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Abstract

We consider the problem of an auctioneer who faces the task of selling a good (drawn from
a known distribution) to a set of buyers, when the auctioneer does not have the capacity to
describe to the buyers the exact identity of the good that he is selling. Instead, he must come
up with a constrained signalling scheme: a (non injective) mapping from goods to signals, that
satisfies the constraints of his setting. For example, the auctioneer may be able to communicate
only a bounded length message for each good, or he might be legally constrained in how he
can advertise the item being sold. Each candidate signaling scheme induces an incomplete-
information game among the buyers, and the goal of the auctioneer is to choose the signaling
scheme and accompanying auction format that optimizes welfare. In this paper, we use tech-
niques from submodular function maximization and no-regret learning to give algorithms for
computing constrained signaling schemes for a variety of constrained signaling problems.

1 Introduction

At a cafe in Portlandia [ABK11], customers about to order the chicken ask the waitress for more
details regarding its source. She informs them that the chicken is a heritage breed, woodland raised,
and has been fed a diet of sheep’s milk, soy, and hazelnuts, and she assures them the chicken is
indeed local, free range, and so on. Ah but, the customers ask, is that USDA Organic, or Oregon
Organic, or Portland Organic?

Organic certifications are a means by which a seller can communicate parameters of a product
to potential buyers. The certification system creates a simplified and practical, yet sufficiently
expressive, set of signals as the basis for this communication.1 Signaling is common throughout
complex markets. The USDA classifies meat into a small number of discrete grades. Graduating
high-school students signal their potential to employers and colleges through SAT scores and tran-
scripts. Targeted advertising sales in both online and offline media describe viewers to ad buyers
through a fixed and (comparatively) small set of demographic information.2

We consider a market with one seller, one or more buyers, and multiple potential items. A
signaling scheme for the market maps each potential item to a signal. The seller commits to
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1Unfortunately for the waitress in Portlandia, the language was not sufficiently expressive for her customers. They

decided to drive to the farm to visit the chicken’s home.
2See Milgrom [Mil10] and Levin and Milgrom [LM10] for further discussion of signaling in various markets including

online advertising, wheat sales, diamond sales, and spectrum auctions.
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a signaling scheme up front and sells the signal induced by the item through a sale mechanism
(auction, posted price, etc.). This choice of signaling scheme induces a game among buyers: the
buyers find themselves looking to buy an item in the mechanism without knowing what item is
for sale, but rather only knowing that it is some item that induced a particular signal from a
known signaling scheme. In other words, a signaling scheme is a fixed bundling of the goods
that the seller commits to up front. In this work, we focus on designing signaling schemes and
corresponding auction mechanisms that maximize social welfare. Once the seller commits to a
particular signaling scheme, the second price auction maximizes welfare with respect to the agreed
upon bundling, and so without loss of generality, the “auction mechanism” can be taken to be the
simple second price auction. Our goal is to (subject to various constraints) define signaling schemes
that maximize the expected welfare in the induced bundle auction.

Practical settings impose a variety of constraints on feasible signaling schemes. In many mar-
kets, the amount of information that can be conveyed is highly constrained. In online advertising
auctions, the sheer volume of sales and diversity of viewers make it impractical to communicate
precise details of every viewer. In addition, various reputational and legal constraints may re-
strict a seller from announcing certain signals for certain items: e.g., organic products must pass a
certification process from the corresponding agency to be sold under that label.

The main question we address is a computational one: how should an auctioneer compute a
welfare-maximizing signaling scheme in the presence of exogenously-defined signaling constraints?
We first observe that welfare maximization in constrained signaling is a convex function maximiza-
tion problem, and so there is always a deterministic signaling scheme which maximizes expected
welfare. Furthermore, fixing the signaling scheme, the optimal mechanism for welfare maximiza-
tion is the second-price auction. These two facts significantly simplify our analysis, as we now only
have to search over deterministic signaling schemes. We also observe that for second-price auctions
revenue and welfare are intimately related: the revenue is at most the welfare after excluding an
arbitrary player. This allows us to extend some of our welfare results to the revenue setting.

As our primary signaling constraint, we focus on communication-bounded signaling in which
the constraint is the amount of communication which can be used to send the signal. We consider
settings in which goods are points in a very high dimensional space Ω = R

d, where d is much too
large to communicate the entire vectors (e.g. d might be exponential in the number of bidders
n). In these settings, we first consider agents who have geometric valuations, defined in terms of
either the distance or the angle from the realized good to some target good or set of goods. Thus
if d represents, for example, the vector of potential features of an item, then the distance or angle
represents how close the actual item is to the agent’s ideal item (see Section 3 for a more precise
motivation). We use techniques from no regret learning and metric embeddings to give highly space
efficient signaling schemes that achieve nearly the optimal welfare (compared even to the optimal
unconstrained signaling scheme), when values are drawn according to a known prior, and in one
instance, even against adversarially chosen goods, and without knowledge of the prior distribution
over valuations. We make a novel use of no-regret learning algorithms as compression schemes.
Specifically, we view the item for sale as a function labeling each bidder with their valuation for the
item. Given a realized item, we learn this function using the multiplicative weights update rule,
and then communicate the learned function by sending only the identity of the (very small number
of) update vectors, which results in a low-communication scheme. The communication required
by these schemes depends only logarithmic on the dimension d and allows for an infinite set of
potential goods.
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We next study agents with arbitrary valuations and show how to completely eliminate the
dependence on the dimension for a bounded number of potential goods with a constant loss in
the approximation factor. Our technique here extends to other exogenously imposed constraints,
called bipartite signaling, in which we are given a set of feasible signals, and each item is allowed
to be mapped to any one of a subset of these signals.3 For these results, we make the unrealistic
assumption that the seller knows the set of values of the buyers precisely. Our motivation for
studying this setting is two-fold: for one, we hope that it will lead to mechanisms for the unknown
valuations case, and indeed some of our results carry through when the amount of uncertainty in
the unknown valuations case is bounded in some sense; for another, in large markets with limited
numbers of valuation types, an auctioneer can be relatively confident regarding the set of valua-
tions in the market. When valuations are known to the auctioneer, we are able to reduce welfare
maximization in communication-bounded bipartite signaling to submodular function maximization
subject to a matroid constraint, thus implying a (1− 1/e)-approximation for welfare maximization
with respect to the optimal communication-bounded signaling scheme. Starting from our approxi-
mately welfare-maximizing signaling scheme, and using the connection between revenue and welfare
described above as well as careful “mixing” of different signals, we also devise a constant approxi-
mation for revenue maximization in the communication-bounded signaling setting for auctioneers
that are constrained to use second-price auctions. We further show how to extend some of our
results to the unknown valuation case when the prior has constant-size support. We couple our
results with a hardness result: even in the communication-bounded signaling setting with known
valuations, it is NP-hard to approximate either objective to a factor better than (1 − 1/e) via a
reduction from max-cover.

Related Work The study of markets with information asymmetries between sellers and buyers
was first introduced by Akerlof [Ake70]. Since then, a rich literature has examined the effects
of information revelation, i.e. signaling, in markets and auctions. Most notably, the “Linkage
principle” of Milgrom and Weber [MW82] shows that, under some conditions, a seller always
increases his revenue by signalling more information about the good for sale. However the linkage
principle requires fairly strong assumptions regarding the joint distribution of player valuations for
the good. In particular, it rarely holds in settings where players come from different demographics
with negatively correlated values for the good. A review of the literature studying the limits of the
linkage principle can be found in Emek et al [EFG+12]. The non-applicability of the linkage principle
to the settings we consider goes even beyond these limitations — even when full transparency is
optimal for an auctioneer, the presence of constraints on the amount and nature of information
revealed by our signalling schemes introduces intricate tradeoffs in choosing which information
to reveal. Quantifying those tradeoffs inevitably requires examination of these settings with an
optimization lens, as we do here.

Our work is inspired by, and builds on, recent papers that examine optimal signalling schemes
in unconstrained settings. Specifically, Emek et al [EFG+12] and Miltersen and Sheffet [MS12]
examine signalling for revenue maximization in a second price auction, where no constraints are
placed on the number or nature of signals. In such settings, full information revelation is optimal
for an auctioneer interested in maximizing welfare, and both works show that a revenue-maximizing

3For example, a signaling scheme for online advertising auctions may consist of all potential tuples of attributes:
age, location, ethnicity, gender, and income, say. A viewer can be matched to any tuple that matches his true
characteristics.
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scheme can be computed efficiently when player valuations are known. Emek et al [EFG+12] also
obtain partial results for revenue maximization when player valuations are drawn from a Bayesian
prior. Our results can be thought of as the extension of these works to settings where social, legal,
or practical constraints are placed on the auctioneer’s signaling policy.

We also mention some results that are related to ours in the techniques used. In the geometric
setting considered in Section 3, in which players value goods y ∈ R

d according to inner product
valuations, our communication bounded signaling scheme applies the multiplicative weights frame-
work of Arora, Hazan, and Kale [AHK12]. We use multiplicative weights in an unusual way, both
as a no-regret learning algorithm and as a compression scheme. That is, we use both the fact
that multiplicative weights can quickly learn a hypothesis ŷ that closely approximates a vector y
with respect to a fixed number of inner product valuations, and the fact that the hypothesis ŷ can
be concisely communicated by transmitting only the update operations of multiplicative weights,
rather than the vector ŷ itself. We are not aware of multiplicative weights being used explicitly as
a compression scheme elsewhere, although this is related to the use that no-regret algorithms have
recently found in differential privacy [RR10, HR10, GRU12].

In Section 4, we point out that the special case of bipartite signaling where the graph is complete
is technically equivalent to the clustering problem considered in [MW09]. Moreover, the problem
of computing a revenue-maximizing bundling of goods considered in Ghosh et al. [GNS07] is both
conceptually and technically similar to the optimization problem we face in our revenue-maximizing
scheme (Section 4.2). The idea of “merging” signals in our setting is inspired by their algorithm,
though the constraint on the number of signals in our setting poses additional technical hurdles.
The results of Section 4 also heavily use techniques from the combinatorial auctions literature
([Fei06, DS06, DNS05]), as well as the submodular function maximization result of Vondrak [Von08].

2 Preliminaries

We consider a setting in which there is a (possibly infinite) set Ω of possible items for sale, and a
single item ω ∈ Ω is drawn from a distribution p ∈ ∆Ω. There is a set of n players, each of whom
is equipped with a valuation vi : Ω→ R mapping items to the real numbers. The valuation profile
(v1, . . . , vn) is drawn from a distribution D. We assume that Ω, p, and D are common knowledge,
while each player’s valuation vi is private to player i. It will be useful to interpret the possible
items Ω as subsets of Rd, where d is a vector of possible item features.

We assume that the realization of item ω is ex-ante unknown to the players, but known to the
auctioneer. We consider an auctioneer who first observes the drawn item ω, and then announces a
string s, known as a signal. The (possibly randomized) policy by which the auctioneer chooses his
signal, which we refer to as a signaling scheme, is common knowledge. After players observe the
signal s, which can be thought of as a random variable correlated with the realization of the item
ω, an auction for item ω is run.

We adopt the perspective of an auctioneer seeking to optimize his choice of signaling scheme
and corresponding auction, with the goal of maximizing the expected welfare. With no constraints
on the signal, an auctioneer could generate optimal welfare by announcing the item ω and running a
second-price auction. Our focus is on a constrained auctioneer. The class of constrained signalling
problems is defined as follows.

Definition 2.1. A constrained signaling problem is a family of instances, each given by:
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• A set Ω of items, and a distribution p ∈ ∆Ω over these items.

• A set [n] of players, where each player i is equipped by a private valuation vi : Ω→ R+. The
tuple of valuations (v1, . . . , vn) is drawn from a common prior D.

• A set of signals S, and a set F ⊆ SΩ of valid signaling maps.

When D is a trivial prior, i.e. (v1, . . . , vn) are deterministic, we say our signaling problem
has known valuations; otherwise we say it has unknown valuations. A solution to a constrained
signaling problem is a valid signaling scheme, defined as a distribution x ∈ ∆F over valid signaling
maps F , and corresponding auction. We note that given a constrained signaling problem, any valid
signaling scheme induces a set of information states, namely the pre-image of the mapping. Fixing
these information states, the well-known second-price auction maximizes welfare. Therefore, we
can assume, without loss of generality, that the auctioneer runs a second-price auction.

When the signaling scheme x is a point distribution, we say the scheme is deterministic. Given
x and an item ω ∈ Ω, we use x(ω) to denote the random variable f(ω) for f ∼ x. Moreover, given
item ω ∈ Ω and signal s ∈ S, we abuse notation and use x(ω, s) to denote the probability that
f(ω) = s for f ∼ x. Similarly, given a signal s ∈ S we use x(s) to denote the probability that
f(ω) = s for f ∼ x and ω ∼ p; it is easy to see that x(s) =

∑
ω∈Ω pωx(ω, s).

A signaling scheme x induces, for each signal s, a second-price auction where players have inde-
pendent private values.Specifically, it is a dominant strategy for each player i to bid his value for item

ω ∼ p conditioned on signal s — namely vi|s, x := Ef∼x,ω∼D[vi(ω)|f(ω) = s] =
∑

ω∈Ω x(ω,s)pωvi(ω)

x(s)

The winning player for signal s is the player maximizing vi|s, x. Parametrized by the valuation
profile v, the resulting welfare of the auction, in expectation over all draws of the item ω, is
given by welfare(x, v) :=

∑
s∈S x(s)maxni=1 vi|s, x =

∑
s∈S maxni=1

∑
ω∈Ω x(ω, s)pωvi(ω). Using

v̂i(ω) := pωvi(ω) to denote player i’s value for item ω weighted by ω’s probability, gives

welfare(x, v) =
∑

s∈S

n
max
i=1

∑

ω∈Ω

x(ω, s)v̂i(ω). (1)

In the case of unknown valuations, the expected welfare of the auction over draws of the players’
valuations, which we denote by welfare(x), is the expectation of welfare(x, v) over v ∼ D.

Because the dimension of the items d is so large, it is not possible to exactly describe them
to buyers, and it is instead necessary to employ a communication bounded signaling scheme which
places a limit on the amount of communication that can be invested in transmitting the signal to the
agents. Informally, we say that a signalling scheme has b-bounded length of the total set of signals
it can generate (over all possible items) is of size at most k = 2b – note that any signal from such a
set can be indexed by using at most b bits. We would like to compute the optimal signaling scheme
subject to these communication constraints. We focus on two instances of this problem: we first
study geometric valuations in which we assume a particular form of the valuations of the agents and
show how to get very close approximations to the unconstrained optimal welfare. We then consider
arbitrary valuations and show how to get constant-factor approximations to the optimal welfare
of constrained schemes (which, in turn, are (k/n)-approximations to the unconstrained optimum).
Our techniques for this approximation allow us to handle further bipartite signal constraints in
which signals are labeled by subsets of features and an item can be mapped to a signal only if the
item’s features are a superset of the features in the signal’s label.

We discuss and derive several basic structural results regarding constrained signaling schemes
in Appendix A. We here summarize several of the main findings:
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Lemma 2.2. For any constrained signaling problem with unknown valuations, there is valid deter-
ministic signaling scheme which maximizes expected welfare.

Lemma 2.3. Consider an n-player and m-item signaling problem with known valuations. For
every integer k, there is a signaling scheme with k signals and welfare at least a k

min(n,m) fraction

of that of optimal (unconstrained) scheme.

Lemma 2.4. Fix an arbitrary constrained signaling problem with unknown valuations. Let i′ be
an arbitrary player. The revenue of the revenue-optimal signaling scheme is at most the welfare of
the welfare-optimal signaling scheme for all players other than i′.

3 Constrained signaling with geometric valuations

In this section, we consider signaling schemes in which items ω ∈ Ω correspond to points in d
dimensional Euclidean space R

d. In such settings, we consider valuation functions which are also
parameterized by points vi ∈ R

d. Natural valuation functions then include inner products (i.e.
vi(ω) = 〈ω, vi〉) and distances (i.e. vi(ω) = ||ω − vi||). We think of d as being very large, and
so we will be concerned with space bounded signaling schemes, defined to be schemes that can
communicate only a bounded number of bits per signal.

Definition 3.1. A finite set of signals S has b-bounded length if log |S| ≤ b. The set of b-bounded
length signaling schemes is F ⊆ SΩ such that for each f ∈ F : the set of all possible signals generated
by f (i.e. ∪ω∈Ωf(ω)) has b bounded length. We call such an f ∈ F a b-bounded length signaling
scheme.

Remark 3.2. Note that any signal in a b-bounded length signaling scheme can be transmitted using
at most b bits.

Note that in any known valuation setting, there is always a log n-bounded length signalling
scheme that achieves full welfare: the scheme simply partitions the items into n sets in which
the i’th set consists of all items that the i’th bidder likes better than anyone else. This scheme, in
effect, names the bidder who has the highest valuation for the realized good. Our main focus in this
section will therefore be on achieving bounded length signalling schemes in the more demanding
unknown valuation setting, in which bidder valuations are either drawn from a known prior, or
selected by an adversary.

3.1 Inner Product Valuations

Let Ω = {ω ∈ R
d
+ : ||ω||1 = 1} be the set of d dimensional non-negative real vectors with ℓ1

weight 1. These can be thought of as distributions over d “features” which describe the product
ω. Individuals i have valuation functions vi : Ω→ R parameterized by (abusing notation) a vector
vi ∈ R

d with ||vi||∞ ≤ 1. Bidder i’s valuation for good ω is defined to be vi(ω) ≡ 〈vi, ω〉. Intuitively,
each component j of vi represents agent i’s affinity for feature j, which can range in [−1, 1]. vi(ω)
is agent i’s average affinity for the distribution over features represented by good ω. Here d can
be exponentially large, and so such valuation functions are extremely general. We wish to design
good b-bounded length signaling schemes for inner product valuations, for b as small as possible,
when bidder valuations are unknown but drawn independently from a known prior.
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3.1.1 Multiplicative Weights Signaling

In this section, we use the versatile multiplicative weights framework of [AHK12] to give a com-
munication bounded signaling scheme. The idea is the following: we treat the realized good ω ∈ Ω
as a function defined over the domain of valuation vectors vi. The function ω labels each possible
valuation vector vi with the real number 〈vi, ω〉. Given a realized good, we then attempt to learn
this function over the prior distribution P from which the valuations are drawn. If we are able to
“correctly” classify new examples drawn from the distribution with probability at least 1 − δ/n,
then with probability at least 1−δ, we are able to correctly classify all of the actual bidder valuation
functions drawn i.i.d. from P. If we know the prior P and have access to i.i.d. samples from it,
then we are in a PAC-like setting, and are able to inherit very strong PAC-like bounds: learning
algorithms with guarantees that hold for any distribution P. If we are able to learn our classifier
in a way that can be concisely communicated, then we also have a good bounded length signalling
scheme.

For ease of exposition, we first consider the known valuation setting in which the signaling
scheme can be parameterized by the actual valuations v1, . . . , vn of the bidders4. When a good
ω ∈ Ω arrives, we use multiplicative weights to learn an ǫ-approximate representation ω̂ with
respect to the bidder valuation functions v1, . . . , vn – that is, a representation ω̂ such that for all i,
|vi(ω) − vi(ω̂)| ≤ ǫ. We can do this by updating multiplicative weights at most O(log d/ǫ2) times
using the valuation functions themselves as loss functions. ω̂ would itself therefore make a terrific
signal – it would approximately represent every bidder’s valuation for the good ω. However, ω̂ is also
a vector in R

d, and so it is not clear why we should be able to communicate it in a space bounded way.
The key insight is that it is not necessary to communicate ω̂ directly, but merely communicate which
collection of valuation functions were used to update multiplicative weights when learning ω̂ – using
this information, each bidder can reconstruct ω̂ for themselves. (Of course, this “reconstruction”
can be automated, so the bidders can still see a natural signal). Since each valuation function can
be indexed with only O(log n) bits, and there are only O(log d/ǫ2) updates in total, this gives a
O(log n log d/ǫ2)-space bounded signaling scheme that approximates the optimal welfare within an
additive loss of ǫ. We then extend this to the case in which the valuation functions vi are not
known, but instead drawn i.i.d. from a known prior P. This extension involves parameterizing the
same multiplicative weights signaling scheme with m i.i.d. samples from P. Here m corresponds to
the sample complexity of the corresponding learning problem on linear valuations5 and the space
used by this signaling scheme depends on logm (since we must index updates from this set of m
vectors). We now define our signaling scheme formally.

We define a signaling scheme fMW,ǫ,z1,...,zm parameterized by a no regret algorithm (in this case
the multiplicative weights algorithm MW), an accuracy parameter ǫ, andm vectors z1, . . . , zm ∈ R

d.
The parameters of the signaling scheme will be public knowledge, and it will be used to generate
b-bounded length signals as follows:

Theorem 3.3. For any ǫ, any vectors z1, . . . , zm such that for all i, ||zi||∞ ≤ 1, and any ω ∈ Ω,
fMW,ǫ,z1,...,zm runs for T ≤ 16 log d

ǫ2
rounds.

4As mentioned earlier, it is trivial to derive a bounded-length signalling scheme in the known valuation setting
without the machinery of multiplicative weights. We introduce this machinery in the known valuation setting and
then show how it easily extends to the unknown valuation setting.

5The sample complexity of a learning problem is, informally, the number of samples that need to be drawn from a
distribution P , such that if we learn a hypothesis that is consistent on the sampled points, then with high probability,
the hypothesis is consistent on new points drawn from the same distribution.

7



Input: An instance ω ∈ Ω.
Output: A bounded length signal s.
1: Initialize ω̂1 ∈ R

d such that ω̂1
j = 1/d for all j ∈ [d].

2: Initialize T ← 1.
3: while there exists an index i such that |〈zi, ω〉 − 〈zi, ω̂T 〉| ≥ ǫ/2 do

4: Let UpdateT ← i, SignT ← sign(〈zi, ω̂T 〉 − 〈zi, ω〉),
5: For all j let ω̂T+1

j ← ω̂T
j ·

(
1− SignT · ǫ4 · zi,j

)
.

6: Normalize ω̂T+1 such that ||ω̂T+1||1 = 1. Let T ← T + 1
7: end while

8: Let s = ((Update1,Sign1), . . . , (UpdateT ,SignT ))

Algorithm 1: Algorithm for computing the signal fMW,ǫ,z1,...,zm

Proof. fMW,ǫ,z1,...,zm(ω) runs an instantiation of the Multiplicative Weights Framework for Arora,
Hazan, and Kale [AHK12] for T rounds, with update parameter ǫ/4, and loss vectors at each round
t defined to be ℓt = Signt ·zUpdatet . By the regret bound of Multiplicative Weights (see e.g. [AHK12]
Corollary 2.2), we have for all x ∈ R

d
+ with ||x||1 = 1:

T∑

t=1

(
〈ℓt, ω̂t〉 − 〈ℓt, x〉

)
≤ ǫ

4

T∑

t=1

〈|ℓt|, x〉+ 4 ln d

ǫ

where |ℓt| denotes a coordinate-wise absolute value. Note that this corresponds to the standard
“no regret bound” that readers may be more familiar with: here the “experts” correspond to
the d standard basis vectors, x corresponds to a distribution over experts, and the above bound
simply states that multiplicative weights achieves diminishing regret with respect to the best expert
(and therefore with respect to any distribution over experts). Taking x = ω, we note that the loss
vectors ℓt = Signt ·zUpdatet have been constructed such that at every round t, 〈ℓt, ω̂t〉−〈ℓt, ω〉 ≥ ǫ/2.
Moreover, since for all i ||zi||∞ ≤ 1, by definition for each coordinate j, |ℓtj| ≤ 1. Therefore, for
each t, 〈|ℓt|, ω〉 ≤ 1 since ||ω||1 = 1 . Therefore, the above bound becomes:

Tǫ

2
≤ Tǫ

4
+

4 ln d

ǫ

Solving for T , we find that it must be that T ≤ 16 log d
ǫ2

as desired.

We now make two observations. The first is that fMW,ǫ,z1,...,zm(ω) produces bounded length
signals:

Corollary 3.4. For any ǫ, any vectors z1, . . . , zm such that for all i, ||zi||∞ ≤ 1, and any ω ∈ Ω,

fMW,ǫ,z1,...,zm is a b-bounded length signaling scheme for b =
(
16 log d(logm+1)

ǫ2

)
.

Proof. For t = 1, . . . , T , Updatet can be communicated with logm bits and Signt can be commu-
nicated by 1 bit. By Theorem 3.3, for all ω ∈ Ω, T ≤ 16 log d

ǫ2

The next is that the signal s = ((Update1,Sign1), . . . , (UpdateT ,SignT )) is sufficient for each
agent i to reconstruct ω̂T+1:

Observation 3.5. ω̂T+1 ≡ ω̂T+1(s) is a function only of the signal s = ((Update1,Sign1), . . . , (UpdateT ,SignT )).

8



Given this observation, it is helpful to think about the signal “really being” the vector ω̂T+1

that well approximates 〈ω, zi〉 for all i. The signal s is just a concise way of transmitting this vector.
First, we show that when we have known valuations, the multiplicative weights signaling scheme

is competitive with the optimal b-bounded length signaling scheme. In fact, we show more – that the
multiplicative weights signalling scheme is competitive with the optimal unconstrained signalling
scheme, even pointwise. This proof will be a template for the more interesting unknown valuations
case.

Theorem 3.6. Let OPTU =
∑

ω∈ΩPrj∼p[j = ω]·maxi∈[n] vi(ω) denote the optimal social welfare in
the unconstrained setting. In the known valuation setting, the welfare obtained by the multiplicative
weights signaling scheme given vectors (z1, . . . , zn) ≡ (v1, . . . , vn) is:

welfare(fMW,ǫ,v1,...,vn , v) ≥ OPTU − ǫ

In particular, it is within ǫ of the optimal welfare obtained by any bounded length signaling scheme.

Proof. Fix any ω ∈ Ω, consider s = s(ω) = fMW,ǫ,v1,...,vn(ω), and let ω̂T+1 ≡ ω̂T+1(s). For any
bidder i, let S = {ω : |〈ω, vi〉 − 〈ω̂T+1(s), vi〉| ≤ ǫ/2} be the set of goods whose value to bidder
i differs by less than ǫ from the value of good ω̂T+1. Note that by the construction of ω̂T+1, it
must be the case that Prω∼p[ω 6∈ S|s] = 0 (because otherwise the multiplicative weights signaling
scheme would not have halted). Therefore, we have Prω∼p[ω ∈ S|s] = 1 and we can calculate:

vi|s(ω) = Ej∼p[vi(j)|f(j) = s]

=
∑

j∈Ω

vi(j) · Pr
j∼p

[j|f(j) = s]

≥
∑

j∈S

vi(j) · Pr
j∼p

[j|f(j) = s]

≥ min
j∈S

vi(j) · Pr
j∼p

[j ∈ S|f(j) = s]

≥ (vi(ω)− ǫ) · 1

Finally, we can lower bound the expected welfare of the multiplicative weights signaling scheme,
and compare it to the unconstrained optimal welfare. For all v:

welfare(fMW,ǫ,v1,...,vn , v) =
∑

ω∈Ω

Pr
j∼p

[j = ω] · max
i∈[n]

vi|s(ω)

≥
∑

ω∈Ω

Pr
j∼p

[j = ω] · max
i∈[n]

(vi(ω) − ǫ)

= OPTU − ǫ.

We now adapt our signaling scheme slightly, and show that it works not just in the known
valuation setting, but also in the Bayesian setting when there is a prior P from which the valuations
vi of the agents are drawn i.i.d. Consider the slightly modified family of signaling schemes f ′, still
defined in terms of an accuracy parameter ǫ and m vectors z1, . . . , zm. The difference between f ′

and f is only that f ′ updates the multiplicative weights hypothesis at most 1 time for every vector
zi, and halts once it finds a hypothesis which does not induce an update for a sufficiently large

9



sequence of the zi vectors. The idea is simple: The zi vectors will be drawn i.i.d. from the prior
P. At any given time, either the current multiplicative weights hypothesis will have low error over
new examples drawn from P, in which case we can halt, or it will have high error, which means
that it is likely to induce an update on one of the next few zi’s it iterates through. Given that
we have a bound on the total number of updates that it can perform, it is not hard to see that it
must quickly find a hypothesis vector ω̂ that well approximates ω on a large measure of examples
zi drawn from P.

Input: An instance ω ∈ Ω.
Output: A bounded length signal s.
1: Initialize ω̂1 ∈ R

d such that ω̂1
j = 1/d for all j ∈ [d].

2: Initialize T ← 1. // Indexes Updates

3: Initialize c← 0. // Counts rounds between updates

4: Let r ←
2n

(
log

(
16 log d

ǫ2

)
+log 2n

δ

)

δ // Threshold to halt.
5: for i = 1 to m do

6: if |〈zi, ω〉 − 〈zi, ω̂T 〉| ≥ ǫ/2 then

7: Let UpdateT ← i, SignT ← sign(〈zi, ω̂T 〉 − 〈zi, ω〉),
8: For all j let ω̂T+1

j ← ω̂T
j ·

(
1− SignT · ǫ2 · zi,j

)
.

9: Normalize ω̂T+1 such that ||ω̂T+1||1 = 1. Let T ← T + 1. Let c← 0.
10: else

11: c← c+ 1
12: if c ≥ r then

13: Output
s = ((Update1,Sign1), . . . , (UpdateT ,SignT ))

and HALT.
14: end if

15: end if

16: Output
s = ((Update1,Sign1), . . . , (UpdateT ,SignT ))

17: end for

Algorithm 2: Algorithm for computing the signal f ′
MW,ǫ,z1,...,zm

Because we continue to have that ω̂T is updated only on vectors zi such that |〈zi, ω〉−〈zi, ω̂T 〉| ≥
ǫ/2, our bound on the number of updates is identical as it was for signaling scheme f , and so we
have an identical corollary:

Corollary 3.7. For any ǫ, any vectors z1, . . . , zm such that for all i, ||zi||∞ ≤ 1, and any ω ∈ Ω,

f ′
MW,ǫ,z1,...,zm

is a b-bounded length signaling scheme for b =
(
16 log d(logm+1)

ǫ2

)
.

We now argue that if f is parameterized with m vectors zi drawn i.i.d. from P (for sufficiently
large m), then in fact with high probability, f ′

MW,ǫ,z1,...,zm
is a competitive signaling scheme for the

actual agent valuations v1, . . . , vn, whenever v1, . . . , vn are also drawn i.i.d. from P.
Theorem 3.8. Let

m =
2n

(
16 log d

ǫ2

)(
log

(
16 log d

ǫ2

)
+ log 2n

δ

)

δ

10



= Õ

(
n log d

δǫ2

)
.

Fix any ω ∈ Ω, and let z1, . . . , zm and v1, . . . , vn be i.i.d. draws from P. Let s = f ′
MW,ǫ,z1,...,zm

(ω),

and define S(v, s) = {ω : |〈ω, v〉 − 〈ω̂T+1(s), v〉| ≤ ǫ/2}. Then we have:

Pr
z1,...,zm,v∼P

[ω 6∈ S(v, s)] ≤ δ

n

Proof. We will show that for any ω ∈ Ω, with probability 1 − δ/2n over the choice of z1, . . . , zm,
s is such that: Prv∼P [ω 6∈ S(v, s)] ≤ δ/2n, which is enough to prove our claim. Let U = 16 log d

ǫ2

be the maximum number of update rounds that f ′
MW,ǫ,z1,...,zm

can ever conduct, as bounded by
Theorem 3.3. Since f ′

MW,ǫ,z1,...,zm
considers running an update on each zi in sequence but never

conducts more than U updates, there must be some consecutive sequence zi, . . . , zj of length at
least (j − i + 1) ≥ m

U = r on which no updates are performed. By design, the algorithm outputs
a signal after such a sequence occurs. We will show that if Prv∼D[ω 6∈ S(v, s)] ≥ δ/2n, then the
probability of this event occurring is at most δ/2n. Note that if Prv∼P [ω 6∈ S(v, s)] ≥ δ/2n, since
each zi is independently sampled from P, the probability of an update occurring at round i is at
least δ/2n. Therefore, the probability of there existing such a long sequence between updates is at
most:

(U)(1 − δ

2n
)m/U ≤ (U)e−mδ/2Un

Setting m as in the theorem statement makes this probability at most δ/2n as desired.

A simple corollary of Theorem 3.8 is an analogous welfare guarantee for the multiplicative
weights signaling scheme in the Bayesian setting:

Theorem 3.9. Let OPTU =
∑

ω∈ΩPrj∼p[j = ω] ·maxi∈[n] vi(ω) denote the optimal social welfare
in the unconstrained setting with known valuations. In the Bayesian setting in which each vi ∼ P
is sampled i.i.d. from a known prior P, the welfare obtained by the multiplicative weights signaling
scheme given vectors (z1, . . . , zm) sampled independently from the prior distribution P is:

welfare(f ′
MW,ǫ,z1,...,zm , v) ≥ OPTU − ǫ− δ

where m = Õ
(
n log d
δǫ2

)
. In particular, it is a 16 log d(logm+1)/ǫ2 bounded length signaling scheme

that obtains welfare within ǫ + δ of the optimal welfare obtained by any bounded length signaling
scheme.

Proof. Independently for every ω ∈ Ω, consider s = s(ω) = fMW,ǫ,z1,...,zn(ω), and let ω̂T+1 ≡
ω̂T+1(s). For any bidder i, let Si = {ω : |〈ω, vi〉 − 〈ω̂T+1(s), vi〉| ≤ ǫ/2} be the set of goods
whose value to bidder i differs by less than ǫ from the value of good ω̂T+1. By Theorem 3.8,
Prj∼p[j ∈ Si|s] ≥ 1− δ/n and so by a union bound Prj∼p[∀i, j ∈ Si|s] ≥ 1− δ and we can calculate

11



for all i:

vi|s(ω) = Ej∼p[vi(j)|f(j) = s]

=
∑

j∈Ω

vi(j) ·Pr
p
[j|f(j) = s]

≥
∑

j∈S

vi(j) ·Pr
p
[j|f(j) = s]

≥ min
j∈S

vi(j) ·Pr
p
[j ∈ S|f(j) = s]

≥ (vi(ω)− ǫ) · (1− δ)

≥ vi(ω)− ǫ− δ

where the last inequality follows from the fact that vi(ω) ≤ 1. Finally, we can lower bound the
expected welfare of the multiplicative weights signaling scheme, and compare it to the unconstrained
optimal welfare. For all v:

welfare(f ′
MW,ǫ,z1,...,zm

, v) =
∑

ω∈Ω

Pr
j∼p

[j = ω] · max
i∈[n]

vi|s(ω)

≥
∑

ω∈Ω

Pr
j∼p

[j = ω] · max
i∈[n]

(vi(ω) − ǫ− δ)

= OPTU − ǫ− δ

Remark 3.10. We make two remarks about our multiplicative weights signalling scheme: first,
the guarantees hold pointwise – that is, even conditioned on the realization of the good. Second,
the technique easily extends to bidders whose values are drawn independently but not identically. If
each bidder has a valuation drawn from a unique distribution, we simply need to run the algorithm
with m samples drawn from each distribution. This increases the number of samples needed by a
factor of n, but only increases the communication needed by the signalling scheme by an additive
log n.

3.2 Subspace Valuations

In this section, we use a version of the Johnson Lindenstrauss lemma, for matrices implicitly
defined by limited independence families of hash functions, to give bounded space signaling schemes
for “subspace valuations”. Subspace valuations are defined over a point set Ω of unit vectors in
Euclidean space, and can be seen as a generalization of the “inner product valuations” considered
in the previous section6. An agent may specify up to k points in Ω, which indicates that he is
equally happy with any linear combination of these k points (i.e. his k points define a subspace).
His value for a good is defined to be its distance to this subspace. The Johnson Lindenstrauss
lemma lets us take a “projection” of the point into a lower dimensional space, in such a way that
with high probability, each agent is able to estimate its value with high probability. We use the fact

6The class of valuations may be seen as a generalization of inner product valuations, but the signaling scheme
here works in a different range of parameters as the multiplicative weights signaling scheme. Specifically, for the
multiplicative weights signaling scheme, we assumed that Ω consisted of the set of unit vectors in ℓ1 space, and that
valuation functions were defined by unit vectors in ℓ∞ space. In this section, both points ω ∈ Ω, and the vectors
which parameterize agent valuation functions are unit vectors in ℓ2 space.
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that limited independence JL matrices can be concisely represented – this allows us to construct a
new projection matrix for every good, and include its description as part of our signal. This allows
us to give a strong Bayesian guarantee – our algorithm achieves close to optimal welfare against
any (arbitrarily correlated) prior value distribution, even without knowledge of the distribution.
Indeed, our algorithm works even against adversarially selected goods ω ∈ Ω, that need not be
drawn from any distribution!

Let Ω = {ω ∈ R
d : ||ω||2 = 1} be the set of d dimensional unit vectors in Euclidean space.

Individuals i have valuation functions parameterized by ℓi orthogonal unit vectors zi1, . . . , z
i
ℓi

for

some ℓi ≤ k. These vectors define a subspace Si ≡ span(zi1, . . . , z
i
ℓi
), and the value that agent i has

for a good ω is the distance between ω and agent i’s subspace Si:

vi(ω) ≡ 1− d(ω, Si) = 1−min
x∈Si

||x− ω||2

For each agent i, we can think of the vectors zi1, . . . , z
i
ℓi

as specifying up to k “ideal” goods, and
that agent i is equally happy with any linear combination of his ideals. His valuation for a good
ω drops off with the distance from ω to his set of ideal goods. Note that it is not necessary that
agent i actually specify orthogonal goods – if his ideal goods zi1, . . . , z

i
ℓi

are not orthogonal, we can
simply orthonormalize them (using, say, the Gram Schmidt algorithm), which does not alter the
subspace that they define.

We recall that for any ω, argminx∈Si ||x−ω||2 =
∑ℓi

j=1〈ω, zij〉·zj , and so we can write: d(ω, Si) =√
1−∑ℓi

j=1〈x, zij〉2.
To achieve a low space signaling scheme for subspace valuations, we make use of the Johnson-

Lindenstrauss lemma.
We will use (a corollary of) a limited-independence version of the Johnson-Lindenstrauss lemma

presented in [KN10], first proven by [Ach01, CW09]. This version of the lemma holds even for
concisely represented projection matrices, which allows us to communicate the projection matrix
itself as part of our signal. The advantage of doing this is that our algorithm will get strong utility
guarantees even in the prior free setting, when valuation functions can be drawn from a worst-case
(arbitrarily correlated) prior on distributions, and goods can be selected by an adversary, rather
than being drawn from any distribution.

Corollary 3.11 ([Ach01, CW09, KN10]). For d > 0 an integer and any 0 < ǫ, δ < 1/2, let A be a
T × d random matrix with ±1/

√
T entries that are r-wise independent for T ≥ 4 · 642ǫ−2 log(1/δ)

and r ≥ 2 log(1/δ). Then for any x, ω ∈ R
d:

Pr
A
[|〈(Ax), (Ay)〉 − 〈x, ω〉| ≥ ǫ

2
(||x||22 + ||ω||22)] ≤ 2δ

Remark 3.12. The matrix A in our algorithm will be implicitly represented by a hash function
mapping coordinates of the matrix A to their values. There are various ways to select a hash function
from a family of r-wise independent hash functions mapping [T × d] → {0, 1}. The simplest, and
one that suffices for our purposes, is to select the smallest integer s such that 2s ≥ T × d, and
then to let g be a random degree r polynomial in the finite field GF[2s]. Selecting and representing
such a function takes time and space O(r · s) = O(r(log d + log T )). g is then an unbiased r-wise
independent hash function mapping GF[2s] → GF[2s]. Taking only the last output bit gives an
unbiased r-wise independent hash function mapping [s× d] to {0, 1}, as desired.

13



Input: An instance ω ∈ Ω.
Output: A bounded length signal s.
1: Generate a T × d random ±1/

√
T -valued matrix A with r-wise independent entries for r =

2 log(3nk/ǫ) and T = 131072k2 log(3n/ǫ)
ǫ4

.
2: Let ω̂ = Ay and let ω̂′ = ω̂ discretized to log(3d/ǫ) bits of precision.
3: Let s = (A, ω̂′).

Algorithm 3: Algorithm for computing the signal fJL,k,ǫ

We first observe that fJL,k,ǫ generates bounded length signals.

Observation 3.13. fJL,k,ǫ is an η-bounded length signaling scheme for:

η = O

(
k2 log(n/ǫ) log(d/ǫ)

ǫ4
(log d+ log(k log(n/ǫ)))

)

Proof. This follows directly from our choice of r and T , the fact that A can be represented using
O(r(log d + log T )) bits, and the fact that we discretize each coordinate of ω̂′ to log(3d/ǫ) bits of
precision.

We now show that fJL,k,ǫ is welfare competitive with the optimal unconstrained signaling
scheme.

Theorem 3.14. Let OPTU =
∑

ω∈Ω Prj∼p[j = ω] ·maxi∈[n] vi(ω) denote the optimal social welfare
in the unconstrained setting. For every distribution D over subspace valuation functions and every
distribution p over goods ω ∈ Ω,

welfare(fJL,k,ǫ, v) ≥ OPTU − ǫ

In fact, for every v, this guarantee holds pointwise for goods ω ∈ Ω even if adversarialy chosen.
For all ω ∈ Ω, for s = fJL,k,ǫ(ω) :

max
i∈[n]

∑

j∈Ω

x(j, s)pjvi(j) ≥ max
i∈[n]

vi(ω)− ǫ

Proof. It suffices to prove the second, stronger claim. Fix a good ω ∈ Ω and let fJL,k,ǫ(ω) = s ≡
(A, ω̂′). For each bidder i, define Si(A, ω̂, δ) = {x ∈ Ω : |

√
1−∑ℓi

j=1〈x, zij〉2−
√
1−∑ℓi

j=1〈ω̂, Azij〉2| ≤
δ} By our choice of T , we have: Pr[ω 6∈ Si(A, ω̂, ǫ/3)] ≤ ǫ/3n, where the probability is taken over
the choice of projection matrix A Moreover, by our choice of discretization, we have Si(A, ω̂, ǫ/3) ⊂
Si(A, ω̂

′, 2ǫ/3). Therefore by a union bound: Pr[∃i : ω 6∈ Si(A, ω̂
′, 2ǫ/3)] ≤ ǫ/3. Therefore, for all

i:
∑

j∈Ω

x(j, s)pjvi(j) ≥
∑

j∈Si(A,ω̂′,2ǫ/3)

x(j, s)pjvi(j)

≥ min
j∈Si(A,ω̂′,2ǫ/3)

vi(j)
∑

j∈Si(A,ω̂′,2ǫ/3)

x(j, s)pj

≥ (vi(ω) − 2ǫ/3)Pr[ω ∈ Si(A, ω̂′, 2ǫ/3)]

≥ vi(ω) − ǫ
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4 Constrained Signaling with Arbitrary Valuations

In this section we present both positive and negative results for welfare and revenue maximization
for signaling with bipartite and communication constraints, without making assumptions on the
structure of the valuations. In the known valuations case, we show the existence of a 1−1/e approx-
imation algorithm for welfare maximization in bipartite signaling, and a constant approximation
algorithm for revenue maximization in communication-constrained signaling. Our results extend
to the unknown valuations case when the Bayesian prior D has constant-size support. Finally,
we show that even in communication-constrained signaling with known valuations, approximating
welfare or revenue to a factor better than 1− 1/e is NP -hard.

In a bipartite signaling problem, the set of valid signaling maps is represented explicitly as a
bipartite graph with Ω on the left hand side, S on the right hand side, and a set of edges E ⊆ Ω×S,
as well as an integer k(= 2b). A signaling map f ∈ SΩ is valid if (j, f(j)) ∈ E for each j ∈ Ω, and
moreover |f(Ω)| ≤ k = 2b (i.e., the signals can be communicated with at most b bits). We refer to
the edge set E as the bipartite graph constraint, which limits the compatible signals with each item,
and the integer k as the communication constraint, which limits the total number of signals used.
To ensure the existence of at least one feasible signaling map and simplify our results, we assume
that in instances with k < |S|, there exists a “no information” signal s0 ∈ S such that (j, s0) ∈ E
for all items j ∈ Ω.

4.1 Welfare Maximization with Known Valuations

In the known valuations setting, we show the existence of a polynomial-time, e/(e−1)-approximation
algorithm for welfare maximization in bipartite signaling. Formally, we prove the following result.

Theorem 4.1. For bipartite signaling with known valuations, there is a randomized, polynomial-
time, e/(e− 1)-approximation algorithm for computing the welfare-maximizing signaling scheme.

As a warmup, in Section 4.1.1, we show that the special case of bipartite signaling without the
communication constraint reduces almost directly to combinatorial auctions with XOS valuations.
We then extend the result to the general case in Sections 4.1.2 and 4.1.3 through a non-trivial
reduction to submodular function maximization subject to a matroid constraint.

4.1.1 A Special Case: Without the Communication Constraint

We show that welfare maximization in bipartite signaling with known valuations and without a
communication constraint — i.e. with k = |S|— reduces to welfare-maximization in combinatorial
auctions7 with explicitly-represented XOS valuations,8 which can be approximated to within a
factor of e

e−1 as shown by Dobzinski and Schapira [DS06].
We are given a set of items Ω, a distribution p ∈ ∆Ω on items, a set of signals S, a bipartite

graph E ⊆ Ω × S, and known valuations v1, . . . , vn ∈ R
Ω. As in Section 2, we use v̂i(j) = pjvi(j)

7In combinatorial auctions, there is a set M of items and a set N of players. Each player is equipped with a
valuation mapping subsets of M to the real numbers. Welfare maximization in combinatorial auctions is the problem
of assigning the items to the players in order to maximize the sum of the players’ values for their assigned bundle of
items.

8A set function f : 2X → R is called XOS if it can be written as the maximum of additive set functions. Specifically,
if f(A) = maxki=1

∑
j∈A wij for some integer k, and weights wij ∈ R for i ∈ [k] and j ∈ X. We say an XOS function

is represented explicitly if the weights wij are given as input.
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as shorthand. A valid deterministic signaling scheme f : Ω → S partitions the items Ω among
signals S — we let Bs = f−1(s) denote the “bundle” of items mapped to signal s ∈ S. Appealing
to Equation (1), the welfare of f can then be written as:

∑

s∈S

n
max
i=1

∑

j∈Bs

v̂i(j).

This can be extended to arbitrary partitions of the items — i.e. partitions not necessarily respecting
the bipartite graph — by letting wsij = v̂i(j) for (j, s) ∈ E, and wsij = 0 for (j, s) 6∈ E, and defining:

welfare(B) =
∑

s∈S

n
max
i=1

∑

j∈Bs

wsij .

Since the weights wsij do not reward assignments of items to signals not respecting the bipartite
graph, finding the welfare-maximizing deterministic signaling scheme reduces to finding a partition
B of items among signals maximizing welfare(B).

We observe that this is an instance of combinatorial auctions with XOS valuations. Namely, if we
interpret the signals S as the “bidders” in combinatorial auctions, and Bs as the “bundle” of items
assigned to s, the valuation function of s is simply the XOS function f(A) = maxni=1

∑
j∈Awsij .

Welfare maximization in combinatorial auctions, when players have XOS valuations written explic-
itly, admits an e/(e−1) approximation algorithm that runs in polynomial time, as shown in [DS06].
When combined with Lemma 2.2, this proves Theorem 4.1 in the absence of a communication-
bounded constraint.

4.1.2 The General Case: Reduction to Optimization over Mappings

We now consider the bipartite signaling problem with a cardinality constraint k on the number
of signals used. As should be clear from Section 4.1.1, the general case of bipartite signaling
reduces to a generalization of combinatorial auctions with XOS valuations — namely, with the
additional constraint that at most k players win any items in the combinatorial auction. We are
not aware of previous work on this problem, and therefore design an e/(e−1) algorithm for bipartite
signaling directly. We break our proof in two parts: first, in this section we show that computing
an approximately welfare-maximizing scheme reduces to “guessing” the mapping from signals to
winning players, then in Section 4.1.3 we show how to express optimization over these mappings
as submodular function maximization subject to a matroid9 constraint, which admits an e/(e− 1)
approximation algorithm by the result of [Von08].

We begin by observing that every signaling scheme induces a many-to-one mapping w : S →
[n]∪{∗}, which maps each signal to the winning player given that signal, where ∗ denotes an unused
signal. For determinstic signalling schemes that are valid for our instance of bipartite signalling,
w(s) = ∗ for all but at most k signals s. We call such mappings w feasible winner mappings. We
reduce the problem of computing a near optimal signalling scheme to an optimization problem over
feasible winner mappings w.

Given a “guess” for the feasible mapping w associated with the welfare-maximizing signalling
scheme, computing a deterministic optimal signalling scheme is trivial: each item j ∈ Ω is mapped

9Recall a matroid (e.g. [Oxl92]) is a ground set X and a non-empty collection I ⊆ 2X of independent sets such
that: (i) whenever S is independent and T ⊆ S, T is also independent; (ii) whenever S, T ∈ I with |T | < |S|, there
is some x ∈ S \ T such that T ∪ {x} ∈ I.
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to a winning player who likes it most subject to respecting the bipartite graph E. Formally, for
every mapping w : S → [n] ∪ {∗} where w(s) 6= ∗ for at most k signals, we let fw : Ω → S be a
deterministic signalling scheme satisfying

fw(j) ∈ argmax
s:(j,s)∈E,w(s)6=∗

vw(s)(j)

for items j where such a signal s exists, and fw(j) is the “no information” signal s0 ∈ S otherwise
(recall that s0 is a valid signal for all items, see Section 2). The social welfare of signalling scheme
fw is, by appealing to Equation (1), at least

welfare(w) =
∑

s:w(s)6=∗

∑

j∈f−1
w (s)

v̂w(s)(j).

Reversing the order of summation, and observing that fw maps j to a signal maximizing vw(s)(j)
subject to respecting the bipartite graph, gives the following equivalent expression for welfare(w):

welfare(w) =
∑

j∈Ω

(
max

s:(j,s)∈E,w(s)6=∗
v̂w(s)(j)

)
. (2)

The social welfare of fw is at least welfare(w). Note, however, that fw may be infeasible, in that
it may use up to k + 1 signals including s0 — however, in that case w(s0) = ∗, and therefore a
feasible signalling scheme with welfare at least welfare(w) can be gotten by simply choosing an
arbitrary signal s 6= s0 with w(s) 6= ∗, and reassigning all items f−1

w (s) to the “no information”
signal s0. Moreover, when w is the mapping associated with the welfare-maximizing valid signalling
scheme, fw is a welfare maximizing valid signalling scheme with welfare exactly equal to welfare(w).
Therefore, finding an approximately welfare-maximizing signalling scheme reduces to finding a
mapping w approximately maximizing welfare(w). We summarize this in the following Lemma.

Lemma 4.2. Fix α > 0. Computing an α-approximately welfare maximizing bipartite signalling
scheme reduces, in polynomial time, to computing a feasible winner mapping w : S → [n] ∪ {∗}
which α-approximately maximizes welfare(w), as given in Equation (2).

4.1.3 The General Case: Optimization over Feasible Winner Mappings

We now show how to find a feasible winner mapping w : S → [n] ∪ {∗} which approximately
maximizes welfare(w), as given in Equation (2). We do so by posing this as a submodular func-
tion10 maximization problem subject to a truncated partition matroid11 constraint, and invoking
the result of Vondrak [Von08] which shows a polynomial-time e/(e − 1)-approximation algorithm
for submodular function maximization subject to an arbitrary matroid.

Recall that we defined a winner mapping w as feasible if w(s) 6= ∗ for at most k signals s ∈ S.
In order to pose our optimization problem as a constrained submodular maximization problem, we

10A function f : 2U → R defined on all subsets of a finite non-empty set U is submodular if

f(S ∪ {i}) − f(S) ≤ f(T ∪ {i}) − f(T )

for every T ⊆ S ⊂ U and i /∈ S.
11A truncated partition matroid (see [Oxl92]) is a matroid (U, I) with the following structure. There exists a

partition U1, . . . , Um of ground set U , integers k1, . . . , km, and an integer k, such that a subset S of U is independent,
i.e. is in I , if and only if |S ∩ Uj | ≤ kj for all j ∈ 1, . . . ,m, and moreover |S| ≤ k.

17



first relax the set of feasible mappings as follows. We consider many-to-many mappingsW ⊆ S×[n]
from signals to players, and define the welfare of such a mapping W as follows:

welfare(W ) =
∑

j∈Ω

(
max

i,s:(j,s)∈E,(s,i)∈W
v̂i(j)

)
. (3)

In other words, each item j may be assigned to a player i so long as there is a signal s that is
valid for j, and i as one of the “winning” players of s as given by W ; the welfare-maximizing such
assignment is used to calculate welfare(W ).

When W is a many-to-one mapping — i.e. assigns to each signal s at most one winning player
w(s) — it is easy to verify that welfare(W ) (Equation (3)) is equal to welfare(w) (Equation (2)).
Moreover, many-to-one maps W satisfying |W | ≤ k are in one-to-one correspondance with the set
of feasible winner mappings w : S → [n] ∪ {∗}, where feasibility is as defined in Section 4.1.2. It
is simple to verify that the family of subsets W of S × [n] satisfying those two constraints is a
truncated partition matroid on ground set S × [n].

We now show that welfare(W ) is submodular. We define for each j ∈ Ω and (s, i) ∈ [S]× [n]
a weight wsij = v̂i(j) when (j, s) ∈ E, and wsij = 0 otherwise. We then rewrite welfare(W ) as
follows.

welfare(W ) =
∑

j∈Ω

max
(s,i)∈W

wsij. (4)

Observe that welfare(W ) is the sum of |Ω| set functions, namely the functions welfarej(W ) =
max(s,i)∈W wsij for all j ∈ Ω. It is known, and easy to verify, that any set function f : 2X → R that
simply associates a fixed weight wx with each element x ∈ X, and evaluates to f(S) = maxx∈S wx, is
submodular. Therefore, by extension, welfarej(W ) is submodular for each j. It is also well known
that submodular functions are closed under summation. Therefore, we conclude that welfare(W )
is submodular.

Since welfare(W ) is submodular, and moreover the set of W corresponding to feasible winner
mappings is a matroid, invoking the the result of Vondrak [Von08] yields the followin Lemma.

Lemma 4.3. There is a polynomial-time e/(e−1) approximation algorithm for computing a feasible
winner mapping w maximizing welfare(w), as given in Equation (2).

Combined with Lemma 4.2, this completes the proof of Theorem 4.1.

4.2 Revenue Maximization with Known Valuations

Next we show that, in the case of known valuations, there is a polynomial-time, constant factor
approximation algorithm for revenue maximization in cardinality constrained signaling. Our algo-
rithm (Algorithm 4) simply chooses the best of two signaling schemes, computed via procedures 5
and 6. We use OPTR and OPTW to denote the maximum revenue and welfare, respectively, of
a communication-constrained signaling scheme, and vi(∗) = Ej∼p vi(j) to denote player i’s value
for a random item. Moreover, we let v∗ = maxivi(∗) denote the maximum value of a player for a
random item, and let i∗ be the player attaining this maximum. We note that v∗ upper-bounds the
contribution of any individual player to the social welfare of any signaling scheme.

We now provide some intuition for our algorithm. The signaling scheme computed by Procedure
5 guarantees near-optimal revenue when no individual player’s contribution to the optimal social
welfare is too large. An approximately welfare-maximizing signaling scheme f is computed as
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Input: Instance of cardinality constrained signaling, given by Ω, k, valuations v1, . . . , vn
Output: Signaling scheme x∗

1: Run Procedure 5 to compute deterministic signaling scheme g.
2: Run Procedure 6 to compute signaling scheme x.
3: Let x∗ be the revenue-maximizing signaling scheme among g and x

Algorithm 4: Algorithm for Communication-constrained Signaling

Input: Instance of cardinality constrained signaling, given by Ω, k, valuations v1, . . . , vn
Output: Deterministic signaling scheme g : Ω→ [k]
1: Compute a deterministic signaling scheme which approximately maximizes welfare (Section

4.1).
2: Repeatedly merge pairs of signals with the same winner, until each signal has a unique winner.

Call the resulting signaling scheme f .
3: Sort the signals in decreasing order of their contribution to the social welfare of f : s1, . . . , sk
4: Let g be the signaling scheme which merges signals si and si+1 in f , for all odd i.

Procedure 5: First Sub-procedure for Communication-constrained Signaling

Input: Instance of cardinality constrained signaling, given by Ω, k, and prior D over valuations
v1, . . . , vn

Output: Signaling scheme x
1: Exclude i∗, then compute a deterministic signaling scheme h approximately maximizing welfare

for other players (Section 4.1). Let welfare(h) denote its welfare (excluding i∗), and let vs =
maxi 6=i∗

∑
j∈h−1(s) v̂i(j) denote the contribution of signal s to the welfare.

2: Let α = v∗/welfare(h).
3: Let y be the signaling scheme which ignores the realization of the item, and outputs signal s

with probability α vs
v∗ . (It is easy to verify the probabilities sum to 1).

4: Let x be the signaling scheme which with probability 0.5 runs h, and with remaining probability
0.5 runs y.

Procedure 6: Second Sub-procedure for Communication-constrained Signaling
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described in Section 4.1, then signals are sorted in decreasing order of their contribution to the
social welfare, and then pairs of signals are “merged” in that order. Formally, merging two signals
s and t in a deterministic signaling scheme f : Ω → S gives a new signaling scheme g with
g(j) = {s, t} whenever f(j) = s or f(j) = t, and g(j) = f(j) otherwise. Merging two signals s
and t is tantamount to forcing the two winners of the auction in each of the signals to compete,
extracting the value of at least one of them as revenue. Therefore, merging pairs of signals in order
of their contribution to the social welfare extracts half the welfare of all but the most valuable signal
in f . When no individual player contributes much to the social welfare, this is a constant-factor of
the welfare of f .

The signaling scheme computed by Procedure 6, on the other hand, guarantees near-optimal
revenue when a single player accounts for a large fraction of the optimal social welfare. In this case,
i∗’s value for a random item, namely v∗, is on the order of the optimal social welfare. Procedure 6
first computes a deterministic signaling scheme h which e/(e−1)-approximately maximizes welfare
for players other than i∗. Then h is “mixed” with a signaling scheme y which releases no information
— i.e. outputs a random signal independent of the realization of the item. Here, mixing two
signaling scheme is defined as running each with equal probability. When the probability of each
signal s in y is proportional to the contribution of s to the welfare of h, player i∗’s value conditioned
on s is on the order of the value of the welfare of h conditioned on s. Therefore, i∗ serves as a
price-setting player for all signals, extracting a constant fraction of the social welfare of h in the
process. Since, by Lemma 2.4, the welfare of h is a (1 − 1/e)-approximation to the maximum
revenue of any signaling scheme, this yields a constant approximation to the optimal revenue.

We now present a formal proof of the approximation ratio of our algorithm. The result follows
from two Lemmas.

Lemma 4.4. Fix β > 0. If v∗ ≤ βOPTW , then signaling scheme g — as computed by procedure
5 — has revenue at least (1−1/e−β)

2 OPTW .

Proof. Note that welfare(f) ≥ (1 − 1/e)OPTW . It is an easy observation that Step 2, which
merges signals with the same winning player, preserves the welfare of f .

Our assumption that any player’s value for a random item is at most βOPTW implies that
signal s1 accounts for no more than βOPTW of the welfare of f — formally maxi

∑
j∈f−1(s) v̂i(j) ≤

v∗ ≤ βOPTW . Therefore, signals other than s1 account for at least (1 − 1/e − β)OPTW welfare
in f .

Now, recall that g simply merges pairs of signals in f . Given two signals s and t in f , merged
into a new signal {s, t} in g, and an arbitrary player i, we observe that

∑

j∈g−1({s,t})

v̂i(j) =
∑

j∈f−1(s)

v̂i(j) +
∑

j∈f−1(t)

v̂i(j).

Intuitively, the conditional value of player i for the new merged signal, weighted by the probability
of the signal, is equal to the sum of i’s weighted conditional values for both the component signals.
This implies that, given a merged signal {s, t} in g, each of the (distinct) winners of s and t, which
we denote by is and it, have at least as much (weighted) value for {s, t} as they did for s and t
individually. Since the player with the greatest weighted conditional value for a signal wins, and
pays the second-greatest weighted value in expectation, we conclude that the contribution of {s, t}
to the revenue in g is at least the minimum of the contributions of s and t to the welfare of f .
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Recalling that we sorted the signals in f in decreasing order of their contribution to the social
welfare, and then merged them pairwise in that order, we conclude that the revenue of g is at least
half the welfare of f after discarding s1. Our bound on the contribution of s1 to the welfare of f
then completes the proof.

Lemma 4.5. If v∗ > βOPTW , then x — as computed by procedure 6 — has revenue at least
β
2 (1− 1/e)OPTR.

of Lemma 4.5. First, observe that α, as stated in procedure 6, is at least β. Moreover, Lemma 2.4,
combined with the result of Theorem 4.1, shows that welfare(h) ≥ (1− 1/e)OPTR. It remains to
show that x extracts at least a α/2 fraction of the welfare of h in revenue.

Let is denote the winning player of signal s in h (after excluding i∗). Recall that vs, as defined
in procedure 6, denotes the value of player is conditioned on signal s, weighted by the probability
of the signal. Now consider signaling scheme x, which mixes — in equal measure – signaling scheme
h with the scheme which outputs s with probability α vs

v∗ . The (weighted) value of is for signal s in
x is at least half what it was in h — namely vs/2. Moreover, the (weighted) value of i∗ for signal s
is at least his value for a random item times the probability that signal s is output without regard
to the realized item — doing the calculation, this is v∗ · 12 · α vs

v∗ = αvs/2 .
Now, in x both i∗ and is have (weighted) value for signal s equal to at least αvs/2. Therefore,

the contribution of s to the revenue is at least this amount. Summing over all signals, the total
revenue of x is at least α

2welfare(h). This completes the proof.

Setting β = e−1
2e−1 in Lemmas 4.4 and 4.5 proves the following theorem.

Theorem 4.6. Algorithm 4 computes a 2e(2e−1)
(e−1)2 ≈ 8.17 approximation to the optimal revenue in

the communication-constrained signaling problem.

Note 4.7. We note that optimizing Procedure 6 to mix h and y with probabilities γ = α/(1 + α)
and (1−γ), instead of 0.5 each, improves the approximation ratio in our theorem to 6.47. We omit
the details.

4.3 Unknown Valuations

We largely leave open the polynomial-time approximability of welfare and revenue maximization
in the unknown valuations setting. Even in the case of welfare maximization in communication-
constrained signaling, it appears challenging to design approximation algorithms with run-time
scaling sub-exponentially in the support size of D, the distribution over player valuation profiles.
Nevertheless, we present here an extension of the result of Section 4.1.1 to distributions D with
constant size support. The runtime of the algorithm scales exponentially in the size t of the support.
Moreover, we establish a connection of this problem to a generalization of the combinatorial auctions
problem used in Section 4.1.1.

We assume the distribution D over valuation profiles is listed explicitly as a set of matrices{
v1, . . . , vt

}
where vℓ ∈ R

[n]×Ω, and associated probabilities q1, . . . , qt. Using a similar derivation
to that in Section 4.1, the welfare of a deterministic signaling scheme f can be written as

∑

s∈S

t∑

ℓ=1

qℓ
n

max
i=1

∑

j∈f−1(s)

v̂ℓi (j).
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Recall that, as described in Section 4.1.1, the variant with t = 1 can be interpreted as an instance
of combinatorial auctions with players corresponding to S, who are equipped with XOS valuations.
Similarly, the variant with general t can be interpreted as an instance of combinatorial auctions
where each player’s valuation is a sum of XOS functions. We are not aware of any non-trivial
polynomial-time algorithms for this problem that run in time polynomial in t in the computational
complexity model. However, since XOS valuations, and therefore their sums, are subadditive, the
algorithm of Feige [Fei06] guarantees a 2-approximation if players can answer demand queries.
Unfortunately we can show that, unlike for XOS functions, answering a demand query for a sum of
XOS functions, even approximately to within a constant factor, is NP-hard — the proof is deferred
to the full version of this paper. However, this does not rule out other approaches to our problem
not involving demand queries.

We now show that a 1− 1/e approximation is possible in time exponential in t, and polynomial
in all other parameters of an instance. We rewrite the welfare of a signaling scheme f as follows.

∑

s∈S

max
i1,i2,...,it

∑

j∈f−1(s)

t∑

ℓ=1

qℓv̂
ℓ
i (j).

This, again, is an instance of combinatorial auctions with XOS valuations, though each XOS func-
tion is the maximum of nt additive functions. The e/(e − 1)-approximation algorithm of [DS06]
then runs in time polynomial in nt.

4.4 Hardness of Approximation

We now show that our approximation ratio for welfare-maximization in bipartite signaling is tight,
even for the special case of communication-constrained signaling and known valuations. As a
corollary, the same hardness of approximation result holds for revenue maximization. We use an
approximation-preserving reduction from the APX-hard problem max-cover. An instance of max-
cover is given by a ground set [m], a family A1, . . . , An of subsets of [m], and an integer k. The
goal is to find k sets from A1, . . . , An whose union is as large as possible.

Given an instance of max cover, we construct an instance of communication-constrained signal-
ing with known valuations as follows. We let the set Ω of items be [m], and associate with each set
Ai a player i with valuation vi : [m] → {0, 1} such that vi(j) = 1 if and only if j ∈ Ai. Moreover,
we let k be the constraint on the number of allowable signals, and let p be the uniform distribution
over Ω.

Given a solution Ai1 , . . . , Aik for max-cover covering m′ items, we show a signaling scheme with
welfare at least m′/m. We assign items in Ai1 to signal 1, then assign items in Ai2 \ Ai1 to signal
2, and so on until signal k. We observe that, for each signal ℓ ∈ [k], there is at least one player –
in particular player iℓ — who values at least |Aiℓ \∪ℓ′<ℓAiℓ′ | of the items assigned to signal ℓ. This
implies that the welfare of the signaling scheme is at least 1

m | ∪kℓ=1 Aiℓ | = m′/m.
Conversely, given a signaling scheme with welfare m′/m, we show a solution to max-cover with

coverage of at least m′. Each signaling scheme partitions the items into k subsets B1, . . . , Bk, each
of which — say Bℓ — is associated with a winning player iℓ. The welfare of the signaling scheme
is the sum, over all winning players iℓ, of the number of items in Bℓ valued by iℓ, scaled by the
per-item probability of 1

m . Formally, the welfare is 1
m

∑k
ℓ=1 |Aiℓ∩Bℓ|. Letting m′ =

∑k
ℓ=1 |Aiℓ∩Bℓ|,

it is clear from the fact that B1, . . . , Bk is a partition of the items that | ∪kℓ=1 Aiℓ | ≥ m′, as needed
to show a solution to max-cover with coverage at least m′.
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The above reduction, coupled with the hardness of approximation result for max-cover given in
[Fei98], yields the following thereom.

Theorem 4.8. There is no polynomial-time c-approximation algorithm for welfare-maximization
in communication-constrained signaling with known valuations, for any constant c < e

e−1 , unless
P = NP .

The hardness result of Theorem 4.8 also holds for revenue maximization. This follows from a
simple reduction from welfare maximization to revenue maximization: given an instance of cardi-
nality constrained signaling, produce a new instance whose welfare and revenue are equal by simply
duplicating each player.

Corollary 4.9. There is no polynomial-time c-approximation algorithm for revenue-maximization
in communication-constrained signaling with known valuations, for any constant c < e

e−1 , unless
P = NP .

5 Conclusions and Future Work

Our results initiate the study of signaling in constrained settings. Whereas we obtain preliminary
positive and negative results for some natural problems in this setting, we leave open a rich selection
of algorithmic problems. We conclude with a statement of several of these open questions.

We leave several open questions in the bipartite signaling setting. Is there a constant-factor
approximation algorithm for revenue maximization in this setting with known valuations? What
about welfare or revenue in the unknown valuation setting, for which we obtain no nontrivial
guarantees?

More generally, we leave open structural questions in constrained signalling problems more
generally. We showed that there always exists a deterministic welfare-maximizing signaling scheme.
What about the relative power of deterministic and randomized signaling schemes for revenue
maximization? It was shown in [EFG+12] that in unconstrained settings, there always exists a
revenue-maximizing scheme with at least half the optimal welfare. Does such a tradeoff hold in
constrained signaling problems?

Finally, there are many other natural signaling problems one may consider. For example, what
if products are given as points in a high dimensional hypercube or a high dimensional euclidean
space, and an auctioneer must signal a subset of the coordinates? Problems of this form appear
related to deep questions in learning theory, such as learning k-juntas and others.
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A Proofs and Discussion from Section 2

A.1 Convexity and Determinism

Given a constrained signaling problem, we observe that welfare is a convex function of the marginal
probabilities x(j, s), and conclude that the welfare-maximizing constrained signaling scheme is
deterministic. Formally, for every valid signaling map f ∈ F ⊆ SΩ, we associate a vector xf ∈
{0, 1}Ω×S where xf (j, s) = 1 if and only if f(j) = s. A signaling scheme is then associated with a
vector x in the convex hull of

{
xf : f ∈ F

}
, and has welfare as given in Equation 1. We observe

welfare(x) is a convex function of x, and invoke the following fact:

Fact A.1. Let P be a polytope in Euclidean space, and let g be a convex function. The maximum
of g over P is attained at a vertex of P.

We conclude that there is a welfare-maximizing deterministic signaling scheme.

Lemma A.2. For any constrained signaling problem with unknown valuations, there is valid de-
terministic signaling scheme which maximizes expected welfare.

A.2 Communication Constraints and Welfare

When the number of items is finite, we observe a simple bound the number of signals needed to
recover the maximum possible social welfare in the known valuations model.

Fact A.3. Consider an n player and m item signaling problem with known valuations. There
is a signaling scheme with at most min(m,n) signals, and welfare equal to that of the optimal
unconstrained scheme.

This follows from the fact that that the scheme that announces the identity of the item, and
the scheme that announces the identity of the player who values the item most, are both optimal.

Next, we observe that imposing a communication constraint of k signals reduces the expected
welfare of the optimal scheme by a factor of k/ℓ, when ℓ is the number of signals used in the
optimal scheme. Invoking Fact A.3, this implies that the best k-signal scheme recovers at least
a k/min(n,m) fraction of the welfare of the best unconstrained scheme in the known valuations
model.
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Lemma A.4. Consider an n-player and m-item signaling problem of unknown valuations. For ev-
ery ℓ-signal scheme x and k ≤ ℓ, there is a k-signal scheme y such that welfare(y) ≥ k

ℓwelfare(x).

Lemma 2.3 follows easily from Equation (1), which expresses the welfare of a signaling scheme
as the sum of the contributions of all its signals. To see this, let S ′ be the set of k signals with
the greatest contribution to welfare(x), and let y be any scheme with signal set S ′, satisfying
y(j) = x(j) whenever x(j) ∈ S ′.

A.3 Relating Revenue and Welfare

We now mention a useful, though elementary, upper bound on the optimal revenue achievable via a
signaling scheme. This bound follows immediately from the fact that the revenue of a second price
auction is at most the welfare of the same auction after excluding an arbitrary player, though we
present a proof here for completeness.

Lemma A.5. Fix an arbitrary constrained signaling problem with unknown valuations. Let i′ be
an arbitrary player. The revenue of the revenue-optimal signaling scheme is at most the welfare of
the welfare-optimal signaling scheme for all players other than i′.

Proof. First, we observe that the revenue can be expressed as

rev(x, v) :=
∑

s∈S

x(s)
n

max2
i=1

vi|s, x

=
∑

s∈S

n
max2
i=1

∑

j∈Ω

x(j, s)v̂i(j), (5)

where max2 denotes selecting the second largest value. The expected revenue of the auction over
draws of the players’ valuations, which we denote by rev(x), is the expectation of rev(x, v) over
v ∼ D.

It suffices to show that rev(x, v) (equation (5)) is at most welfare(x, v−i′) (equation (1)).

rev(x, v) =
∑

s∈S

n
max2
i=1

∑

j∈Ω

x(j, s)v̂i(j)

≤
∑

s∈S

max
i 6=i′

∑

j∈Ω

x(j, s)v̂i(j)

= welfare(x, v−i′)
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