
Fault Tolerant Approximate BFS Structures

Merav Parter ∗† David Peleg ∗ ‡

September 27, 2018

Abstract

A fault-tolerant structure for a network is required to continue functioning fol-

lowing the failure of some of the network’s edges or vertices. This paper addresses

the problem of designing a fault-tolerant (α, β) approximate BFS structure (or

FT-ABFS structure for short), namely, a subgraph H of the network G such that

subsequent to the failure of some subset F of edges or vertices, the surviving part

of H still contains an approximate BFS spanning tree for (the surviving part of)

G, satisfying dist(s, v,H \ F) ≤ α · dist(s, v,G \ F) + β for every v ∈ V .

We first consider multiplicative (α, 0) FT-ABFS structures resilient to a failure

of a single edge and present an algorithm that given an n-vertex unweighted undi-

rected graph G and a source s constructs a (3, 0) FT-ABFS structure rooted at s

with at most 4n edges (improving by an O(log n) factor on the near-tight result

of [3] for the special case of edge failures). Assuming at most f edge failures,

for constant integer f > 1, we prove that there exists a (poly-time constructible)

(3(f + 1), (f + 1) log n) FT-ABFS structure with O(fn) edges.

We then consider additive (1, β) FT-ABFS structures. In contrast to the linear

size of (α, 0) FT-ABFS structures, we show that for every β ∈ [1, O(log n)] there

exists an n-vertex graph G with a source s for which any (1, β) FT-ABFS structure

rooted at s has Ω(n1+ε(β)) edges, for some function ε(β) ∈ (0, 1). In particular,

(1, 3) FT-ABFS structures admit a lower bound of Ω(n5/4) edges. These lower

bounds demonstrate an interesting dichotomy between multiplicative and additive

∗Department of Computer Science and Applied Mathematics. The Weizmann Institute of Science,

Rehovot, Israel. E-mail: {merav.parter,david.peleg}@ weizmann.ac.il. Supported in part by the

Israel Science Foundation (grant 894/09), the United States-Israel Binational Science Foundation (grant

2008348), the I-CORE program of the Israel PBC and ISF (grant 4/11), the Israel Ministry of Science

and Technology (infrastructures grant), and the Citi Foundation.
†Recipient of the Google European Fellowship in distributed computing; research is supported in

part by this Fellowship.
‡An extended abstract of this paper has appeared in the proceedings of the 2014 ACM-SIAM Sym-

posium on Discrete Algorithms.

1

ar
X

iv
:1

40
6.

61
69

v1
 [

cs
.D

S]
 2

4
Ju

n
20

14

spanners; whereas (α, 0) FT-ABFS structures of size O(n) exist (for α ≥ 3), their

additive counterparts, (1, β) FT-ABFS structures, are of super-linear size. Our

lower bounds are complemented by an upper bound, showing that there exists a

poly-time algorithm that for every n-vertex unweighted undirected graph G and

source s constructs a (1, 4) FT-ABFS structure rooted at s with at most O(n4/3)

edges.

1 Introduction

Background and Motivation. Fault-tolerant subgraphs are subgraphs designed to

maintain a certain desirable property in the presence of edge or vertex failures. This

paper focuses on the property of containing a BFS tree with respect to some source s.

A fault tolerant BFS structure (or FT-BFS structure) resistant to a single edge failure is

a subgraph H ⊆ G satisfying that dist(s, v,H \{e}) = dist(s, v,G\{e}) for every vertex

v ∈ V and edge e ∈ E.

To motivate our interest in such structures, consider a situation where it is required

to lease a subnetwork of a given network, which will provide short routes from a source s

to all other vertices. In a failure-free environment one can simply lease a BFS tree rooted

at s. However, if links might disconnect, then one must prepare by leasing a larger set

of links, and specifically an FT-BFS structure. Moreover, taking costs into account, this

example also motivates our interest in constructing sparse FT-BFS structure.

This question has recently been studied by us in [15]. Formally, a spanning graph

H ⊆ G is an f edge (resp., vertex) fault-tolerant BFS (FT-BFS) structure for G with

respect to the source s ∈ V iff for every v ∈ V and every set F ⊆ E(G) (resp., F ⊆ V),

|F | ≤ f , it holds that dist(s, v,H \F) = dist(s, v,G\F). It is shown in [15] that for every

graph G and source s there exists a (poly-time constructible) 1-edge FT-BFS structure

H with O(n3/2) edges. This result is complemented by a matching lower bound showing

that for every sufficiently large integer n, there exist an n-vertex graph G and a source

s ∈ V , for which every 1-edge FT-BFS structure is of size Ω(n3/2). Hence exact FT-BFS

structures may be rather expensive.

This last observation motivates the approach of resorting to approximate distances,

in order to allow the design of a sparse subgraph with properties resembling those of an

FT-BFS structure. The current paper aims at exploring this approach, focusing mainly

on subgraphs that contain approximate BFS structures and are resistant to a single edge

failure. Formally, given an unweighted undirected n-vertex graph G = (V,E) and a

source s ∈ V , the subgraph H ⊆ G is an f -edge (resp., vertex) (α, β) FT-ABFS structure

with respect to s if for every vertex v ∈ V and every set F ⊆ E(G) (resp., F ⊆ V),

2

|F | ≤ f ,

dist(s, v,H \ F) ≤ α · dist(s, v,G \ F) + β .

(An (α, β) FT-ABFS structure is a fault-tolerant BFS (FT-BFS) structure if α = 1 and

β = 0.) We show that this relaxed requirement allows structures that are sparser than

their exact counterparts.

Approximate BFS tree structures can also be compared against a different type

of structures, namely, fault-tolerant spanners. Given an n-vertex graph G = (V,E),

the subgraph H ⊆ G is an f -edge fault-tolerant (α, β) spanner of G if for every two

vertices v, w ∈ V and every set F ⊆ E(G), |F | ≤ f , we have dist(v, w,H \ F) ≤
α ·dist(v, w,G\F)+β. Observe that the union of (α, β) FT-ABFS structures with respect

to every source s ∈ V forms an (all-pairs) fault tolerant (α, β) spanner for G. In fact,

FT-ABFS structures can be viewed as single source spanners. Algorithms for constructing

an f -vertex fault tolerant (2k − 1) spanner of size O(f 2kf+1 · n1+1/k log1−1/k n) and an

f -edge fault tolerant 2k − 1 spanner of size O(f · n1+1/k) for a given n-vertex graph G

were presented in [8]. A randomized construction attaining an improved tradeoff for

vertex fault-tolerant spanners was then presented in [11].

For the case of f edge failures for constant f ≥ 1, we show (in Sec. 2) that there exists

a poly-time algorithm that for every n-vertex graph constructs a (3(f + 1), (f + 1) log n)

FT-ABFS structure H with O(fn) edges overcoming up to f edge faults. For the special

case of a single edge failure (f = 1), we get a somewhat stronger result, namely, that for

every n-vertex graph G and source s, there is a (poly-time constructible) (3, 0) FT-ABFS

structure with at most 4n edges, thus improving on the near-tight construction of [3] by

a O(log n) factor for the special case of α = 3 and edge failures.

This result is to be contrasted with two different structures: the (single-source) fault

tolerant exact FT-BFS structure of [15], and the (all-pairs) fault tolerant (3, 0) spanner

of [8], which both contain Θ(n3/2) edges. This implies that using FT-ABFS structures is

more efficient than using fault-tolerant spanners even if it is necessary to handle not a

single source s but a set S ⊆ V of sources where |S| = Ω(nε) for ε < 1/2; a collection of

approximate (α, β) FT-ABFS structures rooted at each of the sources s ∈ S will still be

cheaper than a fault-tolerant spanner.

Additive fault tolerant (1, β) spanners were recently defined and studied by [6], estab-

lishing the following general result. For a given n-vertex graph G, let H1 be an ordinary

additive (1, β) spanner for G and H2 be a fault tolerant (α, 0) spanner for G resilient

against up to f edge faults. Then H = H1 ∪ H2 is a (1, β(f)) additive fault tolerant

spanner for G (for up to f edge faults) for β(f) = O(f(α+β)). In particular, fixing the

number of H edges to be O(n4/3) and the number of faults to f = 1 yields an additive

stretch of 38 (See [6]; Cor. 1).

When considering FT-BFS structures with an additive stretch, namely, (1, β) FT-ABFS

3

structures, the improvement is less dramatic compared to the size of the single-source

exact or the all-pairs approximate variants. In Sec. 3, we show that for every additive

stretch β ∈ [1, log n], there exists a superlinear lower bound on the size of the FT-ABFS

structure with additive stretch β, i.e., Ω(n1+ε(β)). These new lower bound constructions

are independent of the correctness of Erdös conjecture. Importantly, our results reveal an

interesting dichotomy between multiplicative (α, 0) FT-ABFS and additive (1, β) FT-ABFS

structures: whereas every graph G contains a (poly-time constructible) (3, 0) FT-ABFS

structure rooted at s ∈ V of size Θ(n), there exist an n-vertex graph G and a source

s ∈ V for which every (1, β) FT-ABFS structure contains a super-linear number of edges.

For example, for additive stretch β = 3, we have a lower bound construction with Ω(n5/4)

edges.

On the positive side, in Sec. 4 we complement those results by presenting a (rather

involved) poly-time algorithm that for any given n-vertex graph G and source s con-

structs a (1, 4) FT-ABFS structure with O(n4/3) edges (hence improving the additive

stretch of the (all-pairs) fault tolerant additive spanner with O(n4/3) edges of [6] from

38 to 4). This algorithm is inspired by the (non-fault-tolerant) additive spanner con-

structions of [4, 9, 10]. The main technical contribution of our algorithm is in adapting

the path-buying strategy used therein to failure-prone settings. So far, the correctness

and size analysis of this strategy heavily relied on having a fault-free input graph G.

We show that by a proper construction of the sourcewise replacement paths, the path-

buying technique can be extended to support the construction even in the presence of

failures.

Related work. FT-BFS structures are closely related to the notion of replacement

paths. For a source s, a target vertex v and an edge e ∈ G, a replacement path is the

shortest s− v path Ps,v,e that does not go through e. An FT-BFS structure is composed

of a collection consisting of a replacement path Ps,v,e for every target v ∈ V and edge

e ∈ E. Analogously, the notion of FT-ABFS structures is closely related to the problem

of constructing approximate replacement paths [2, 7, 5], and in particular to its single

source variant studied in [3]. That problem requires to compute a collection Ps consisting

of an approximate s− t replacement path Ps,t,e for every t ∈ V and every failed edge e

that appears on the s − t shortest-path in G, such that |Ps,t,e| ≤ α · dist(s, t, G \ {e}).
In the resulting fault tolerant distance oracle, in response to a query (s, t, F) consisting

of an s − t pair and a set F of failed edges or vertices (or both), the oracle S must

return the distance between s and t in G′ = G \ F . Such a structure is sometimes

called an F -sensitivity distance oracle. The focus is on both fast preprocessing time,

fast query time and low space. An approximate single source fault tolerant distance

oracle has been first studied at [3], which proposed an O(n log n/ε3) space data structure

that can report a (1 + ε) approximate shortest path for any ε > 0. An additional by-

4

product of the data structure of [3] is the construction of an (1 + ε, 0) FT-ABFS structure

with O(n/ε3 + n log n) edges. Setting ε = 2, this yields a (3, 0) FT-ABFS structure with

O(n log n) edges. Hence our (3, 0) FT-ABFS structure construction with at most 3n edges

improves that construction by a factor of O(log n) for the case of single edge failure (the

construction of [3] supports the case of vertex failures as well).

It is important to note that the literature on approximate replacement paths (cf.

[2, 5]) mainly focuses on time-efficient computation of the these paths, as well as their

efficient maintenance within distance oracles. In contrast, the main concern in the

current paper is with optimizing the size of the resulting fault tolerant structure that

contains the collection of approximate replacement paths.

Moreover, this paper considers both multiplicative and additive stretch, whereas

the long line of existing approximate distance oracles concerned mostly multiplicative

(and not additive) stretch, with the exception of [16]. To illustrate the dichotomy

between the additive and multiplicative setting, consider the issue of lower bounds for

additive FT-ABFS structures. In the all-pairs fault-free setting, the best known lower

bound for additive spanners is based on the girth conjecture of Erdös [12], stating that

there exist n-vertex graphs with Ω(n1+1/k) edges and girth (minimum cycle length)

2k + 2 for any integer k. Removing any edge in such a graph increases the distance

between its endpoints from 1 to 2k + 1, hence any (1, β) spanner with β ≤ 2k − 1

must have Ω(n1+1/k) edges. This conjecture is settled only for k = 1, 2, 3, 5 (see [18]).

In [19], Woodruff presented a lower bound for additive spanners matching the girth

conjecture bounds but independent of the correctness of the conjecture. More precisely,

he showed the existence of graphs for which any spanner of size O(k−1n1+1/k) has an

additive stretch of at least 2k − 1, hence establishing a lower bound of Ω(k−1n1+1/k)

on the size of additive spanners. The lower bound constructions of [19] are formed

by appropriately gluing together certain complete bipartite graphs. Since for every n-

vertex graph G there exists a (poly-time constructible) multiplicative spanner of size

O(n1+1/k) and stretch α = 2k − 1, so far there has been no theoretical indication for a

dichotomy between additive and multiplicative spanners. Such a dichotomy is believed

to exist mainly based on the existing gap between the current upper and lower bounds

for additive spanners (the current additive lower bounds match the lower bounds of its

multiplicative counterpart). Perhaps surprisingly, such a dichotomy is revealed by our

current results, obtained for the most basic setting of fault tolerance, namely, single edge

fault and sourcewise distances.

Upper bounds for constant stretch (non-fault-tolerant) additive spanners are cur-

rently known for but a few stretch values. A (1, 2) spanner with O(n3/2) edges is pre-

sented in [1], a (1, 6) spanner with O(n4/3) edges is presented in [4], and a (1, 4) spanner

with O(n7/5) edges is presented in [9]. The latter two constructions use the path-buying

strategy, which is adopted in our additive upper bound in Sec. 4. Recently, the path-

5

buying strategy was employed in the context of pairwise spanners, where the objective is

to construct a subgraph H ⊆ G that satisfies the bounded additive stretch requirement

only for a subset of pairs [10].

Preliminaries. Given a graph G = (V,E) and a source s, let T0(s) ⊆ G be a shortest

paths (or BFS) tree rooted at s. Let π(x, y) be the (unique) x − y path in T0(s). Let

E(v,G) = {(u, v) ∈ E(G)} be the set of edges incident to v in the graph G and let

deg(v,G) = |E(v,G)| denote the degree of vertex v in G. When the graph G is clear

from the context, we may omit it and simply write deg(v). Let depth(s, v) = dist(s, v,G)

denote the depth of v in the BFS tree T0(s). When the source s is clear from the context,

we may omit it and simply write depth(v) and T0. Let Depth(s) = maxu∈V {depth(s, u)}
be the depth of T0(s). For a subgraph G′ = (V ′, E ′) ⊆ G (where V ′ ⊆ V and E ′ ⊆ E)

and a pair of vertices u, v ∈ V , let dist(u, v,G′) denote the shortest-path distance in

edges between u and v in G′. For a path P = [u1, . . . , uk], let LastE(P) denote the last

edge of P , let |P | denote the length of P and let P [ui, uj] be the subpath of P from ui
to uj. For paths P1 and P2 where the last vertex of P1 equals the first vertex of P2, let

P1 ◦ P2 denote the path obtained by concatenating P2 to P1. Assuming an edge weight

function W : E(G) → R+, let SP (s, ui, G,W) be the set of s − ui shortest-paths in G

according to the edge weights of W . (When the graph is unweighted, the parameter W

is omitted.) Throughout, the edges of these paths are considered to be directed away

from the source s. Given an s− t path P and an edge e = (u, v) ∈ P , let dist(s, e, P) be

the distance (in edges) between s and e on P . In addition, for an edge e = (u, v) ∈ T0(s),
define dist(s, e) = i if depth(u) = i − 1 and depth(v) = i. For a subset V ′ ⊆ V , let

G(V ′) be the induced subgraph on V ′. Let LCA(V ′) be the least common ancestor of all

the vertices in V ′. A replacement path P ∗i,j is a shortest path in SP (s, ui, G\{ej}). Note

that if ej /∈ π(s, ui) then the replacement path P ∗i,j is simply the shortest-path π(s, ui).

Fix the source s ∈ V . For an edge e = (u, v) ∈ T0, denote the set of vertices in T0(v),

the subtree of T0 rooted at v, by

S(e) = V (T0[v]).

Note that the vertices of S(e) are precisely those sensitive to the failure of the edge e,

i.e., the vertices w having e on π(s, w), their s−w path in T0(s), hence also S(e) = {w |
e ∈ π(s, w)}.

2 Multiplicative FT-ABFS Structures

This section describes algorithms for constructing FT-ABFS structures for unweighted

undirected graphs.

6

2.1 Single edge fault

We establish the following.

Theorem 2.1 There exists a poly-time algorithm that for every n-vertex graph G and

source s constructs a 1-edge (3, 0) FT-ABFS structure with O(n) edges.

We begin by providing an informal intuition for the algorithm. The construction

is based on starting from a BFS tree T0 and adding edges to it until it satisfies the

requirement. Specifically, the algorithm constructs a collection of replacement paths,

P ∗i,j ∈ SP (s, ui, G \ {ej}) for every vertex-edge pair (i, j), satisfying that ej ∈ π(s, ui).

From each such path P ∗i,j, only the first new edge e = (x, y) ∈ P ∗i,j \T0, i.e., the new edge

closest to s, is taken into the spanner.

The correctness analysis shows that the construction of the P ∗i,j collection guarantees

that the endpoint y of the first new edge e, as well as the path endpoint ui, are both

sensitive to the failure of the edge ej = (x′, y′), namely, ui, y ∈ T0(y′). Therefore, the

y − ui path π(y, ui) ⊆ T0(y
′) ⊆ T0 \ {ej} in the BFS tree T0 is free of the failing edge

ej and hence provides a safe alternative path to the segment P ∗i,j[y, ui], which possibly

might contain many edges that are missing in T0. Then, by employing the triangle

inequality, we also get that the alternative s − ui path P ∗i,j[s, y] ◦ π(y, ui) is not much

longer than the optimal counterpart P ∗i,j. Perhaps the more surprising part is the size

analysis, where we show that every vertex y can appear as the endpoint of the first new

edge of at most three replacement paths. This should be contrasted with [15], where it

is shown that a vertex can be the endpoint of the last new edge of Ω(
√
n) replacement

paths. Hence, taking the last edge of every replacement path results in an exact FT-BFS

structure with Θ(n3/2) edges, while taking the first new edge of every replacement path

results in an approximate (3, 0) FT-ABFS structure with at most 3n edges.

We now provide some intuition explaining why a vertex might be the endpoint of

the first new edge of at most three replacement paths. Let P ∗i1,j1 , P
∗
i2,j2

, . . . , P ∗ik,jk be

the replacement paths in which the endpoint of the first new edge is y, i.e., ê` =

LastE(P ∗i`,j` [s, y]) /∈ T0 and P ∗i`,j` [s, y] \ {ê`} ⊆ T0 for every ` ∈ {1, . . . , k}. We then show

that upon a proper construction of the replacement paths, the fact that ê` /∈ T0 implies

that ej1 , . . . , ejk ⊆ π(s, y) (otherwise the original shortest path π(s, y) could be used in

P ∗i`,j` instead of the segment P ∗i`,j` [s, y]) and letting ej` be sorted in increasing distance

from s on π(s, y), it also holds that the truncated replacement paths are monotonically

decreasing, i.e., |P ∗i1,j1 [s, y]| > . . . > |P ∗ik,jk [s, y]|. Let x` be such that ê` = (x`, y). Since

P ∗i`,j` [s, x`] = π(s, x`), we have that y is connected by an edge to k vertices x1, . . . , xk
of distinct distances from s, dist(s, x1, G) > . . . > dist(s, xk, G), hence by the triangle

inequality, necessarily k ≤ 3.

7

Algorithm Description. We next formally describe the algorithm. For a path P

in the constructed structure, let New(P) = E(P) \ E(T0) be the set of new edges in P ,

namely, edges that were added to T0 during the construction process. Let FirstNewE(P ∗i,j)

be the first (from s) new edge on P ∗i,j that is not in T0. See Fig. 1 for an illustration of

these definitions.

s

ui

ej

e1

e2

𝜋(𝑠, 𝑢𝑖)

*

, jiP

T0 edges

G\T0 edges

Figure 1: The path P ∗i,j protects ui against the failure of the edge ej. Here e1 =

LastE(P ∗i,j) and e2 = FirstNewE(P ∗i,j). The algorithm will add e2 to E∗i and subse-

quently to the output structure H because e1 is also a new edge, so P ∗i,j is new-ending.

The (3, 0) FT-ABFS structure H is constructed by adding to T0 only new edges that

appear as the first edges on some of the replacement paths. The algorithm operates as

follows.

Fix an ordering on the edges E = {e1, . . . , em} and on the vertices u1, . . . , un. In

round i, the vertex ui is considered. The round consists of depth(ui) iterations. In

iteration j, consider ej ∈ π(s, ui) and define the path protecting ui against the failure of

ej to be P ∗i,j ∈ SP (s, ui, G \ {ej},Wi), where Wi : E → R>0 is a weight assignment for

the edges of E defined by

Wi(e`) =


ω`, if e` ∈ E(T0) \ E(π(s, ui)),

ω` + ε2, if e` ∈ π(s, ui),

ω` + ε1, otherwise,

(1)

where ω` = n6 · 2m+1 + 2`, ε1 = n3 · 2m+1 and ε2 = 2m+1. Call a replacement path P ∗i,j
new-ending if its last edge is new, namely, LastE(P ∗i,j) /∈ E(T0). For every vertex ui ∈ V ,

define

E∗i = {FirstNewE(P ∗i,j) | ej ∈ π(s, ui) and P ∗i,j is new-ending}.

Let E∗new =
⋃
ui∈V E

∗
i and H = T0 ∪ E∗new.

8

Correctness. We now prove the correctness of the algorithm and establish Thm. 2.1,

by showing that taking into the constructed H merely the first new edge from each

new-ending replacement path P ∗i,j is sufficient in order to guarantee the existence of an

approximate s − ui replacement path in the surviving structure H \ {ej}, for every ui
and ej ∈ π(s, ui).

Let us start by explaining the specific weight assignment chosen. The role of Wi(e`) is

to enforce a unique s−ui shortest-path in SP (s, ui, G\{ej}). This is important for both

the correctness and the size analysis of the (3, 0) FT-ABFS structure. (In other words,

carelessly taking the first edge of an arbitrary replacement path might result in a dense

subgraph which is also not a (3, 0) FT-ABFS structure.) The weight assignment achieves

this as follows. For every ui ∈ V , let Costi(P) =
∑

e∈P Wi(e) be the weighted cost of P ,

i.e., the sum of its edge weights. Then given paths P1, P2, the weight assignment Wi has

the following properties, implying that Costi(P) can in some sense be viewed as based

on |P |, |New(P)| and |E(P) ∩ π(s, ui)| lexicographically.

Fact 2.2 For every two paths P1, P2 and ui ∈ V ,

(a) If |P1| < |P2|, then Costi(P1) < Costi(P2).

(b) If |P1| = |P2| and |New(P1)| < |New(P2)|, then Costi(P1) < Costi(P2).

(c) If |P1| = |P2|, |New(P1)| = |New(P2)| and |E(P1)∩E(π(s, ui))| < |E(P2)∩E(π(s, ui))|,
then Costi(P1) < Costi(P2).

(d) If |P1| = |P2|, |New(P1)| = |New(P2)| and |E(P1)∩E(π(s, ui))| = |E(P2)∩E(π(s, ui))|,
then Costi(P1) < Costi(P2) iff

∑
ek∈P1

ωk <
∑

ek∈P2
ωk.

Conversely we also have the following.

Fact 2.3 If Costi(P1) < Costi(P2), then necessarily one of the following four conditions

holds:

(a) |P1| < |P2|,

(b) |New(P1)| < |New(P2)|,

(c) |E(P1) ∩ E(π(s, ui))| < |E(P2) ∩ E(π(s, ui))|,

(d)
∑

ek∈P1
ωk <

∑
ek∈P2

ωk.

The following key observation is used repeatedly in what follows.

Observation 2.4 For every replacement path P ∗i,j and every new edge e = (x, y) ∈
New(P ∗i,j) on it, y ∈ S(ej) (or ej ∈ π(s, y)).

9

Proof: Assume, towards contradiction, that e = (x, y) ∈ New(P ∗i,j) and yet ej /∈ π(s, y).

Since e = (x, y) ∈ New(P ∗i,j) is a new edge, it holds that P ∗i,j[s, y] 6= π(s, y). Consider an

alternative s− ui replacement path P ′ = π(s, y) ◦ P ∗i,j[y, ui]. Since |π(s, y)| ≤ |P ∗i,j[s, y]|
but |New(π(s, y))| = 1 and |New(P ∗i,j[s, y])| ≥ 1 (since T0 contains only one s − y path,

π(s, y)). It follows by Obs. 2.2, that Costi(π(s, y)) < Costi(P
∗
i,j[s, y]) and thus also

Costi(P
′) < Costi(P

∗
i,j), in contradiction to the fact that P ∗i,j ∈ SP (s, ui, G \ {ej},Wi).

The observation follows.

We next provide the following claim, showing that if a BFS edge ej ∈ π(s, ui) fails,

then adding the first new edge e′ of a new-ending replacement path P ∗i,j to the BFS

tree T0, recovers its connectivity. In order words, T ′ = T0 \ {ej} ∪ {e′} is a connected

spanning tree of the graph G. Moreover, we show that the s − ui path in T ′ has low

stretch compared to the s− ui shortest-path in G \ {ej}.

Lemma 2.5 Let P ∗i,j be a new-ending replacement path, let e0 = (w1, w2) = FirstNewE(P ∗i,j)

and let T ′ = T0 ∪ {e0}. Then dist(s, ui, T
′ \ {ej}) ≤ 3 · |P ∗i,j|.

Proof: Let ej = (y1, y2); see Fig. 2 for illustration. Note that by Obs. 2.4, w2 is in

S(ej), hence both ui, w2 ∈ T0(y2), the subtree of T0 rooted at y2. Therefore the path

between w2 and ui, π(w2, ui), does not use ej, hence it exists in T0 \ {ej}.
Let x = LCA(ui, w2) be the least common ancestor of ui and w2 in T0. Then x ∈

π(y2, ui). Let A = P ∗i,j[s, w2], B = π(s, x), C = π(x,w2), D = P ∗i,j[w2, ui] and R =

π(x, ui). Consider an alternative s− ui replacement path P ′ = A ◦ C ◦ R that uses the

w2 − ui path in T0 (see Fig. 2). Note that since e0 = (w1, w2) is the first new edge on

P ∗i,j, it follows that P ′ ⊆ T ′ = T0 ∪ {e0}. Since P ′ is a replacement path for ui in T ′,

it remains to bound its length. Note that |P ′| = |A| + |C| + |R| and |P ∗i,j| = |A| + |D|.
First, since A is a shortest s − w2 path in G \ {ej} but B ◦ C is an s − w2 shortest-

path in G, it follows that |B| + |C| ≤ |A|. Next, consider the two x − ui paths R and

C ◦ D. Since R is a shortest x − ui path, it follows that |R| ≤ |C| + |D|. Therefore

|P ′| ≤ |A|+ 2|C|+ |D| ≤ 3|A|+ |D| ≤ 3|P ∗i,j|. The lemma follows.

Lemma 2.6 H is a (3, 0) FT-ABFS structure.

Proof: Assume, towards contradiction, that H is not a (3, 0) FT-ABFS structure. Let

BP = {(i, j) | dist(s, ui, H \ {ej}) > 3|P ∗i,j|} be the set of “bad pairs,” namely, vertex-

edge pairs (i, j) for which the length of the replacement s−ui path in H \{ej} is greater

than 3 · dist(s, ui, G \ {ej}). (By the contradictory assumption, BP 6= ∅.) For each bad

pair (i, j) ∈ BP , define BE(i, j) = P ∗i,j \ E(H) to be the set of “bad edges,” namely,

the set of P ∗i,j edges that are missing in H. By definition, BE(i, j) 6= ∅ for every bad

pair (i, j) ∈ BP . Let d(i, j) = maxe∈BE(i,j){dist(s, e, P ∗i,j)} be the maximal depth of a

missing edge in BE(i, j), and let DM(i, j) denote that “deepest missing edge”, i.e., the

10

ej

s

ui

y1

y2

Χ

w2

B

R

w1

𝑇0(𝑦2)

A

D

P*i,j

C

e0

Figure 2: Illustration of the approximate replacement path. Solid lines represent tree

edges.

edge e on P ∗i,j satisfying d(i, j) = dist(s, e, P ∗i,j). Finally, let (i′, j′) ∈ BP be the pair

that minimizes d(i, j), and let e1 = (v`1 , ui1) ∈ BE(i′, j′) be the deepest missing edge

on P ∗i′,j′ , namely, e1 = DM(i′, j′). Note that e1 is the shallowest “deepest missing edge”

over all bad pairs (i, j) ∈ BP . By Obs. 2.4, ej′ ∈ π(s, ui1).

Consider the s−ui1 replacement path P ∗i1,j′ . Note that there are two s−ui1 replace-

ment paths, P1 = P ∗i′,j′ [s, ui1] and P2 = P ∗i1,j′ ∈ G \ {ej′}, and by their optimality we

have that |P1| = |P2| (these paths might - but do not have to - be the same).

We distinguish between two cases: (C1) LastE(P2) /∈ T0 and (C2) LastE(P2) ∈ T0.
Begin with case (C1). By construction, FirstNewE(P2) ∈ E∗i1 , so FirstNewE(P2) ∈ H.

By Lemma 2.5, there exists an s − ui1 replacement path P ′ in G \ {ej′} such that

|P ′| ≤ 3 · |P2| and P ′ ⊆ (T0 ∪ {FirstNewE(P2)}) ⊆ H. Consider the s− ui′ replacement

path

P ′′ = P ′ ◦ P ∗i′,j′ [ui1 , ui′].

Note that since e1 is the deepest missing edge in P ∗i′,j′ , it holds that P ∗i′,j′ [ui1 , ui′] ⊆ H and

by the previous argument P ′ ⊆ H \ {ej′}, concluding that P ′′ is an s− ui′ replacement

path in H \ {ej′} Moreover, its length is bounded by

|P ′′| = |P ′|+ |P ∗i′,j′ [ui1 , ui′]| ≤ 3|P1|+ |P ∗i′,j′ [ui1 , ui′]| ≤ 3|P ∗i1,j′|,

contradicting the fact that (i′, j′) ∈ BP is a bad pair.

Now consider case (C2) where LastE(P2) ∈ T0. We show that in this case (i1, j
′) /∈

BP . Assume, towards contradiction, that (i1, j
′) is a bad pair. This implies that P2 * H.

Since |P1| = |P2|, LastE(P1) /∈ T0 but LastE(P2) ∈ T0, it holds that the “deepest

missing edge” e′′ in P2 is such that dist(s, e′′, P2) < dist(s, e1, P1) (or d(i1, j
′) < d(i′, j′))

in contradiction to the selection of (i′, j′). Hence, we conclude that (i1, j
′) /∈ BP ,

11

which guarantees the existence of an s− ui1 replacement path P ′ ∈ G \ {ej′} such that

|P ′| ≤ |P2|. Finally, the s − ui′ path P ′′ = P ′ ◦ P ∗i′,j′ [ui1 , ui′] exists in H \ {ej′} and

|P ′′| ≤ 3|P1| + |P ∗i′,j′ [ui1 , ui′]| ≤ 3|P ∗i′,j′|, in contradiction to the fact that (i′, j′) ∈ BP .

The lemma follows.

Size analysis.

Lemma 2.7 |E(H) \ E(T0)| = |E∗new| ≤ 3n.

Proof: We show that every vertex ui can have at most 3 of its incident edges in E∗new.

Assume, towards contradiction, that there exists some ui with (at least) 4 edges in

E∗new, ek = (vk, ui) for k ∈ {1, . . . , 4}, that appear as first new edges in the replacement

paths P ∗i1,j1 , P
∗
i2,j2

, P ∗i3,j3 , P
∗
i4,j4

respectively. By Obs. 2.4, it holds that the 4 failed edges

ejk ∈ π(s, ui), k ∈ {1, . . . , 4} appear on π(s, ui) and by definition, ejk ∈ π(s, uik), for

every k ∈ {1, . . . , 4}. Without loss of generality, assume that dist(s, ejk , π(s, ui)) ≤
dist(s, ejk+1

, π(s, ui)) for every k ∈ {1, 2, 3}, namely, that the edges ej1 , ej2 , ej3 , ej4 occur

on π(s, ui) in that order. For illustration see Fig. 3.

s

ek
*

, 11  kk jiP

ek+1

vk

vk+1

bk

bk+1

*

, kk jiP

1ki
u

iu

ki
u

Figure 3: Illustration of the replacement paths in which edge of ui are the first new

edges. New edges are represented in red.

Consider the 4 truncated s− ui paths Pk = P ∗ik,jk [s, ui] for k = {1, . . . , 4}. Note that

since LastE(Pk) = ek is the only new edge in Pk, i.e., Pk \{LastE(Pk)} has no new edges,

or,

Pk \ {LastE(Pk)} ⊆ T0 \ {ejk}. (2)

12

Let bk be the first divergence point of Pk from π(s, ui), namely, the last vertex on that

π(s, ui) for which π(s, bk) = Pk[s, bk]. Let QPref [k] = π[s, bk] = Pk[s, bk] (where the

equality is by the definition of bk) be the maximal common prefix of the paths Pk and

π(s, uik), for k ∈ {1, . . . , 4}. When k is clear from the context, we may omit it and simply

write QPref . Let QSuff [k] = Pk[bk, ui]. We now show that bk is the only divergence point

of Pk and π(s, ui), or in other words, the paths meet again only at ui. Formally, we show

the following.

Claim 2.8 (V (QSuff [k]) ∩ V (π(s, ui))) \ {bk, ui} = ∅ for k ∈ {1, . . . , 4}.

Proof: Assume, towards contradiction, that the paths intersect again at some vertex

w ∈ (V (QSuff [k]) ∩ V (π(s, ui))) \ {bk, ui}.

Recall that uik was considered in round ik and let jk be the iteration in this round in

which the edge jk was considered. LetQ0 = QPref [k], Q1 = Pk[bk, w], Q′1 = π(bk, w), Q2 =

Pk[w, ui], Q
′
2 = π(w, ui). For illustration, see Fig. 4. We distinguish between two cases

concerning the faulty edge ejk : (C1) ejk ∈ Q′1 or (C2) ejk ∈ Q′2.
In case (C1), Q′2 ⊆ G\{ejk}, and as it is part of the BFS tree, it holds that |Q′2| ≤ |Q2|.

Since Q′2 is free of new edges but LastE(Q2) = ek is new, it holds that Costik(Q′2) <

Costik(Q2), in contradiction to the fact that P ∗ik,jk ∈ SP (s, uik , G \ {ejk},Wik).

In case (C2), Q′1 ⊆ G \ {ejk}, and as it is part of the BFS tree, it holds that

|Q′1| ≤ |Q1|. Since T0 contains a single bk − w path corresponding to Q′1, it must hold

that Q1 * T0 (Q1 has at least one new edge) and therefore Costik(Q′1) < Costik(Q1), in

contradiction again to the fact that P ∗ik,jk ∈ SP (s, uik , G \ {ejk},Wik).

It follows from Cl. 2.8, that E(Pk) ∩ E(π(s, ui)) = QPref [k]. We now focus on the

edge-set intersections

Ik,` = E(Pk) ∩ E(π(s, ui`))

and establish the following auxiliary claim, showing that the same holds also for the

complete path π(s, ui`), for the ` values needed later.

Claim 2.9 Ik,` = QPref [k]

(a) for every ` ∈ {k, . . . , 4}, and

(b) for every ` < k such that depth(bk) ≤ depth(b`).

Proof: Recall that Pk = QPref [k] ◦QSuff [k] and let ejk = (xk, yk) and ej` = (x`, y`). We

prove parts (a) and (b) in two steps. We first show that QPref [k] ⊆ π(s, ui`) and then

show that QSuff [k] and π(s, ui`) are edge disjoint for ` satisfying (a) or (b). We begin

by showing that QPref [k] = π(s, bk) ⊆ π(s, ui`). Let ` ∈ {k, . . . , 4}. Since ej` ∈ π(s, ui`),

by the ordering of the edges ejk , it holds that also ejk = (xk, yk) ∈ π(s, ui`). Since

13

Q0

s

𝑏𝑘

𝑤

Q1’

Q2’

Q1

Q2

ki
u

iu

ek

Figure 4: The dotted straight line is π(s, ui) and the dashed line depicts QSuff [k] =

Pk[bk, ui]. The divergence point is unique. The red ek is the new edge of ui. The faulty

edge ejk can occur in either Q′1 or Q′2.

Pk ⊆ G \ {ejk}, the divergence point bk of Pk and π(s, ui) occurred above yk, hence

π(s, bk) ⊆ π(s, ui`). Next, let ` < k be such that depth(bk) ≤ depth(b`). By part (a),

π(s, b`) ⊆ π(s, ui`). Since the divergence point bk occurred not after b` (and both bk and

b` are in π(s, ui)), it holds that also π(s, bk) ⊆ π(s, ui`).

Next, we consider QSuff [k] and show that it is edge disjoint from π(s, ui`) for ` ∈
{k, . . . , 4}. By the above argumentation, π(s, ui`) = π(s, yk) ◦ π(yk, ui`). By Cl. 2.8,

the paths QSuff [k] and π(s, ui) are edge disjoint and hence the two paths π(s, yk) and

QSuff [k] are edge disjoint. It remains to show that π(yk, ui`) and QSuff [k] are edge

disjoint. Since by Eq. (2) the path P ′ = Pk \ {LastE(Pk)} exists in T0 \ {ejk}, it holds

that V (P ′) ∩ S(ejk) = ∅. However, V (π(yk, ui`)) ⊆ S(ejk). Hence P ′ does not intersect

with π(s, ui`). Finally, let ` < k be as in (b), i.e., such that depth(bk) ≤ depth(b`). By

Cl. 2.8, QSuff [k] and π(s, ui) are edge disjoint and hence π(s, y`) ⊆ π(s, ui) and QSuff [k]

are edge disjoint. It remains to show that π(y`, ui`) and QSuff [k] are edge disjoint. Since

bk diverged from π(s, ui) not after b`, it holds that bk is above y` hence P ′ ⊆ T0 \ {ej`}.
Therefore V (P ′) ∩ S(ej`) = ∅, but V (π(y`, ui`)) ⊆ S(ej`), hence π(y`, ui`) and QSuff [k]

are edge disjoint as required. The claim follows.

Claim 2.10 depth(bk, T0) < depth(bk+1, T0) for every k ∈ {1, 2, 3}.

Proof: Towards contradiction, assume that depth(bk, T0) ≥ depth(bk+1, T0) for some

14

s

ek

ui

bk

e𝑙

ui𝑙

𝑄𝑃𝑟𝑒𝑓[𝑘]

𝑄𝑆𝑢𝑓𝑓[𝑘]

ui𝑘

s

ek

ui

bk

e𝑙

𝑄𝑃𝑟𝑒𝑓[𝑘]

𝑄𝑆𝑢𝑓𝑓[𝑘]

ui𝑙

ui𝑘

b𝑙

(a) (b)

Figure 5: Illustration for Cl. 2.9. Black edges represent the original BFS tree T0. The

red edge is a new edge.

k ∈ {1, 2, 3}. We first claim that in this case both Pk+1, Pk ⊆ G \ {ejk , ejk+1
}. Recall

that Pk = QPref [k] ◦ QSuff [k] and Pk+1 = QPref [k + 1] ◦ QSuff [k + 1]. Note that by

Cl. 2.8, the paths QSuff [k], QSuff [k + 1] are edge disjoint with π(s, ui) and therefore

QSuff [k], QSuff [k + 1] ⊆ G \ {ejk , ejk+1
}. In addition, by the fact that Pk diverged

from π(s, ui) before the faulty edge ejk (and by ordering also before ejk+1
) it holds that

QPref [k] ⊆ G \ {ejk , ejk+1
}. Since depth(bk, T0) ≥ depth(bk+1, T0), it holds that Pk+1

diverged from π(s, ui) not after bk, henceQSuff [k], QSuff [k+1] ⊆ G\{ejk , ejk+1
}. Overall,

we get that Pk+1, Pk ⊆ G \ {ejk , ejk+1
}.

We thus have two alternative replacement s − uik (resp., s − uik+1
) paths given by

P̃k = Pk+1 ◦ P ∗ik,jk [ui, uik] and P̃k+1 = Pk ◦ P ∗ik+1,jk+1
[ui, uik+1

] respectively. We now

derive a contradiction by analyzing the costs of P ∗ik,jk and P ∗ik+1,jk+1
and showing that

all costs components (see Eq. (1)) are equal except the last. By the optimality of

P ∗ik,jk and P ∗ik+1,jk+1
in round ik and ik+1 respectively, i.e., by the fact that P ∗ik,jk ∈

SP (s, uik , G \ {ejk},Wik) and P ∗ik+1,jk+1
∈ SP (s, uik+1

, G \ {ejk+1
},Wik+1

), it follows that

|Pk| = |Pk+1|. In addition, since Pk is a subpath of P ∗ik,jk and its last edge is the first

new edge of P ∗ik,jk (i.e., LastE(Pk) = FirstNewE(P ∗ik,jk)), it follows that |New(Pk)| = 1.

By a similar argument, since LastE(Pk+1) = FirstNewE(P ∗ik+1,jk+1
), we also have that

|New(Pk+1)| = 1. By the optimality of P ∗ik,jk ∈ SP (s, uik , G \ {ejk},Wik) according to

weight assignments Wik (see Fact 2.2(c)) we get that

|Ik,k| ≤ |Ik+1,k| . (3)

In the same manner, by the optimality of P ∗ik+1,jk+1
∈ SP (s, uik+1

, G \ {ejk+1
,Wik+1

})
according to weight assignments Wik+1

, we get that

|Ik+1,k+1| ≤ |Ik,k+1| . (4)

15

Applying Cl. 2.9(a) with ` = k we have that

|Ik,k| = |QPref [k]| = depth(bk) . (5)

Applying Cl. 2.9(a) with ` = k + 1 we have that

|Ik,k+1| = |QPref [k]| = depth(bk) (6)

and

|Ik+1,k+1| = |QPref [k + 1]| = depth(bk+1) . (7)

By. Cl. 2.9(b), we also have that

|Ik+1,k| = |QPref [k + 1]| = depth(bk+1) . (8)

Combining Eq. (3) with Eq. (5) and (8), we get that depth(bk) ≤ depth(bk+1). Com-

bining Eq. (4) with Eq. (6) and (7), we get the opposite inequality, depth(bk+1) ≤
depth(bk). It follows that depth(bk) = depth(bk+1), hence inequalities (3) and (4) are

in fact equalities.

As we have shown that the paths P ∗ik,jk and P ∗ik+1,jk+1
have the same length, the same

number of new edges and the same number of joint edges with the shortest-path, by Fact

2.2(d) their relative costs are determined by W̃k =
∑

ej∈Pk
ωj and W̃k+1 =

∑
ej∈Pk+1

ωj.

Hence, by the optimality of P ∗ik,jk under Costik it follows that W̃k < W̃k+1, and by the

optimality of P ∗ik+1,jk+1
under Costik+1

we get that W̃k+1 < W̃k, contradiction.

Claim 2.10 implies that the vertices b1, b2, b3, b4 are distinct, and moreover, they

appear in this order on π(s, ui). In addition, note that for every k ∈ {1, 2, 3}, bk ∈ Pk+1

(since bk+1 is below bk on π(s, ui)).

Claim 2.11 |Pk[bk, ui]| > |Pk+1[bk, ui]| for every k ∈ {1, 2, 3}.

Proof: By the uniqueness of the divergence point bk of π(s, ui) and Pk (Cl. 2.8) and by

Cl. 2.10, Pk ⊆ G\{ejk , . . . , ej4} for every k ∈ {1, 2, 3, 4}. Since Pk is a replacement path

in G \ {ejk′} for k′ > k, but Pk was nevertheless not chosen as part of the replacement

path P ∗ik+1,jk+1
, it follows that Costik+1

(Pk+1) < Costik+1
(Pk). Let us now analyze which

cost component accounts for this difference. By Cl. 2.9(a), |Ik+1,k+1| = depth(bk+1) and

|Ik,k+1| = depth(bk). Hence, since due to Cl. 2.10, depth(bk+1) > depth(bk) (and thus

|Ik+1,k+1| > |Ik,k+1|) and |New(Pk)| = |New(Pk+1)| = 1, it follows by the optimality of

P ∗ik+1,jk+1
∈ SP (s, uik+1

, G \ {ejk+1
},Wik+1

) for ik+1 (see Fact 2.2(c)) that |Pk+1| < |Pk|.
As Pk[s, bk] = Pk+1[s, bk] = π(s, bk) = QPref [k], the claim follows.

Let d0 = depth(ui) and let dk = depth(vk) for k = {1, . . . , 4}. Combining Cl. 2.10

and 2.11, we get that d1 > d2 > d3 > d4, and as these are integers, necessarily d1−d4 ≥ 3.

Now consider the edges ek = (vk, ui) = LastE(Pk) for k = {1, . . . , 4}. The existence of

these edges in G, implies that dk ∈ {d0−1, d0, d0 + 1} for every k = {1, . . . , 4}, implying

that d1 − d4 ≤ 2, contradiction. Lemma 2.7 follows.

16

2.2 Multiple edge faults

In this section, we consider the case of f edge failures for constant f ≥ 1, and establish

the following.

Theorem 2.12 There exists a poly-time algorithm that for every n-vertex graph con-

structs

(1) a (3(f + 1), (f + 1) log n) FT-ABFS structure with O(fn) edges and

(2) a (3(f + 1) + 1, 0) FT-ABFS structure with O(fn+n1+1/k +n · ((f + 1) · (2k−1))f+1)

edges,

overcoming up to f edge faults, for every k ≥ 3.

For an edge set F ⊆ E, let P ∗F (ui) ∈ SP (s, ui, G\F) be the s−ui replacement path upon

the failure of F in G. To avoid complications due to shortest-paths of the same length,

we assume all shortest-path are computed with a weight assignment W that guarantees

the uniqueness of the shortest-paths.

Algorithm Description. The algorithm consists of three phases. The first phase

constructs a (possibly dense) f -edge FT-BFS structure T1 with respect to s by using

Alg. ConsFT-BFS(s,G, f) to be defined later. The second phase constructs an f -edge

(3(f+1), 0) FT-ABFS structure T2 ⊆ T1 by carefully sparsifying the edges of T1. However,

T2 might still be dense. Finally, the last phase obtains a sparse (3(f + 1), (f + 1) · log n)

FT-ABFS structure H ⊆ T2 where |H| = O(n). We rely on the following fact.

Lemma 2.13 [8] There exists an algorithm ConsSpan(G,α, f) that given an n-vertex

graph G constructs an f edge fault tolerant (α, 0) spanner G′ ⊆ G such that |G′| ≤
O(f · n1+1/α).

Algorithm ConsFT-AddSpan(s,G, f) - overview

(1) Invoke Alg. ConsFT-BFS(s,G, f) to generate an f -edge FT-BFS structure T1 with

respect to s.

(2) Sparsify the new edges of T1 to obtain an (3(f + 1), 0) FT-ABFS structure T2 ⊆ T1.

(3) Set T ′ ← ConsSpan(T2 \ T0, log n, f).

(4) H = T0 ∪ T ′.

17

Algorithm ConsFT-BFS(s,G, f) of phase (1) operates in a “brute-force” manner. For

every ui ∈ V , and every subset F ⊆ E, |F | ≤ f , it constructs an s−ui replacement path

P ∗F (ui) ∈ SP (s, ui, G\F,W) of minimal length. The f -edge FT-BFS structure T1 is then

given by T1 = {P ∗i,F ∈ SP (s, ui, G \F) | F ⊆ E, |F | ≤ f, ui ∈ V }. In phase (2), each of

these replacement paths P = P ∗F (ui) is considered and at most f + 1 of the set of new

edges New(P) are taken into T2 at the expense of introducing a stretch. To choose these

edges from New(P) for a given replacement path P = P ∗F (ui), the algorithm labels the

vertices V (P) according to their sensitivity to the set of failed edges F , where vertices

are given the same label iff they appear in the same connected tree in the surviving

forest T0 \ F . Since vertices u′, u′′ of the same label remain connected in T0 \ F , the

algorithm exploits their path in T0 \ F as a replacement to the path P [u′, u′′] used by

the optimal replacement path. The benefit of these bypasses is that they use only edges

of the original BFS, allowing us to save the new edges that occur on P [u′, u′′]. The

potential drawback is that these bypasses might be longer than their counterparts in P .

In the analysis we argue that the stretch introduced by these replacements is bounded

by 3(f + 1). Hence phase (2) turns the exact FT-BFS structure T1 to an approximate

FT-BFS structure T2 with bounded multiplicative stretch. We now describe formally

the construction of T2, beginning with the labeling scheme LabelF : V → C(T0 \ F).

Let C(T0 \ F) = {T 1
0 , . . . , T

`
0} be the set of connected components (subtrees) of the

forest T0 \ F . For pictorial illustration, see Fig. 6. Then the label LabelF (u′) of every

vertex u′ ∈ P is set to `′ ∈ {1, . . . , `} iff u′ ∈ T `′0 . The procedure for selecting at most

f + 1 new edges of P using the labels LabelF (u′), u′ ∈ P is as follows. Let New(P) =

{(u1, v1), . . . , (uk, vk)} be the sorted set of new edges E(P) \ E(T0) according to their

order of appearance on the replacement path P (from s). Pair the vertices vi by matching

vi with the farthest vi′ for i′ ∈ {i, . . . , k} of the same label LabelF (vi) = LabelF (vi′),

setting M(vi) = vi′ and m̂(vi) = i′. Initialize i = 1 and T2 = T0. Now, repeatedly (until

i ≥ k) add the new edge ei = (ui, vi) to T2 and set i = m̂(vi) + 1.

Finally, we describe phase (3) of the algorithm. Given the (3(f + 1), 0) FT-ABFS

structure T2, a subgraph (3(f + 1), (f + 1) log n)) FT-ABFS structure T3 of O(n) edges

is constructed as follows. Let G′ = T2 \ T0 be the subgraph obtained by removing all

original BFS edges of T0 from T2. Let T ′ ← ConsSpan(G′, log n, f) be an f -edge fault

tolerant (log n, 0) spanner for G′. The resulting structure is H = T0 ∪ T ′.

Analysis. We first provide an auxiliary claim regarding the labeling scheme LabelF (ui),

F ⊆ E.

Observation 2.14 (1) π(ui, ui′) ⊆ T0 \ F for every pair of vertices ui, ui′ such that

LabelF (ui) = LabelF (ui′).

(2) |
⋃
{LabelF (u′) | u′ ∈ V }| = |C(T0 \ F)| ≤ |F |+ 1.

18

s

1

0T

2

0T

3

0T

4

0T

5

0T

Figure 6: Upon the failure of the BFS edges F (dotted lines), the BFS tree T0 is

decomposed into c = |F |+ 1 ≤ f + 1 components, denoted T 1
0 , . . . , T

c
0 .

Proof: Part (1) follows by definition, since two vertices are assigned the same label for

a given edge fault F iff they belong to the same tree in the forest T0 \ F . Part (2) is

proven by induction. Let e1, . . . , e` ∈ F ∩E(T0) be the faulty edges in T0. We claim that

|C(T0\F)| = `+1. Since ` ≤ |F |, this would establish the observation. For the base of the

induction, ` = 1, note that every faulty edge e = (x, y) disconnects the tree T0 into two

nonempty components, one containing x and one containing y, hence |C(T0 \ {e})| = 2.

Assume this holds for every `′ ≤ ` and consider `′+1. By the induction assumption, the

number of components in T ′ = T0\{e1, . . . , e`′} is |C(T ′)| = `′+1. Let T ′′ ∈ C(T ′) be the

connected tree in T ′ that contains e`′+1. By the definition of C(T ′), such T ′′ exists. Then

by the induction base, C(T ′′ \{e`′+1}) = 2, since T ′′ is broken into two components upon

the removal of the edge e`′+1. We get that C(T \ {e1, . . . , e`′+1}) = |C(T ′)|+ 1 = `′ + 2.

The observation follows.

Fix a vertex u, edge faults F ⊆ E, |F | ≤ f , and a replacement path P = P ∗F (u). Let

New(P) = {e1, . . . , e`}, where ei = (ui, vi) for i ∈ {1, . . . , `} be the set of new edges in

order of appearance on P (from s) and let New+(P) = {ei1 , . . . , ei`′} ⊆ New(P) be the

corresponding ordered set taken into T2. Let New−(P) = New(P) \ New+(P) the set of

new edges not included in T2. The following observation is immediate by the structure

of the algorithm.

Observation 2.15 (1) ei1 = e1.

(2) M(viy) ∈ V (P [viy , viy′]) \ {viy′} for every x′ > x.

(3) P [M(viy−1), viy] ⊆ T2 \ F .

(4) LabelF (viy) 6= Labelf (viy′) for every y, y′ ∈ {1, . . . , `′}.

19

Proof: Parts (1) and (2) follow by the description of the algorithm. To see (3), note that

eiy is the first new edge that appears afterM(viy−1), i.e., eiy = FirstNewE(P [M(viy−1), u]).

Hence, New(P [M(viy−1), viy]) = {eiy}. In addition, since P [M(viy−1), viy] appeared on

the replacement path P ⊆ T1 \ F , it holds that E(P [M(viy−1), viy]) ∩ F = ∅. Since

eiy (the only new edge of P [M(viy−1), u] is taken to T2, (3) follows. Finally, con-

sider Part (4). Assume towards contradiction that there exists some x < x′ such

that LabelF (viy) = Labelf (viy′). By Part (2), M(viy) ∈ V (P [viy , viy′]) \ {viy′}. Since

LabelF (viy) = Labelf (viy′) and viy′ appears after M(viy), we get a contradiction to the

selection of M(viy). The observation follows.

We proceed by showing that the multiplicative stretch introduced by excluding

New−(P) from the intermediate structure T2 is at most 3(f + 1). For P ∗F (u), define

the corresponding s−u replacement path Qf (u). Let Q1 = P [s, vi1] ◦π(vi1 ,M(vi1)) and

Qy = P [M(viy−1), viy] ◦ π(viy ,M(viy+1)) for every y ∈ {2, . . . , `′ − 1}. Then

Qf (u) = Q1 ◦Q2 . . . ◦Q`′ ◦ P [M(vi`′), u].

For pictorial illustration, see Fig. 7.

s

u

1i
e

2i
e

)(
1i

vM

2i
v

1i
v

)(* uPF

1

2

1B 1A

2A1C
1D

1R

2D

2B

1C

1R

)(
2i

vM
)(uQF

Figure 7: Illustration of the replacement paths used in T2. Black lines correspond to BFS

edges. Shown is the P ∗F (u) replacement path where new edges New(P ∗F (u)) are marked

in red. The dashed lines correspond to the BFS path used to bypass segments in P ∗F .

The replacement s− u path Qf (u) with at most f + 1 new edges is marked in green.

We state that Qf (u) is an s− u replacement path in T2 \F and it is longer than the

optimal replacement path P ∗F (u) by a factor of at most 3(f + 1).

Lemma 2.16 (1) QF (u) ⊆ T2 \ F .

(2) |QF (u)| ≤ 3(f + 1) · |P ∗F (u)|.

20

Proof: Let Q∗ = Qf (u). We begin with (1). Note that the missing new edges New(P)−

appear on P between some two vertices of the same label. Specifically, New(P)− ⊆⋃`′

y=1 P [viy ,M(viy)]. Since LabelF (viy) = LabelF (M(viy)), by Obs. 2.14, it holds

that π(viy ,M(viy)) ⊆ T0 \ F and hence also π(viy ,M(viy)) ⊆ T2 \ F . Formally, by

Obs. 2.15(1) ei1 = e1 = FirstNewE(P) hence Q1 ⊆ T0 \ F . By Obs. 2.15(3)

the subpath P [M(viy−1), viy] ∈ T2 \ F for every y ∈ {2, . . . , `′ − 1}. Finally, by Cl.

2.14, π(viy ,M(viy+1)) ⊆ T0 \ F for every y ∈ {1, . . . , `′ − 1}, since LabelF (viy) =

LabelF (M(viy+1)). It follows that Q∗ ⊆ T2 \ F .

We now turn to (2) and show that |Q∗| ≤ 3(f + 1)|P |. For every y ∈ {1, . . . , `′},
we define the following in order to be able to bound the length of the bypass. Let

χy = LCA(viy ,M(viy)), Ay = P [s, viy], By = π(s, χy), Cy = π(χy, viy), Dy = P [viy ,M(viy)]

and Ry = π(χy,M(viy)). Let P̃y = Ay ◦ Cy ◦Ry and Py = P [s,M(viy)].

Claim 2.17 |P̃y| ≤ 3 · |Py| for every y ∈ {1, . . . , `′}.

Proof: Note that since By ◦ Cy = π(s, viy), the alternative s − viy path Ay satisfies

|Ay| ≥ |By| + |Cy|. In addition, since Cy ◦ Dy is an alternative χy −M(viy) path and

Ry = π(χy,M(viy)) is the χy −M(viy) shortest-path, it holds that |Ry| ≤ |Cy| + |Dy|.
Hence, |P̃y| ≤ |Ay|+ 2|Cy|+ |Dy| ≤ 3|Ay|+ |Dy| ≤ 3|Py|.

We now claim that the replacement s−M(viy) path

Q̃y = Q1 ◦Q2 . . . ◦Qy ⊆ T2 \ F

satisfies |Q̃y| ≤ 3y|Py|. This is proved by induction on y. For the base of the induction

consider y = 1. In this case Q̃1 = P̃1. Hence, the claim follows by Cl. 2.17 and

|Q̃1| ≤ 3 · |P1|. Assume the claim holds up to y − 1 and consider y.

|Q̃y| = |Q̃y−1|+ |Qy| ≤ 3(y − 1)|Py−1|+ |P [M(viy−1), viy]|+ |Cy ◦Ry|
≤ 3(y − 1)|P [s, viy]|+ |Cy ◦Ry|
= 3(y − 1)|Ay|+ |Cy ◦Ry| ≤ 3(y − 1)|Ay|+ 3|Ay ◦Dy|
≤ 3y · |Py| ,

where the first inequality follows by the induction assumption, as |Q̃y−1| ≤ 3(y−1)|Py−1|,
and the third inequality follows by Cl. 2.17. Since by Obs. 2.15(4) and Obs. 2.14(2),

`′ ≤ f + 1, we get that |Q̃`′ | ≤ 3 · (f + 1)|P`′ | and |Q∗| = |Q̃`′| + |P [M(vi`′), u]| ≤
3(f + 1)|P`′ |+ |P [M(vi`′), u]| ≤ 3(f + 1)|P |. The lemma follows.

We therefore have the following.

Corollary 2.18 For every u and F ⊆ E, there exists a replacement path QF (u) ∈ T2\F
such that

21

(1) |New(QF (u))| ≤ f + 1 and

(2) |QF (u)| ≤ 3(f + 1) · P ∗F (u).

Hence T2 is an f -edge (3(f + 1), 0) FT-ABFS structure.

Finally, we prove the correctness of the last phase and show the following.

Claim 2.19 (1) H is an f -edge (3(f +1), (f +1) log n) FT-ABFS structure with respect

to s.

(2) |H| = O(fn).

Proof: Let P = P ∗F (u) be the optimal replacement path and let Q = QF (u) be the

corresponding replacement path in T2 obtained by using at most f +1 bypasses between

vertices of the same label on P . Then, by Cor. 2.18, |New(Q)| ≤ f + 1 and |Q| ≤
3(f + 1) · P . Let G′ = T2 \ T0 and G′′ = ConsSpan(G′, log n, f) be the f -edge FT

(log n, 0) spanner for G′ (see Fact 2.13). Let E ′ = New(Q) \H be the set of new edges in

Q that are missing in the final H. Hence, E ′ ⊆ G′ \ G′′. Since E ′ ⊆ New+(Q), it holds

that |E ′| ≤ |New+(Q)| ≤ f+1. We now claim that for every missing edge e = (x, y) ∈ E ′
there exists an x− y path in the surviving structure G′′ \ F of length at most log n. By

the fact that G′′ is an f -edge (log n, 0) spanner for G′, it holds that dist(x, y,G′′ \ F) ≤
log n ·dist(x, y,G′ \F) = log n, where the last equality follows by the fact that e = (x, y)

appears on the replacement path Q, hence e /∈ F , so dist(x, y,G′ \F) = 1. We therefore

have that Q contains at most f + 1 missing edges, and for each there exists a path in

G” of length at most log n. Overall, dist(s, u,G \ F) ≤ |E(Q) \ E ′| + (log n) · |E ′| ≤
3(f + 1)|P |+ (f + 1) log n. Part (1) is established. We now consider part (2). By Fact

2.13, |G′′| = O(n), hence H = T0 ∪G′′ has O(fn) edges as well. The claim follows.

This completes the proof of Thm. 2.12(1). We now consider part (2) of the theorem

asserting that it is possible to get rid of the additive factor, albeit at the expense of

considerably increasing the size of the FT-ABFS structure.

Proof: [Thm. 2.12(2)] For a given k ≥ 3, we first construct the collection of all re-

placement paths P ∗F (ui) ∈ SP (s, ui, G \ F,W) for every F ⊆ E and every ui ∈ V .

Let ` = (f + 1) · (2k − 1). The (3(f + 1) + 1, 0) FT-ABFS structure H is constructed

in two steps. A replacement path P ∗F (u) is short iff |P ∗F (u)| ≤ `. In the first step, a

subgraph H1 ⊆ G is constructed containing the set of all short replacement paths, i.e.,

H1 = {LastE(P ∗F (ui)) | |P ∗F (ui)| ≤ `}. In the second step, an (3(f + 1), `) FT-ABFS

structure H2 is constructed by employing the algorithm of Thm. 2.12(1) with one minor

modification; in step (3) of the algorithm we construct an (2k − 1, 0) spanner instead

of (log n, 0) spanner, i.e., step (3) is given by T ′ ← ConsSpan(T2 \ T0, 2k − 1, f) for the

given k (while 2k − 1 = log n in the original algorithm). By Fact 2.13 and the proof of

22

Cl. 2.19, it holds that |E(H2)| = O(f · n+ n1+1/k). We next bound the size of H1.

Claim 2.20 |H1| ≤ n · ((f + 1) · (2k − 1))f+1.

Proof: Let Pi = {P ∗F (ui), F ⊆ E} be the collection of s− ui replacement paths. Define

P0
i = {π(s, ui)} and Pf

′

i = {P ∗F (ui) | |F | = f ′} for f ′ ≥ 1 as the collection of s − ui
replacement paths supporting a sequence of f ′ edge faults. Hence, Pi =

⋃f
f ′=1P

f ′

i .

We prove that for every f ′ ∈ {1, . . . , f} if holds that |Pf
′

i | ≤ ` · |Pf
′−1

i |. To see

this, observe that every replacement path P ∗F (ui) ∈ Pf
′

i \ P
f ′−1
i protects an edge failure

e in some P ∗F ′(ui) ∈ P
f ′−1
i . Hence, F = F ′ ∪ {e}. Since Pf

′−1
i contains only short

replacement paths, it holds that each short s−ui replacement path P ∗F ′(ui) ∈ P
f ′−1
i has

at most ` replacement paths of the form P ∗F ′∪{e}(ui) in Pf
′

i that protect against the failure

of e ∈ P ∗F ′(ui). Concluding that |Pf
′

i | ≤ ` · |Pf
′−1

i |. Overall, |Newi| ≤ |
⋃f
f ′=1P

f ′

i | ≤ `f+1

and |H1| ≤ n · `f+1. The claim follows.

Finally, we show that H = H1 ∪ H2 is an (3(f + 1) + 1, 0) FT-ABFS structure.

Consider a vertex edge-set pair (i, F) corresponding to a vertex ui ∈ V and edge set

F ⊆ E. There are two cases. Case (a) is where the replacement path P ∗F (ui) is short, i.e.,

|P ∗F (ui)| ≤ `. By the same argumentation as in Lemma 2.6 it holds that dist(s, ui, H1 \
F) = dist(s, ui, G\F) (since H1 contains the last edges of these replacement paths, which

was shown to be sufficient). The complementary case is where the replacement path is

long, |P ∗F (ui))| > `. By the proof of Thm. 2.12(1), it holds that dist(s, ui, H2 \ F) ≤
(3(f + 1))dist(s, ui, G \ F) + ` ≤ (3(f + 1) + 1)dist(s, ui, G \ F). The claim follows.

3 Lower Bounds for Additive FT-ABFS Structures

In this section we provide lower bound constructions for (1, β) FT-ABFS structures for

various values of the additive stretch β. The starting point for these constructions is the

lower bound construction for the exact FT-BFS structures in [15]. In this construction,

the bulk of the edges was due to a complete bipartite graph B = (L,R) where |L| = Θ(n)

and |R| = Θ(
√
n). When relaxing to additive stretch 2, it is no longer required to include

B entirely in the spanner; in fact, one can show that it suffices to include in the (1, 2)

FT-ABFS structure only a subgraph B′ ⊆ B of O(n) edges. This subgraph B′ is obtained

by connecting an arbitrary vertex `∗ ∈ L to every vertex r ∈ R and connecting an

arbitrary vertex r∗ ∈ R to every vertex ` ∈ L. Thus our goal is to replace B with a

dense subgraph of high girth. Constructions of this type are known, but our requirement

is in fact more stringent. Note that an essential characteristic of the construction of [15]

is that the R layer consists of at most c ·
√
n vertices, for some constant c > 0. A

larger layer could not be supported since the upper bound analysis of [15] implies that

23

every vertex in L requires at most O(
√
n) edges in every FT-BFS structure. Since the

known lower bound on the number of edges in a Θ(n)×Θ(
√
n) bipartite graph with high

girth (greater than 4) is O(n), such graphs are not good candidates for replacing the

bipartite graph B in the construction, as using them results in graphs of O(n) rather than

O(n1+ε(β)) edges. Instead, our constructions replace the complete unbalanced bipartite

graph B by a multiple copies of balanced Θ(
√
n) × Θ(

√
n) bipartite graphs with high

girth. Hence, the lower bound constructions of (1, β) FT-ABFS structure rely on known

construction of balance bipartite graphs with high girth. The desired construction is

achieved by carefully inserting multiple copies of these graphs.

Additive Stretch β = 1. By a proof very similar to that of the exact case (see [15])

one can show the following (details are omitted).

Theorem 3.1 There exists an n-vertex graph G(V,E) and a source s ∈ V such that

any (1, 1) FT-ABFS structure rooted at s has Ω(n3/2) edges.

Additive stretch 3 ≤ β ≤ O(log n). The girth of a graph G is the minimum number

of edges on any cycle in G. Let B(n, g) = (L,R,E) be a bipartite graph, where |L| =

|R| = n, the girth is at least g and the number of edges is |E| = Ω(nm(g)) for some

function m(g) > 1. Removing any edge (u, v) in such a graph B(n, g) increases the

distance between its endpoints u and v from 1 to g − 1, which implies that any (strict)

subgraph of B(n, g) has additive stretch β ≥ g − 2.

In what follows, we embed copies of B(d, g) graphs for some parameters d and g

in order to achieve a lower bound for the case of a (1, β) FT-ABFS structure with edge

faults. We show the following.

Theorem 3.2 For every integer n and constant integer β, there exists an n-vertex graph

G(n, β) = (V,E) and a source s ∈ V such that any (1, β) FT-ABFS structure with respect

to s, H, has:

(1) |E(H)| = Ω(n5/4), if β ≤ 3.

(2) |E(H)| = Ω(n1+1/2(β+3)), if 4 ≤ β ≤ O(log n).

(3) |E(H)| = Ω(n7/6), if β ≤ 5.

(4) |E(H)| = Ω(n11/10), if β ≤ 9.

Proof: Given integers n and β, the graph G(n, β) = G(V,E) consists of the following

main components (illustrated in Fig. 8):

24

(1) A path P0 = [s = v1, . . . , vd+1 = v∗] of length d, for an integer parameter d fixed

later. Our focus in the analysis is on what happens when some edge on this path

fails.

(2) A set X =
⋃d
i=1Xi of d2 vertices organized in d sets X1, . . . , Xd each of size d,

where Xi = {xi,1, . . . , xi,d} for every i ∈ {1, . . . , d}.

(3) A set of d2 vertex disjoint paths of length β+1 each, Ui,j = [v∗ = ui1, . . . , u
i
β+2 = xi,j],

for every i, j ∈ {1, . . . , d} connecting the vertex v∗ ∈ P0 to the vertices of X.

(4) A set Z =
⋃d
i=1 Zi of d2 vertices organized in d sets Z1, . . . , Zd each of size d, where

Zi = {zi,1, . . . , zi,d} for every i ∈ {1, . . . , d}.

(5) A vertex set W = {w1, . . . , wd}, where vertex wj is connected by d vertex disjoint

paths Qi,j of length-β + 1 to the d vertices {zi,j ∈ Zi | i = 1, . . . , d}. Altogether

there exist d2 vertex disjoint paths Qi,j = [wj = qj1, . . . , q
j
β+2 = zi,j], one for every

i, j ∈ {1, . . . , d}.

(6) A collection of d vertex disjoint paths of decreasing length, P1, . . . , Pd, where for

j ∈ {1, . . . , d}, Pj = [vj = pj1, . . . , p
j
`j

= wj] connects vj with wj and its length is

`j = |Pj| = d+ 4 + (β + 1) · (d− j + 1).

(7) d copies of the bipartite graph B(d, β+3), where Bi(d, β+3) = (Xi, Zi, Ei) connects

Xi to Zi for every i ∈ {1, . . . , d}. This graphs contribute most of the edges in G

(with all the other components containing only O(n) edges).

(8) A path R = [s = r1, . . . , rd′+1] for d′ ≥ 0 to be defined later, added in order to

complete the number of vertices in G to exactly n. (This path has no special role

in the construction.)

Overall, the vertex set of G(n, β) is

V = X ∪ Z ∪ V (P0) ∪

(
d⋃
i=1

V (Pi)

)
∪

d⋃
i=1

d⋃
j=1

(V (Qi,j) ∪ V (Ui,j)) ∪ V (R).

and its edge set is

E =
d⋃
i=1

E(Bi(d, β + 3)) ∪ E(P0) ∪ E(R) ∪
d⋃
i=1

E(Pi) ∪
⋃
i,j

(E(Qi,j) ∪ E(Ui,j)).

Set d = b
√
n/(14β)c, and let d′ = n − |V \ (R \ {s})|. We now turn to prove the

correctness of the construction and establish Thm. 3.2. Note that without the path

R, the rest of G(n, β) contains fewer than n vertices, as |V (P0)| = d, |X ∪ Z| = 2d2,

25

s

v*

𝑤𝑑
𝑤1

vd

𝑑 = 𝑂(𝑛)

𝐵1(𝑑, + 3)

2(+ 1) path

𝐵𝑑(𝑑, + 3)
𝑋

𝑍

jiU ,

jiQ ,

𝑋𝑖

Z𝑖

2j
e

2, jiz

1, jix

2j
v

𝐵
𝑖(
𝑑
,

+
3

)

Path
2

jP

2j
w

21 , jje

0P

Figure 8: Lower bound construction for FT-ABFS structures. The original BFS tree

consists of the non-dashed edges. The dotted edges are necessary to make it an FT-ABFS

structure. The orange dashed lines correspond to β + 1 length path. The edges of the

bipartite graphs Bi(d, β+ 3) are required in every (1, β) FT-ABFS structure with respect

to s. For example the red edge ej1,j2 is necessary upon the fault of ej2 ∈ P0.

|
⋃d
i=1 V (Pi)| =

∑d
j=1 (d+ 4 + (β + 1)(d− j + 1)) ≤ 10β · d2, |

⋃
i,j V (Ui)| = d2 · (β + 2)

and |
⋃
i,j V (Qi,j)| = d2 · (β + 2). Hence overall, |V \ (R \ {s}) | ≤ 14β · d2 ≤ n. Fix

d′ = |R| to complete the size of G(n, β) to n, i.e., set d′ = n− |V \ (R \ {s})|.

Observation 3.3 |E| = Ω(n1/2+m(β+3)/2).

Proof: The bulk of the edges is due to the bipartite graphs Bi(d, β + 3). Since there

are d such graphs, each with Ω(dm(β+3)) edges, we get that |E| ≥
∑

iE(Bi(d, β + 3)) =

d · Ω(dm(β+3)) = Ω(n1/2+m(β+3)/2). The Claim follows.

We now show the following.

Claim 3.4 Every (1, β) FT-ABFS structure H for G with respect to s, must contain all

the edges of Bi(d, β + 3) for every i ∈ {1, . . . , d}.

Proof: Let G = G(n, β). Assume, towards contradiction, that there exists some i ∈
{1, . . . , d} and an (1, β) FT-ABFS structure H for G such that Bi(d, β + 3) * H. Let

ej = (vj, vj+1) for every j ∈ {1, . . . , d}. Let ej1,j2 = (xi,j1 , zi,j2), where xi,j1 ∈ Xi and

zi,j2 ∈ Zi, be a missing edge in H. Note that for i′, j′ ∈ {1, . . . , d}, the shortest s− zi′,j′
path in G \ {ej′} is Pi′,j′ = P0[s = v1, vj′] ◦ Pj′ ◦Qi′,j′ .

26

Upon the failure of the edge ej2 = (vj2 , vj2+1) ∈ P0, the unique shortest s−xi,j1 path

in G \ {ej2} is P ∗ = Pi,j2 ◦ ej1,j2 . Since ej1,j2 /∈ H and therefore also P ∗ * H, the s−xi,j1
distance inH\{ej2} is strictly larger than that inG\{ej2}. Let P ′ ∈ SP (s, xi,j1 , H\{ej2})
be the s−xi,j1 shortest-path in H\{ej2}. By construction, P ′ must traverse the Z vertices

(as the path P0 is disconnected).

Let zi′,j′ be the first Z vertex occurring on P ′. There are three cases to consider.

Case (C1) j′ > j2 and i′ ∈ {1, . . . , d}. Since the faulty edge disconnects the shortest-

path of G between s and vj′ for every j′ > j2, the shortest-path between s and zi′,j′ in

G \ {ej2} must visit another Z vertex, in contradiction to the fact that zi′,j′ is the first

Z vertex on P ′.

Case (C2) j′ < j2 and i′ ∈ {1, . . . , d}. In this case, the shortest-path between s and

zi′,j′ in G \ {ej′} is Pi′,j′ . Since |Pj′| ≥ |Pj2| + β + 1 for every j′ < j2, it holds that

|P ′| > |P ∗|+ β + 1, in contradiction to the fact that H is a (1, β) FT-ABFS structure.

Case (C3) j′ = j2. This case is further divided into two cases.

Subcase(C3A): i 6= i′. The shortest-path P ′ must be of the form P ′ = Pi′,j2 ◦ Q′ where

Q′ ∈ SP (zi′,j2 , xi,j1 , H \ {ej2}). Since any path connecting vertex w ∈ Bi(d, β + 3) and

w′ ∈ Bi′(d, β + 3) is of length at least β + 1, it holds that |P ′| ≥ |P ∗| + β + 1, and we

end with contradiction again.

Subcase (C3B): i = i′. Since the edge ej1,j2 /∈ T ′ is missing, zi,j2 is the first Z vertex on

P ′, and the distance between xi,j ∈ Bi(d, β + 3) and w′ ∈ Bi′(d, β + 3) for i 6= i′, is of

length at least β+ 1, it follows that xi,j2 is connected to zi,j2 via vertices in Bi(d, β+ 3),

i.e., P ′ = Pi,j2 ◦ Q′ where Q′ is an zi,j2 − xi,j1 shortest path in H. Since the girth of

Bi(d, β + 3) is g ≥ β + 3, it holds that dist(xi,j1 , zi,j2 , Bi(d, β + 3) \ {ej1,j2}) ≥ β + 2,

hence |Q′| ≥ β + 2 and |P ′| ≥ |P ∗|+ β + 1, contradiction.

Corollary 3.5 Every (1, β) FT-ABFS structure H for G must contain at least d ·dm(β+3)

edges.

To establish the theorem we now make use of the following fact concerning the existence

of graphs with “many” edges and high girth.

Fact 3.6 For every sufficiently large n there exists a connected bipartite graph B(n, g) =

{L,R,E}, |L| = |R| = n such that

(1) m(g) = 3/2 for g = 6, Lemma 5.1.1 of [13],

(2) m(g) = 4/3 for g ≥ 8 [14]

(3) m(g) = 6/5 for g ≥ 12 [14] and

(4) m(g) = 1 + 1/g for every 6 ≤ g ≤ 2 log n, [17].

27

Thm. 3.2 follows by Cor. 3.5 and by applying Fact 3.6.

4 Upper Bound for Additive Stretch 4

In this section, we establish the following.

Theorem 4.1 There exists a poly-time algorithm that for every n-vertex unweighted

undirected graph G and source s constructs a (1, 4) FT-ABFS structure H with O(n4/3)

edges.

As usual, the starting point of our construction is the shortest path tree T0, and this

tree should be fortified against possible failure of any of its edges, by adding edges and

augmenting T0 into H.

Overview. The construction of H consists of 3 main stages and revolves around the

following key observation. Let E ′ ⊆ E(G) be a subset of edges. A replacement path

P ∗i,j ∈ SP (s, vi, G \ {ej}) is “missing-ending” with respect to E ′ if the last edge of P ∗i,j
does not belong to E ′, i.e., LastE(P ∗i,j) /∈ E ′. Let P∗ = {P ∗i,j | vi ∈ V and ej ∈ π(s, vi)}
be the collection of all s − vi replacement paths for every ej ∈ π(s, vi) and consider its

partition P∗E′ = PmissE′ ∪P+
E′ into missing-ending paths PmissE′ = {P ∗i,j | LastE(P ∗i,j) /∈ E ′}

and non missing-ending paths P+
E′ = {P ∗i,j | LastE(P ∗i,j) ∈ E ′}. Clearly, a subgraph H

containing all replacement paths P∗ is an exact FT-BFS structure, however by [15] such

a subgraph might contain Ω(n3/2) edges. One of the key observations in our analysis is

that it is sufficient to “take care” only of the missing ending path collection PmissE′ .

Observation 4.2 Let H ⊆ G be a subgraph containing E ′ and satisfying dist(s, vi, H \
{ej}) ≤ dist(s, vi, G \ {ej}) +β for every vi ∈ V and ej ∈ π(s, vi) such that P ∗i,j ∈ PmissE′ .

Then H is a (1, β) FT-ABFS structure, i.e., dist(s, vi, H \ {ej}) ≤ dist(s, vi, G \ {ej}) +β

also holds for non missing-ending paths P ∗i,j ∈ P+
E′.

Observation 4.2 provides the basis for the general structure of the algorithm. Its proof

is based on ideas resembling those appearing in the proof of Lemma 4.19).

A vertex-edge pair (i, j), representing a vertex vi and an edge ej ∈ π(s, vi), is satisfied

by a subgraph H ⊆ G if there exists a replacement path P ∈ SP (s, vi, G \ {ej}) whose

last edge LastE(P) is in H, otherwise it is unsatisfied. For a subgraph H ⊆ G, let

Γ(H) ={(i, j) | ej ∈ π(s, vi) and

LastE(P) /∈ H for every P ∈ SP (s, vi, G \ {ej})}

28

be the collection of unsatisfied pairs in H. Starting with the collection of all pairs

Γ0 = {(i, j) | ej ∈ π(s, vi)} that are required to be satisfied in H, the algorithm consists

of three stages, aiming towards increasing the set of satisfied pairs by adding a suitable

collection of edges to the constructed FT-ABFS structure H. Specifically, in each stage

k, the algorithm is given a “partial” FT-ABFS structure Fk and a list of pairs Γk ⊆ Γk−1
that might not be satisfied yet in Fk. Essentially, the pairs Γk−1 \ Γk are satisfied in

Fk. The algorithm then defines a subset of target pairs ∆k ⊆ Γk and a corresponding

collection of edges E(∆k) that aim to satisfy ∆k in the final spanner. At the end of this

stage, the algorithm sets Fk+1 = Fk ∪ E(∆k) and the updated list of unsatisfied pairs

is reduced to Γk+1 = Γk \∆k. To compute a sparse E(∆k), the algorithm considers for

every pair (i, j) ∈ ∆k, a specific replacement path P̃i,j ∈ SP (s, vi, G \ {ej}). Only the

last edge LastE(P̃i,j) is added to E(∆k). Hence, E(∆k) = {LastE(P̃i,j) | (i, j) ∈ ∆k}.
Finally, in the last stage 3, the replacement paths of the yet unsatisfied pairs in the

current FT-ABFS structure F3 are considered to be added entirely to H, by employing

a modified path-buying procedure. We now describe these stages in more detail. For a

schematic illustration of the scheme, see Fig. 9.

At the first stage S1 of Subsec. 4.1, the algorithm clusters some of the vertices of

V (G), resulting in a clustered graph GC ⊆ G \ T0 which is shown to have O(n4/3) edges

and a set C of O(n2/3) clusters. For this we use the clustering algorithm of [10], where

not all the vertices of V (G) are clustered but the only G edges missing in GC are those

incident to clustered vertices. Hence, letting ∆1 = {(i, j) | vi is not clustered and ej ∈
π(s, vi)}, the edge set E(∆1) = GC satisfies ∆1 in the current spanner F1. It therefore

follows that it remains to handle only pairs (i′, j) for clustered vertices vi′ . At the end of

stage S1 (Sec. 4.2), the algorithm uses the clustering to divide the shortest path π(s, vi)

of every clustered vertex vi into three consecutive segments

π(s, vi) = πfar(vi) ◦ πmid(vi) ◦ πnear(vi),

where the breakpoints depend on the clustering. Let C(vi) ∈ C be the cluster of vi and

LCA(C(vi)) be the least common ancestor in T0 of the members of C(vi). Then, our

segmentation satisfies that πfar(vi) ◦ πmid(vi) = π(s, LCA(C(vi))) and that |πmid(vi)| ≤⌈
n2/3

⌉
, and the vertices of πfar(vi) are at distance at least n2/3 from vi.

Equipped with this segmentation, the algorithm now handles separately edge failures

ej ∈ T0 in each of these three segments. Specifically, stage S2 (in Sec. 4.3) deals with

failures of ej ∈ πfar(vi) ∪ πnear(vi), and stage S3 (in Sec. 4.4) deals with failures of

ej ∈ πmid(vi) by employing a modified path-buying procedure.

Generally speaking, the edge faults in the far and near segments are handled by

adding the collection of all last edges of the corresponding replacement paths. For a

suitable construction of the replacement paths, this last edge collection is shown to be

small. In contrast, the edge faults in the mid segments are handled by considering every

29

S1.1: Clustering S1.2: Shortest-Path Segmentation

kC

v

)(kCLCA

)(vnear

s

)(vmid kz

)(vfar

v

s

kC

iv

)(kCLCA

s

kz

je

le

S2: Handling with near and far
edges faults.

kC

iv

)(kCLCA

s

kz

ye

rC
rv

S3: Handling with mid edge faults
(path-buying)

jiQ ,
*

liQ ,
*

yiP ,
*

Figure 9: Schematic illustration of the main stages in H construction. Stage S1.1:

Clustering in the graph G \ T0. Stage S1.2: Segmentation of the shortest-path π(s, vi)

into three segments: near, mid and far. Stage S2: Handling with the near and far

edge faults by adding the last edge of their corresponding replacement paths Q∗i,j. Stage

S3: Handling with mid edge faults by applying a path buying procedure on the detour

segments P−i,j of the corresponding replacement paths P ∗i,j. A candidate detour is not

added to H if there exists an alternative ”safe” and short path between some clusters

representatives.

replacement path P ∗i,j ∈ SP (s, vi, G \ {ej}) satisfying that ej ∈ πmid(vi) and adding it

entirely to H if it satisfies some cost to value balance. To efficiently handle the faults,

either in the near and far sections or in the mid section, a (nontrivial) preprocessing

step of replacement path construction is required.

Let IC = {i | vi is clustered}. In stage S2, the algorithm defines, for every i ∈ IC,

∆near
i = {(i, j) | ej ∈ πnear(vi)} and ∆far

i = {(i, j) | ej ∈ πfar(vi)}.
The goal of this stage is to satisfy the pairs of ∆near =

⋃
i∈IC ∆near

i and ∆far =⋃
i∈IC ∆far

i in the constructed FT-ABFS structure H. This stage consists of two substages.

30

In Substage S2.1, a collection of replacement path Q∗i,j is constructed. In Substage S2.2,

the algorithm creates a sparse set E(∆near) (resp., E(∆far)) containing the last edges

of some replacement paths Q∗i,j ∈ SP (s, vi, G \ {ej}) for every (i, j) ∈ ∆near (resp.,

(i, j) ∈ ∆far). Due to some nice properties of the Q∗i,j collection, the analysis shows that∣∣E(∆near) ∪ E(∆far)
∣∣ = O(n4/3). In particular, the size of the set E(∆near

i), consisting

of the new edges appearing as last edges on Q∗i,j ∈ SP (s, vi, G \ {ej}) satisfying that

ej ∈ πnear(vi), is bounded by a constant (which will be shown to follow from Fact. 4.3

that diameter of the clusters is constant). In addition, the number of last edges E(∆far
i)

appearing on paths P̃i,j ∈ SP (s, vi, G \ {ej}) that protect against failures ej in the far

segment πfar(vi), is bounded by O(n1/3) for every clustered vertex vi, and as there are

n vertices, in total there are O(n4/3) edges in E(∆far). This holds since one can show

that the detours of the replacement paths for every clustered vertex vi are long, vertex

disjoint, and fully contained in the graph G. Hence, the remaining pairs (i, j) that should

be handled in the subsequent steps such that vi is clustered and ej ∈ πmid(vi). The fact

that the length of πmid(vi) is bounded plays an important role in the subsequent steps.

The remaining set of replacement paths are handled in Stage S3. This stage consists

of two substages as well. In Substage S3.1, a collection of replacement paths {P ∗i,j}
that satisfies some key properties is constructed. Then, in Substage S3.2, the algorithm

employs a modified path-buying procedure, first developed by Baswana et al. [4] and

recently revisited by Cygan et al. [10]. This modified path-buying procedure heavily

exploits the key properties of the paths P ∗i,j constructed in Substage S3.1.

We now provide a detailed description of the algorithm and establish Theorem 4.1.

4.1 S1.1: Clustering

The following fact is taken from [10].

Fact 4.3 ([10]) There is a poly-time algorithm Cluster(G, γ) that given a parameter

γ ∈ [0, 1] and a graph G = (V,E) constructs a collection C of at most n1−γ vertex-

disjoint clusters, each of size nγ, and a subgraph GC of G with O(n1+γ) edges, such

that

(1) for any missing edge (u, v) ∈ E(G)\E(GC), u and v belong to two different clusters,

and

(2) the diameter of each cluster (i.e., the maximum distance in GC between any two

vertices of the cluster) is at most 2.

Note that the clustering does not necessarily form a partition of V , i.e., the set ṼC =

V \
⋃
Ci∈C Ci may be nonempty. However, in that case, all edges connecting vertices

31

of ṼC among themselves or to vertices of one of the clusters belong to GC . Also, the

clusters are not guaranteed to be connected.

Invoke the algorithm Cluster on G \ T0 and γ = 1/3, getting the subgraph GC =

Cluster(G \ T0, γ) and let C = {C1, . . . , Cκ} be the clusters of GC . Define

F1 = T0 ∪GC .

By Fact 4.3, |E(F1)| = O(n4/3) and the number of clusters is κ = O(n2/3). For a

clustered vertex v′ 6∈ ṼC , denote by C(v′) ∈ C its cluster in GC . For every cluster

C` ∈ C, let LCA(C`) be the least common ancestor of all C` vertices in T0. Formally,

LCA(C`) is the vertex v̂ of maximal depth satisfying that π(s, v̂) ⊆ π(s, v′) for every

v′ ∈ C`.

4.2 S1.2: Shortest path π(s, vi) segmentation

For every clustered vertex v ∈ Ck, divide its shortest path π(s, v) into 3 segments

π(s, v) = πfar(v) ◦ πmid(v) ◦ πnear(v)

in the following manner. Define zk ∈ π(s, LCA(Ck)) to be the upmost vertex on π(s, LCA(Ck))

(closest to s) satisfying that dist(zk, LCA(Ck)) ≤ dn2/3e. Then, let πfar(v) = π(s, zk),

πmid(v) = π(zk, LCA(Ck)) and πnear(v) = π(LCA(Ck), v). Note that for every two ver-

tices v, v′ ∈ C` in the same cluster it holds that πmid(v) = πmid(v′) and also πfar(v) =

πfar(v′) ⊆ π(s, v). For an illustration of the segmentation of π(s, v), see part S1.2 of

Fig. 9; the vertex LCA(Ck) is used to draw the line between the near segment πnear(v)

and the rest of the π(s, v) path. By the definition of zk ∈ π(s, LCA(Ck)), it holds that

|πmid(v)| ≤ dn2/3e.
Define π(Ck) = π(s, LCA(Ck)) to be the maximal shortest path segment shared by

the members of cluster Ck.

Observation 4.4 (a) π(Ck) = πfar(v) ◦ πmid(v) for every v ∈ Ck.

(b) dist(v′, v, G) ≥ dn2/3e for every v′ ∈ πfar(v).

Note that πfar(v) is the same for every v ∈ Ck and also πmid(v) is the same for

every v ∈ Ck, therefore the common shortest-path section π(Ck) can be divided into two

segments πfar(Ck) and πmid(Ck) such that

πmid(Ck) = πmid(v) for every v ∈ Ck , and πfar(Ck) = πfar(v) for every v ∈ Ck .

32

4.3 S2: Handling near and far edge faults

To protect against the edge failures occurring in the near and far shortest-path segments,

two sparse collections of new edges are added to H, namely, Enear and Efar.

To guarantee that Enear and Efar are sufficiently sparse, the replacement paths are

required to be nice as defined below. For a collection of replacement paths Q = {Q∗i,j ∈
SP (s, vi, G\{ej})}, let bi,j be the first divergence point of Q∗i,j ∈ Q from π(s, vi) (i.e., the

first vertex on Q∗i,j such that the vertex v′ appearing after it on Q∗i,j is not on π(s, vi)).

For every clustered vertex vi, define

Enear
i = {LastE(Q∗i,j) /∈ F1 | ej ∈ πnear(vi)} and Efar

i = {LastE(Q∗i,j) /∈ F1 | ej ∈ πfar(vi)} .

Definition 4.5 A collection Q = {Q∗i,j} of replacement paths is nice if it satisfies the

following properties:

(N1) |Enear
i | ≤ 5,

(N2) |Efar
i | ≤ dn1/3e.

S2.1: The nice collection Q of replacement paths. Our starting point for con-

structing the nice collection Q = {Q∗i,j ∈ SP (s, vi, G \ {ej})} is the graph F1 = GC ∪T0.
Note that by Fact 4.3, the edges in G \ F1 are those incident to clustered vertices. A

path Q∗i,j ∈ SP (s, vi, G\{ej}) is cute if its divergence point bi,j is unique (i.e., Q∗i,j[bi,j, vi]

and π(bi,j, vi) are edge disjoint). The following algorithm constructs a cute collection of

replacement paths which are also shown to be nice.

Algorithm Qcons for Q∗i,j construction. For every vertex-edge pair (i, j) such that

vi ∈ V (G) and ej ∈ π(s, vi), define Q∗i,j ∈ SP (s, vi, G \ {ej}) in the following manner.

First, the replacement path is classified according to whether or not it must be missing

ending (ending with an edge that is not in F1). To do that, the algorithm checks if there

exists a replacement path which is not missing ending and sets Q∗i,j accordingly. This is

done as follows. Let E ′ = E(vi, G \ E(F1)) be the new edges incident to vi in G.

Case (a): dist(s, vi, G \ (E ′ ∪ {ej})) = dist(s, vi, G \ {ej}). In this case, there is a re-

placement path which is not missing-ending, and the algorithm takes one such path

Q∗i,j ∈ SP (s, vi, G \ (E ′ ∪ {ej}))).
Case (b): dist(s, vi, G\(E ′ ∪ {ej})) > dist(s, vi, G\{ej}). In this case, the chosen replace-

ment path must be missing-ending. The algorithm attempts to select a cute replacement

whose divergence point is highest. Let U = {P ∈ SP (s, vi, G\{ej}) | P is cute} be the

collection of s − vi replacement paths which are cute. In the analysis section, we show

that U is nonempty. For every cute path P` ∈ U with unique divergence point b`, let the

cost of the path be the depth (distance from s in T0) of b`, i.e., Cost(P) = depth(b`). Let

33

Q∗i,j ∈ U , be the cute path of minimum cost. I.e., Cost(Q∗i,j) = min{Cost(P), P ∈ U}.

Analysis of the Q∗i,j paths. In this section we prove the following.

Lemma 4.6 Q = {Q∗i,j} is nice.

We begin by proving correctness.

Claim 4.7 For every i, j,

(a) Q∗i,j ∈ SP (s, vi, G \ {ej}),

(b) if LastE(Q∗i,j) /∈ T0 then dist(s, vi, G \ (E ′ ∪ {ej})) > dist(s, vi, G \ {ej}) for E ′ =

E(vi, G) \ T0.

Proof: If the path Q∗i,j is chosen by Algorithm Qcons according to case (a), then it is not

a missing-ending and the lemma follows trivially. Note that Part (b) is also immediate

by the construction. It remains to prove Claim (a) for paths Q∗i,j chosen according to

Case (b), i.e., missing-ending Q∗i,j paths. In fact, since Algorithm Qcons chooses the cute

s−vi replacement path whose divergence point is closest to s, it is sufficient to show that

the set of cute paths U ⊆ SP (s, vi, G \ {ej}) is nonempty. To do so, we exhibit at least

one such path P ′ in this set. Let P1 ∈ SP (s, vi, G \ {ej}) be an arbitrary replacement

path. P1 is converted into a cute path P ′ ∈ U . Let w ∈ (π(s, vi) ∩ P1) \ {vi} be the

last mutual point of P1 and π(s, vi) which is not vi. Define P ′ = π(s, w) ◦ P1[w, vi].

Clearly, |P ′| = |P1|, so it remains to show that P ′ ⊆ (G \ {ej}) and in particular it is

sufficient to show that ej /∈ π(s, w). Let Q̂1 = π(s, w) and Q̂2 = π(w, vi). We now claim

that ej ∈ Q̂2. Assume, towards contradiction that ej /∈ Q̂2. This implies that the path

Q′ = P2[s, w] ◦ Q̂2 satisfies |Q′| = |P2| and Q′ ⊆ G \ {ej}, hence Q′ ∈ SP (s, vi, G \ {ej})
and it is not missing-ending, in contradiction to the fact that Q∗i,j was chosen according

to Case (b). Hence, ej ∈ Q̂3 and P ′ ⊆ G \ {ej} is cute.

We next provide several preliminary claims.

Claim 4.8 If Q∗i,k and Q∗i,k′ are the missing-ending replacement paths chosen by Algo-

rithm Qcons and |Q∗i,k| < |Q∗i,k′|, then ek is below ek′ on π(s, vi).

Proof: If ek is above ek′ , then Q∗i,k ∈ G \ {e′k} so it can serve as a replacement path for

vi and ek′ as well, in contradiction to Cl. 4.7, by which Q∗i,k′ is an s − vi shortest path

in G \ {e′k}.

Claim 4.9 If Q∗i,k and Q∗i,k′ are the missing-ending replacement paths chosen by Algo-

rithm Qcons and |Q∗i,k| = |Q∗i,k′|, then Q∗i,k = Q∗i,k′.

34

Proof: Without loss of generality, let ek be above ek′ on π(s, vi) and let bk (resp., bk′)

be the unique divergence point of π(s, vi) and Q∗i,k (resp., Q∗i,k′). By construction, there

exists such unique divergence point. Let b` for ` ∈ {k, k′} be the divergence point that

is closer to s. Since bk must appear on π(s, vi) above ek, it holds that b` appears above

ek as well and hence that Q∗i,` ∈ G \ {ek, ek′}. In addition, since |Q∗i,`| = |Q∗i,k| = |Q∗i,k′ |
it holds that Q∗i,` ∈ SP (s, vi, G \ {ek, ek′}). By Algorithm Qcons definition, it holds that

bk′ = bk and by the uniqueness of the shortest-path under W it holds that Q∗i,k = Q∗i,k′ .

We now establish the niceness of Q. Let us first prove property (N1) of Def. 4.5.

Lemma 4.10 |Enear
i | ≤ 5.

Proof: Assume towards contradiction that there exists some vi such that |Enear
i | ≥ 6.

Let us consider 6 specific edges e′1, . . . , e
′
6 ∈ Enear

i . Recall that vi must be clustered

and let Q∗i,1, ..., Q
∗
i,5, Q

∗
i,6 be replacement paths whose last edge is e′1, . . . , e

′
6 respec-

tively. It then holds that ej ∈ πnear(vi) = π(w, vi) where w = LCA(C(vi)) is the

least common ancestor of vi’s cluster C(vi). Since LastE(Q∗i,j1) 6= LastE(Q∗i,j2) for

every j1, j2 ∈ {1, . . . , 6}, by Cl. 4.9, the paths Q∗i,j are of distinct lengths for every

j ∈ {1, . . . , 6}. Without loss of generality, assume that |Q∗i,1| < ... < |Q∗i,6|. We therefore

have that

|Q∗i,6| > |Q∗i,1|+ 4 . (9)

In addition by Cl. 4.8, it holds that the edges ej are sorted in decreasing distance from

s, i.e., dist(s, e1) > . . . > dist(s, e6). Since e1, . . . , e6 ∈ π(w, vi) appear strictly below w,

it holds that there exists at least one vertex v′ ∈ C(vi) such that e6 = (x, y) /∈ π(s, v′)

and hence also e′1, . . . , e
′
5 /∈ π(s, v′). See Fig. 10 for an illustration. This holds since

otherwise, if e6 belongs to π(s, v′′) for every v′′ ∈ C(vi) then the vertex y is a common

ancestor of the cluster vertices C(vi) and it is deeper then w, in contradiction to the fact

that w is the least common ancestor). Hence by the cluster diameter property of Fact

4.3, it holds that

|Q∗i,6| = dist(s, vi, G \ {e6}) ≤ dist(s, v′, G \ {e6}) + 2 = |π(s, v′)|+ 2

= dist(s, v′, G \ {e1}) + 2 ≤ dist(s, vi, G \ {e1}) + 4 = |Q∗i,1|+ 4 ,

which is in contradiction with Eq. (9). The lemma follows.

Finally, we turn to establish Property (N2) of Def. 4.5 and thus establish Lemma

4.6. For every path P , let CostW (P) =
∑

e∈P W (e).

Claim 4.11 |Efar
i | ≤ dn1/3e.

Proof: We first claim that for every two missing-ending paths Q∗i,j and Q∗i,j′ such that

LastE(Q∗i,j) 6= LastE(Q∗i,j′) ∈ Efar
i , it holds that their detours Q1 = Q∗i,j[bi,j, vi] and

35

e6

e1

)(ivC

))((ivCLCA

s

iv
'v

Figure 10: The set of Enear
i must contain at most 6 edges. Drawn are the edges e1, . . . , e6

whose corresponding last edge of Q∗i,1, ...Q
∗
1,6 are in Enear

i . The edges of the cluster graph

GC are dotted. The vertices vi and v′ are in the same cluster hence of distance 2 in GC .

Q2 = Q∗i,j′ [bi,j′ , vi] are vertex disjoint except for their common endpoint vi. Assume

towards contradiction that there exists some mutual point w ∈ Q1 ∩ Q2 \ {vi} in the

intersection. Since Q` and π(s, vi) are edge disjoint for ` ∈ {1, 2}, we have that there

are two alternative w − vi paths in G \ {ej, ej′}, namely Q1[w, vi] and Q2[w, vi]. By

the optimality of Q1 ∈ SP (bi,j, vi, G \ π(s, vi),W), we have that CostW (Q1[w, vi]) <

CostW (Q2[w, vi]). Similarly, by the optimality of Q2 ∈ SP (bi,j′ , vi, G \ π(s, vi),W), we

have that CostW (Q2[w, vi]) < CostW (Q1[w, vi]); contradiction. It follows that Q1 and

Q2 are vertex disjoint. We next claim that it also holds that |Q∗i,j[bi,j, vi]| ≥ dn2/3e.
To see this, note that since Q∗i,j protects the fault of an edge ej ∈ πfar(vi) and the

unique divergence point bi,j must appear above ej, it holds that bi,j ∈ πfar(vi) as well.

Hence, |Q∗i,j[bi,j, vi]| ≥ dist(bi,j, vi, G) > dn2/3e where the last inequality follows from

Obs. 4.4(b).

Assume towards contradiction that |Efar
i | > dn1/3e. Then there are dn1/3e vertex

disjoint paths in G each of length at least dn2/3e. Overall the number of vertices in those

paths is greater than |V (G)| = n, contradiction.

We conclude this section with the following immediate observation.

Observation 4.12 For every clustered vertex vi ∈ V (G) and edge ej ∈ π(s, vi), if

LastE(Q∗i,j) /∈ Enear
i ∪ Efar

i then ej ∈ πmid(vi) = πmid(C(vi)).

36

S2.2: Creating F2. Having the nice collection of replacement paths Q, let IH = {i |
vi ∈ V (G)}. The current spanner of this step is given by

F2 = F1 ∪
⋃
i∈IH

(
Enear
i ∪ Efar

i

)
.

Note that by Definition 4.5, |F2| = O(n4/3).

4.4 S3: Handling mid edge faults

At this point, we handled faults of edges ej ∈ π(s, vi) except those occurring on the mid-

dle sections πmid(vi). Unfortunately, those cannot be handled by adding the last edges of

all missing-ending paths Q∗i,j, as there may be too many such missing edges. Instead, we

would like to “aggregate” the remaining problems, and handle them by adding only some

of the missing edges relying on the properties of the clustering to provide approximately

shortest replacement paths whenever the optimal path was not included. One property

that could have helped this aggregation process is prefix consistency. The replacement

paths P ∗i,j and P ∗i′,j for vi′ ∈ P ∗i,j are prefix-consistent if P ∗i′,j = P ∗i,j[s, vi′]. The advantage

of this property is that by adding (missing) last edges of P ∗i′,j, we also help the longer

path P ∗i,j, see Fig. 11. Unfortunately, our construction of the path collection Q does not

guarantee this property. This is the main motivation for the next step in the algorithm,

where we replace the paths Q by a new path collection P ∗i,j which is somewhat closer to

achieving this property (albeit it falls short of doing that.)

jiP ',
*

iv
'i

v

jiP ,
*

je jiP ',
*

iv
'i

v

jiP ,
*

je

1e
2e

2e
3e 1e

'LastE
LastE 'LastE

LastE

ss(a) (b)

Figure 11: Illustration of the prefix consistency property. (a) The paths P ∗i,j and P ∗i′,j
are prefix consistent since P ∗i,j[s, vi′] = P ∗i′,j. (b) The paths P ∗i,j and P ∗i′,j are not prefix

consistent since P ∗i,j[s, vi′] 6= P ∗i′,j

37

We first describe the algorithm and then prove that these replacement paths satisfy

some important properties which are crucial for the efficiency of the subsequent path-

buying procedure.

S3.1: Algorithm Pcons for Constructing P ∗i,j. Consider the edges of T0 in nonin-

creasing distance from s. For edge ej ∈ T0, let the set of vertices sensitive to the failure

of ej, S(ej) = {v1, . . . , vk}, be sorted in nondecreasing distance from s in G \ {ej}. I.e.,

dist(s, v1, G \ {ej}) ≤ . . . ≤ dist(s, vk, G \ {ej}). For every ej, the algorithm constructs

the replacement path P ∗i,j for vertices vi ∈ S(ej) according to this order. Initially set

P all
i = ∅ and P ∗i,j = ∅ for every vi ∈ V (G) and ej ∈ π(s, vi). The algorithm constructs

two intermediate replacement paths, P 1
i,j and P 2

i,j. The final replacement path P ∗i,j is

obtained from P 2
i,j.

For vertex-edge pair (i, j), let v` be the neighbor of vi on Q∗i,j, i.e., (v`, vi) =

LastE(Q∗i,j) and do the following. Consider the following cases.

(R1.1) If ej /∈ π(s, v`), define P 1
i,j = π(s, v`)◦ (v`, vi). Note that by construction, P 1

i,j and

Q∗i,j share the same last edge.

(R1.2) If ej ∈ π(s, v`) (i.e., v` ∈ S(ej)) let P 1
i,j = P ∗`,j◦(v`, vi). (Note that P ∗`,j was already

constructed, since v` was handled before vi in our ordering.) Also note that the path

collection P 1
i,j does achieve the desired property of prefix consistency. Unfortunately, this

set no longer enjoys another desirable property that possessed by the original collection

Q, namely, the uniqueness of the divergence points bi,j. This is why we next modify

the paths further, defining the paths P 2
i,j which restores the uniqueness property while

possibly destroying prefix consistency again.

(R2.1) If (v`, vi) ∈ F2 is not missing, then let P ∗i,j = P 2
i,j = P 1

i,j and proceed to the next

vertex-edge pair.

(R2.2) Else, LastE(P 1
i,j) = (v`, vi) /∈ F2. (Note that this means that LastE(P 1

i,j) /∈
Enear ∪Efar, and hence by Obs. 4.12, in this case vi is clustered and ej ∈ πmid(C(vi)).)

Let b be the first divergence point of P 1
i,j and π(s, vi). If P 1

i,j[b, vi] and π(b, vi) are not

edge disjoint (b is not a unique divergence point) then let w ∈
(
π(b, vi) ∩ P 1

i,j[b, vi]
)
\{vi}

be the last mutual vertex in π(b, vi) and P 1
i,j[b, vi] which is not vi. Our goal now is to

make w the unique divergence point with π(s, vi).

(R3) Defining P 2
i,j: P 2

i,j = π(s, w) ◦ P 1
i,j[w, vi], making bi,j = w the unique divergence

point of P 2
i,j and π(s, vi).

(R4) Defining P ∗i,j: (R4.1) If bi,j ∈ πmid(vi), then set P ∗i,j = P 2
i,j as the final replacement

path. (R4.2) Otherwise, if bi,j /∈ πmid(vi), do the following. First, if P all
i = ∅, set

P all
i ← P 2

i,j. Finally, let P ∗i,j ← P all
i . This completes the description of the algorithm.

Let

F3 = F2 ∪
⋃
{LastE(P all

i) | vi ∈ V (G)}.

38

The subgraph F3 contains, in addition to the edges of F2, also the last edges of P all
i for

every vi ∈ V (G). Since each such vertex contributes at most one edge from P all
i to F3,

at most n edges are added, hence |F3| = O(n4/3).

Analysis of P ∗i,j paths. We begin by showing that the constructed replacement paths

P ∗i,j ∈ SP (s, vi, G \ {ej}) are of optimal lengths.

Lemma 4.13 For every vi ∈ V (G) and ej ∈ π(s, vi), consider P ∗i,j and let V +
i,j be the set

of vertices appearing on P ∗i,j after the first new edge e = FirstNewE(P ∗i,j) /∈ T0. Then

(a) P ∗i,j ∈ SP (s, vi, G \ {ej}) and

(b) V +
i,j ⊆ S(ej).

Proof: We prove this by induction on the iteration in which P ∗i,j was constructed

by the algorithm. For the induction base, consider the first iteration, when P ∗1,1 is

constructed. By the ordering, e1 is the last edge of some source s to leaf v path,

i.e., e1 = LastE(π(s, v)), and v1 is the first vertex in the ordered set S(e1). Let

(v`, v1) = LastE(Q∗i,1). We first prove (a) and show that P ∗1,1 ∈ SP (s, v1, G \ {e1}).
By Cl. 4.7 we have that Q∗1,1 ∈ SP (s, v1, G \ {e1}) and therefore dist(s, v`, G \ {e`}) <
dist(s, v1, G \ {e1}). As v1 is the first vertex in the ordering of S(e1) it implies that

v` /∈ S(e1). Since π(s, v`) has at most one divergence point bi,j with π(s, vi) (in particu-

lar, bi,j = LCA(vi, v`)), it holds that P 2
1,1 = P 1

1,1 and since this is that first iteration P all
i

was not previously defined. Therefore, P ∗1,1 = P 1
1,1 = P 2

1,1 = π(s, v`) ◦ (v`, v1) is such that

|P ∗1,1| = |Q∗1,1| and P ∗1,1 ⊆ G \ {e1}. Claim (a) is established. Consider Claim (b). By

the definition of P ∗1,1, it holds that P ∗1,1 \ {(v`, v1)} ⊆ T0, hence V +
1,1 = {v1}, and since

v1 ∈ S(e1), the induction base holds.

Assume Claims (a) and (b) of the lemma hold for every replacement path P ∗i′,j′

constructed up to iteration t − 1 and consider the path P ∗i,j constructed at iteration t.

Let (v`, vi) = LastE(P ∗i,j). We first establish the lemma for P 1
i,j, then for P 2

i,j, and finally

consider the case where P ∗i,j 6= P 2
i,j, i.e., where P ∗i,j = P all

i . If v` /∈ S(ej), then Algorithm

Pcons again yields P ∗i,j = P 2
i,j = P 1

i,j = π(s, v`) ◦ (v`, vi), and similarly to the induction

base, by Cl. 4.7, we have that P ∗i,j ∈ SP (s, vi, G \ {ej}), yielding Claim (a), and since

P ∗i,j \ {LastE(P ∗i,j)} ⊆ T0, Claim (b) holds as well. For the rest of the proof, it remains

to consider the case where v` ∈ S(ej). By Cl. 4.7, Q∗i,j ∈ SP (s, vi, G \ {ej}), hence

dist(s, v`, G\{ej}) < dist(s, vi, G\{ej}) and by the ordering of S(ej), the pair (`, j) was

considered at iteration t′ < t and the induction assumption for P ∗`,j can be applied. We

then have that P 1
i,j = P ∗`,j ◦ LastE(Q∗i,j) ∈ SP (s, vi, G \ {ej}), which satisfies Claim (a).

We now show that Claim (b) holds for the path P 1
i,j. Note that since v` ∈ S(ej), the

path P ∗`,j must contain a new edge, so FirstNewE(P 1
i,j) = FirstNewE(P ∗`,j). Then, by the

39

induction assumption for P ∗`,j and the fact that vi ∈ S(ej), we have that V (P 1
i,j[y, vi]) ⊆

S(ej) where FirstNewE(P ∗`,j) = (x, y). Hence, so far, the lemma holds for P 1
i,j. It remains

to consider the cases where P ∗i,j 6= P 1
i,j, and hence LastE(P 1

i,j) /∈ F2.

We next show that the lemma holds for P 2
i,j. Since LastE(P 1

i,j) = LastE(Q∗i,j) =

(v`, vi) /∈ T0, Cl. 4.7(b) implies that any s − vi replacement path in G \ {ej} must be

missing-ending. Let b be the first divergence point of P 1
i,j and π(s, vi). If P 2

i,j 6= P 1
i,j then

necessarily there exists another mutual point w ∈
(
π(b, vi) ∩ P 1

i,j[b, vi]
)
\{b, vi} such that

P 2
i,j = π(s, w) ◦ P 1

i,j[w, vi]. Consider Claim (a). Since P 1
i,j ⊆ G \ {ej} and |P 2

i,j| ≤ |P 1
i,j|,

to establish Claim (a), it is sufficient to show that ej /∈ π(s, w).

Observation 4.14 ej ∈ π(w, vi).

Proof: Assume, towards contradiction, that ej /∈ π(w, vi). This implies that the path

P ′ = P 1
i,j[s, w]◦π(w, vi) satisfies |P ′| = |P 1

i,j| and P ′ ⊆ G\{ej}, hence P ′ ∈ SP (s, vi, G\
{ej}) and it is not missing-ending as LastE(P ′) ∈ E(T0), contradicting Cl. 4.7(b).

Hence, ej /∈ π(w, vi), concluding that P 2
i,j ∈ SP (s, vi, G \ {ej}) as required, so Claim

(a) of the lemma holds for P 2
i,j. Consider Claim (b). The prefix P 2

i,j[s, w] of P 2
i,j is entirely

in T0 (since it is equal to π(s, w)), so FirstNewE(P 2
i,j) must occur in P 2

i,j[w, vi]. Since

P 2
i,j[w, vi] = P 1

i,j[w, vi], the validity of Claim (b) for P 1
i,j implies that Claim (b) holds for

P 2
i,j as well. Hence if P ∗i,j = P 2

i,j then we are done.

It remains to consider the case where P ∗i,j 6= P 2
i,j or in other words P ∗i,j = P all

i . Let

t′ < t be the iteration in which P all
i was defined and let (i, j′) be the pair considered at

iteration t′, hence P all
i = P ∗i,j′ = P 2

i,j′ . By the induction assumption for t′ < t, Claims (a)

and (b) hold for P ∗i,j′ . Note that in this case, it holds that bi,j (resp., bi,j′), the unique

divergence point of P 2
i,j (resp., P 2

i,j′) and π(s, vi), is not in πmid(C(vi)).

Observation 4.15 bi,j, bi,j′ ∈ πfar(vi).

Proof: By the structure of the algorithm (step (R2.2)), it holds that LastE(Q∗i,j), LastE(Q∗i,j′) /∈
F2 and hence by Obs. 4.12 it holds that

ej, ej′ ∈ πmid(vi) . (10)

By the correctness established for the paths P 2
i,j′ and P 2

i,j (Claim (a)), we have that

P 2
i,j ∈ SP (s, vi, G \ {ej}) and P 2

i,j′ ∈ SP (s, vi, G \ {ej′}). Hence, the unique divergence

point bi,j (resp.,bi,j′) of P 2
i,j (resp., P 2

i,j′) and π(s, vi), appears on π(s, vi) above the failed

edge ej (resp., ej′). Combining Eq. (10) with the fact that bi,j′ , bi,j /∈ πmid(vi), it follows

that bi,j′ , bi,j appear above the vertices of πmid(vi) hence they appear on πfar(vi).

By Claim (a) of the inductive assumption for P ∗i,j′ = P all
i , it holds that P all

i ∈
SP (s, vi, G \ {ej′}). By the proof of Claim (a) of the lemma for P 2

i,j, it holds that

40

P 2
i,j ∈ SP (s, vi, G \ {ej}). Combining with Obs. 4.15, it holds that there are two

replacement paths P 2
i,j and P all

i in G \ {ej, ej′}. By the optimality of P all
i , it holds that

|P all
i | ≤ |P 2

i,j|, and by the optimality of P 2
i,j, it holds that |P 2

i,j| = |P all
i |. Claim (a) of the

lemma holds. Consider Claim (b). By Claim (b) of the induction assumption for P ∗i,j′ it

holds that V +
i,j′ ⊆ S(ej′). Since ej′ is below ej (as the edges of T0 are considered in non

increasing distance from s and ej, ej′ ∈ π(s, vi)) it holds that V +
i,j = V +

i,j′ ⊆ S(ej′) ⊆ S(ej).

Claim (b) follows. The lemma holds.

For a missing ending replacement path P ∗i,j, let V i
j = {vi1, . . . , vir = vi} be the end-

vertices of missing edges on P ∗i,j, i.e., LastE(P ∗i,j[s, v
i
k]) /∈ F3 for every vik ∈ V i

j . Hereafter,

let bi,j be the first divergence point of P ∗i,j and π(s, vi).

Lemma 4.16 The following properties hold for every vik ∈ V i
j :

(a) ej ∈ πmid(C(vik)) (hence ej ∈ π(s, v′) for every v′ ∈ C(vik)),

(b) bi,j is the unique divergence point of π(s, vik) and P ∗i,j[s, v
i
k], hence P ∗i,j[bi,j, v

i
k] and

π(s, vik) are edge disjoint, and

(c) bi,j ∈ πmid(C(vik)).

Proof: First note that since the vertices of V i
j have missing edges in F3, it follows by

Fact 4.3(2) that each of them is clustered. We prove the lemma by induction on the

iteration t in which P ∗i,j was constructed. For the induction base, consider t = 1 and let

v1 be the first vertex in S(e1) where e1 be the last edge of some s to leaf v path and

consider P ∗1,1. Let (v`, v1) = LastE(P ∗1,1). By the induction base of Lemma 4.13, it holds

that

P ∗1,1 = π(s, v`) ◦ (v`, v1) . (11)

Hence the only missing edge on P ∗1,1 is at most LastE(P ∗1,1). I.e., V 1
1 = ∅ or V 1

1 = {v1}.
If V 1

1 = ∅, the claim holds vacuously. So consider the case where V 1
1 = {v1} (i.e.,

LastE(P ∗1,1) is missing). Note that LastE(P ∗1,1) = LastE(Q∗1,1). Hence, by Obs. 4.12,

e1 ∈ πmid(C(v1)), so Claim (a) holds.

By Eq. (11), b1,1 = LCA(v`, v1) is the unique divergence point of P ∗1,1 and π(s, v1).

Thus Claim (b) holds.

Consider Claim (c). Recall that in this case V 1
1 = {v1} i.e., LastE(Q∗1,1) /∈ F3.

If b1,1 /∈ πmid(C(v1)), then by step (S4.2) of Algorithm Pcons, P ∗1,1 = P all
1 . Since

LastE(P all
1) ∈ F3, we end with contradiction. The induction base holds.

Assume the claims hold for all replacement paths constructed up to iteration t − 1

and let (i, j) be the pair considered at iteration t. We first prove the lemma for the case

where P ∗i,j = P 2
i,j and then consider the case where P ∗i,j 6= P 2

i,j.

41

Let (v`, vi) = LastE(Q∗i,j). If v` /∈ S(ej), then P ∗i,j = π(s, v`)◦(v`, vi). The correctness

follows as in the induction base. Thus, it remains to consider the complementary case

where v` ∈ S(ej) and by construction, P 1
i,j = P ∗`,j ◦ (v`, vi). By Cl. 4.7, dist(s, v`, G \

{ej}) < dist(s, vi, G \ {ej}) and hence the induction assumption for P ∗`,j can be applied.

Consider the vertices V `
j with missing edges on P ∗`,j = P 1

i,j \ {LastE(P 1
i,j)}. Claim (a)

holds for V `
j by the induction assumption for P ∗`,j. If V i

j = V `
j we are done, else it holds

that V i
j = V `

j ∪{vi}. Since in this case LastE(P 1
i,j) = LastE(Q∗i,j) /∈ F3, it holds by Obs.

4.12 that ej ∈ πmid(C(vi)). Hence, Claim (a) is established for V i
j .

Consider Claim (b). By Claim (b) of the induction assumption, the first divergence

point of P ∗`,j[s, vk] and π(s, vk), namely, b`,j is unique and common for every vk ∈ V `
j .

Let b be the first divergence point of P 1
i,j and π(s, vi). We first claim the following.

Claim 4.17 b = b`,j.

Proof: By Claim (a) of the induction assumption for P ∗`,j it holds that ej = (x, y) ∈
π(s, vk) for every vk ∈ V `

j . By definition, it also holds that ej ∈ π(s, vi). Hence the

first divergence point b satisfies b ∈ P ∗`,j. Let b′ be the vertex that appears after b on

P ∗i,j (hence also on P ∗`,j). As b is a divergence point, it must hold that b′ /∈ π(s, x) and

therefore b′ /∈ π(s, vk) for every vk ∈ V i
j and in particular b′ /∈ π(s, vi). Hence b`,j = b as

required. The claim follows.

Let w ∈
(
π(b, vi) ∩ P 1

i,j[b, vi]
)
\ {vi} be the last divergence point of π(s, vi) and P 1

i,j.

If w = b, then b = bi,j is the unique divergence point for every vk ∈ V i
j and Claim (b)

holds. It remains to consider the case where bi,j = w 6= b, and hence the algorithm

takes P 2
i,j = π(s, w) ◦ P 1

i,j[w, vi]. In this case, we show that π[s, vk] is edge disjoint with

P ∗i,j[w, vk] for every vk ∈ V i
j \ {vi} = V `

j . I.e., since w is by the definition the unique

divergence point for vi we now want to show that we did not “ruin” this property for

the “surviving” vertices with missing edges on P ∗`,j ∩ P ∗i,j = P ∗`,j[w, v`]. Note that since

P ∗i,j[s, b] = π(s, b), it holds that depth(w) > depth(b). By Claim (b) of the induction

assumption for P ∗`,j, it holds that for every vk ∈ V `
j , the paths π(s, vk) and P ∗`,j[b, vk]

are edge disjoint (where b = b`,j). In addition, note that by the correctness of P 2
i,j in

Lemma 4.13(a), it holds that w, the unique divergence point of P 2
i,j and π(s, vi) appears

on π(s, vi) above the failed edge ej. By the induction assumption for Claim (a) on P ∗`,j, it

holds that ej ∈ π(s, vk) for every vk ∈ V `
j . Combining the last two observations, it follows

that w ∈ π(s, vk) for every vk ∈ V `
j . We therefore have that π(w, vk) ⊆ π(s, vk) and

P ∗i,j[w, vk] = P ∗`,j[w, vk] ⊆ P ∗`,j[b, vk] are edge disjoint. Finally, since P ∗i,j[s, w] = π(s, w), it

holds that P ∗i,j[w, vk] and π(s, vk) are edge disjoint for every vk ∈ V `
j as required. Claim

(b) is established.

Consider Claim (c). We first show that the claim holds for every vk ∈ V `
j ∩ P 2

i,j. By

induction assumption for P ∗`,j, we have that b`,j ∈ πmid(C(vk)). By the proof of Claim

42

(b), it holds that depth(b`,j) ≤ depth(bi,j). In addition, by Claim (a) of the lemma,

ej = (x′, y′) ∈ πmid(C(vk)). Hence the entire π segment from b to x′ satisfies π(b`,j, x
′) ⊆

πmid(C(vk)). Since bi,j is the unique divergence point (by Claim (b)) it appears above

ej but not above b`,j, hence bi,j ∈ π(b`,j, x
′) ⊆ πmid(C(vk)). We now prove Claim (c) for

the case where V i
j \ V `

j = {vi}. Assume towards contradiction that bi,j /∈ πmid(C(vi)).

Then, by construction in this case P ∗i,j = P all
i . Since LastE(P all

i) ∈ F3, we end with

contradiction to the fact that vi ∈ V i
j . Hence, the lemma follows for every (i, j) such

that P ∗i,j = P 2
i,j.

Finally, we consider the complementary case where P ∗i,j = P all
i 6= P 2

i,j. Let (i, j′) be

the vertex edge pair considered when P all
i was first defined, thus P all

i = P 2
i,j′ = P ∗i,j′ . Since

P ∗i,j′ was defined before P ∗i,j, the induction assumption can be applied. Claims (b) and (c)

for P ∗i,j follow immediately by the induction assumption of Claims (b) and (c) for P all
i .

To see Claim (a), note that by the ordering of the edges, ej′ = (x′, y′) must be below ej on

π(s, vi), in addition, by Lemma 4.13(a) it holds that P all
i ∈ SP (s, vi, G\{ej}), hence bi,j′

appears above ej. By part (c), bi,j′ ∈ πmid(C(vi)), hence ej ∈ π(bi,j′ , x
′) ⊆ πmid(C(vi)),

as required. The lemma follows.

S3.2: Path-Buying procedure. With the collection of replacement path P ∗i,j at

hand, we are now ready to present the last step of the algorithm, a modified path-

buying procedure, where the replacement path is added entirely to the spanner if it

satisfies a particular cost to value balance.

Generally speaking, the high level approach of the path-buying technique is as follows.

Recall that in the preliminary clustering sub-stage S1, the graph was condensed into

clusters. There is a collection of si − ti paths, whose distance in the final H is required

to approximate the distance in G by an additive factor. These paths are examined

sequentially, where at step τ , a particular candidate path Pτ is considered to be added

to the current spanner Hτ , resulting in Hτ+1. The decision is made by assigning each

candidate path Pτ a cost Cost(Pτ), corresponding to the number of path edges not

already contained in the spanner Hτ , and a value Val(Pτ), measuring how much adding

the path would help to satisfy the considered set of constraints on the pairwise distances.

The candidate path Pτ is added to Hτ if its value to cost ratio is sufficiently large.

Informally, if a path Pτ is added, then it implies that each of at least some fraction of

its new edges Pτ \Hτ contributes to improving the inter-cluster distances in the current

spanner Hτ . In the context of Stage S3.4 of our algorithm for FT-ABFS structures, we are

given a collection of replacement paths P ∗i,j where ej ∈ πmid(vi) and some preliminary

sparse subgraph Ê consisting of (at least) the edges of the BFS tree T0, the edges

of clustering graph GC and the set
⋃
iE

far
i ∪

⋃
iE

near
i , containing the last edges of

replacement paths P ∗i′,j′ protecting against the failure of ej′ ∈ πnear(vi′)∪πfar(vi′). By the

preliminary explanation above (see Obs. 4.2) it is sufficient to consider only replacement

43

paths P ∗i,j whose last edge is missing in Ê. These paths have a special structure. In

particular, there is a unique divergence point bi,j where P ∗i,j diverges from π(s, vi) and

does not meet it again (i.e., P ∗i,j[bi,j, vi] and π(bi,j, vi) are edge disjoint). Since the

common prefix P ∗i,j[s, bi,j] = π(s, bi,j) is contained in T0, the buying procedure restricts

attention only to the “detour” segment P−i,j = P ∗i,j[bi,j, vi]. The properties of the partial

spanner F3 constructed so far guarantee that this detour P−i,j is restricted to G, i.e.,

P−i,j ⊆ G, hence the size of the resulting construct would be bounded as a function of

n = |V (G)| as desired.

To gain some intuition regarding our modified path-buying technique, we review

some of its principles and draw some differences between our setting and that of [4] and

[10]. The analysis of the path-buying technique has two main ingredients. The first

is the correctness ingredient (A1), where it is required to show that if an si − ti path

P ∗ was not added to the current spanner Ht at time t, then there exists an alternative

si − ti path P ′ in Ht satisfying that |P ′| ≤ |P ∗| + β for some constant integer β > 0.

The second is the size ingredient (A2), where it is required to show that the number of

edges added due to the paths that were bought by the procedure is bounded.

In the 6-additive construction of [4], the correctness ingredient (A1) was based upon

the fact that if a path P ∗ was not added, then there exists a vertex vq ∈ P ∗ such that

the pairwise C(si)−C(vq) and C(ti)−C(vq) distances between clusters in Ht is smaller

than that in P ∗, namely, than dist(si, vq, P
∗) and dist(ti, vq, P

∗) respectively. Similarly,

in the subsetwise construction of [10], (A1) was established by noting that if a path

P ∗ was not added, then there exists a vertex vq ∈ P ∗ such that the vertex to cluster

si−C(vq) distance as well as the ti−C(vq) distance in Ht are smaller than dist(si, vq, P
∗)

and dist(ti, vq, P
∗) respectively. In our setting, this argument becomes more delicate due

to the possibility of failures which might render the existing bypasses already available

in Ht useless. Hence, when considering a detour P−i,j of a replacement path P ∗i,j that

was not added to the current spanner Ht, it is required to show that the inter-cluster

bypasses in Ht do not contain the failed edge ej and hence can safely be used in the

surviving structure Ht \ {ej}.
We now consider the second ingredient of the analysis (A2). Let B be the set of

paths added to the spanner by the path-buying procedure. In both [4] and [10], (A2)

is established based on the fact that if P ∗ ∈ B, then its value satisfies Val(P ∗) ≥
c · Cost(P ∗) for some constant c ≥ 1. This implies that each of at least a constant

fraction of the newly added edges on P ∗ contributes by decreasing some specific inter-

cluster distances in the given spanner. Specifically, the value of P ∗ is the number of

pairs (x,C) where C is a cluster and there exists a vertex v ∈ C ∩ P ∗ such that by

adding P ∗ to the current spanner Ht, dist(x,C, P ∗) is improved compared to that in Ht.

In the setting of [4], x is a cluster (i.e., x ∈ {C(si), C(ti)}) and in the setting of [10],

x is a vertex (i.e., x ∈ {si, ti}). For every P ∗ ∈ B, its value (total number of (x,C)

44

pairs) is proportional to its cost Cost(P ∗). Therefore, to bound the number of edges,

it is sufficient to bound the number of (x,C) pairs. This involves two steps: (A2.1)

showing that the contribution due to a fixed pair (x,C) is bounded (or in other words,

that a given pair (x,C) can contribute only a bounded number of times to the value of

the paths in B) and (A2.2) showing that the number of distinct (x,C) pairs is bounded.

The combination of (A2.1) and (A2.2) bounds the size of the spanner. We now consider

(A2.1) and (A2.2) separately. In both [4] and [10], (A2.1) is established by the cluster

diameter property of Fact 4.3, which implies in this context, that every given pair (x,C)

can contribute at most a constant number of times to the values of the paths in B.

Turning to (A2.2), in [4], the total number of distinct pairs corresponds to |C|× |C| since

x ∈ C. In comparison, in [10], since x ∈ S, there are a total of O(|C|×|S|) pairs. Overall,

the spanner size is bounded since the number of clusters C, as well as the cardinality of

S in the subsetwise variant of [10], are bounded.

We now contrast this with the situation in our setting of FT-ABFS structures. Part

(A2.1) is no longer straightforward, since every replacement path P ∗i,j added to the

current spanner exists in a different graph G \ {ej}, and therefore, in contrast to [4] and

[10], the bounded diameter of the clusters is not sufficient, by itself, to establish (A2.1).

Considering (A2.2), the approach of [4] can be adopted to bound to number of distinct

pairs (x,C), by letting x ∈ {C(bi,j), C(vi)}, but this would result in an additive stretch

of 6. To improve the additive stretch to 4, it is necessary to employ some intermediate

compromise. We first impose a direction on the candidate paths, hence breaking the

symmetry between the path endpoints. The direction is imposed by the source s. In

particular, the two endpoints bi,j and vi of each detour P−i,j are treated in an asymmetric

manner. The endpoint vi is treated as a cluster in a similar manner to that of [4], that

is, the value of P−i,j counts the improvement of the inter-cluster distances between C(vi)

and some C(vk) for vk ∈ P−i,j. In contrast, the bi,j endpoint is treated as a vertex, as in

[10]. Overall, the pairs (x,C) that contribute to the value of P−i,j are of two types, where

x ∈ {bi,j, C(vi)}. In the analysis section, it is shown that the number of contributions

of each fixed pair (x,C) is bounded, and moreover, that for every cluster C ∈ C, the

number of distinct pairs in which it appears (of both types) is bounded by O(n4/3).

The main challenge in this context is to bound the number of distinct contributions

of the type (bi,j, C). (Note that the second type of contribution, where x ∈ C is a

cluster, is easily bounded, since there are only O(n2/3) clusters). The replacement paths

constructed earlier are designed so that for every cluster C there are at most O(n2/3)

distinct divergence point bi,j that can be paired with C and contribute to the value of

some detour P−i,j ∈ B. This establishes the sparsity of our FT-ABFS structure.

Let us note that in our application of the path-buying procedure, paths with a

sufficiently large value to cost ratio are added entirely to the current spanner, and adding

just the last edge of each of these paths will not suffice. This does not contradict Obs. 4.2,

45

for the following reason. Consider step τ and the current candidate path Pτ = P−i,j with

a sufficiently large value to cost ratio with respect to Hτ . If one adds solely the last edge

of Pτ to Hτ , then although the pair (i, j) would be satisfied in Hτ+1 = Hτ ∪{LastE(Pτ)},
this would distort the value and cost functions of the subsequent candidate paths in a

way that would force us to add many new last edges to the spanner. Specifically, since

only the last edge of Pτ was added to Hτ+1, the subgraph Hτ+1 enjoys almost none of the

value of Pτ in improving the pairwise distances, and as a result, many subsequent paths

would have a larger value (and hence might be suitable for purchasing) in comparison

to their value when the path Pτ is added in its entirety to Hτ+1. Fig. 12 illustrates

the high level distinctions between the three constructions of additive spanners based

on the path-buying technique: (a) The 6-additive construction of [4], (b) The 2-additive

subsetwise construction of [10], where the stretch constraint is imposed only on a set

of vertex pairs S × S for a given S ⊆ V , and (c) The 4-additive FT-ABFS structure

presented here.

Recall that π(Ck) = π(s, LCA(Ck)) is the maximal shortest path segment shared by all

the members of the cluster. For every ej ∈ T0, define Vj(F3) = {vi | LastE(P ∗i,j) /∈ F3}.
By Lemma 4.16(c), it then holds that bi,j ∈ πmid(C(vi)) for every vi ∈ Vj(F3). For every

missing ending path P ∗i,j (i.e., LastE(P ∗i,j) /∈ F3) let P−i,j = P ∗i,j[bi,j, vi] be the detour

segment starting from the unique divergence point bi,j. Let

P = {P−i,j | ej ∈ T0, LastE(P ∗i,j) /∈ F3} (12)

be the candidate paths to be bought and added to F3. The benefit of considering these

detours is that by the definition of F3 , we are guaranteed that P−i,j ⊆ G and in addition,

each of these detours P−i,j is edge disjoint with π(s, LCA(Ci)) for every cluster Ci that

has a vertex v′ ∈ Ci ∩ P−i,j with missing edge LastE(P−i,j[bi,j, v
′]) /∈ F3. The property is

heavily exploited in both the size and correctness analysis of the path-buying procedure.

The Scheme. The path-buying scheme is as follows. Starting with H0 = F3 \ T0, the

paths of P = {P−i,j} are considered in an arbitrary order. At step t, we are given Ht ⊆ G

and consider the bi,j−vi detour P−i,j ∈ G\{ej}. To decide whether P−i,j should be added to

Ht, the cost and value of P−i,j are computed as follows. Let Cost(P−i,j) = |P−i,j \E(Ht)| be

the number of edges of P−i,j that are missing in the current subgraph Ht. Cost(P−i,j) thus

represents the increase in the size of the current FT-ABFS structure Ht if the procedure

adds P−i,j. Let κ = Cost(P−i,j) and let ẽ1, . . . , ẽκ be the edges in P−i,j \ E(Ht) directed

away from bi,j where ẽ` = (y`, z`).

Define Zi,j = {z3`+1 | ` ∈ {0, . . . , b(κ−1)/3c} ⊆ P−i,j be the endpoints of the missing

edges on P−i,j. Hence, it holds that

LastE(P−i,j[bi,j, z`]) /∈ Ht for every z` ∈ Zi,j and dist(z`, z`′ , P
−
i,j) ≥ 3

46

1iv

)(qvC)(ivC

iv

4-Additive F-T ABFS tree

))((qvCLCA

je

…
s

jib ,

)(q

mid v)(
3/2

PnO

(c)

*

, jiP
qv

1iv

)(q

far v

*

, jiP)(qvC)(q

mid v
qv

1iv)(q

far v
qv Svi 

)(1vC)(qvC)(ivC

iv

)(qvC

6-Additive all pairs spanner

2-Additive subsetwise spanner

(a)

(b)

1iv

Figure 12: The green line represents the BFS edges. The edge ej is the failed edge.

Missing edges on the missing-ending path P ∗i,j are drawn in red. Only the detour segment

P−i,j = P ∗i,j[bi,j, vi] of the path is a candidate for buying. The edges of vi appearing on P ∗i,j′

for ej′ ∈ πfar(vi)∪πnear(vi) are already included in the preliminary subgraph constructed

prior to the path-buying procedure. The shortest inter-cluster paths in H are indicated

by dashed curves, where H is the current subgraph at the time when P−i,j is considered

to be bought. For each cluster Cq ∈ C, with a vertex vq ∈ C(vq) ending with a missing

edge, the branching point (first vertex on the detour) belongs to πmid(vq). Since the size

of πmid(vq) is bounded by O(n2/3), the contribution of pairs (bi,j, C(vq)) is bounded in a

similar manner to the subsetwise case of [10]. In addition, since the endpoint vi of the

detour is treated as a cluster, C(vi), the contribution of pairs (C(vq), C(vi)) is bounded

by the number of clusters, O(n2/3).

for every z`, z`′ ∈ Zi,j. Let

Contb(P
−
i,j) = {(bi,j, C`) | ∃z` ∈ C` ∩ Zi,j s.t (13)

dist(bi,j, z`, P
−
i,j) < dist(bi,j, C`, Ht \ π(C`))}

be the set of pairs (bi,j, C`) such that the distance between bi,j and C` is improved by

adding P−i,j to Ht \ π(C`). Similarly, let C`′ = C(vi) be the cluster of vi and define

Contv(P
−
i,j) = {(vi, C`) | ∃z` ∈ C` ∩ Zi,j s.t (14)

dist(vi, z`, P
−
i,j) < dist(C`′ , C`, Ht \ π(C`′))}

47

as the set of pairs (vi, C`) such that the distance between C` and C`′ is improved by

adding P−i,j to Ht. Define

Val(P−i,j) = |Contb(P−i,j)|+ |Contv(P−i,j)| . (15)

The path-buying strategy is as follows. If

Cost(P−i,j) ≤ 4 · Val(P−i,j) (16)

then we “buy” the path P−i,j, namely, set Ht+1 = Ht ∪ P−i,j. Otherwise, we do not buy

P−i,j and set Ht+1 = Ht. The final spanner is given by

H = (Ht′ ∪ F3) where t′ = |P|+ 1.

4.4.1 Analysis

We begin with the following observation.

Observation 4.18 For every P−i,j ∈ P and for every z`, z`′ ∈ Zi,j, it holds that C(z`) 6=
C(z`′).

Proof: Recall that by Fact 4.3(2), the diameter of each cluster is at most 2. As the

distance between different z`’s in Zi,j is at least 3, it follows that z` and z`′ belong to

distinct clusters.

To establish the correctness of the construction, we show the following.

Lemma 4.19 For every ej ∈ T0 and vi ∈ V (G) it holds that dist(s, vi, H \ {ej}) ≤
dist(s, vi, G \ {ej}) + 4.

Proof: The proof is by contradiction. Let BP = {(i, j) | vi ∈ V (G), ej ∈ π(s, vi)

and dist(s, vi, H \ {ej}) > dist(s, vi, G \ {ej}) + 4} be the set of “bad pairs,” namely,

vertex-edge pairs (i, j) whose additive stretch in H is greater than 4. Assume, towards

contradiction, that BP 6= ∅. For each bad pair (i, j) ∈ BP , it holds that ej ∈ π(s, vi)

(since T0 ⊆ H). For every bad pair (i, j) ∈ BP define P̃i,j ∈ SP (s, vi, G\{ej}) to be the

replacement path whose last missing edge in H, ẽi,j, is the shallowest among all s − vi
replacement paths in G\{ej}. Let d(i, j) = dist(s, ẽi,j, P̃i,j). Finally, let (i0, j0) ∈ BP be

the pair that minimizes d(i, j), and let ẽi0,j0 = (vi′ , vi1). Note that ẽi0,j0 is the shallowest

“deepest missing edge” over all bad pairs (i, j) ∈ BP . See Fig. 13 for an illustration.

Claim 4.20 (i1, j0) ∈ BP .

48

Proof: Assume towards contradiction that (i1, j0) /∈ BP and let P ′′ ∈ SP (s, vi1 , H \
{ej0}). Hence, since (i1, j0) /∈ BP , it holds that

|P ′′| ≤ dist(s, vi1 , G \ {ej0}) + 4 (17)

= |P ∗i0,j0 [s, vi1]|+ 4.

We now consider the following s − vi0 replacement path Q = P ′′ ◦ P̃i0,j0 [vi1 , vi0]. By

definition of (i1, j0), Q ⊆ G \ {ej′}. In addition,

|Q| = |P ′′|+ |P̃i0,j0(vi1 , vi0)| ≤ |P̃i0,j0 [s, vi1]|+ 4 + |P̃i0,j0(vi1 , vi0)|
= |P̃i0,j0|+ 4 = dist(s, vi0 , G \ {ej0}) + 4 ,

where the inequality follows by Eq. (17). This contradicts the fact that (i1, j0) ∈ BP .

In particular, we have that ej0 ∈ π(s, vi1), hence P̃i1,j0 is defined.

Claim 4.21 LastE(P̃i1,j0) /∈ H.

Proof: Assume towards contradiction that LastE(P̃i1,j0) ∈ H. Then since (i1, j0) ∈ BP
it holds that there exists at least one missing edge in P̃i1,j0 which is strictly above

LastE(P̃i1,j0). Since |P̃i1,j0 | = |P̃i0,j0 [s, vi1]|, we get that d(i1, j0) < d(i0, j0), contradiction

to the definition of (i0, j0).

Since the last edge of P̃i1,j0 is missing, it holds that (a) vi1 is clustered (by Fact 4.3)

and (b) that the last edge of every s− vi1 replacement path is missing in H as well. In

particular, for the replacement path P ∗i1,j0 constructed by Algorithm Pcons, LastE(P ∗i1,j0)

is missing in H. Hence, it holds that ej0 ∈ πmid(vi1). It then holds by Eq. (12), that

P−i1,j0 = P ∗i1,j0 [bi1,j0 , vi1] ∈ P , i.e., P−i1,j0 is in the collection of detours considered to be

purchased in the path-buying Procedure. Let P ′ = P−i1,j0 and t be the iteration where P ′

was considered to be added to Ht. We now consider two cases. If P ′ was bought, then

P ∗i1,j0 = π(s, bi1,j0) ◦ P ′ ⊆ H hence we get a contradiction to the fact that (i1, j0) ∈ BP .

Hence, it remains to consider the case where P ′ was not bought.

Let κ = Cost(P ′) and Zi1,j0 = {z1, . . . , zκ′} for κ′ = bκ/3c be the corresponding

vertices in P ′ with a missing edges that satisfy Eq. (13). By Obs. 4.18, each z` ∈ Zi1,j0
belongs to a distinct cluster C`. Hence there are at least κ′ distinct clusters on P ′. Let

Cr be the cluster of vi1 (since vi1 is incident to a missing edge in GC ⊆ H, by Fact 4.3(1),

vi1 is indeed clustered).

A cluster C` with z` ∈ Zi1,j0 is a contributor if adding P ′ to Ht improves ei-

ther the bi1,j0 − C` distance or the vi1 − C` distance in Ht. I.e., if it satisfies ei-

ther dist(bi1,j0 , z`, P
′) < dist(bi1,j0 , C`, Ht \ π(C`)) (hence (bi1,j0 , C`) ∈ Contb(P

′)), or

dist(vi1 , z`, P
′) < dist(Cr, C`, Ht \ π(Cr)) (hence (bi1,j0 , C`) ∈ Contv(P ′)). Otherwise, C`

49

is neutral. That is, C` is neutral if (bi1,j0 , C`) /∈ Contb(P ′) and in addition, (vi1 , C`) /∈
Contv(P

′). There are two cases to consider. If all clusters are contributors (i.e., there

is no neutral cluster) then all the κ′ clusters contribute to Val(P ′) (either with bi1,j0 or

with vi1 or both). It then holds that Val(P ′) ≥ κ′ ≥ Cost(P ′)/4. Hence, by Eq. (16),

we get a contradiction to the fact that P ′ was not added to Ht. In the other case, there

exists at least one neutral cluster C` having a unique vertex z` in P ′ such that

dist(bi1,j0 , C`, Ht \ π(C`)) ≤ dist(bi1,j0 , z`, P
′) and (18)

dist(Cr, C`, Ht \ π(Cr)) ≤ dist(vi1 , z`, P
′) . (19)

Let u ∈ C` be the closest vertex in the cluster C` to the divergence point bi1,j0 in

the graph Ht \ π(C`) and define Q1 ∈ SP (bi1,j0 , u,Ht \ π(C`)) such that u ∈ C`, hence

|Q1| = dist(bi1,j0 , C`, Ht\π(C`)). Let u′ ∈ C`, y′ ∈ Cr be the closest pair of vertices in the

cluster C` and Cr repetitively in the graph Ht\π(Cr). Define Q2 ∈ SP (u′, y′, Ht\π(Cr)),

then |Q2| = dist(Cr, C`, Ht \ π(Cr)).

Let Q̂1 ∈ SP (u′, u,GC) and Q̂2 ∈ SP (y′, vi1 , GC). Since y′, vi1 ∈ Cr and u, u′ ∈
C`, it holds that |Q̂1|, |Q̂2| ≤ 2. Consider the following bi1,j0 − vi1 replacement path

P4 = Q1 ◦ Q̂1 ◦ Q2 ◦ Q̂2. We first claim that P4 ⊆ H \ {ej0}. First note that since

GC ⊆ (G \ T0), it holds that the intra cluster paths Q̂1 and Q̂2 are free of the failed

edge ej0 . In addition, since LastE(P ∗i1,j0), LastE(P ∗i1,j0 [s, z`]) /∈ F3, by Lemma 4.16(c),

it holds that ej0 ∈ π(C`) ∩ π(Cr). In addition, by the definition of P4, it holds that

P4 ⊆ Ht \ (π(C`) ∩ π(Cr)).

Finally, we bound the length of P4.

|P4| = |Q1|+ |Q2|+ 4 ≤ dist(bi1,j0 , z`, P
′) + dist(vi1 , z`, P

′) + 4 = |P ′|+ 4 ,

where the first inequality follows by Eq. (18). We therefore have that the path P5 =

π(s, bi1,j0) ◦ P4 exists in H \ {ej0} and in addition,

|P5| ≤ |P ∗i1,j0 [s, bi1,j0]|+ |P
−
i1,j0
|+ 4 = |P ∗i1,j0|+ 4.

This contradicts the assumption that (i1, j0) ∈ BP . The Lemma follows.

Finally, we bound the size of H.

Lemma 4.22 |E(H)| ≤ n4/3 .

Proof: Let B ⊆ P be the set of paths that were bought in the path-buying procedure.

Since |E(F3)\T0| = O(n4/3), it remains to bound the number of edges added due to the

paths in B. Note that for γ = 1/3, it holds by Fact 4.3, that there are O(n2/3) clusters.

In addition, recall that for every cluster Ci, it holds that |πmid(Ci)| = O(n2/3). We have

50

s

0i
v

0j
e

1i
v

),(
0i

vs

01 ,

~
jiP

),(
1i

vs

00 ,

~
jiP

00 ,
~

jie

Figure 13: The dashed edges are missing in H. Since (i0, j0) is a bad pair, it holds that

(i1, j0) is a bad pair as well and in addition, the last edge of P̃i1,j0 is missing in H.

the following.

|H \ F3| =
∑
P−i,j∈B

Cost(P−i,j) ≤
∑
P−i,j∈B

4 · Val(P−i,j)

= 4
∑
P−i,j∈B

(
|Contb(P−i,j)|+ |Contv(P−i,j)|

)
, (20)

where the inequality follows by Eq. (16), and the last equality follows by Eq. (15).

Our counting strategy is as follows. We fix a cluster C`, and bound the number

of times it appears in either Contb(P
′) or Contv(P

′) over all P ′ ∈ B. The following

definition is useful in our analysis. Define the multisets

Contb(C`) = {(bi,j, C`) | P−i,j ∈ B and (bi,j, C`) ∈ Contb(P−i,j)},
Contv(C`) = {(vi, C`) | ∃P−i,j ∈ B and (vi, C`) ∈ Contv(P−i,j)}.

Note that certain pairs might appear several times in both Contb(C`) and Contv(C`).

Hence, we do not bound the number of unique pairs but also take into account the

possible reappearance of the same pair in these expressions. Eq. (20) can now be

written equivalently as

|H \ F3| ≤ 4
∑
P−i,j∈B

(
|Contb(P−i,j)|+ |Contv(P−i,j)|

)
= 4

∑
C`

|Contb(C`)|+ |Contv(C`)| .

We now show the following.

Lemma 4.23 |Contb(C`)| = O(n2/3) for every C`.

51

Proof: We begin by showing that for P−i,j ∈ B, if (bi,j, C`) ∈ Contb(P
−
i,j) then bi,j ∈

πmid(C`). To see that, let t be the iteration in which P−i,j was added to Ht. It then holds

that there exists z` ∈ C` ∩ Zi,j that satisfies Eq. (13). By the definition of Zi,j, we have

that LastE(P ∗i,j[s, z`]) /∈ F3. Hence, by Lemma 4.16(c) it holds that bi,j ∈ πmid(C`).
We proceed by showing that for every fixed bi,j ∈ πmid(C`), the pair (bi,j, C`) can

appear at most 3 times in the multiset Contb(C`). Formally, define the set of paths in

which bi,j contributes with the cluster C` as

A(i, j) = {P−i′,j′ ∈ B | bi′,j′ = bi,j and (bi′,j′ , C`) ∈ Contb(P−i′,j′)} .

Claim 4.24 |A(i, j)| ≤ 3 for every i, j such that bi,j ∈ πmid(C`).

Proof: Let A(i, j) = {Q1 = P−i1,j1 , . . . , QN = P−iN ,jN} be sorted according to the time tk
they were bought and added to the graph Htk . Hence, bi1,j1 = . . . = biN ,jN = bi,j. We

claim that N ≤ 3. For each k ∈ {1, . . . , N}, considered at time tk where tk < tk+1, there

exists a vertex zk ∈ Zik,jk∩C` such that LastE(Qk[bik,jk , zk]) /∈ Htk and dist(bi,j, zk, Qk) =

dist(bik,jk , zk, Qk) < dist(bi,j, C`, Htk \ π(C`)). This holds as by definition, bi,j = bik,jk for

every k ∈ {1, . . . , N} and by Eq. (13). We now show that, denoting

Yk = dist(bi,j, zk, Htk+1
\ π(C`)),

we have Yk < Yk−1 for every k ∈ {2, . . . , N}.
At each time tk, since a contribution is made, and by the fact that zk, zk−1 ∈ C`, we

have that

Yk ≤ dist(bi,j, zk, Qk \ π(C`)) = dist(bi,j, zk, Qk) (21)

< dist(bi,j, C`, Htk \ π(C`)) ≤ Yk−1 ,

where the first inequality holds as Qk was bought at time tk and hence Qk ⊆ Htk+1
.

By Obs. 4.18, zk−1, zk ∈ C` are the unique vertices in C` in the sets Zik−1,jk−1
and

Zik,jk respectively. The equality of (21) holds since LastE(P ∗ik,jk [s, zk]) /∈ F3 and hence

by 4.16(b), Qk is edge disjoint with π(s, zk). Since by Obs. 4.4, π(C`) ⊆ π(s, zk), it

holds that Qk and π(C`) are edge disjoint as well. The strict inequality in (21) follows

by Eq. (13) and by the fact that the pair (zk, C`) contributes to the value of Qk i.e.,

(bi,j, C`) ∈ Contb(Qk). The last inequality follows by the fact that zk−1 ∈ C`. Hence,

letting

Y = dist(bi,j, zN , HtN+1
\ π(C`)),

we have

Y ≤ dist(bi,j, z1, Ht2 \ π(C`))− (N − 1). (22)

52

Conversely, we also have the following.

Y ≥ dist(bi,j, zN , HtN+1
\ {ej1}) (23)

≥ dist(bi,j, z1, HtN+1
\ {ej1})− 2 (24)

≥ dist(bi,j, z1, G \ {ej1})− 2 (25)

= dist(bi,j, z1, Q1)− 2 (26)

= dist(bi,j, z1, Q1 \ π(C`))− 2 (27)

≥ dist(bi,j, z1, Ht2 \ π(C`))− 2 , (28)

where Eq. (23) follows by the fact that z1 ∈ C`, LastE(P ∗i1,j1 [s, z1]) /∈ F3 and hence by

Lemma 4.16(a), ej1 ∈ π(C`). Eq. (24) follows by the fact that z1, zN ∈ C` and by Fact

4.3(2). Eq. (25) follows by the fact that HtN+1
⊆ G. Eq. (26) follows by the fact that

P ∗i1,j1 ∈ SP (s, vi1 , G \ {ej1}) and Q1[bi,j, z1] = P ∗i1,j1 [bi,j, z1]. To see Eq. (27), note that

by Lemma 4.16(b), it holds that Q1[bi,j, z1] and π(s, z1) are edge disjoint. In addition,

by Obs. 4.4, π(C`) ⊆ π(s, z1), hence Q1[bi,j, z1] and π(C`) ⊆ π(s, z1) are edge disjoint as

well. Finally, Eq. (28) follows as Q1 ⊆ Ht2 since Q1 ∈ B was bought at time t1.

We therefore have that dist(bi,j, zN , HtN+1
\ π(C`)) ≥ dist(bi,j, z1, Ht2 \ π(C`)) − 2,

combining with Eq. (22), we have |A(i, j)| = N ≤ 3.

Since A(i, j) 6= ∅ only if bi,j ∈ πmid(C`), it follows from Cl. 4.24 that

|Contb(C`)| =
∑

bi,j∈π(s,vi)

|A(i, j)| =
∑

bi,j∈πmid(C`)

|A(i, j)| = O(n2/3).

The lemma follows.

We now turn to consider the second type of contribution of the form (vi, C`).

Lemma 4.25 |Contv(C`)| = O(n2/3) for every C`.

Proof: For every cluster Cr 6= C` define the multiset

Dr = {(vi, C`) ∈ Contv(C`) | vi ∈ Cr}.

Note that the pair (vi, C`) can contribute several times to Dr with the same vi. Hence,

we do not count only unique pairs as the same pair might contribute several times.

In fact, we count the number of all times in which a path P ′ ∈ B was bought, and

the pair (vi, C`) ∈ Contv(P
′) such that vi ∈ Cr contributes to the value of the path

P ′. Since missing edges in GC are between vertices of different clusters, we have that

Contv(C`) =
⋃
r 6=`Dr. We now show that each |Dr| ≤ 5 which concludes the proof since

there are overall |C| = O(n2/3) clusters in GC .

Let Q1 = P−i1,j1 , . . . , QN = P−iN ,jN be such that (vik , C`) ∈ Dr, where the paths are

sorted according to the time tk they were considered, for every k ∈ {1, . . . , N} and

N = |Dr|.

53

We do not assume that the vi,k′ ’s are distinct. Let zk ∈ Zik,jk ∩ C` be the unique

vertex of C` in Zik,jk that contributes by adding its path Qk to vik to Htk . We then have

that LastE(Qk[bik,jk , zk]) /∈ Htk and hence by Lemma 4.16(a), ejk ∈ π(C`). In addition,

since LastE(Qk) /∈ F3, by Lemma 4.16(a) it also holds that ejk ∩ π(Cr) as vik ∈ Cr.

Hence,

ejk ∈ π(C`) ∩ π(Cr) for every k ∈ {1, . . . , N} . (29)

We next show that, denoting

Xk = dist(vik , zk, Htk+1
\ π(Cr)),

we have Xk < Xk−1 for every k ∈ {2, . . . N}. Note the each vik belongs to the same

cluster Cr and every zk for k ∈ {1, . . . , N} belongs to the same cluster C`. Each time a

contribution is made at time tk, it implies that

Xk ≤ dist(vik , zk, Qk \ π(Cr)) (30)

= dist(vik , zk, Qk) (31)

< dist(Cr, C`, Htk \ π(Cr)) (32)

≤ Xk−1 , (33)

where Eq. (30) follows by the fact that Qk ⊆ Htk+1
, Eq. (31) follows by the fact that

LastE(P ∗ik,jk) /∈ F3, and hence by Lemma 4.16, Qk = P ∗ik,jk [bik,jk , vik] and π(s, vik) are

edge disjoint. In addition, by Obs. 4.4, π(Cr) ⊆ π(s, vik), hence π(Cr) and Qk are edge

disjoint as well. Eq. (32) follows by Eq. (14) and the fact that (vik , C`) ∈ Contv(Qk)

and finally, Eq. (33) follows by the fact that vik−1
∈ Cr and zk−1 ∈ C`. Therefore, letting

X = dist(viN , zN , HtN+1
\ π(Cr)),

we have that

X ≤ dist(vi1 , z1, Ht2 \ π(Cr))− (N − 1) . (34)

Conversely, we have that

X ≥ dist(viN , zN , G \ π(Cr)) (35)

≥ dist(vi1 , z1, G \ π(Cr))− 4 (36)

= dist(vi1 , z1, Q1)− 4 = dist(vi1 , z1, Q1 \ π(Cr))− 4 (37)

≥ dist(vi1 , z1, Ht2 \ π(Cr)})− 4 , (38)

where Eq. (35) follows as HtN+1
⊆ G. Eq. (36) follows by the fact that vi1 , viN ∈ Cr and

z1, zN ∈ C` and by Fact 4.3(b). Eq. (37) follows by the fact that P ∗i1,j1 [z1, vi1] = Q1[z1, vi1]

and P ∗i1,j1 ∈ SP (s, vi1 , G \ {ej1}). In addition, by Lemma 4.16, since LastE(P ∗i1,j1) /∈ F3,

it holds that Q1 and π(s, vi1) are edge disjoint. By Obs. 4.4, π(Cr) ⊆ π(s, vi1), hence Q1

54

and π(Cr) are edge disjoint as well. Finally, Eq. (38), follows as Q1 ⊆ Ht2 since Q1 ∈ B
was added to Ht1 at time t1.

Combining with Eq. (34), we get that N ≤ 5 and hence |Contv(C`)| = O(n2/3). The

claim follows.

Overall, by Lemma 4.23 and Lemma 4.25, we have that |Contb(C`)|+ |Contv(C`)| =
O(n2/3) for every C`. Hence, by plugging into Eq. (21), as there are O(n2/3) clusters, we

have that |H| ≤ 4
∑

C`
(|Contb(C`)|+ |Contv(C`)|) = O(n4/3) as required. The Lemma

follows.

References

[1] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and

shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–1181, 1999.

[2] S. Baswana and S. Sen. Approximate distance oracles for unweighted graphs in expected

O(n2) time. ACM Trans. Algorithms, 2(4):557–577, 2006.

[3] S. Baswana and N. Khanna. Approximate Shortest Paths Avoiding a Failed Vertex:

Optimal Size Data Structures for Unweighted Graph. In Proc. 27th Symp. on Theoret.

Aspects of Computer Sci., 513–524, 2010.

[4] S. Baswana, T. Kavitha, K. Mehlhorn, and S. Pettie. Additive spanners and (α, β)-

spanners. ACM Trans. Algo. 7, A.5, 2010.

[5] A. Bernstein. A nearly optimal algorithm for approximating replacement paths and k

shortest simple paths in general graphs. In Proc. 21st ACM-SIAM Symp. on Discrete

Algorithms, 2010.

[6] G. Braunschvig, S. Chechik and D. Peleg. Fault tolerant additive spanners. In Proc. 38th

Workshop on Graph-Theoretic Concepts in Computer Science, 206–214, 2012.

[7] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. f -sensitivity distance oracles and

routing schemes. Algorithmica 63, (2012), 861–882.

[8] S. Chechik, M. Langberg, D. Peleg, and L. Roditty. Fault-tolerant spanners for general

graphs. In Proc. 41st ACM Symp. on Theory of Computing, 435–444, 2009.

[9] S. Chechik. New Additive Spanners. In Proc. 24th Symp. on Discrete Algorithms, 2013.

[10] M. Cygan, F. Grandoni and T. Kavitha. On Pairwise Spanners. In Proc. 30th Symp. on

Theoret. Aspects of Computer Sci., 209–220, 2013.

[11] M. Dinitz and R. Krauthgamer. Fault-tolerant spanners: better and simpler. In Proc.

ACM Symp. on Principles of Distributed Computing, 2011, 169-178.

55

[12] P. Erdos. Extremal problems in graph theory. Theory of Graphs and its Applications

(Proc. Symp. Smolenice, 1963), page 2936, 1963.

[13] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[14] K. E. Mellinger and D. Mubayi. Constructions of bipartite graphs from finite geometries.

J. Graph Theory, (2005), 1–10.

[15] M. Parter and D. Peleg. Sparse Fault-tolerant BFS trees. In Proc. Europ. Symp. on

Algorithms, 2013.

[16] M. Pǎtraşcu and L. Roditty. Distance oracles beyond the Thorup-Zwick bound. In Proc.

IEEE Symp. on Foundations of Computer Science, 815–823, 2010.

[17] M. Smid. A probabilistic construction of a dense bipartite graph with high girth. In

Unpublished Note, 2006.

[18] R. Wenger. Extremal graphs with no C4’s, C6’s, or C10’s. J. Combin. Th., Ser. B,

52:113–116, 1991.

[19] D.P Woodruff. Lower bounds for additive spanners, emulators, and more. In Proc. 47th

Symp. on Foundations of Computer Science, 389–398, 2006.

56

	1 Introduction
	2 Multiplicative FT-ABFS Structures
	2.1 Single edge fault
	2.2 Multiple edge faults

	3 Lower Bounds for Additive FT-ABFS Structures
	4 Upper Bound for Additive Stretch 4
	4.1 S1.1: Clustering
	4.2 S1.2: Shortest path (s,vi) segmentation
	4.3 S2: Handling near and far edge faults
	4.4 S3: Handling mid edge faults
	4.4.1 Analysis

