
Ranking on Arbitrary Graphs: Rematch via Continuous LP with

Monotone and Boundary Condition Constraints

T-H. Hubert Chan∗ Fei Chen∗ Xiaowei Wu∗ Zhichao Zhao∗

Abstract

Motivated by online advertisement and exchange settings, greedy randomized algorithms for
the maximum matching problem have been studied, in which the algorithm makes (random)
decisions that are essentially oblivious to the input graph. Any greedy algorithm can achieve
performance ratio 0.5, which is the expected number of matched nodes to the number of nodes
in a maximum matching.

Since Aronson, Dyer, Frieze and Suen proved that the Modified Randomized Greedy (MRG)
algorithm achieves performance ratio 0.5 + ε (where ε = 1

400000) on arbitrary graphs in the mid-
nineties, no further attempts in the literature have been made to improve this theoretical ratio
for arbitrary graphs until two papers were published in FOCS 2012. Poloczek and Szegedy also
analyzed the MRG algorithm to give ratio 0.5039, while Goel and Tripathi used experimental
techniques to analyze the Ranking algorithm to give ratio 0.56. However, we could not reproduce
the experimental results of Goel and Tripathi.

In this paper, we revisit the Ranking algorithm using the LP framework. Special care is
given to analyze the structural properties of the Ranking algorithm in order to derive the LP
constraints, of which one known as the boundary constraint requires totally new analysis and is
crucial to the success of our LP.

We use continuous LP relaxation to analyze the limiting behavior as the finite LP grows.
Of particular interest are new duality and complementary slackness characterizations that can
handle the monotone and the boundary constraints in continuous LP. We believe our work

achieves the currently best theoretical performance ratio of 2(5−
√
7)

9 ≈ 0.523 on arbitrary graphs.
Moreover, experiments suggest that Ranking cannot perform better than 0.724 in general.

∗Department of Computer Science, the University of Hong Kong. {hubert,fchen,xwwu,zczhao}@cs.hku.hk

ar
X

iv
:1

30
7.

26
96

v2
 [

cs
.D

S]
 1

1
Ju

l 2
01

3

1 Introduction

Maximum matching [11] in undirected graphs is a classical problem in computer science. However,
as motivated by online advertising [5, 1] and exchange settings [13], information about the graphs
can be incomplete or unknown. Different online or greedy versions of the problem [3, 12, 6] can
be formulated by the following game, in which the algorithm is essentially oblivious to the input
graph.

Greedy Matching Game. An adversary commits to a graph G(V,E) and reveals the nodes V (where
n = |V |) to the (possibly randomized) algorithm, while keeping the edges E secret. The algorithm
returns a list L that gives a permutation of the set

(
V
2

)
of unordered pairs of nodes. Each pair of

nodes in G is probed according to the order specified by L to form a matching greedily. In the
round when a pair e = {u, v} is probed, if both nodes are currently unmatched and the edge e is
in E, then the two nodes will be matched to each other; otherwise, we skip to the next pair in L
until all pairs in L are probed. The goal is to maximize the performance ratio of the (expected)
number of nodes matched by the algorithm to the number of nodes in a maximum matching in G.

Observe that any ordering of the pairs
(
V
2

)
will result in a maximal matching in G(V,E), giving a

trivial performance ratio at least 0.5. However, for any deterministic algorithm, the adversary can
choose a graph such that ratio 0.5 is attained. The interesting question is: how much better can
randomized algorithms perform on arbitrary graphs? (For bipartite graphs, there are theoretical
analysis of randomized algorithms [7, 10] achieving ratios better than 0.5.)

The Ranking algorithm (an early version appears in [8]) is simple to describe: a permutation
σ on V is selected uniformly at random, and naturally induces a lexicographical order on the
unordered pairs in

(
V
2

)
used for probing. Although by experiments, the Ranking algorithm and

other randomized algorithms seem to achieve performance ratios much larger than 0.5, until very
recently, the best theoretical performance ratio 0.5 + ε (where ε = 1

400000) on arbitrary graphs was
proved in the mid-nineties by Aronson et al. [3], who analyzed the Modified Randomized Greedy
algorithm (MRG), which can be viewed as a modified version of the Ranking algorithm.

After more than a decade of research, two papers were published in FOCS 2012 that attempted to
give theoretical ratios significantly better than the 0.5 + ε bound. Poloczek and Szegedy [12] also
analyzed the MRG algorithm to give ratio 0.5 + 1

256 ≈ 0.5039, and Goel and Tripathi [6] analyzed
the Ranking algorithm to give ratio 0.56; however, we could not reproduce the experimental results
in [6]. Both papers used a common framework which has been successful for analyzing bipartite
graphs: (i) utilize the structural properties of the matching problem to form a minimization linear
program that gives a lower bound on the performance ratio; (ii) analyze the LP theoretically and/or
experimentally to give a lower bound.

In this paper, we revisit the Ranking algorithm using the same framework: (i) we use novel tech-
niques to carefully analyze the structural properties of Ranking for producing new LP constraints;
(ii) moreover, we develop new primal-dual techniques for continuous LP to analyze the limiting
behavior as the finite LP grows. Of particular interest are new duality and complementary slack-
ness results that can handle monotone constraints and boundary conditions in continuous LP. We

believe that this paper achieves the currently best theoretical performance ratio of 2(5−
√
7)

9 ≈ 0.523
on arbitrary graphs. As a side note, our experiments suggest that Ranking cannot perform better
than 0.724 in general.

1

1.1 Our Contribution and Techniques

Theorem 1.1 For the Greedy Matching Game on arbitrary graphs, the Ranking algorithm achieves

performance ratio at least 2(5−
√
7)

9 ≈ 0.523.

Following previous work on the analysis of Ranking [8], we consider a set U of instances, each of
which has the form (σ, u), where σ is a permutation on V and u is a node in V . An instance (σ, u)
is good if the node u is matched when Ranking is run with σ, and bad otherwise; an event is a
subset of instances. As argued in [12, 6], one can assume that G contains a perfect matching when
analyzing the ratio of Ranking. Hence, the performance ratio of Ranking is the fraction of good
instances.

(1) Relating Bad and Good Events to Form LP Constraints. A simple combinatorial
argument [8] is often used to relate bad and good instances. For example, if each bad instance
relates to to at least two good instances, and each good instance is related to at most one bad
instance, then the fraction of good instances would be at least 2

3 . By considering the structural
properties of Ranking, one can define various relations between different bad and good events, and
hence can generate various constraints in an LP, whose optimal value gives a lower bound on the
performance ratio.

Despite the simplicity of this combinatorial argument, the analysis of these relations can be elusive
for arbitrary graphs. Hence, we define and analyze our relations carefully to derive three type
of constraints: monotone constraints, evolving constraints, and a boundary constraint, the last of
which involves a novel construction of a sophisticated relation, and is crucial to the success of our
LPn.

(2) Developing New Primal-Dual Techniques for Continuous LP. As in previous works,
the optimal value of LPn decreases as n increases. Hence, to obtain a theoretical proof, one needs to
analyze the asymptotic behavior of LPn. It could be tedious to find the optimal solution of LPn and
investigate its limiting behavior. One could also use experiments (for example using strongly factor-
revealing LP [10]) to give a proof. We instead observe that the LPn has a continuous LP∞ relaxation
(in which normal variables becomes a function variable). However, the monotone constraints in LPn
require that the function in LP∞ be monotonically decreasing. Moreover, the boundary constraint
has its counterpart in LP∞. To the best of our knowledge, such continuous LPs have not been
analyzed in the literature.

We describe our formal notation in Section 2. In Section 3, we relate bad and good events in order to
form LPn. In Section 4, we prove a lower bound on the performance ratio; in particular, we develop
new primal-dual and complementary slackness characterization of a general class of continuous LP,
and solve the continuous LP∞ relaxation (and its dual). In Appendix B, we describe a hard instance
and our experiments show that Ranking performs no better than 0.724.

1.2 Related Work

We describe and compare the most relevant related work. Please refer to the references in [12, 6]
for a more comprehensive background of the problem. We describe Greedy Matching Game general
enough so that we can compare different works that are studied under different names and settings.
Dyer and Frieze [4] showed that picking a permutation of unordered pairs uniformly at random
cannot produce a constant ratio that is strictly greater than 0.5. On the other hand, this framework
also includes the MRG algorithm, which was analyzed by by Aronson et al. [3] to prove the first
non-trivial constant performance ratio crossing the 0.5 barrier. One can also consider adaptive

2

algorithms in which the algorithm is allowed to change the order in the remaining list after seeing
the probing results; although hardness results have been proved for adaptive algorithms [6], no
algorithm in the literature seems to utilize this feature yet.

On Bipartite Graphs. Running Ranking on bipartite graphs for the Greedy Matching Game is
equivalent to running ranking [8] for the Online Bipartite Matching problem with random arrival
order [7]. From Karande, Mehta and Tripathi [7], one can conclude that Ranking achieves ratio
0.653 on bipartite graphs. Moreover, they constructed a hard instance in which Ranking performs
no better than 0.727; we modify their hard instance and improve the hardness to 0.724.

On a high level, most works on analyzing ranking or similar randomized algorithms on matching
are based on variations of the framework by Karp et al. [8]. The basic idea is to relate different
bad and good events to form constraints in an LP, whose asymptotic behavior is analyzed when n
is large. For Online Bipartite Matching, Karp et al. [8] showed that ranking achieves performance
ratio 1 − 1

e ; similarly, Aggarwal et al. [1] also showed that a modified version of ranking achieves
the same ratio for the node-weighted version of the problem.

Sometimes very sophisticated mappings are used to relate different events, and produce LPs whose
asymptotic behavior is difficult to analyze. Mahdian and Yan [10] developed the technique of
strongly factor-revealing LP. The idea is to consider another family of LPs whose optimal values
are all below the asymptotic value of the original LP. Hence, the optimal value of any LP (usually
a large enough instance) in the new family can be a lower bound on the performance ratio. The
results of [10] implies that for the Greedy Matching Game on bipartite graphs, Ranking achieves
performance ratio 0.696.

Recent Attempts. No attempts have been made in the literature to theoretically improve the
0.5 + ε ratio for arbitrary graphs until two recent papers appeared in FOCS 2012. Poloczek and
Szegedy [12] used a technique known as contrast analysis to analyze the MRG algorithm and gave
ratio 1

2 + 1
256 ≈ 0.5039.

Goel and Tripathi [6] showed a hardness result of 0.7916 for any algorithm and 0.75 for adaptive
vertex-iterative algorithms. They also analyzed the Ranking algorithm for a better performance
ratio. Moreover, they used strongly factor-revealing LP to analyze the asymptotic behavior of
their LP; we ran experiment on the LP described in their paper and could not reproduce the ratio
0.56. On the contrary, we discovered that the optimal value of their original LP drops to 0.5001
when n = 400. Hence, we do not believe strongly factor-revealing LPs can be used to analyze
their original LP to give a ratio larger than 0.5001. We describe the details in Appendix A, which
includes a link to source codes if the reader would like to verify our experimental results.

Continuous LP. Duality and complementary slackness properties of continuous LP were investi-
gated by Tyndall [14] and Levinson [9]. Anand et al. [2] used continuous LP relaxation to analyze
online scheduling.

2 Preliminaries

Let [n] := {1, 2, . . . , n}, [a..b] := {a, a+ 1, . . . , b} for 1 ≤ a ≤ b, and Ω be the set of all permutations
of the nodes in V , where each permutation is a bijection σ : V → [n]. The rank of node u in σ is
σ(u), where smaller rank means higher priority.

The Ranking algorithm. For the Greedy Matching Game, the algorithm selects a permutation
σ ∈ Ω uniformly at random, and returns a list L of unordered pairs according to the lexicographical
order induced by σ. Specifically, given two pairs e1 and e2 (where for each i, ei = {ui, vi} and

3

σ(ui) < σ(vi)), the pair e1 has higher priority than e2 if (i) σ(u1) < σ(u2), or (ii) u1 = u2 and
σ(v1) < σ(v2). Each pair of nodes in G(V,E) is probed according to the order given by L; initially,
all nodes are unmatched. In the round when the pair e = {u, v} is probed, if both nodes are
currently unmatched and the edge e is in E, then each of u and v is matched, and they are each
other’s partner in σ; moreover, if σ(u) < σ(v) in this case, we say that u chooses v. Otherwise, if
at least one of u and v is already matched or there is no edge between them in G, we skip to the
next pair in L until all pairs in L are probed.

After running Ranking with σ (or in general probing with list L), we denote the resulting matching
by M(σ) (or M(L)), and we say that a node is matched in σ (or L) if it is matched in M(σ)
(or M(L)). Given a probing list L, suppose Lu denotes the probing list obtained by removing all
occurrences of u in L such that u always remains unmatched. The following lemma is useful.

Lemma 2.1 (Removing One Node.) The symmetric difference M(L)⊕M(Lu) is an alternating
path, which contains at least one edge iff u is matched in L.

Proof: Observe that probing G with Lu is equivalent to probing Gu with L, where Gu is exactly
the same as G except that the node u is labeled unavailable and will not be matched in any case.
Hence, we will use the same L to probe G and Gu, and compare what happens in each round to the
corresponding matchings M = M(L) and Mu = M(Lu). For the sake of this proof, “unavailable”
and “matched” are the same availability status, while “unmatched” is a different availability status.

We apply induction on the number of rounds of probing. Observe that the following invariants hold
initially. (i) There is exactly one node known as the crucial node (which is initially u) that has
different availability in G and Gu. (ii) The symmetric difference M(L)⊕M(Lu) is an alternating
path connecting u to the crucial node; initially, this path is degenerate.

Consider the inductive step. Observe that the crucial node and M(L) ⊕M(Lu) do not change in
a round except for the case when the pair being probed is an edge in G (and Gu), involving the
crucial node w with another currently unmatched node v in G, and hence v is also unmatched in
Gu, as the induction hypothesis states that every other node apart from the crucial node has the
same availability in both graphs. In this case, this edge is added to exactly one of M and Mu.
Therefore, w is matched in both graphs (so no longer crucial), and v becomes the new crucial node;
moreover, the edge {w, v} is added to M(L)⊕M(Lu), which now is a path connecting u to v. This
completes the inductive step.

Observe that u is matched in M in the end, iff in some round an edge involving u must be added
to M but not to Mu, which is equivalent to the case when M ⊕Mu contains at least one edge.

The performance ratio r of Ranking on G is the expected number of nodes matched by the algorithm
to the number of nodes in a maximum matching in G, where the randomness comes from the random
permutation in Ω. We consider the set U := Ω× V of instances; an event is a subset of instances.
An instance (σ, u) ∈ U is good if u is matched in σ, and bad otherwise.

Perfect Matching Assumption. According to Corollary 2 of [12] (and also implied by our
Lemma 2.1), without loss of generality, we can assume that the graph G(V,E) has a perfect match-
ing M∗ ⊆ E that matches all nodes in V . For a node u, we denote by u∗ the partner of u in M∗ and
we call u∗ the perfect partner of u. From now on, we consider Ranking on such a graph G without
mentioning it explicitly again. Observe that for all σ ∈ Ω, (σ, σ−1(1)) is always good; moreover,
the performance ratio is the fraction of good instances.

Definition 2.1 (σu, σ
i
u) For a permutation σ, let σu be the permutation obtained by removing u

from σ while keeping the relative order of other nodes unchanged; running Ranking with σu means

4

running σ while keeping u always unavailable (or simply deleting u in G). Let σiu be the permutation
obtained by inserting u into σu at rank i and keeping the relative order of other nodes unchanged.

Fact 2.1 (Ranking is Greedy) Suppose Ranking is run with permutation σ. If u is unmatched in
σ, then each neighbor w of u (in G) is matched to some node v in σ with σ(v) < σ(u).

Similar to [12, Lemma 3], the following Fact is an easy corollary of Lemma 2.1, by observing that
if (σ, u) is bad, then M(σ) = M(σu).

Fact 2.2 (Symmetric Difference) Suppose (σ, u) is bad, and (σiu, u) is good for some i. Then,
the symmetric difference M(σ) ⊕ M(σiu) is an alternating path P with at least one edge, where
except for the endpoints of P (of which u is one), every other node in G is either matched in both
σ and σiu, or unmatched in both.

Definition 2.2 (Qt, Rt and St) For each t ∈ [n], let Qt be the good event that the node at rank t is
matched, where Qt := {(σ, u) : σ ∈ Ω, u = σ−1(t) is matched in σ}; similarly, let Rt be the bad event
that the node at rank t is unmatched, where Rt := {(σ, u) : σ ∈ Ω, u = σ−1(t) is unmatched in σ}.
Moreover, we define the marginally bad event St at rank t ∈ [2..n] by St := {(σ, u) ∈ Rt : (σt−1u , u) /∈
Rt−1}; observe that S1 = R1 = ∅.
Given any (σ, u) ∈ U , the marginal position of u with respect to σ is the (unique) rank t such that
(σtu, u) ∈ St, and is null if no such t exists.

Note that for each t ∈ [n], Qt and Rt are disjoint and |Qt ∪Rt| = n!.

Definition 2.3 (xt, αt) For each t ∈ [n], let xt = |Qt|
n! be the probability that a node at rank t

is matched, over the random choice of permutation σ. Similarly, we let αt = |St|
n! ; observe that

1− xt = |Rt|
n! .

Note that the performance ratio is 1
n

∑n
t=1 xt, which will be the objective function of our minimiza-

tion LP. Observe that all xt’s and αt’s are between 0 and 1, and x1 = 1 and α1 = 0. We derive
constraints for the variables in the next section.

3 Relating Bad and Good Events to Form LP Constraints

In this section we define some relations between bad and good events to form LP constraints. The
high level idea is as follows. Suppose f is a relation between A and B, where f(a) is the set of
elements in B related to a ∈ A, and f−1(b) is the set of elements in A related to b ∈ B. The
injectivity of f is the minimum integer q such that for all b ∈ B, |f−1(b)| ≤ q. If f has injectivity
q, we have the inequality

∑
a∈A |f(a)| ≤ q|B|, which follows from counting the number of edges in

the bipartite graph induced by f on A and B. In our constructions, usually calculating |f(a)| is
straightforward, but sometimes special attention is required to bound the injectivity.

3.1 Monotone Constraints: xt−1 ≥ xt, t ∈ [2..n]

These constraints follow from Lemma 3.1 as the αt’s are non-negative.

Lemma 3.1 (Bad-to-Marginally Bad) For all t ∈ [n], we have 1 − xt =
∑t

i=1 αi; this implies
that for t ∈ [2..n], xt−1 − xt = αt.

5

Proof: Fix t ∈ [n]. From the definitions of xt and αt, it suffices to provide a bijection f from
Rt to ∪ti=1Si. Suppose (σ, u) ∈ Rt. This means (σ, u) is bad, and hence u has a marginal position
tu ≤ t with respect to σ. We define f(σ, u) := (σtuu , u) ∈ ∪ti=1Si.

Surjective: for each (ρ, v) ∈ ∪ti=1Si, the marginal position of v with respect to ρ is some i ≤ t;
hence, it follows that (ρtv, v) ∈ Rt is bad, and we have f(ρtv, v) = (ρ, v).

Injective: if we have f(σ, u) = (ρ, v), it must be the case that u = v, σ(u) = t, and ρ = σiu for some
i; this implies that σ must be ρtv.

Hence, |Rt| = | ∪ti=1 Si| =
∑t

i=1 |Si|, which is equivalent to 1 − xt =
∑t

i=1 αi, if we divide the
equality by n! on both sides.

3.2 Evolving Constraints:
(
1− t−1

n

)
xt +

2
n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n]

The monotone constraints require that the xt’s do not increase. We next derive the evolving
constraints that prevent the xt’s from dropping too fast. Fix t ∈ [2..n]. We shall define a relation f
between ∪ti=1Si and ∪t−1i=1Qi such that f has injectivity 1, and for (σ, u) ∈ Si, |f(σ, u)| = n− i+ 1.
This implies Lemma 3.2; from Lemma 3.1, we can express αi = xi−1 − xi (recall α1 = 0), and
rearrange the terms to obtain the required constraint.

Lemma 3.2 (1-to-(n− i+ 1) Mapping) For all t ∈ [2..n], we have
∑t

i=1(n−i+1)αi ≤
∑t−1

i=1 xi.

Proof: We define a relation f between A := ∪ti=1Si and B := ∪t−1i=1Qi. Let (σ, u) ∈ A be a
marginally bad instance. Then, there exists a unique i ∈ [2..t] such that (σ, u) ∈ Si. If we move u
to any position j ∈ [i..n], (σju, u) is still bad, because i is the marginal position of u with respect
to σ. Moreover, observe that M(σu) = M(σ) = M(σju) for all j ∈ [i..n]. Hence, it follows that
for all j ∈ [i..n], node u’s perfect partner u∗ is matched in σju to the same node v such that
σ(v) = σju(v) ≤ i−1 ≤ t−1, where the first inequality follows from Fact 2.1. In this case, we define
f(σ, u) := {(σju, v) : j ∈ [i..n]} ⊂ B, and it is immediate that |f(σ, u)| = n− i+ 1.

Injectivity. Suppose (ρ, v) ∈ B is related to some (σ, u) ∈ A. It follows that v must be matched to
u∗ in ρ; hence, u is uniquely determined by (ρ, v). Moreover, (ρ, u) must be bad, and suppose the
marginal position of u with respect to ρ is i, which is also uniquely determined. Then, it follows
that σ must be ρiu. Hence, (ρ, v) can be related to at most one element in A.

Observing that S1 = ∅, the result follows from
∑t

i=1(n−i+1)|Si| =
∑

a∈A |f(a)| ≤ |B| =
∑t−1

i=1 |Qi|,
since |Si| = n!αi and |Qi| = n!xi.

3.3 Boundary Constraint: xn +
3
2n

∑n
i=1 xi ≥ 1

According to experiments, the monotone and the evolving constraints alone cannot give ratio
better than 0.5. The boundary constraint is crucial to the success of our LP, and hence we analyze
our construction carefully. The high level idea is that we define a relation f between Rn and
Q := ∪ni=1Qi. As we shall see, it will be straightforward to show that |f(a)| = 2n for each a ∈ Rn,
but it will require some work to show that the injectivity is at most 3. Once we have established
these results, the boundary constraint follows immediately from

∑
a∈Rn

|f(a)| ≤ 3|Q|, because
|Rn|
n! = 1− xn and |Qi|

n! = xi.

Defining relation f between Rn and Q. Consider a bad instance (σ, u) ∈ Rn. We define f(σ, u)
such that for each i ∈ [n], (σ, u) produces exactly two good instances of the form (σiu, ∗).

6

For each i ∈ [n], we consider σiu:

1. if u is unmatched in σiu: (u and u∗ cannot be both unmatched)

R(1): produce (σiu, u
∗) and include it in f(σ, u);

R(2): let v be the partner of u∗ in σiu; produce (σiu, v) and include it in f(σ, u).

2. if u is matched in σiu:

R(3): produce (σiu, u) and include it in f(σ, u);

(a) if u∗ is matched to u in σiu:

R(4): produce (σiu, u
∗) and include it in f(σ, u);

(b) if u∗ is matched to v 6= u in σiu:

R(5): produce (σiu, v) and include it in f(σ, u);

(c) if u∗ is unmatched in σiu: (all neighbors of u∗ in G must be matched)

R(6): let vo be the partner of u∗ in σ, produce (σiu, vo) and include it in f(σ, u).

Observe that for i ∈ [6], applying each rule R(i) produces exactly one good instance. Moreover, for
each i ∈ [n], when we consider σiu, exactly 2 rules will be applied: if u is unmatched in σiu, then
R(1) and R(2) will be applied; if u is matched in σiu, then R(3) and one of {R(4),R(5),R(6)} will
be applied.

Observation 3.1 For each (σ, u) ∈ Rn, we have |f(σ, u)| = 2n.

Observation 3.2 If (ρ, x) ∈ f(σ, u), then σ = ρnu and exactly one rule can be applied to (σ, u) to
produce (ρ, x).

Bounding Injectivity. We first show that different bad instances in Rn cannot produce the same
good instance using the same rule.

Lemma 3.3 (Rule Disjunction) For each i ∈ [6], any (ρ, x) ∈ Q can be produced by at most one
(σ, u) ∈ Rn using R(i).

Proof: Suppose (ρ, x) ∈ Q is produced using a particular rule R(i) by some (σ, u) ∈ Rn. We wish
to show that in each case i ∈ [6], we can recover u uniquely, in which case σ must be ρnu.

The first 5 cases are simple. Let y be the partner of x in ρ. If i = 1 or i = 4, we know that x = u∗

and hence we can recover u = x∗; if i = 2 or i = 5, we know that y = u∗ and hence we can recover
u = y∗; if i = 3, we know that u = x.

For the case when i = 6, we need to do a more careful analysis. Suppose R(6) is applied to
(σ, u) ∈ Rn to produce (ρ, x). Then, we can conclude the following: (i) in σ = ρnu, u is unmatched,
and u∗ is matched to x; (ii) in ρ, u is matched, u∗ is unmatched, and x is matched.

For contradiction’s sake, assume that u is not unique and there are two u1 6= u2 that satisfy the
above properties. It follows that u∗1 6= u∗2 and according to property (ii), in ρ, both u1 and u2
are matched, and both u∗1 and u∗2 are unmatched; hence, all 4 nodes are distinct. Without loss of
generality, we assume that ρ(u∗1) < ρ(u∗2). Let σ2 := ρnu2 , and observe that σ2(u

∗
1) < σ2(u

∗
2).

Now, suppose we start with σ2, and consider what happens when u2 is promoted in σ2 resulting in
ρ. Observe that u2 changes from unmatched in σ2 to matched in ρ, and by property (i), u∗2 changes

7

from matched in σ2 to unmatched in ρ. From Fact 2.2, every other node must remain matched or
unmatched in both σ2 and ρ; in particular, u∗1 is unmatched in σ2. However, x is a neighbor of both
u∗1 and u∗2 (in G), and σ2(u

∗
1) < σ2(u

∗
2), but x is matched to u∗2 in σ2; this contradicts Fact 2.1.

Lemma 3.3 immediately implies that the injectivity of f is at most 6. However, to show a better
bound of 3, we need to show that some of the rules cannot be simultaneously applied to produce
the same good instance (ρ, x). We consider two cases for the remaining analysis.

Case (1): x is matched to x∗ in ρ

Lemma 3.4 For (ρ, x) ∈ Q, if x is matched to x∗ in ρ, then we have |f−1(ρ, x)| ≤ 3.

Proof: If (ρ, x) is produced using R(1), then x∗ must be unmatched in ρ; if (ρ, x) is produced
by (σ, u) using R(2), then x must be matched to u∗ (6= x∗) in ρ since x 6= u; similarly, if (ρ, x) is
produced by (σ, u) using R(5), then x (6= u) must be matched to u∗ (6= x∗) in ρ.

Hence, (ρ, x) cannot be produced by R(1), R(2) or R(5), and at most three remaining rules can
produce it. It follows from Lemma 3.3 that |f−1(ρ, x)| ≤ 3.

Case (2): x is not matched to x∗ in ρ

Observation 3.3 (Unused Rule) For (ρ, x) ∈ Q, if x is not matched to x∗ in ρ, then (ρ, x)
cannot be produced by applying R(4).

Out of the remaining 5 rules, we show that (ρ, x) can be produced from at most one of {R(2),R(5)},
and at most two of {R(1),R(3),R(6)}. After we show these two lemmas, we can immediately
conclude from Lemma 3.3 that |f−1(ρ, x)| ≤ 3 and complete the case analysis.

Lemma 3.5 (One in {R(2),R(5)}) Each (ρ, x) ∈ Q cannot be produced from both R(2) and R(5).

Proof: Suppose the opposite is true: (σ1, u1) produces (ρ, x) according to R(2), and (σ2, u2)
produces (ρ, x) according to R(5). This implies that in ρ, x is matched to both u∗1 and u∗2, which
means u1 = u2. By Observation 3.2, this means σ1 = σ2, which contradicts the fact that the same
(σ, u) ∈ Rn cannot use two different rules to produce the same (ρ, x) ∈ Q.

Lemma 3.6 (Two in {R(1),R(3),R(6)}) Each (ρ, x) ∈ Q cannot be produced from all three of
R(1), R(3) and R(6).

Proof: Assume the opposite is true. Suppose (σ1, u1) produces (ρ, x) using R(1); then, x = u∗1
(hence, x is a neighbor of u1 in G) and u1 is unmatched in ρ. Suppose (σ2, u2) produces (ρ, x)
using R(3); then, x = u2 is unmatched in σ2, and matched in ρ. Suppose (σ3, u3) produces (ρ, x)
using R(6); then, u3 is matched in ρ, u∗3 is unmatched in ρ and x is a neighbor (in G) of u∗3.

By Observation 3.2, all of u1, u2 and u3 are distinct. In particular, observe that u1 = x∗ = u∗2 6= u∗3;
hence, all of u1, u2 and u∗3 are distinct (since u2 is matched in ρ, but the other two are not).

Now, suppose we start from σ2 = ρnx and promote x = u2 resulting in ρ. Observe that u2 changes
from unmatched in σ2 to matched in ρ, and both u1 and u∗3 are unmatched in ρ. By Fact 2.2, at
least one of u1 and u∗3 is unmatched in σ2; however, both u1 and u∗3 are neighbors of x = u2 (in
G), which is unmatched in σ2. This contradicts that fact that in any permutation, two unmatched
nodes cannot be neighbors in G.

We have finally finished the case analysis, and can conclude the f has injectivity at most 3, thereby
achieving the boundary constraint.

8

3.4 Lower Bound the Performance Ratio by LP Formulation

Combining all the proved constraints, the following LPn gives a lower bound on the performance
ratio when Ranking is run on a graph with n nodes. It is not surprising that the optimal value of
LPn decreases as n increases (although our proof does not rely on this). In Section 4, we analyze
the continuous relaxation LP∞ in order to give a lower bound for all finite LPn, thereby proving a
lower bound on the performance ratio of Ranking.

LPn min 1
n

∑n
t=1 xt

s.t. x1 = 1,

xt−1 − xt ≥ 0, t ∈ [2..n](
1− t−1

n

)
xt + 2

n

∑t−1
i=1 xi ≥ 1, t ∈ [2..n]

xn + 3
2n

∑n
t=1 xt ≥ 1,

xt ≥ 0, t ∈ [n].

4 Analyzing LPn via Continuous LP∞ Relaxation

In this section, we analyze the limiting behavior of LPn by solving its continuous LP∞ relaxation,
which contains both monotone and boundary condition constraints. We develop new duality and
complementary slackness characterizations to solve for the optimal value of LP∞, thereby giving a
lower bound on the performance ratio of Ranking.

4.1 Continuous LP Relaxation

To form a continuous linear program LP∞ from LPn, we replace the variables xt’s with a function
variable z that is differentiable almost everywhere in [0, 1]. The dual LD∞ contains a real variable
γ, and function variables w and y, where y is differentiable almost everywhere in [0, 1]. In the rest
of this paper, we use “∀θ” to denote “for almost all θ”, which means for all but a measure zero set.

It is not hard to see that xi corresponds to z(in), but perhaps it is less obvious how LD∞ is formed.
We remark that one could consider the limiting behavior of the dual of LPn to conclude that LD∞
is the resulting program. We show in Section 4.2 that the pair (LP∞, LD∞) is actually a special
case of a more general class of primal-dual continuous LP. However, we first show in Lemma 4.1
that LP∞ is a relaxation of LPn.

LP∞

min
∫ 1
0 z(θ)dθ

s.t. z(0) = 1

z′(θ) ≤ 0, ∀θ ∈ [0, 1]

(1− θ)z(θ) + 2
∫ θ
0 z(λ)dλ ≥ 1, ∀θ ∈ [0, 1]

z(1) + 3
2

∫ 1
0 z(θ)dθ ≥ 1

z(θ) ≥ 0, ∀θ ∈ [0, 1].

LD∞

max
∫ 1
0 w(θ)dθ + γ − y(0)

s.t. (1− θ)w(θ) + 2
∫ 1
θ w(λ)dλ

+ 3γ
2 + y′(θ) ≤ 1, ∀θ ∈ [0, 1]

γ − y(1) ≤ 0

γ, y(θ), w(θ) ≥ 0, ∀θ ∈ [0, 1].

Lemma 4.1 (Continuous LP Relaxation) For every feasible solution x in LPn, there exists a
feasible solution z in LP∞ such that

∫ 1
0 z(θ)dθ = 1

n

∑n
t=1 xt. In particular, the optimal value of LPn

is at least the optimal value of LP∞.

9

Proof: Suppose x is a feasible solution to LPn. Define a step function z in interval [0, 1] as follows:
z(0) := 1 and z(θ) := xt for θ ∈

(
t−1
n , tn

]
and t ∈ [n]. It follows that

∫ 1
0 z(θ)dθ =

∑n
t=1

∫ t
n
t−1
n

z(θ)dθ = 1
n

∑n
t=1 xt.

We now prove that z is feasible in LP∞. Clearly z(0) = 1 and z′(θ) = 0 for θ ∈ [0, 1] \ { tn : 0 ≤ t ≤
n, t ∈ Z}. For every θ ∈ (0, 1], suppose θ ∈

(
t−1
n , tn

]
, and we have

(1− θ)z(θ) + 2
∫ θ
0 z(λ)dλ = (1− θ)xt + 2

∑t−1
i=1

∫ i
n
i−1
n

z(θ)dθ + 2
∫ θ

t−1
n
z(θ)dθ

= (1− θ)xt + 2
n

∑t−1
i=1 xi + 2

(
θ − t−1

n

)
xt

= (1− t−1
n + (θ − t−1

n))xt + 2
n

∑t−1
i=1 xi

≥
(
1− t−1

n

)
xt + 2

n

∑t−1
i=1 xi

≥ 1,

where the last inequality follows from the feasibility of x in LPn. The above inequality holds trivially
at θ = 0. For the last constraint, using the fact that

∫ 1
0 z(θ)dθ = 1

n

∑n
t=1 xt we have

z(1) + 3
2

∫ 1
0 z(θ)dθ = xn + 3

2n

∑n
t=1 xt ≥ 1,

where the last inequality follows from the feasibility of x in LPn.

4.2 Primal-Dual for a General Class of Continuous LP

We study a class of continuous linear program CP that includes LP∞ as a special case. In particular,
CP contains monotone and boundary conditions as constraints. Let K,L > 0 be two real constants.
Let A, B, C, F be measurable functions on [0, 1]. Let D be a non-negative measurable function on
[0, 1]2. We describe CP and its dual CD, following which we present weak duality and complementary
slackness conditions. In CP, the variable is a function z that is differentiable almost everywhere
in [0, 1]; in CD, the variables are a real number γ, and measurable functions w and y, where y is
differentiable almost everywhere in [0, 1].

CP

min p(z) =
∫ 1
0 A(θ)z(θ)dθ

s.t. z(0) = K (4.1)

z′(θ) ≤ 0, ∀θ ∈ [0, 1] (4.2)

B(θ)z(θ) +
∫ θ
0 D(θ, λ)z(λ)dλ

≥ C(θ), ∀θ ∈ [0, 1] (4.3)

z(1) +
∫ 1
0 F (θ)z(θ)dθ ≥ L (4.4)

z(θ) ≥ 0, ∀θ ∈ [0, 1].

CD

max d(w, y, γ) =
∫ 1
0 C(θ)w(θ)dθ + Lγ −Ky(0)

s.t. B(θ)w(θ) +
∫ 1
θ D(λ, θ)w(λ)dλ

+ F (θ)γ + y′(θ) ≤ A(θ), ∀θ ∈ [0, 1] (4.5)

γ − y(1) ≤ 0 (4.6)

γ, y(θ), w(θ) ≥ 0, ∀θ ∈ [0, 1].

Lemma 4.2 (Weak Duality and Complementary Slackness) Suppose z and (w, y, γ) are fea-
sible solutions to CP and CD respectively. Then, d(w, y, γ) ≤ p(z). Moreover, suppose z and

10

(w, y, γ) satisfy the following complementary slackness conditions:

z′(θ)y(θ) = 0, ∀θ ∈ [0, 1] (4.7)[
B(θ)z(θ) +

∫ θ
0 D(θ, λ)z(λ)dλ− C(θ)

]
w(θ) = 0, ∀θ ∈ [0, 1] (4.8)[

z(1) +
∫ 1
0 F (θ)z(θ)dθ − L

]
γ = 0 (4.9)[

B(θ)w(θ) +
∫ 1
θ D(λ, θ)w(λ)dλ+ F (θ)γ + y′(θ)−A(θ)

]
z(θ) = 0, ∀θ ∈ [0, 1] (4.10)

(γ − y(1))z(1) = 0. (4.11)

Then, z and (w, y, γ) are optimal to CP and CD, respectively, and achieve the same optimal value.

Proof: Using the primal and dual constraints, we obtain

d(w, y, γ) =
∫ 1
0 C(θ)w(θ)dθ + Lγ −Ky(0)

≤
∫ 1
0

[
B(θ)z(θ) +

∫ θ
0 D(θ, λ)z(λ)dλ

]
w(θ)dθ + Lγ −Ky(0) by (4.3)

=
∫ 1
0

[
B(θ)w(θ) +

∫ 1
θ D(λ, θ)w(λ)dλ

]
z(θ)dθ + Lγ −Ky(0) (*)

≤
∫ 1
0 [A(θ)− F (θ)γ − y′(θ)] z(θ)dθ + Lγ −Ky(0) by (4.5)

=
∫ 1
0 A(θ)z(θ)dθ −

∫ 1
0 y
′(θ)z(θ)dθ +

[
L−

∫ 1
0 F (θ)z(θ)dθ

]
γ −Ky(0)

≤
∫ 1
0 A(θ)z(θ)dθ −

∫ 1
0 y
′(θ)z(θ)dθ + z(1)γ −Ky(0) by (4.4)

=
∫ 1
0 A(θ)z(θ)dθ − y(1)z(1) + y(0)z(0) +

∫ 1
0 z
′(θ)y(θ)dθ + z(1)γ −Ky(0) (**)

≤
∫ 1
0 A(θ)z(θ)dθ + (γ − y(1))z(1) by (4.1), (4.2)

≤
∫ 1
0 A(θ)z(θ)dθ by (4.6)

= p(z),

where in (*) we change the order of integration by using Tonelli’s Theorem on non-negative mea-

surable function g:
∫ 1
0

∫ θ
0 g(θ, λ)dλdθ =

∫ 1
0

∫ 1
θ g(λ, θ)dλdθ; and in (**) we use integration by parts.

Moreover, if z and (w, y, γ) satisfy conditions (4.7) – (4.11), then all the inequalities above hold
with equality. Hence, d(w, y, γ) = p(z); so z and (w, y, γ) are optimal to CP and CD, respectively.

4.3 Lower Bound for the Performance Ratio

The performance ratio of Ranking is lower bounded by the optimal value of LP∞. We analyze this
optimal value by applying the primal-dual method to LP∞. In particular, we construct a primal
feasible solution z and a dual feasible solution (w, y, γ) that satisfy the complementary slackness
conditions presented in Lemma 4.2. Note that LP∞ and LD∞ are achieved from CP and CD by
setting K := 1, L := 1, A(θ) := 1, B(θ) := 1− θ, C(θ) := 1, D(θ) := 2, F (θ) := 3

2 .

We give some intuition on how z is constructed. An optimal solution to LP∞ should satisfy the
primal constraints with equality for some θ. Setting the constraint (1− θ)z(θ) + 2

∫ θ
0 z(λ)dλ ≥ 1 to

equality we get z(θ) = 1−θ. However this function violates the last constraint z(1)+ 3
2

∫ 1
0 z(θ)dθ ≥ 1.

Since z is decreasing, we need to balance between z(1) and
∫ 1
0 z(θ)dθ.

The intuition is that we set z(θ) := 1− θ for θ ∈ [0, µ] and allow z to decrease until θ reaches some
value µ ∈ (0, 1), and then z(θ) := 1− µ stays constant for θ ∈ [µ, 1]. To determine the value of µ,

11

note that the equation z(1)+ 3
2

∫ 1
0 z(θ)dθ = 1 should be satisfied, since otherwise we could construct

a feasible solution with smaller objective value by decreasing the value of z(θ) for θ ∈ (µ, 1]. It

follows that (1 − µ) + 3
2

(
1− µ+ µ2

2

)
= 1, that is, the value of µ ∈ (0, 1) is determined by the

equation 3µ2 − 10µ+ 6 = 0.

After setting z, we construct (w, y, γ) carefully to fit the complementary slackness conditions.
Formally, we set z and (w, y, γ) as follows with their graphs on the right hand side:

z(θ) =

{
1− θ, 0 ≤ θ ≤ µ
1− µ, µ < θ ≤ 1

w(θ) =

{
2(1−µ)2

(5−3µ)(1−θ)3 , 0 ≤ θ ≤ µ
0, µ < θ ≤ 1

y(θ) =

{
0, 0 ≤ θ ≤ µ
2(θ−µ)
5−3µ , µ < θ ≤ 1

γ = 2(1−µ)
5−3µ ,

where µ = 5−
√
7

3 is a root of the equation

3µ2 − 10µ+ 6 = 0.
0 0.5 1

1

2

3

θ
µ

1− µ
γ

 z(θ)

y(θ)

w(θ)

Figure 4.1: Optimal z and (w, y, γ)

Lemma 4.3 (Optimality of z and (w, y, γ)) The solutions z and (w, y, γ) constructed above are

optimal to LP∞ and LD∞, respectively. In particular, the optimal value of LP∞ is 2(5−
√
7)

9 ≈ 0.523.

Proof: We list the complementary slackness conditions and check that they are satisfied by z
and (w, y, γ). Then Lemma 4.2 gives the optimality of z and (w, y, γ).

(4.7) z′(θ)y(θ) = 0: we have y(θ) = 0 for θ ∈ [0, µ) and z′(θ) = 0 for θ ∈ (µ, 1].

(4.8)
[
(1− θ)z(θ) + 2

∫ θ
0 z(λ)dλ− 1

]
w(θ) = 0: we have (1− θ)z(θ) + 2

∫ θ
0 z(λ)dλ− 1 = (1− θ)2 +

2(θ − θ2

2)− 1 = 0 for θ ∈ [0, µ) and w(θ) = 0 for θ ∈ (µ, 1].

(4.9)
[
z(1) + 3

2

∫ 1
0 z(θ)dθ − 1

]
γ = 0: we have z(1)+ 3

2

∫ 1
0 z(θ)dθ−1 = (1−µ)+ 3

2

(
1− µ+ µ2

2

)
−1 =

0 by the definition of µ.

(4.10)
[
(1− θ)w(θ) + 2

∫ 1
θ w(λ)dλ+ 3γ

2 + y′(θ)− 1
]
z(θ) = 0: for θ ∈ [0, µ), we have

(1− θ)w(θ) + 2
∫ 1
θ w(λ)dλ+ 3γ

2 + y′(θ)− 1 = 2(1−µ)2
(5−3µ)(1−θ)2 + 2

∫ µ
θ w(λ)dλ+ 3(1−µ)

5−3µ + 0− 1 = 0,

and for θ ∈ (µ, 1], we have

(1− θ)w(θ) + 2
∫ 1
θ w(λ)dλ+ 3γ

2 + y′(θ)− 1 = 3γ
2 + y′(θ)− 1 = 3(1−µ)

5−3µ + 2
5−3µ − 1 = 0.

12

(4.11) (γ − y(1))z(1) = 0: we have γ − y(1) = 2(1−µ)
5−3µ −

2(1−µ)
5−3µ = 0.

Moreover, the optimal value of LP∞ is
∫ 1
0 z(θ)dθ = 1− µ+ µ2

2 = 2(5−
√
7)

9 ≈ 0.523.

Proof of Theorem 1.1: The expected ratio of Ranking is lower bounded by the optimal value
of LPn. Hence, the theorem follows from Lemmas 4.1 and 4.3.

References

[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted
bipartite matching and single-bid budgeted allocations. In Proceedings of the Twenty-Second
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1253–1264. SIAM,
2011.

[2] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In SODA, pages 1228–1241, 2012.

[3] Jonathan Aronson, Martin Dyer, Alan Frieze, and Stephen Suen. Randomized greedy match-
ing. ii. Random Struct. Algorithms, 6(1):55–73, January 1995.

[4] Martin E. Dyer and Alan M. Frieze. Randomized greedy matching. Random Struct. Algorithms,
2(1):29–46, 1991.

[5] Gagan Goel and Aranyak Mehta. Online budgeted matching in random input models with
applications to adwords. In Proceedings of the nineteenth annual ACM-SIAM symposium
on Discrete algorithms, SODA ’08, pages 982–991, Philadelphia, PA, USA, 2008. Society for
Industrial and Applied Mathematics.

[6] Gagan Goel and Pushkar Tripathi. Matching with our eyes closed. In Proceedings of the
2012 IEEE 53rd Annual Symposium on Foundations of Computer Science, FOCS ’12, pages
718–727, Washington, DC, USA, 2012. IEEE Computer Society.

[7] Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching with
unknown distributions. In Proceedings of the 43rd annual ACM symposium on Theory of
computing, STOC ’11, pages 587–596, New York, NY, USA, 2011. ACM.

[8] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. An optimal algorithm for on-line bipar-
tite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, STOC ’90, pages 352–358, New York, NY, USA, 1990. ACM.

[9] N. Levinson. A class of continuous linear programming problems. Journal of Mathematical
Analysis and Applications, 16:73–83, 1966.

[10] Mohammad Mahdian and Qiqi Yan. Online bipartite matching with random arrivals: an
approach based on strongly factor-revealing lps. In Proceedings of the 43rd annual ACM
symposium on Theory of computing, STOC ’11, pages 597–606, New York, NY, USA, 2011.
ACM.

[11] Silvio Micali and Vijay V. Vazirani. An O(
√
V E) algorithm for finding maximum matching

in general graphs. In FOCS, pages 17–27. IEEE Computer Society, 1980.

13

[12] Matthias Poloczek and Mario Szegedy. Randomized greedy algorithms for the maximum
matching problem with new analysis. Foundations of Computer Science, IEEE Annual Sym-
posium on, 0:708–717, 2012.

[13] Alvin E. Roth, Tayfun Sonmez, and M. Utku Unver. Pairwise kidney exchange. Working
Paper 10698, National Bureau of Economic Research, August 2004.

[14] William F. Tyndall. A duality theorem for a class of continuous linear programming problems.
Journal of the Society for Industrial and Applied Mathematics, 13(3):pp. 644–666, 1965.

14

Appendix A: Issues with the Experimental Results on LP (n)

We ran experiments on the LP described in Section III.B of [6] and obtained the following results.
The source code (in MathProg format) is available at:

http://i.cs.hku.hk/~algth/project/online_matching/issue.html.

n = 20 0.5024

n = 50 0.5010

n = 100 0.5005

n = 200 0.5003

n = 300 0.5002

n = 400 0.5001

Table 1: Our Experimental Results on LP (n) in [6]

Hence, it is impossible to use LP (n) to show that the performance ratio is larger than 0.5002.

Appendix B: Hardness Result

Figure B.1: Double Bomb Graph

In this section, we show that we can slightly improve the hardness result in [7] by adjusting the
parameter. An example of the graph is shown in B.1. We define the graph as follows:

Let G be a bipartite graph over 2(3 + ε)n vertices (ui’s and vi’s). Define the edges by adjacency
matrix A. (A[i][j] = 1 if there is an edge between ui and vj .)

A[i][j] =


1 if i = j

1 if i ∈ [1, n] and j ∈ (n, (2 + ε)n]

1 if i ∈ (n, (2 + ε)n] and j ∈ ((2 + ε)n, (3 + ε)n]

0 otherwise

We run experiments on different n’s and ε’s and get the following result.

n = 20 n = 50 n = 100 n = 200 n = 500

ε = 0.63 0.7314 0.7267 0.7253 0.7244 0.7240

We observe that when ε = 1− 1/e the ratio is minimized for this kind of graph. It is close to 0.724
in this case. We leave it as future work to analyze it theoretically.

15

http://i.cs.hku.hk/~algth/project/online_matching/issue.html

	1 Introduction
	1.1 Our Contribution and Techniques
	1.2 Related Work

	2 Preliminaries
	3 Relating Bad and Good Events to Form LP Constraints
	3.1 Monotone Constraints: xt-1 xt, t [2..n]
	3.2 Evolving Constraints: (1-t-1n) xt + 2n i=1t-1 xi 1, t [2..n]
	3.3 Boundary Constraint: xn + 32n i=1n xi 1
	3.4 Lower Bound the Performance Ratio by LP Formulation

	4 Analyzing LPn via Continuous LP Relaxation
	4.1 Continuous LP Relaxation
	4.2 Primal-Dual for a General Class of Continuous LP
	4.3 Lower Bound for the Performance Ratio

