of a size-5 CSP satisfying the
constraint.

this end, the algorithm will annotate splittings as follows: a piece is called fragile if it contains
at least one breakpoint, and solid if it contains no breakpoint. To simplify the representation,
the algorithm sometimes merges consecutive pieces [ai, bi] and [ai+1, bi+1] (where bi = ai+1) into
one, that is, it removes [ai, bi] and [ai+1, bi+1] from some splitting and adds the interval [ai, bi+1]
to this splitting.

To further restrict the CSP, the algorithm finds pairs of solid pieces in x and y that are
contained in blocks that are matched by the CSP. Accordingly, a pair of solid pieces s in x
and t in y is called matched in a CSP P if s is contained in a block of P that is matched to a
block that contains t. Note that matched solid pieces may correspond to different parts of their
blocks. For example, one piece may contain the first marker but not the last marker of its block
in x and it can be matched to a solid piece that contains the last but not the first marker of its
block in y. Hence, when looking at the two blocks containing the pieces, there can be a “shift”
between the matched pieces. We formalize this notion by identifying reference markers, which
are meant to be mapped to each other, as follows (see Figure 2 (left) for an example).

Definition 2. Let [a, b] be a piece of a splitting of x and [c, d] be a piece of a splitting of y. The
alignment of [a, b] and [c, d] of shift δ is the pair of reference markers a and c . δ, where

• (−ab) ≤ δ ≤ cd,

• [a, b] ≡ [c . δ, c . (ab+ δ)], and

• [c, d] ≡ [a / δ, a / (δ − cd)].

Hence, an alignment fixes how the interval [a, b] is shifted with respect to [c, d] in the matched
blocks that contain the intervals. That is, if [a, b] starts at position j in its block, then [c, d]
starts at position j − δ. For matched solid pieces, an alignment thus fixes which markers are
matched to each other by the CSP. In particular, the marker a is matched to c . δ and c is
matched to a / δ. Note that the maximum and minimum values allowed for δ ensure that there
is at least one marker in [a, b] that is matched to a marker in [c, d] by a CSP corresponding to
this alignment. The algorithm will only consider such alignments between matched solid pieces.
The second condition verifies that all pairs of matched markers indeed correspond to the same
letter. Clearly, this restriction is fulfilled by every CSP that does not put breakpoints in the
solid pieces [a, b] and [c, d]. A pair of matched solid pieces is called fixed if it is associated with
an alignment (equivalently, with a pair of reference markers) and repetitive otherwise (the reason
for choosing this term will be given below). For a fixed solid piece s, we use s∗ as shorthand for
the uniquely determined reference marker of the alignment of s which is in the same string as s.

These restrictions on a possible CSP are summarized in the notion of constraints, defined
as follows, see Figure 2 (right) for an example.

Definition 3. A constraint C is a tuple (S, F,M,RS) such that:
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• S is a set of solid pieces. Let Sx (Sy) denote the pieces of S from x (y).

• F is a set of fragile pieces. Let Fx (Fy) denote the pieces of F from x (y).

• The pieces of Sx ∪ Fx (Sy ∪ Fy) form a splitting of x (y) in which solid and fragile pieces
alternate.

• M : Sx → Sy is a matching, that is, a bijection between Sx and Sy. As shorthand, we
write s′ = M(s) if s ∈ Sx and s′ = M−1(s) if s ∈ Sy.

• RS is a set of alignments that contains for each matched pair of solid pieces at most one
alignment.

Our algorithm will search for CSPs that satisfy such constraints.

Definition 4. A CSP P satisfies the constraint C = (S, F,M,RS) if:

1. All breakpoints of P are contained in fragile pieces.

2. Each fragile piece contains at least one breakpoint from P.

3. Matched solid pieces are contained in matched blocks in P.

4. If s is a fixed solid piece, then markers s∗ and s′∗ are matched in P.

5. If s is a repetitive solid piece, then s, s′ and the blocks containing them in P all have the
same shortest periods.

Equivalent formulations of Conditions 1 and 2 are that (1’) all solid pieces are contained in
blocks of P, and (2’) different solid pieces in the same string are in different blocks. Given a CSP
P that satisfies a constraint C, we call a block undiscovered by C if it does not contain a solid
piece (equivalently, if it is contained in a fragile piece). The other blocks are called discovered
by C.

Finally, we introduce the following notion that concerns reference markers and fixed solid
pieces.

Definition 5. Let s and s′ be fixed matched solid pieces in x and y. Two markers a in x and b
in y are equidistant from s if s∗a = s′∗b. Similarly, two intervals [a, b] in x and [c, d] in y are
equidistant from s if a and c are equidistant from s and b and d are equidistant from s.

We will use it to talk about the “local environment” of the reference markers in both strings.
In particular, with this notation we can identify (sets of) markers that are matched to each
other if they are both in the same block as the reference markers.

An Outline of the Algorithm and its Main Method. We now give a high-level description
of the main idea of the algorithm; the pseudo-code of the main algorithm loop is shown in
Algorithm 1.1 For the discussion, assume that the instance is a yes-instance, that is, there
exists a CSP P of size k. Since we can check in polynomial time the size and correctness of
any CSP before outputting it, we can safely assume that the algorithm gives no output for
no-instances; hence the focus on yes-instances. The algorithm gradually extends a constraint
that is satisfied by a solution P and outputs P eventually. Initially, the constraint consists solely
of two fragile pieces, one containing all of x and one all of y. We assume that the input strings
are not identical. Hence, every CSP has at least one breakpoint and the initial constraint is
thus satisfied by every size-k CSP.

The algorithm now aims at discovering the blocks of P successively, from the longest to the
shortest. Recall that a block is called discovered by a constraint C if there is a solid piece in C
that is contained in this block. To execute the strategy of finding shorter and shorter blocks, the
algorithm needs some knowledge about the approximate (by a factor of 2) length of the longest
undiscovered block in P. To this end, the algorithm keeps and updates an integer variable β
which has the following central property: Whenever there is a size-k CSP satisfying the current
constraint, then there is in particular one size-k CSP P such that

1Parts of this algorithm, in particular the split procedure follow somewhat the approach of Damaschke [6].
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Algorithm 1 The main algorithm loop MCSP(x, y, k).

1 Π := {i ∈ N | i < n ∧ ∃j ∈ N : 2j = i}
2 C := {S := ∅, F := {[x[1], x[n]], [y[1], y[n]]},M := ∅, RS := ∅} // initially: only two fragile pieces
3 for each Π′ ⊆ Π with max Π′ ≥ dn/2ke ∧ |Π′| ≤ k :
4 β ← max Π′; Π′ ← Π′ ∪ {0} \ {β} // 2-approx. length of longest undiscovered block
5 repeat until β < 4 :
6 split // discover blocks of length at least β
7 β ← max Π′; Π′ ← Π′ \ {β} // update 2-approx. length of longest undiscovered blocks
8 frames // reduce length of fragile pieces
9 branch into all cases to set breakpoints within fragile pieces
10 if the resulting string partition P is a size-k CSP : output P

1. the longest undiscovered block of P has length ` with β ≤ ` < 2β, and

2. β is minimum among all powers of two satisfying Property 1.

Accordingly, we call a block β-critical if it has length ` with β ≤ ` < 2β. To obtain β, we
consider all subsets Π′ of the set Π containing all powers of 2 that are smaller than n. One of
these sets will contain the “correct” approximate block lengths. The central strategy is: Set β
to be the largest value in Π′. Discover all β-critical blocks. Then, there is a satisfying CSP such
that all undiscovered blocks are shorter than the current β. Thus update β by taking the next
largest value from Π′. Then, again discover all β-critical blocks, update β again and so on. The
crucial algorithmic trick is to use the fact that for the correct Π′ we know that there is at least
one β-critical block and that this block is the largest of all undiscovered blocks. Hence, this
is why we guess Π′ instead of considering the set Π of all powers of two in descending order.
Note that since the values of β are decreasing in the course of the algorithm, branching into all
possible Π′ ⊆ Π in the beginning is equivalent to performing a branching at the point where the
next β is “needed”. By fixing Π′ in advance it is clearer, however, that the number of branches
is 2logn instead of lognk.

First, note that there is at least one block of length at least dn/ke since P has size k, so
max Π′ ≥ dn/2ke. Furthermore, for any CSP of size k, |Π′| ≤ k. Hence, the outer algorithm
loop of Algorithm 1 is traversed once for the correct Π′. Note furthermore, that the number of
subsets of Π is O(2logn) = O(n). Hence, there are O(n) traversals of the outer loop of the main
method.

Consider now the traversal for the correct set Π′. The inner loop of the algorithm consists
of two main steps. In the first step, called split, the algorithm discovers the β-critical blocks.
More precisely, it refines C by breaking fragile pieces into shorter pieces (of length dβ/3e) and
identifying those that are contained in β-critical blocks. It then produces a matching and, if
this is possible without considering too many options, aligns these blocks.

To be efficient, split requires that the input fragile pieces are short enough compared to β
and k. Initially, this is not a problem, since the fragile pieces have length n, and β ≥ n/2k.
After split, however, we update β. Hence, between two calls to split the fragile pieces have
to be reduced in order to fit the undiscovered blocks more “tightly”. This is the objective of
frames, which uses a set of rules to identify smaller intervals containing all breakpoints of P. It
thus shrinks the fragile pieces of C so that they are sufficiently small for the next call to split.

The algorithm now continues with this process for smaller and smaller values of β. It stops
in case β < 4, since it can then locate all breakpoints by applying a brute-force branching. Note
that in order to ensure that there is always a β < 4, we add the value 0 to the set Π′ in Line 4
of the main method.

In the remainder of this work, we give the details for the procedures split and frames.
In Section 3, we describe the split procedure, and show its correctness. We also show, using
several properties of frames as a black box, our main result. Then, in Sections 4 and 5, we fill
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Algorithm 2 Procedure split. Global variables: C = (S, F,M,RS) and β.

1 N := ∅ // the set of new pieces
2 for each fragile piece f ∈ F :
3 F ← F \ {f} // old fragile pieces are removed
4 N ← N ∪ “dβ/3e-splitting of f” // update set of new pieces
5 for each p ∈ N : // make p either fragile or solid
6 branch into the case that either S ← S ∪ {p} or F ← F ∪ {p}
7 while ∃ consecutive pieces s1, s2 s.t. {s1, s2} ⊆ S (or {s1, s2} ⊆ F ) :
8 p := “merged interval of s1 and s2”
9 S ← (S ∪ p) \ {s1, s2} (or F ← (F ∪ p) \ {s1, s2})
10 if |Sx| 6= |Sy| : abort branch // no bijection of solid pieces exists
11 if |Fx| ≥ k or |Fy| ≥ k : abort branch // too many fragile pieces in x (or y)
12 while ∃ unmatched solid piece s ∈ Sx :
13 for each unmatched solid piece t in Sy :
14 branch into the case that M(s) := t
15 for each new pair (s, t) of matched solid pieces :
16 i := “number of alignments with shift δ s.t. |δ| ≤ dβ/3e”
17 if i ≤ 6 : for each alignment branch into the case to add this alignment to RS

18 else: branch into the cases to: // s and s′ are periodic
– align s and s′ such that lbreak(s) and lbreak(s′) are equidistant from s
– align s and s′ such that rbreak(s) and rbreak(s′) are equidistant from s
– do not align s and s′

in the blanks by proving the properties of frames.
The algorithm is a branching algorithm that extends the constraint C in each branch. In

order to simplify the pseudo-code somewhat, we describe the algorithm in such a way that the
variables C and β are global variables. After a branching statement in the pseudo-code, the
algorithm continues in each branch with the following line of the pseudo-code. If a branch is
known to be unsuccessful, then the algorithm returns immediately to the branching statement
that created this branch (or to the branching statement above, if the current branch is the last
branch of that statement). We denote this by the “abort branch” command; all modifications
within this branch are undone.

3 Splitting of Fragile Pieces

In this section, we describe the procedure split and show its correctness. The pseudo-code
of split is shown in Algorithm 2. At the beginning of split the constraint contains a set of
discovered blocks. Assume that all blocks of length at least 2β are discovered by this constraint.
The aim of split now is to perform a branching into several cases such that in at least one of
the created branches the constraint C now additionally contains all β-critical blocks. Hence, in
this branch all blocks of length at least β are discovered. Procedure split starts by replacing
each former fragile piece by a splitting where all new pieces have length dβ/3e except for the
rightmost new piece of each such splitting which can be shorter. We call such a splitting a
dβ/3e-splitting. It then considers all branches where each piece is either fragile or solid. In order
to maintain the alternating condition, consecutive solid (resp. fragile) pieces are merged into
one solid (fragile) piece, Lines 7–9.

Next, split extends the matching and the set of alignments of the constraint. All possible
matchings are considered in separate branches (Lines 12–14). Then, split performs an exhaus-
tive branching over all alignments for a given pair of solid pieces, but only if there are very
few of them (Line 17). If there are too many (Line 18), then it can be seen that the pieces are
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periodic with a short period length. Thus, the blocks containing them might be periodic as well.
If the blocks are not periodic, then there are at most two alignments that the algorithm needs to
consider: informally, the period in the blocks can be “broken” either to the left or to the right
of the pieces. To specify these two possibilities more clearly, we introduce the following notation.
Let s = [a, b] be an interval in a string x such that s has a shortest period π. Then, we denote
by lbreak(s) the rightmost marker in x such that [lbreak(s), b] does not have period π. Similarly,
let rbreak(s) be the leftmost marker in x such that [a, rbreak(s)] does not have period π. If the
blocks are periodic, there may be too many possible alignments, and the alignment between the
pieces will be fixed at a later point (when β becomes smaller than the period). However, the
algorithm will use the “knowledge” that the blocks are periodic in the frames procedure.

We now show that split is correct if the input constraint can be satisfied and that it
discovers all β-critical blocks.

Lemma 2. Let C be the constraint at the beginning of split, and let P be a size-k CSP satisfying
C such that all blocks of length at least 2β of P are discovered by C. Then, split creates at
least one branch whose constraint C
• is satisfied by P, and

• all blocks of length at least β are discovered by C

Proof. Let B = {(x1, y1), . . . , (x`, y`)} be the uniquely defined set of matched pairs of undiscov-
ered blocks in P that are β-critical.

Consider the following branching for Lines 5–6 for each piece p ∈ N : If p is contained in
some block xi or yi of B, then branch into the case that p is added to S. Otherwise, branch
into the case that p is added to F (note that we may add in F some pieces that do not contain
any breakpoint, but are contained in blocks not in B).

Now consider the constraint obtained for the above branching after the merging operations
performed in Lines 7–9. We show that P satisfies Conditions 1 and 2 of this constraint. First,
consider a breakpoint in P. This breakpoint is contained in some fragile piece f of the input
constraint since P satisfies this input constraint. Hence, it is contained in some new piece p of
the splitting of this fragile piece. Clearly, the piece p is added to F in the considered branching.
Moreover, in case Lines 7–9 merge fragile pieces, the resulting piece is also fragile, hence p
remains in a fragile piece. Consequently, all breakpoints of P are in fragile pieces of F , and thus
Condition 1 is satisfied by P.

Now consider a fragile piece f ∈ F after Lines 7–9 of the algorithm. We show that f
contains at least one breakpoint. Note that f is obtained after a (possibly empty) series of
merging operations. After the merging, f is between two solid pieces. If f is also a fragile
piece in the input constraint, then f contains a breakpoint since P satisfies the input constraint.
Otherwise, f is contained in a fragile piece of the input constraint, and at least one of its
neighbor pieces is a new solid piece s. Since f (or all the smaller pieces that were merged to f)
are added to F by the branching, they are not contained in the block that contains s. Hence, f
contains the breakpoint between the first (or last) marker of the block containing the new solid
piece and its predecessor (or successor). Thus, Condition 2 is also satisfied by P.

Note that the above also implies that, for each xi of B, there is exactly one new solid piece
that is contained in xi. Similarly, for each yi of B, there is exactly one new solid piece that is
contained in yi. Note that in this branching, |Sx| = |Sy| and furthermore, since P has size k,
|Fx| < k and |Fy| < k. Hence, the algorithm does not abort in Lines 10 and 11. We now consider
the branching in which for each pair (xi, yi), the two corresponding solid pieces are matched
to each other. Clearly, this branching fulfills Condition 3: the condition holds obviously for all
pieces contained in blocks of B. Furthermore, it holds for all old solid pieces since for these, the
matching M has not changed. Note that the function M also remains a bijection: it is changed
only for unmatched solid pieces, and the number of new solid pieces in x and y is equal.
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It remains to show that there is a branching in which Conditions 4 and 5 also hold. Consider
a pair of matched solid pieces s and s′, and the blocks xi, yi containing them. We use the
following technical claim in order to clarify the discussion; it will be proven afterwards.

Fact. If there are more than six alignments of s and s′ whose shift each has absolute
value of at most dβ/3e, then

i. s and s′ are periodic with a common shortest period π (with ‖π‖ ≤ dβ/3e/2);

ii. if the blocks xi and yi do not have period π, then in P either lbreak(s) is matched
to lbreak(s′), or rbreak(s) is matched to rbreak(s′) (or both).

Let a be the leftmost marker of s and ã be the marker matched to a in P. Then {a, ã} is an
alignment for (s, s′) whose shift has absolute value less than dβ/3e: there are at most dβ/3e − 1
markers preceding either s or s′ that can belong to the same block since the pieces of the
dβ/3e-splitting preceding s and s′ are fragile and thus not contained in the same blocks. If
the condition of Line 17 is satisfied, then there is one branch where alignment {a, a′} is added
to RS . Otherwise, by the fact above, the following cases are possible. Either {a, a′} is one of
the alignments where lbreak(s) is matched to lbreak(s′) or rbreak(s) is matched to rbreak(s′), in
which cases {a, a′} is added to RS in one of the branches. Otherwise, (s, s′) is not fixed, and s
and s′ are contained in blocks having the same shortest periods.

Altogether this shows the first claim of the lemma. The second claim can be seen as follows.
The blocks of length ` ≥ 2β are already discovered, and the corresponding solid pieces remain
in the constraint. It thus remains to consider the β-critical blocks. We show that for each xi

there is at least one piece that is contained in xi. Consider the marker a at position dβ/3e
in xi and a piece s of the dβ/3e-splitting that contains this marker. Then s contains only
markers from xi since s has length at most dβ/3e and xi has length at least β ≥ 2dβ/3e (for
β ≥ 4). Afterwards, s is only merged with other pieces that are contained in xi (recall that in
the considered branching there is a fragile piece between all solid pieces from different blocks).
Hence, the second claim of the lemma also holds.

It remains to show the correctness of the claimed fact. We first need to prove the following
claim. Define the dβ/3e-middle of an interval [u, v] as the length-dβ/3e interval centered in [u, v]
(formally, the interval [û, v̂] with û = u . b(uv − dβ/3e)/2c and v̂ = v / d(uv − dβ/3e)/2e). Then
s contains the dβ/3e-middle of xi and s′ contains the dβ/3e-middle of yi.

The claim is shown for s = [a, b] (the proof for s′ is similar). Let xi = [u, v], and let [û, v̂] be
the dβ/3e-middle of xi. First note that since xi has length at least β, we have uv ≥ β − 1. We
show that a is in the interval [u, û]. The length of this interval is

uû = b(uv − dβ/3e)/2c
≥ b(β − 1− dβ/3e)/2c
≥ b(b2β/3c − 1)/2c
≥ b(2β/3− 1.7)/2c
≥ bβ/3− 0.85c
≥ dβ/3e − 2.

Since the piece with right endpoint a in the dβ/3e-splitting is fragile (it has not been merged
with s), it contains a breakpoint of P and hence a marker strictly to the left of u. Moreover
it has length at most dβ/3e, so ua ≤ dβ/3e − 2, which implies that a is in the interval [u, û].
Similarly, b is in the interval [v̂, v], and [a, b] contains the dβ/3e-middle of xi.

We can now turn to proving the two statements of the fact.
(i) Let s = [a, b], s′ = [a′, b′] and δ1, δ2, . . . , δm be the shifts of the m ≥ 7 alignments such

that −dβ/3e ≤ δ1 ≤ δ2 ≤ . . . ≤ δm ≤ dβ/3e. Let i be the index such that δi+1 − δi is minimal,
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and p = δi+1 − δi. We thus have

p ≤ 2dβ/3e
m− 1

≤ dβ/3e/2

Let q be an integer with p ≤ q ≤ ab. Using the second condition in the definition of alignment,
we have

a . q ≡ a′ . (δi + q) (since a . q ∈ [a, b])

= a′ . (δi+1 + q − p)
≡ a . (q − p) (since a . (q − p) ∈ [a, b])

Thus intervals [a, b] and (symmetrically) [a′, b′] are both periodic with period length p, hence s
and s′ have shortest periods of length at most dβ/3e/2.

Using the fact that s and s′ both contain the dβ/3e-middle of the matched blocks in which
they are contained, they have a common substring of length greater than the sum of their
shortest periods. By Lemma 1 they thus have a common shortest period, written π, with
‖π‖ ≤ dβ/3e/2.

(ii) Recall that xi (yi) is the block containing s (s′) in P. Let [û, v̂] ([û′, v̂′]) be the dβ/3e-
middle of xi (yi). Since [û, v̂] ⊂ s and ‖[û, v̂]‖ ≥ ‖π‖, we have that lbreak(s) is the rightmost
marker in x and rbreak(s) is the leftmost marker in x such that intervals [lbreak(s), v̂] and
[û, rbreak(s)] do not have period π. The same holds for lbreak(s′) (rbreak(s′)) and v̂′ (û′).

Now if xi does not have period xi it either contains lbreak(s) or rbreak(s). Suppose that xi

contains lbreak(s) (the case where xi contains rbreak(s) is similar). Let l′ be the marker in yi

matched to lbreak(s) by P. Then [l′, v̂′] ≡ [lbreak(s), v̂]. Hence, [l′, v̂′] does not have period π.
Furthermore, by the definition of lbreak(s), for all m′ ∈ [l′ . 1, v̂′], [m′, v̂′] has period π. Thus, l′

is the rightmost marker such that [l′, v̂′] does not have period π. Since [û′, v̂′] ⊂ s′ and since s′

has the same shortest period π as [û′, v̂′] we have l′ = lbreak(s′). Hence, markers lbreak(s) and
lbreak(s′) are matched in P.

The following trivial observation follows from the check in Line 11 of split. It is useful for
bounding the running time of split (in particular for later calls to split).

Observation 1. After split has finished, the constraint contains at most 2k − 2 fragile pieces
from each of x and y. The overall number of solid pieces is thus at most 2k.

To obtain a fixed-parameter algorithm for parameter k, we now “shrink” the fragile pieces
between the solid pieces of the constraint. This will ensure that in the next call to split, the
number of new pieces created in the splitting will be bounded by a function of k. Note that by
Lemma 2, split has discovered all pieces that have length at least β. Hence, we now update
the value β denoting the approximate length of the longest undiscovered blocks (by taking the
largest remaining value from Π). Then, frames uses this updated value of β to shrink the fragile
pieces. For the moment, we make some claims about frames; their proof is deferred to the
Sections 4 and 5. First, we claim that frames is correct, that is, there is at least one good
branching for yes-instances.

Lemma 3. If there exists a size-k CSP P satisfying C at the beginning of frames such that
longest undiscovered block is β-critical, then frames creates at least one branch such that the
constraint in this branch is satisfied by a size-k CSP P ′ whose longest undiscovered block has
length at most 2β − 1.

Second, frames increases the exponential part of the running time by a factor that depends
only on k.

9



Lemma 4. Overall, the calls to frames create (2k)4k
2 · kO(k) branches; all other parts of the

algorithm can be performed in poly(n) time.

Finally, to bound the number of branches in the subsequent call to split, and for the
case β < 4, we use the following lemma.

Lemma 5. When frames terminates, every fragile piece has length at most 12(k2 + k)kβ.

Note that the above also holds before the first call of split. Using these lemmas, we obtain
our main result.

Theorem 1. Minimum Common String Partition can be solved in k21k
2

poly(n) time; it is
thus fixed-parameter tractable with respect to the partition size k.

Proof. For the correctness proof assume that the instance is a yes-instance (for a no-instance
the algorithm can always check the correctness and size of a CSP before returning, thus it has
empty output for no-instances). Then, assuming that the input strings are not identical, there
is a CSP P satisfying the initial constraint C which demands only that there is at least one
breakpoint in x and in y.

We now show that there is a set Π′ of powers of 2, all of which are smaller than n such that
the algorithm outputs, in at least one of its branches, a size-k CSP, in case the main algorithm
loop is traversed for this set Π′.

Let β be the smallest integer such that there is a size-k CSP in which the longest block
is β-critical. Then, the largest integer of Π′ is β. Now, if β < 4 the algorithm directly finds
all breakpoints by a brute-force branching. Otherwise, the procedure split is called. By
Lemma 2, this procedure creates at least one branch where the constraint is satisfied by some
size-k CSP P and all its blocks of length at least β are discovered by C. Consider an arbitrary
branch with this property. Now, let β denote the smallest power of 2 such that there is a CSP
satisfying the current constraint C in which the longest blocks are β-critical. This integer β is
the second largest integer of Π′. The algorithm now calls frames and by Lemma 3 obtains in
at least one branch a constraint such that there is a size-k CSP that satisfies the constraint in
this branch. Furthermore, also by Lemma 3 the longest undiscovered block in this CSP has
length at most 2β − 1. By the choice of β, it follows that the longest undiscovered block of
this CSP is β-critical. Now, the algorithm either finds all breakpoints by brute-force (if β < 4)
or again calls the procedure split to discover all β-critical blocks. This whole procedure is
repeated for smaller and smaller β, each time β is defined as the smallest power of two such
that there is a size-k CSP satisfying the current constraint C whose longest undiscovered block
is β-critical. The set Π′ contains exactly all integers obtained this way. Eventually, β < 4 and
the algorithm branches by brute-force into all cases to set the breakpoints without violating the
current constraint. Clearly, one of these cases is equivalent to a CSP satisfying this constraint.
The algorithm verifies that this is indeed a CSP and that it has size at most k and correctly
outputs the CSP. Hence, the algorithm is correct.

It remains to show the running time of the algorithm. First, the for-each-loop in the main
method is executed O(2logn) = O(n) times. Second, by the restriction on Π′, the repeat-loop in
the main method is executed at most k times. To obtain the claimed running time, we bound
the number of branches created in each call to split.

In each call to split the total length of the fragile pieces is less than (2k)12(k2 + k)kβ =
24(k4 + k3)β: In the first call, β > n/2k, so the bound holds. In the other cases, there are, by
Observation 1 at most 2k− 2 fragile pieces in x and y. Furthermore, in this case split is called
after frames. Thus, by Lemma 5, each fragile piece has length at most 12(k2 + k)kβ, and the
overall bound follows.

The procedure splits the fragile pieces into new pieces of length at most dβ/3e (i.e. there is
a distance dβ/3e − 1 between the left endpoints of two consecutive pieces of the same splitting).
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Since β ≥ 4, we have dβ/3e − 1 ≥ β/6. Hence, this creates less than 144(k4 + k3) new pieces of
length dβ/3e plus at most one additional shorter piece at the end of each fragile piece. Hence,
145k4 is an upper bound on the number of new pieces. Branching for each piece into the case
that it is solid or fragile can be done in 2145k

4
branches. The number of necessary branches for

this part of split can be reduced as follows: Since we merge series of consecutive pieces in F or
S, and since we do not need to consider branches with more than k solid pieces, we can directly

look for the first and last piece of each β-critical block. This creates O(
(
145k4

4k

)
) = O( (145k

4)4k

(4k)! )
branches in each call of split.

The matching requires up to k! branches, and the alignment at most 6k. Since 1454kk!6k =
o((4k)!), we can bound the number of branches in each call of split by k16k. The split pro-

cedure is called at most k times (by the restriction on Π), thus creating O(
(
k16k

)k
) = O(k16k

2
)

branches throughout the algorithm. Finally, the number of branches created in frames is (2k)4k
2 ·

kO(k) by Lemma 4, and the number of branches created in the final brute-force can be bounded
as follows. The length of the fragile pieces is O(k4 + k3) and we need to guess at most 2k − 2
precise breakpoint positions from this number. This can be done with kO(k) branches.

Finally, note that all other steps of the algorithm can be clearly performed in polynomial
time. Altogether, the total running time of the algorithm thus is

O(k2kn) · k16k2 · kO(k) · (2k)4k
2 · kO(k) · poly(n)

= k21k
2

poly(n).

4 Putting Frames Next to Fixed Pieces

In this and the next section, we prove the two claimed lemmas concerning frames. Informally,
we show that, with the right constraint in the beginning, frames finds a constraint C that
is satisfied by a size-k CSP P whose longest undiscovered block has length at most 2β − 1.
Moreover, the length of each fragile piece is O(k3β) in every constraint produced by frames.
The pseudo-code of frames is shown in Algorithm 3.

The approach of frames is to use a set of reduction rules to put “frames” into the fragile
pieces, where a frame is an interval within the fragile piece that contains all breakpoints that
are contained in this piece. We call the actual shortest interval containing all breakpoints of
a fragile piece a “window”, defined as follows. Let P be a size-k CSP satisfying C, and let f
be a fragile piece in C. The window of f is the interval [a, b] such that {a, a . 1} is the leftmost
breakpoint of P in f and {b / 1, b} is the rightmost breakpoint of f . Since a frame is required
to contain all breakpoints of a fragile piece it can be seen as a “super”-approximation of the
actual window. A formal definition of frames is as follows.

Definition 6. Let C be a constraint. A frame [a, b] for a fragile piece f of C is an interval that
is contained in f . A frame set for C is a set Φ of frames such that each fragile piece f contains
at most one frame. A CSP P that satisfies C satisfies a frame set Φ for C if each breakpoint
of P is contained in a frame of Φ or in a fragile piece without frame.

Initially, the frame set is empty. Then the frames are added one by one until each fragile
piece has a frame. The approach to add the frames to the constraint can be summarized as
follows: first, we compute an upper bound w on the length of the windows that only depends
on β and k. Then, we apply a series of frame rules that eventually place a frame in all fragile
pieces (Lines 4–5). As we will show, the frame length then depends on w (and thus on k and β)
and on the maximum period length of the unfixed (repetitive) solid pieces. Since the frames
contain all breakpoints of P, it is possible to reduce fragile pieces until they “fit” their frames
(Line 6). We now check whether there are some unfixed solid pieces with a shortest period
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Algorithm 3 Procedure frames. Global variables: C, β.

1 w := 2βk + 1 // upper bound on window length
2 repeat :
3 Compute the maximum extension of each solid piece,

the piece graph G[C,Φ := ∅], and the strips of each rep−rep path
4 while there is a frameless fragile piece :
5 place frames in fragile pieces by applying Frame Rules 1–6
6 for each fragile piece : apply Fitting Rule 1
7 new-align := False // Fix pieces with long periods:
8 for each repetitive solid piece s (with shortest period πs) :
9 if all fragile pieces adjacent to s or s′ have length at most (12k2 + 9k) ‖πs‖ :
10 for each feasible alignment branch into the case to add this alignment to RS

11 new-align ← True
12 until new-align = False
13 return the modified constraint C

that is long compared to w. If this is the case, then the number of “feasible” alignments for
these pieces is small, and we can thus branch how to align these pieces (Lines 7–11). Formally,
we call an alignment of s = [a, b] and s′ = [a′, b′] feasible for C if the interval equidistant to
[a, b] ([a′, b′]) from s does not intersect any other solid piece than s′ (s) in C. Note that each
satisfying CSP can only have feasible alignments, otherwise there is at least one fragile piece
without breakpoints.

Afterwards, we go back to applying the frame rules (we will obtain shorter frames since the
number of fixed pieces has increased). If this is not the case, that is, all pieces have short periods
compared to w, then we show that the maximum frame length depends only on w. Hence,
in this case they are sufficiently short, and the frames procedure has achieved its goal. The
algorithm thus returns to the main method where it calls split to find new solid pieces.

In this section, we describe the frame rules that place frames in fragile pieces which are next
to fixed pieces and some further simple frame rules. Before doing so, we define two concepts that
will be used by the frame rules: maximum extensions and the piece graph. Roughly speaking,
maximum extensions are used locally to bound the position of some breakpoints in the fragile
pieces. The piece graph provides a structural view of the relationship between pieces and is used
to show that one of the frame rules can always be applied in case there is a frameless fragile
piece.

Maximum extension of solid pieces. Let s be a solid piece in a constraint C. The maximum
extension of s is the interval [lext(s), rext(s)] containing s where rext(s) and lext(s) are defined as
follows. If s is fixed, then let ` be the largest integer such that [s∗, s∗ . `] ≡ [s′∗, s′∗ . `], and that
no marker of [s∗, s∗ . `] or [s′∗, s′∗ . `] is in a solid piece other than s or s′. Then rext(s) := s∗ . `
and rext(s

′) := s′∗ . `. If s is repetitive with a shortest period πs, then let a be the leftmost
marker in s and define rext(s) as the rightmost marker such that the interval [a, rext(s)] has
period πs, and that no marker in [a, rext(s)] is in a solid piece other than s. Marker lext(s) is
obtained symmetrically.

The following proposition is a straightforward consequence of the definition of maximum
extension.

Proposition 1. Let s be a fixed solid piece, and let [a, b] and [c, d] be two intervals that are
equidistant from s and such that [a, b] is contained in [lext(s), rext(s)] and [c, d] is contained
in [lext(s

′), rext(s
′)]. Then, [a, b] ≡ [c, d].

Note that, as a special case, the above proposition includes single markers (that is, length-one
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Figure 3: Left: two pairs of fixed solid pieces (s, s′) and (t, t′). Reference markers are shown
with an asterisk, maximum extensions are delimited with dashed lines, and the breakpoints of
some possible CSP are marked with red crosses. Right: a simplified representation of the same
pieces, where thick (resp. thin) lines are used for solid (resp. fragile) pieces.

intervals). The next proposition simply states formally that the maximum extensions of a solid
piece contain the block which contains the solid piece.

Proposition 2. Let C be a constraint and s be a solid piece of C. Any CSP that satisfies C
has a block which contains s and is contained in [lext(s), rext(s)]. Furthermore, let f be a fragile
piece next to s. Then, the window in f contains at least one marker of [lext(s), rext(s)].

Proof. If s is fixed, then the block containing s cannot contain the marker lext(s)/1: if this marker
is contained in the block, it is matched to lext(s

′) / 1. By definition of lext(s), either lext(s) / 1 6≡
lext(s

′) / 1 or one of lext(s) / 1, lext(s
′) / 1 belongs to a different solid piece t. In the first case, we

do not obtain a CSP; in the second case, there is at least one fragile piece without a breakpoint.
Similarly, the block containing s cannot contain rext(s) . 1.

Every repetitive solid piece s is contained in a block that has a common shortest period π
with s. By definition of lext() and rext() for repetitive solid pieces this block must thus be
contained in [lext(s), rext(s)].

Finally, consider a fragile piece f to the right (to the left) of s. The window in f contains
the last (first) marker of the block containing s. By the above it thus contains at least one
marker of [lext(s), rext(s)].

The Piece Graph. Given a constraint C and a frame set Φ, the piece graph G[C,Φ] is the
bipartite graph G := (VS ∪ VF , E) constructed as follows.

• VF contains one vertex vf for each frameless fragile piece f ∈ F ,

• VS contains, for each repetitive solid piece s ∈ Sx a vertex vs, and for each fixed piece
s ∈ Sx, two vertices ls and rs (for left and right).

• For a fixed solid piece s and a fragile piece f ∈ F , G contains the edge {vf , ls} if the last
marker of f is the first marker of s or of s′, and the edge {vf , rs} if the first marker of f is
the last marker of s or of s′.

• For an unfixed solid piece s, G contains the edge {vf , vs} if the first marker of f is the last
marker of either s or s′ or if the last marker of f is the first marker of either s or s′.

Note that the vertices vs or ls and rs are only defined for pieces s ∈ Sx, but they represent
both pieces s and s′. Observe furthermore that in case VF 6= ∅, there are fragile pieces in C
that do not have a frame in Φ. Moreover, note that in this case the edge set of the piece graph
is nonempty. Our aim will thus be to gradually apply the frame rules until the piece graph is
edge-less. Each vertex is called fragile, fixed or repetitive depending on the nature of the piece
it represents. Note that most vertices of the graph have degree at most 2, except for repetitive
vertices which can have degree up to 4. Vertices with smaller degree correspond initially to the
four pieces at the end of the sequences.

In order to deal seamlessly with pieces at the end of the input strings (where no fragile
piece is adjacent on one side), we introduce “phantom frames” as follows. If s contains the
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Figure 4: Frame Rules 1–6 of frames. Frames are drawn as red boxes, the frame created at
each step is dashed. Possible breakpoint positions in P are shown as red crosses.

first element of a string, i.e. x[1] or y[1], we say that s has the phantom frame [x[0], x[1]] (resp.
[y[0], y[1]]) to its left. Likewise, if s contains x[n] or y[n], it has the phantom frame [x[n], x[n+1]]
(resp. [y[n], y[n+ 1]]) to its right. The idea behind phantom frames is as follows: solid pieces at
the end of the strings have one specific constraint, namely the first or last element is fixed. Since
frames are used to bound the positions of endpoints of solid pieces, using phantom frames yields
that the constraint on end-of-string pieces is just a particular case of the general “endpoints in
frames” constraint.

We now have collected the prerequisites to state the frame rules. A frame rule is an algorithm
that receives as input a constraint C and a frame set Φ and updates both into a constraint C’
and a frame set Φ′. A frame rule is correct if following holds. First, if there is a size-k CSP P
satisfying C and Φ, then there is also a size-k CSP P ′ satisfying C′ and Φ′. Second, the longest
undiscovered block in P ′ is at most as long as the longest undiscovered block in P (this additional
restriction will be used to argue that the choice of β remains correct). Note that without loss
of generality, we describe all rules for pieces in x but they apply to fragile pieces in x and y.
Furthermore, if a rule works on a single fixed vertex in the piece graph, then we assume that
this vertex is a left vertex ls (by inverting the instance one can also deal with all right vertices).
Finally, we state the additional frames of all rules by defining an interval which contains the
window, in order to ensure that the frames are within the fragile pieces, we always intersect this
interval with the considered fragile piece f . The first rule puts frames into fragile pieces at the
end of the string.

Frame Rule 1. If the piece graph contains a fragile degree-one vertex vf , then f contains either
x[1] or x[n]. If f contains x[1] add f ∩ [x[1], x[1] . w] to Φ, otherwise add f ∩ [x[n] / w, x[n]]
to Φ.

of the correctness of Frame Rule 1. Fragile pieces of x that do not contain the first or the last
marker of x are preceded and followed by a solid piece (since the splitting is alternating) and
thus the corresponding vertex in the piece graph has degree two. Hence, a fragile piece in x
corresponding to a degree-one vertex of the piece graph contains either the first or the last
marker of x. Assume without loss of generality that f contains x[1]. The leftmost block of P in
x is necessarily an undiscovered block since it is contained in the fragile piece f . Hence, marker
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x[1] belongs to the first undiscovered block of P and it is next to a breakpoint of P. Since the
window (which contains all breakpoints in f) has length at most w, it is contained in the created
frame [x[1], x[1] . w].

Frame Rule 2. If the piece graph contains a degree-one vertex ls with neighbor vf such that f
is next to s and s′ does not contain y[1], then: let [s′∗ /u, s′∗ /v] be the (possibly phantom) frame
to the left of s′ in y; add the frame f ∩ [s∗ / (u+ w − 1)), s∗ / v] to Φ.

of the correctness of Frame Rule 2. Consider first the case where [s′∗ / u, s′∗ / v] is a phantom
frame: in this case, s′∗ / v is y[1] and u = v + 1. Hence, y[1] is the first element of the block
containing s′. Since y[1] and s∗ / v are equidistant from s, s∗ / v is the first element of the block
containing s and the last element of the window in f . Since the window has length at most
w − 1, it is contained in the frame [s∗ / (v + w), s∗ / v] = [s∗ / (u+ w − 1)), s∗ / v].

Consider now the (regular) case where s′ has a fragile piece g to its left. By the frame
definition, all breakpoints of a satisfying CSP P that are in g are within [s′∗ / u, s′∗ / v]. Hence,
s′∗ /v is in the same block as s′. Consequently, the right limit of the window in f is to the left of
s∗ / v in f . Similarly, s′∗ / u is in a different block than s′ and thus there is a breakpoint to the
right of s∗ /u in f . All other breakpoints in f can have distance at most w from this breakpoint.
Hence, all breakpoints in f are contained in the created frame [s∗ / (u+ w − 1), s∗ / v].

The above rules are relatively straightforward inferences of frame positions that can be made
because the piece graph has degree-one vertices. We now show some more intricate rules that
deal with the remaining cases. In particular, we show how to deal with cycles in the piece graph.
We first consider cycles without repetitive solid pieces. Note that the following rule performs
a branching. We thus extend the correctness notion to hold if there is at least one branch in
which the created constraint and frame set can be satisfied.

Frame Rule 3. If the piece graph contains a simple cycle without repetitive vertices, then create
one branch for each edge {vf , us} of this cycle. In each branch, add to Φ the frame

• f ∩ [lext(s) / w, lext(s) . (2w)] if us = ls for some solid piece s, or

• f ∩ [rext(s) / 2w, rext(s) . (w)] to f if us = rs for some solid piece s.

The following is a straightforward property of constraints and satisfying solutions and used
for showing the correctness of Frame Rule 3.

Proposition 3. Let s be a fixed solid piece in a constraint C. If markers a and a′ are equidistant
from s, then for any integer i, a . i and a′ . i are equidistant from s. Moreover, given a CSP
P satisfying C, the first markers (the last markers) of the blocks of P containing s and s′ are
equidistant from s.

Proof. The first part is directly obtained by definition:

s∗(a . i) = s∗a+ i = s′∗a′ + i = s′∗(a′ . i).

For the second part, simply note that if s∗ is at position j in the block containing s, then s′∗ is
also at position j in s′. Hence, the first markers (and thus also the last markers) of both blocks
are equidistant from s.

of the correctness of Frame Rule 3. Let P be the set of CSPs that satisfy the constraint C and
frame set Φ and additionally have a minimum total length of undiscovered blocks. We show
that there is a P ∈ P which has all breakpoints in [lext(s) / w, lext(s) . (2w)] for some vertex ls
of the cycle, thus showing correctness of the rule.

Since the piece graph G[C,Φ] is bipartite with partition VS and VF , the cycle alternates
between vertices of VS and VF . Moreover, all cycle vertices from VS are fixed, and alternate
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Figure 5: Illustration for the first part of the correctness proof of Frame Rule 3. If two fragile
windows fi, fj with different parity have several breakpoints (here, i = 1 and j = 4), then we
can shift the position of the leftmost breakpoint in each fragile piece of the path to reduce the
length of undiscovered blocks. The modifications (breakpoints added or deleted) are shown as
red circles.

between left and right vertices (each fragile vertex of the cycle is adjacent to a left vertex and to
a right vertex). Hence there exist solid pieces s1, s2, . . . , s` and fragile pieces f1, f2, . . . , f` such
that the cycle is (ls1 , vf1 , rs2 , vf2 , . . . , ls`−1

, vf`−1
, rs` , vf`). For simplicity, we consider indices only

modulo ` (that is, s`+1 = s1, f0 = f`, etc.), and we assume that fragile pieces with odd indices
are in x and those with even indices are in y. Consider a CSP P ∈ P such that there is no ls
whose window is contained in [lext(s) / w, lext(s) . (2w)]. We transform this CSP into one that
fulfills this property. We first prove that in P either all fragile pieces with odd or all fragile
pieces with even indices contain only one breakpoint. Assume towards a contradiction, that
there exist integers i < j of different parity such that fi and fj both have windows with at
least two breakpoints and for each h with i < h < j, fh contains only one breakpoint. Assume
without loss of generality that i is odd and j is even. Hence, fi is in x to the right of si+1 and
fj is in y to the right of sj .

For all h, i ≤ h ≤ j, let ah be the leftmost marker of the window in fh, and bh = ah . 1. For
odd h, ah and ah+1 are the rightmost markers of the blocks containing sh+1 and s′h+1 and thus
equidistant from sh+1. For even h < j, bh and bh+1 are the left endpoints of the blocks containing
sh+1 and s′h+1, so they are equidistant from sh+1. By Proposition 3, for all i ≤ h < j, [ah, bh] and
[ah+1, bh+1] are equidistant from sh+1. By definition of ah, the window in each fh is contained in
[ah, ah . w]. If one of these intervals is not contained in the maximum extension of an adjacent
solid piece, say [ah, ah . w] is not contained in the maximum extension of sh+1, then lext(sh+1)
is contained in [ah, ah . w]. Hence, the window is contained in [lext(sh+1) / w, lext(sh+1) . w],
contradicting our assumption on P. In the following, we thus assume that all intervals [ah, ah.w]
are contained in the maximum extension of adjacent solid pieces, which by Proposition 1 implies
that they all have the same content. In particular, this implies [ai, ai . w] ≡ [aj , aj . w].

We now describe a modification of P that results in a new CSP which is not larger than P,
also satisfies the constraint and frame set but has smaller total length of undiscovered blocks;
the modification is illustrated in Figure 5. Let u + 1 and v + 1 be the lengths of the leftmost
undiscovered blocks in fi and fj respectively (assume without loss of generality that u ≤ v).
These two undiscovered blocks are thus [bi, bi . u] and [bj , bj . v], and they are matched in
P to other undiscovered blocks [b′i, b

′
i . u] and [b′j , b

′
j . v]. Note that since fi is odd and fj is

even, [bi, bi . u] is in a different string than [bj , bj . v]. To create the new solution P’ from P
apply the following modifications. First, cut out u+ 1 markers from the left of [b′j , b

′
j . v] (recall

that u ≤ v) which gives two new blocks [b′j , b
′
j . u] and [b′j . (u + 1), b′j . v] if u < v and leaves

the block [b′j , b
′
j . v] unmodified if u = v. Now, match block [b′i, b

′
i . u] to [b′j , b

′
j . u] (recall that

these blocks are in different strings). Now, shift the breakpoints of the fragile pieces of the cycle
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Figure 6: Illustration for the correctness proof of the second part of Frame Rule 3. Given a
cycle with total length of undiscovered blocks p ≥ 0 we construct intervals [ah, bh] and [bh, ch]
as shown (delimited by blue dotted lines). All the breakpoints in intervals [ah, bh] can be shifted
to the corresponding [bh, ch].

as follows. For every odd h, i < h < j, cut out u+ 1 markers from the left of s′h and sh. And
for every even h, i < h ≤ j, add u+ 1 markers to the right of the blocks containing sh and s′h.
Finally, in case u < v, match the shortened block bj . (u+ 1), bj .v to the block b′j . (u+ 1), b′j .v
created in the first step. Note that by the discussion above, the pieces added to sh and s′h for
even h have the same content. Hence, all matched blocks have equal content. Furthermore,
since the block [bi, bi . u] is now unmatched, its markers are free to be added to si+1.

This new solution has at most as many blocks as P: we have created at most one new
breakpoint in [b′j , b

′
j . v] and removed a breakpoint in fi by adding exactly u + 1 markers to

the right of si+1. For all other fragile pieces fh, the breakpoint has “only” been shifted to the
right. Furthermore, P ′ satisfies the same constraint C as P: the matching only changed between
undiscovered blocks which are not constrained. Moreover, the fragile pieces for which the
breakpoints have been modified are either frameless (if they are on the cycle) or the modification
adds a breakpoint that is between two breakpoints (in the modification of [b′j , b

′
j .v]) However,the

total length of the undiscovered blocks has been reduced by 2(u + 1), which contradicts the
choice of P. We now know that in P the undiscovered blocks of the cycle are either all in x or
all in y. In the following, we assume they are all in x, that is, in fragile pieces fj with odd j.
We now consider the following two cases: either there is no undiscovered block, even in x, or
there is at least one.

First consider the case that there is no undiscovered block in the cycle, that is, all the windows
contain only one breakpoint [ah, bh]. If all markers bh are within the maximum extensions of
both adjacent solid pieces, we create a new solution P ′ from P as follows: for every odd h, cut
out bh and bh−1 from the left end of the blocks containing sh and s′h, and for every even h, add
bh and bh−1 to the right end of the blocks containing s′h and sh. The solution P ′ satisfies the
same constraints as P, with the same total length of undiscovered blocks. Repeat this operation
of shifting the breakpoints to the right until for some i (without loss of generality, assume i is
even), bi is to the right of rext(si). Then, the rule is correct, since for some branch the edge
(rsi , vfi) is selected and the frame [rext(si) / 2w, rext(si) . w] which contains the only breakpoint
of P in fi is added to Φ.

It remains to show the case where there is at least one undiscovered block in the fragile
pieces of the cycle, that is, the total length p of the undiscovered blocks of the cycle is at least
one. Note that by the choice of w, p < w. We now show that the strings around the windows
are periodic with period length p, so that we can again shift all the breakpoints of the fragile
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pieces to the right by steps of length p, until at least one of them has distance at most p from
the end of a maximum extension.

We first introduce some notations (see Figure 6 for an illustration): for each h, let [dh, eh]
denote the window of fh. Let b1 = e1, a1 = b1 / p, c1 = b1 . p, and for each h, 2 ≤ h ≤ `, let ah,
bh, and ch be the markers equidistant with ah−1, bh−1, and ch−1 from sh.

We first show that for every h with 2 ≤ h ≤ `, we have

ehbh = dh−1bh−1 − 1. (1)

For even values of h, dh−1 and dh are equidistant from sh, so dhbh = dh−1bh−1. Since fh is in
string y, it contains only one breakpoint, and thus dheh = 1 and Equation (1) follows. For odd
values of h, we have dh−1eh−1 = 1, and eh−1 and eh are equidistant from sh, thus ehbh = eh−1bh−1,
which also implies equation (1). Hence the distance between window endpoint eh and the marker
bh increases, compared to the distance of eh−1 and bh−1 by the length of the undiscovered blocks
contained in the window of fh−1. This has two implications: first, in f`, we have e`b` = p and
thus e` = a` (by definition a1 has distance p from b1, and this distance is conserved through
the cycle). Second, for every j, the undiscovered blocks in fj are contained in [aj , bj ], and the
window is contained in [aj / 1, bj ].

First, consider the case where each interval [ah, ch] is contained in the maximal extensions of
both adjacent blocks. Thus, with Proposition 1, we have [ah, bh] ≡ [a1, b1] and [bh, ch] ≡ [b1, c1]
for all h. We can now “close” the cycle: since e` and e1 are the left endpoints of the blocks
containing s′1 and s1, they are equidistant from s1. Moreover, e` = a` and e1 = b1, so a` and
b1 are equidistant from s1, which implies that [a`, b`] ≡ [b1, c1]. This now implies that, for all
h, [ah, bh] ≡ [bh, ch]. We now create a solution P ′ from P as follows: for odd values of h, cut
out the p leftmost markers from each block containing sh or s′h. For even values of h, add p
markers to the right of blocks containing sh or s′h for even values of h. Match every undiscovered
block that was matched to some [u, v] in some fh to [u . p, v . p] instead. The solution P ′
is again a CSP satisfying the same constraints, with the same total length of undiscovered
blocks but with all the breakpoints in the cycle shifted to the right by p positions. Repeat this
operation until for some h the interval [ah, ch] is no longer contained in the maximal extension
of the block to its right. Then, [ah, ch] contains lext(sh), and interval [ah / 1, bh] is contained in
[lext(sh) / 2w, lext(sh) . w]. As argued above, the rule is correct if such a P ∈ P exists. Note
that the modifications made in the proof do not increase the length of any undiscovered block.
Hence, the second requirement for correctness is also satisfied.

The rules presented so far deal with fixed solid pieces. In fact, if all solid pieces are fixed,
then these rules suffice to obtain frames in all fragile pieces. With the following three rules, we
thus deal with the presence of repetitive solid pieces.

5 Frame Rules for Repetitive Pieces

In the rules, we have to deal with cycles in the piece graph that contain some repetitive vertices.
We introduce the following concepts in order to analyze the structure of paths between repetitive
vertices that contain fixed solid vertices. A rep−rep path (vs, vf1 , u1, vf2 , u2, . . . , u`−1, vf` , vt) is
a simple path of the piece graph such that the two endpoints vs and vt are repetitive vertices,
and each ui is a fixed solid vertex. Given a rep−rep path joining repetitive vertices vs, vt and
going through fragile vertices vf1 , vf2 , . . . , vf` , we define the strip of the path (see Figure 7) as a
set of intervals {If1 , If2 , . . . , If`} such that:

1. Consecutive intervals Ifi , Ifi+1
are equidistant from the solid piece represented by ui.

2. Each interval Ifi is contained in the maximum extensions of the two solid pieces next to
fi.

3. The length of If1 is maximal under Conditions 1 and 2.
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Figure 7: Example of a rep−rep path joining repetitive vertices vs and vt (with respective
periods ab and ababc), and going through three fragile vertices and their adjacent fixed vertices.
The strip of each fragile piece is delimited by the green dotted lines.

Proposition 4. All the strips in a rep−rep path have the same length and content. Each interval
of the strip is contained in its respective fragile piece. Moreover, the strip of a rep−rep path is
uniquely defined and computable in polynomial time.

Proof. The fact that strips have the same length and content is a direct consequence of Propo-
sition 1, which can be applied according to Conditions 1 and 2. Each strip must be contained
in its fragile piece since it is in the intersection of the maximum extensions of the two adjacent
solid pieces.

The second part of the claim can be seen by considering the following algorithm to compute
the strip. First, check whether the strip is nonempty. That is, try the following for each
marker a1 in f1. Compute the marker a2 in f2 that is equidistant with a1 from u1. Then,
compute the marker a3 in f3 that is equidistant with a2 from u2, and so on. If all ai’s are in the
maximum extensions of both solid pieces next to fi, then the strip is nonempty. Otherwise, the
length of If1 is zero. Now, assume the case that there was one a1 for which the above procedure
is successful, that is, If1 contains one or more markers. Then, set Ifi := {ai} for each i. Now try
to simultaneously expand all Ifi ’s. That is, check whether one can add the marker to the left of
each Ifi without violating Condition 2 of the strip definition. If this is the case, then add these
markers to the Ifi ’s. If this is not the case, then continue by adding markers to the right until
this is also not possible anymore. The resulting set of Ifi ’s is the strip of the rep−rep-path.

Proposition 5. Let P be any solution satisfying constraint C such that the total length of all
windows in P is p. In each fragile piece f of a rep−rep path of C, writing If = [c, d], the window
of f is contained in [c / p, d . p].

Proof. We first introduce some notations: let f1, f2, . . . , f` be the fragile pieces of the path, and,
for every 1 ≤ j ≤ `, let [aj , bj ] denote the window of fj , Ifj = [cj , dj ], αj = djaj and βj = djbj .

Hence we aim at showing that for all j, βj ≤ p, that is, bj is either to the left or at at most p
markers to the right of dj . The proof for the left bound, that is, to show that aj is at most p
markers to the left of cj is symmetrical.

By maximality of the strip length (Condition 3), the intervals of the strip cannot be extended
to the right. Condition 2 is the one constraining the strip length, hence there exists a fragile piece
fj0 in the path such that this condition is tight, that is, dj0 = rext(s), where s is the solid piece

to the left of fj0 . Hence, aj0 is not to the right of dj0 , and thus αj0 = dj0aj0 = rext(s)aj0 ≤ 0.
Now for all j, βj − αj = ‖[aj , bj ]‖ − 1, that is, it is the length of the window contained in fj

minus one. Consequently, βj0 < ‖[aj0 , bj0 ]‖. Moreover, for every 1 ≤ j < `, either the first
markers of the window of fj and fj+1 are matched and thus equidistant to the piece represented
by ui or the last markers of the window of fj and fj+1 are matched and thus equidistant to ui.
Hence, either αj = αj+1 or βj = βj+1. In the first case, βj+1 increases, compared to βj , by at
most ‖[aj+1, bj+1]‖ − 1. Hence, βj ≤ βj0 + p for all j ≥ j0. By symmetry, the same holds for
all j ≤ j0.
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The following rule serves as a “preparation” of our main rule that deals with cycles containing
repetitive vertices. It will ensure that if there is a cycle containing repetitive vertices, then these
repetitive vertices will have have a common shortest period.

Frame Rule 4. If the piece graph contains a rep−rep path between repetitive vertices vs and vt
with strip {If1 , . . . , If`} such that the strip If = [u, v] in f is shorter than the sum ‖πs‖+ ‖πt‖
of a shortest periods of s and t, then add the frame f ∩ [u / w, v . w] to f .

of the correctness of Frame Rule 4. By definition, w is at least the total length of the windows
of P. By Proposition 5, the endpoints of the window of f thus have distance at most w
from If .

Frame Rule 5. If Frame Rule 4 does not apply and the piece graph contains a simple cycle
with repetitive vertices, then do the following. Let ‖π‖ be the length of a shortest period of any
repetitive solid piece in the cycle. Then, create one branch for each edge {vf , us} of the cycle
where us is a solid vertex for the solid piece s. In each branch, add to Φ the frame

• f ∩ [rext(s) / (‖π‖+ w), rext(s) . w] if f is to the right of s, or

• f ∩ [lext(s) / w, lext(s) . (‖π‖+ w)] if f is to the left of s.

of the correctness of Frame Rule 5. First, all repetitive pieces of the path have a common short-
est period. Indeed, consider any two consecutive repetitive pieces s and t of the cycle: they are
linked by a rep−rep path, in which we compute the strips. All strips in this path have equal
length S and also equal content (Proposition 4). Hence, the maximal extensions of repetitive
pieces s and t have a common substring of length S. Since Frame Rule 4 does not apply, we
have S ≥ ‖πs‖+ ‖πt‖. Thus, the maximum extensions of s and t contain a common substring
longer than the sum of their respective shortest periods. By Lemma 1, each shortest period of s
is a shortest period of t and vice versa. Thus all repetitive pieces of the cycle have a common
shortest period π.

Let s1, s2, . . . , s` denote the repetitive pieces crossed successively by the cycle (again, we
write s`+1 = s1). For each i, 1 ≤ i ≤ `, let x/i , x

.
i , y

/
i , y.i be the fragile pieces to the left and

right of si in x and s′i in y, respectively. For each rep−rep path of the cycle from si to si+1,
we say the path is positive if the first vertex after si is vx/

i
or vy.i , and negative otherwise. In

positive rep−rep paths, fragile pieces in x are crossed from right to left (that is, the solid piece
to the right of the fragile piece is “seen” before the solid piece to its left), and fragile pieces in
y are crossed from left to right. Thus a positive path enters si+1 via either vx.

i+1
or vy/i+1

, and
likewise a negative path enters si+1 via either vx/

i+1
or vy.i+1

.
First, consider the case that all windows are contained within the strip and that both

endpoints of the piece have distance at least ‖π‖ to the borders of the strip. We show that in
this case, we can shift all breakpoints in positive paths to the right by step ‖π‖ positions and
all breakpoints in negative paths to the left by ‖π‖ positions. This is done as follows:

• For each fixed vertex ls in a positive path, cut out ‖π‖ markers from the left of the blocks
containing s and s′.

• For each fixed vertex rs in a positive path, add ‖π‖ markers from the right of the blocks
containing s and s′.

• For each fixed vertex ls in a negative path, add ‖π‖ markers to the left of the blocks
containing s and s′.

• For each fixed vertex rs in a negative path, cut out ‖π‖ markers from the right of the blocks
containing s and s′.

• Replace each undiscovered block [a, b] in a fragile piece of a positive path by [a.‖π‖ , b.‖π‖].
• Replace each undiscovered block [a, b], in a fragile piece of a negative path by [a/‖π‖ , b/‖π‖].
• For a repetitive vertex vsi such that the paths before and after vsi enter and leave vsi via
the same side (either x/i and y/i , or x.i and y.i ) either both paths are positive or both paths
are negative. Apply the same operation as if the piece was fixed:
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– If the path enters vsi via x/i and leaves via y/i , then cut out the ‖π‖ leftmost markers of s
and s′ if the path is positive or add the ‖π‖ markers to the left of s and s′ if the path is
negative.

– If the path enters vsi via x.i and leaves via y.i , then cut out the ‖π‖ rightmost markers
of s and s′ if the path is negative or add the ‖π‖ markers to the right of s and s′ if the path
is positive.

• For a repetitive vertex vsi such that the paths enter and leave the vertex via the same string
(either x/i and x.i , or y/i and y.i ) it holds that the paths have the same orientation. Apply a
similar operation as for a undiscovered block (assume without loss of generality that the path
enters and leaves via x):

– If vsi is between two positive paths then replace the block [a, b] of x containing si by
[a . ‖π‖ , b . ‖π‖].
– If vsi is between two negative paths then replace the block [a, b] of x containing si by
[a / ‖π‖ , b / ‖π‖].
• For all other repetitive vertices, the paths enter from one string and leave via the other
string and enter from one side and leave via the other side. Then the paths have opposite
orientations; assume without loss of generality that the entering path is positive and the
outgoing path is negative. Let [a, b] denote the block in x containing si, and let [a′, b′] denote
the block in y containing s′i.

– If the cycle enters from y/i and leaves via x.i , then replace [a, b] by [a, b / ‖π‖] and [a′, b′]
by [a′ . ‖π‖ , b′] (‖π‖ markers are cut out of both blocks).

– If the cycle enters from x.i and leaves via y/i , then replace [a, b] by [a, b . ‖π‖] and [a′, b′]
by [a′ / ‖π‖ , b′] (‖π‖ markers are added to both blocks).

Thus, all the breakpoints in fragile pieces have been shifted to the right (in positive paths) or to
the left (in negative paths) by a period length ‖π‖. Hence, this modification still gives a partition
of both strings. This partition has the same size as the original one. Furthermore, it is also a
common string partition which can be seen as follows. The set of strings represented by the
undiscovered blocks of x and y remains exactly the same since they were shifted by the period
length. Hence, there is matching for the undiscovered blocks such that each undiscovered block
is matched to one representing the same string. For the discovered blocks, the old matching
remains a valid matching: The blocks containing fixed solid pieces have both been modified on
the same side. Thus, they are either shortened by ‖π‖ markers; in this case, the matched blocks
clearly represent equivalent strings. Or ‖π‖ markers have been added on one side. In this case,
the matched strings are also equivalent, since the windows have distance at least ‖π‖ to the
borders of the strip. The blocks containing repetitive pieces have either been moved by ‖π‖
positions, shortened by ‖π‖ markers on the same side, ‖π‖ markers on the same side have been
added, or they have been shortened or extended on different sides. In the first three cases, the
strings represented by the new blocks remain equivalent for the same reasons as for the blocks
containing fixed solid pieces. It remains to show the case in which blocks have been modified
on different sides.

First, consider the case in which [a, b] is replaced by [a, b / ‖π‖] and [a′, b′] by [a′ . ‖π‖ , b′].
Since the blocks are periodic with period length ‖π‖ we have [a′ . ‖π‖ , b′] ≡ [a′, b′ / ‖π‖]. In the
old solution, this subinterval of [a′, b′] was matched with [a, b / ‖π‖], and thus [a′ . ‖π‖ , b′] ≡
[a′, b′ / ‖π‖] ≡ [a, b / ‖π‖].

Now consider the case in which [a, b] is replaced by [a, b . ‖π‖] and [a′, b′] by [a′ / ‖π‖ , b′].
Since the blocks are periodic with period length ‖π‖ we have [a′, b′] ≡ [a′ / ‖π‖ , b′ / ‖π‖].
Since [a, b] ≡ [a′, b′] this implies that the first ‖[a, b]‖ markers of the new blocks are equivalent.
Also because of the periodicity, we have [b, b .‖π‖] ≡ [b /‖π‖ , b]. Since [b /‖π‖ , b] ≡ [b′ /‖π‖ , b′],
this implies that also the last ‖π‖ markers of the new blocks are equivalent.
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Figure 8: An illustration of Fitting Rule 1 of frames

Altogether, the modification gives a CSP of the same size, in which the distance between the
window endpoints and the strip endpoints has decreased. The above operation can be repeated
until at least one breakpoint is at distance less than ‖π‖ from the border of a strip. In this
case, all breakpoints of the corresponding path are at distance at most w+ ‖π‖ from the border
of their corresponding strip (an argument similar to the proof of Proposition 5 applies). In
some fragile piece f , the border of If coincides with the maximum extension of an adjacent
solid piece s, thus, in f , the window is contained in either [lext(s) / (‖π‖ + w), lext(s) . w] or
[rext(s) / w, rext(s) . (‖π‖ + w)]. Since in one of the considered branches, the rule adds the
frame to this piece s and to the correct side of the strip interval it is correct. Note that the
modifications made in the proof do not increase the length of any undiscovered block. Hence,
the second requirement for correctness is also satisfied.

The final case that needs to be considered is the one in which the piece graph is acyclic but
none of the other rules applies. Then, the piece graph contains a repetitive degree-one vertex.

Frame Rule 6. If the piece graph contains an edge {vs, vf} such that vs is repetitive and has
degree one, then assume without loss of generality that f is to the right of s in x, and do the
following. Let [al, ar], [bl, br], and [cl, cl] be the (possibly phantom) frames such that [al, ar] is to
the left of s′ in y, that [bl, br] is to the right of s′ in y, and that [cl, cr] is to the left of s in x.
Add the frame f ∩ [fl, fr] to f , where fl := cl . (arbl + 1) and fr := cr . (albr + w − 2).

of the correctness of Frame Rule 6. The window to the left and right of s′ in y are contained
in [al, ar] and [bl, br] respectively, and the window to the left of s in x is contained in [cl, cr].
Consider the blocks containing s and s′, and let ` be their length. The two endpoints of the block
containing s′ are in [al . 1, ar] and [bl, br / 1]. Hence ` ≥ arbl and ` ≤ (al . 1)(br / 1) = albr − 2.

The leftmost marker of the block containing s is contained in [cl . 1, cr]. Thus, the rightmost
marker (the one in f) is necessarily in [cl . (`+ 1), cr . (`)] which, by the above upper and lower
bounds on `, is contained in [cl . (arbl + 1), cr . (albr− 2)]. This marker is the leftmost marker of
the window of f which has length at most w. Hence the frame [cl . (arbl + 1), cr . (albr +w− 2)]
contains the window of f . The rule is still correct if s or s′ corresponds to the end of a string,
since the phantom frames contain the leftmost or rightmost marker of the blocks containing s
or s′.

After exhaustively applying the frame rules, parts of fragile pieces that are outside of frames
do not contain a breakpoint. Hence, we perform the following rule which shrinks fragile pieces
such that they fit their frame; at the same time, the solid pieces are extended accordingly.

Fitting Rule 1. If there is a fragile piece f = [a, b] with frame [c, d] such that a 6= c or b 6= d,
then add [a, c] to the solid piece left of f , add [d, b] to the solid piece right of f , and set f := [c, d].

We now show two important properties of instances for which none of the frame rules
applies. First, every fragile piece of these instances has a frame. Second, the frame lengths are
upper-bounded by a function of k, β, and the longest period of any repetitive piece.

Lemma 6. Let C be a constraint with frame set φ such that none of the Frame Rules 1–6
applies. Then, each fragile piece has a frame, and all frames have length at most (6k2w+ 3kw+
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3kmax{w, 2 ‖π‖}), where, among the shortest periods of all repetitive solid pieces, π denotes the
longest one.

Proof. First, we show that every fragile piece has a frame. If the piece graph contains a cycle,
then either Frame Rule 3, 4, or 5 applies. Otherwise, the piece graph is acyclic, and thus it
either contains a degree-one vertex and one of the other Frame Rules applies, or all vertices
have degree zero which means that all fragile pieces have frames.

Next, we show the upper bound on the frame length. Let L be the length of the longest
frame created in this procedure, and let π be among the shortest periods of all repetitive pieces
one with maximum length. We show that

L ≤ 6k2w + 3kw + 3kmax{w, 2 ‖π‖} (2)

Let h be the number of frames created before Frame Rule 6 is first applied, 1 ≤ h ≤ 2k.
Rules 1, 3, 4 and 5 produce frames of length at most (max{w, 2 ‖π‖} + 2w). Since each
application of Rule 2 increases the maximum frame length by w, all frames have length at most
(max{w, 2 ‖π‖}+ (h+ 1)w) before the first application of Frame Rule 6. Note that once Rule 6
is applied for the first time, only Rules 2 and 6 can be applied. We introduce the following
notations. A solid vertex (fixed or repetitive) is closed if all its adjacent fragile pieces have
frames, and open otherwise. The weight of an open vertex is the total length of the frames in
the adjacent fragile pieces. Let W denote the sum of the weights of all open vertices.

Before the first application of Frame Rule 6, W ≤ 3k[max{w, 2 ‖π‖}+ (h+ 1)w] (for each
solid piece s, the weight of either vs or ls and rs together is at most the sum of the weights of
three different frames). Afterwards, each time Rule 2 or 6 is applied, an open vertex with some
weight u is closed, and a frame of length u+ w is created in a fragile piece f which is adjacent
to at most one open vertex. Thus, the total weight of open vertices W is increased by at most
u + w − u = w with each application of Frame Rule 2 or 6. In the course of the algorithm,
Frame Rule 2 or 6 are applied at most 2k − h times. Hence W never exceeds

3k [max{w, 2 ‖π‖}+ (h+ 1)w] + (2k − h)w

≤ 6k2w + 3kw + 3kmax{w, 2 ‖π‖}.

Since no frame of length more than W can be created, we have L ≤W , which proves the second
part of the claim.

The bound given by the lemma above still contains the maximum period length π which
means that it is too large to be useful for the split procedure. However, the algorithm can
now either find a repetitive piece which can be fixed with few options (see Lemma 7) or the
maximum period length is not too long.

Lemma 7. Let C be a constraint that contains a repetitive solid piece s with shortest period πs
such that each fragile piece adjacent to s or s′ has length at most (12k2 + 9k) ‖πs‖. Then, there
are at most 24k2 + 18k feasible alignments, and any CSP satisfying C matches elements of s
according to a feasible alignment.

Proof. The alignment corresponding to any CSP satisfying C is necessarily feasible, since other-
wise two distinct solid pieces would be contained in the same block.

Without loss of generality, let ‖s‖ ≥ ‖s′‖. Thus, in a satisfying CSP P, either the leftmost
marker of s is matched to a marker left of s′ (or to the leftmost marker of s′), either the rightmost
marker of s is matched to a marker right of s′. Consider the first case; by Condition 2 of satisfying
CSPs, the leftmost marker of s is matched to some marker in the fragile piece to the left of s′.
Note that since s and s′ have a shortest period πs, two different alignments are separated by a a
multiple of ‖πs‖ markers. Hence, there are at most 12k2 + 9k different alignments in which the
leftmost marker of s is matched to some marker of the fragile piece to the left of s′. Similarly,
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there are at most 12k2 + 9k possible alignments in which the rightmost marker of s is matched
to a marker of the fragile piece to the left of s′ (for s = s′, it is possible that both left and right
endpoints of s are matched to markers of the fragile pieces to the left and right of s′). The total
number of feasible alignments between s and s′ thus is at most 24k2 + 18k.

By guessing the alignments of the long periods we have finally achieved the goal of frames:
all frames are “short” enough to be split by split.

Lemma 5. When frames terminates, every fragile piece has length at most 12(k2 + k)kβ.

Proof. By Lemma 6, an instance in which no frame rule applies has frames of length at
most (6k2w + 3kw + 3kmax{w, 2 ‖π‖}) where π is a longest period among all repetitive pieces.
In case 2 ‖π‖ ≥ w, this bound becomes (12k2 +9k) ·‖π‖. Consider any repetitive piece s with pe-
riod π, the condition of Line 9 is satisfied: adjacent fragile pieces have length ≤ (12k2 +9k) · ‖π‖.
Hence, at least one repetitive piece is fixed in the loop Lines 8–11, and new-align is set “True”,
which means that the outer loop in frames will be repeated. Thus, when frames terminates, we
must be in the case 2 ‖π‖ ≤ w and the frame size is bounded by 6(k2 + k)w ≤ 12(k2 + k)kβ.

The correctness of frames is simply a consequence of the correctness of all single steps
(always considering the correct branching in each branching step).

Lemma 3. If there exists a size-k CSP P satisfying C at the beginning of frames such that
longest undiscovered block is β-critical, then frames creates at least one branch such that the
constraint in this branch is satisfied by a size-k CSP P ′ whose longest undiscovered block has
length at most 2β − 1.

Proof. The correctness of all frame rules have already been proven. The correctness of Fitting
Rule 1 is trivial. Finally, the correctness of Lines 8–11 follows simply from the fact that the
alignment in one of the branches is the correct one (it considers all feasible alignments). Since
the correctness definition of the frame rules demands that all undiscovered blocks are at most as
long as before adding the frame, also the size bound for the longest undiscovered block holds.

It thus remains to bound the running time of frames. In particular, we need to show that
the number of branches is bounded by a function of k.

Lemma 4. Overall, the calls to frames create (2k)4k
2 · kO(k) branches; all other parts of the

algorithm can be performed in poly(n) time.

Proof. First, note that the outer repeat-until loop of frames is repeated at most 2k times over
the course of all calls to frames: The procedure frames is called at most k times from the main
method. Each additional time the repeat-until loop is repeated, there is a pair of repetitive
solid pieces that becomes a pair of fixed solid pieces at Line 10 of the previous pass of the
repeat-until loop. This can happen at most k times.

Second, note that the while loop of Lines 4–5 is iterated at most 2k times in each repetition of
the other repeat-until loop of frames: each rule creates exactly one frame, and, by Observation 1
there are at most 2k − 2 fragile pieces.

Hence, there are at most 4k2 times in which one of the frame rules at Line 5 creates branches
and at most k times in which branches are created at Line 10. The only frame rules that perform
branchings are Frame Rules 3 and 5. In both cases, the rule branches into at most 2k cases,
since each cycle has at most k solid vertices and thus at most 2k vertices edges in the cycle under
consideration. Hence, the branchings performed by the frame rules increase the running time by
a factor of O((2k)4k

2
). Each of the at most k branchings in Line 10 is among at most 24k2 + 18k

choices (Lemma 7). Hence, these branchings increase the running time by a factor of O(k2k ·kk).
Hence, the overall increase due to the branching is by a factor of (2k)4k

2 · kO(k); all other steps
can be performed in polynomial time.
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6 Conclusion

We have presented the first fixed-parameter algorithm for MCSP parameterized by the size of
the partition. Aside from the applications in comparative genomics, we believe that MCSP is
a very fundamental combinatorial string problem. Our work thus makes a contribution to an
area that has seen relatively few advances on parameterized algorithms. An improvement of the
very impractical running time is desirable. Indeed, we believe that our algorithm can be further
improved to run in kO(k) · poly(n) time. However, a 2O(k) · poly(n) running time is impossible
with our approach of guessing the matching of solid pieces and would need substantially new
ideas.

Furthermore, it would be interesting to extend our result to “signed” MCSP [4, 7, 14] where
each marker is annotated with a direction and one may reverse blocks before matching.
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