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Abstract of brain regions over time (measured using fMRI technol-

The focus of this paper is to address the problem of discoverfagy) the corresponding brain regions could be hypothesized
groups of time series that share similar behavior in multiple smi Work together to accomplish a specific task [14].

intervals of time. This problem has two characteristics: i) There 1N problem of discovering groups of intermittently co-
are exponentially many combinations of time series that needd)gfent time series from a given time series data set has two
be explored to find these groups, i) The groups of time serfe@aracteristics: i) There are exponentially many combina-
of interest need to have similar behavior only in some subsB@ns of time series that needs to be explored to find these
of the time dimension. We present an Apriori based approa@fPups. ii) The groups of time series of interest need to have
to address this problem. We evaluate it on a synthetic datz=2ipilar behavior only in some subsets of the time dimension.
and demonstrate that our approach can directly find all groups Pattern mining approaches that have been studied in the
of intermittently correlated time series without finding spuriogontext of market basket data [1, 5] address these two char-
groups unlike other alternative approaches that find many spuri@gseristics directly. The goal of these approaches is to find
groups. We also demonstrate, using a neuroimaging dataset, i@UPs of items that occur together in many transactioes (i.
groups of intermittently coherent time series discovered by dfjey are frequent itemsets). These techniques explore the
approach are reproducible on independent sets of time series @ binatorial nature of the search space in a systematie fas
In addition, we demonstrate the utility of our approach on an S relying on the Apriori principle [1] that guarantees ttha

500 stocks data set. if an item set is frequent then all of its subsets are frequent
too. However, these pattern mining approaches have been
1 Introduction designed to work with binary features, that indicate whethe

) . . . - an item is contained in a transaction or not. Recently, they
Time series data has become increasingly ubiquitous durjn ;

X 27 . : e also been explored for continuous valued datasets [11]

the last two decades in several domains including climate . o o

g . . ; X . Ut there is no existing framework that works with time se-

bioinformatics, social media and neuroimaging [3, 13]. T'FFes data

data mining community has studied several problems per- In this paper we generalize the well studied frequent pat-

tammg_to analyzing “”?e_ series data [2, 13]. 'They InCIucEgrn mining techniques to work with time series data in or-
clustering [4, 19], classification [17], anomaly detectj6h der to discover all groups of objects whose time series are

forecasting [8], and segmentation [9]. The focus of this Pfﬁtermittently coherent. Specifically we use a sliding win-

Q6w based approach and we propose the notion of support

. o . fqr time series data with a goal of capturing intermittert co
of time. We refer to such groups as ‘intermittently coherepI : . . . .
erence for a candidate group of time series. Using this,

time series’ in the rest of this paper. . " )
. . we provide an Apriori based framework that can discover
In a complex dynamic system different groups of enti- : . : .
. ; all groups of intermittently coherent time series such that
ties in the system may behave coherently for short interv . )
: . o L . otal length of coherent intervals for a group is longer than
of time to achieve a specific objective. For example, in a hu- .
X . . . ven window-based threshold. We evaluate our approach on
man brain, a brain region can be treated as an entity andthe

o ! . : g ynthetic dataset and show its effectiveness in disaayeri
amount of activity measured over time at a brain region cou ﬁsthe desired intermittently coherent arouns in CoMEATIS
be treated as its behavior. Multiple brain regions are gai y group foBr

) . ."t0 that of alternative approaches. We then show the utifity o
behave coherently for a short period of time when the time . .
X . . . - _ . .our approach on a real world neuroimaging dataset, where
series of their activity levels become highly similar withi :
o , . ) we demonstrate that our approach can be used to discover
this time period. Consider the hypothetical example shown - . .
S . . . . - significantly reproducible groups from independent sets of
in Figure 1, that depicts four time series each with 200 tin : .
. . . - time series data collected from the same set of subjects. On
points. These time series do not appear to be similar when . . . .
; X . ; . tne same dataset, we show its effectiveness in comparison
all the 200 time points are considered. However, in the time

intervals from 51 to 90 and from 141 to 180 they exhib\ﬁ”th an alternative approach. We also demonstrate théyutili
. L . . - of our approach on an S&P500 weekly stock prices data set.
high similarity. If such time series represent activitydts/ . o . )
The following are the key contributions of this paper:
—Dpt. of Computer Science, University of Minnesota e A novel approa<_:h to quanti_fy the QUration of intermittent
TDept. of Psychiatry, University of Minnesota coherence for a given set of time series.
tDept. of Psychology, University of Minnesota

series that share similar behavior in multiple small intdsv
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Figure 1:Four time series exhibiting intermittently coherent behavior. (All figuresigmrtranuscript are best seen in color.)

¢ A systematic framework for discovering all groups of timdistance, and correlation have been studied in the lite¥atu
series that exhibit intermittently coherent behavior. [13, 7]. Note that these similarity measures have also been
e Comparative evaluation of the proposed approach wiiked to capture lagged relationships in the data which is not
alternative approaches to demonstrate its effectivenassttee focus of the problem that is being studied. Nevertheless
synthetic and real world datasets. these technigues cannot capture the similarity (high torre
tion) in small time intervals, as they take into considenati
This paper is organized as follows: In section 2, we fothe full time series available.
mally define the problem. We present alternative approaches Frequent pattern mining techniques can be applied to
and the proposed approach in sections 3 and 4, respectivglye series data after binarizing the data using a suitable
In section 5, we present the evaluation of our approach thneshold. Consider a matri® whose columns are the time

two real world datasets. We conclude with section 6. series vectorg’ for every object, and whose rows are time
points. Using a binarization threshold this matrix can beco
2 Problem Formulation verted toD,,; where an element takes a value 1, if its value

{I,,I,...I,} at m different time points{t,,ts,...t,}. WiSe. Frequent pattern mining on this data can explore all

Let the observations made ot objectl; be represented ascombinations of objects, but it is limited to capturing gosu
atime seriesl = (di,di,...d! ). Let D be a matrix whose of objects whose value is beyond a threshold for a number

columns are the vectots, Vi € (1,...,n). Consider a time Of time points that is greater than a user provided thresh-
window of lengthwindow-lengthw that is moved across thelld. This approach does not directly look for intermittgntl
time series in steps of size Our goal is to find those sub-Strong correlations, i.e., time intervals where the tim@esg
set of objects(/;,, I,, ... I;, } such that the time series ob&€ highly correlated among them. Moreover, the blrlarlza-
served on these objects behave ‘similarly’ in at least a u&ep threshold based similarity cannot capture correfetio

provided number of windows. A number of different ways dhe full time series, let alone the intermittently strongree

in the literature [7, 13]. We will use Pearson’s correlatimn nigue applied on a binarized version of time series datatis no
a measure of similarity between two objects for a given tin¥itable to address the problem at hand. o

interval in this paper. A given set of objects is deemed to Alternatively, one can use frequent pattern mining tech-
behave similarly if the minimum of the pairwise correlatioRidues on time series clusters obtained from sliding time

of all the time series obtained from these objects is abov#/&dows. To achieve this, one can use a sliding time window
user provided correlation threshold. of a chosen length and compute time series clusters within

each window, by moving the window in steps of a predeter-
mined size along the length of time series. These clusters ca

3 Alternative Approaches . :
be used to construct a binary mat6is’, where each row is

To the best of our knowledge, there is no existing approaé:ﬁ':luster and each column is a time series. A value of 1 in

that can directly discover all groups of time series such tf{ﬁ

- : . e matrix indicates the presence of time series in the corre
for every group there are sufficiently many time wmdowss onding cluster. Frequent pattern mining can then be used
in which all constituent time series exhibit sufficienthyghi P 9 ) q P 9

. . . .on thisC'T matrix to find groups of time series that partici-
correlations among themselves. In this section we outline

ossible approaches that can help one find such arouns pate together in the same cluster for sufficiently many time
P PP P 9roups. \indows. This approach has the potential to recover groups

Clustering of time series data is one way to determ|r(1)<tetime series that share high correlations in many windows.

groups of time series that are highly correlated. Trad#ion

clustering aporoaches like k-means. hierarchical anditjenA challenge with this approach is that it is not trivial to de-
gapp o . Termine the choice of number of clusters within each sliding
based clustering are often used with time series data sets . : .
. . Lo wirldow. One can construct a scenario where there are differ-
choosing an appropriate measure of similarity. Several sim o T ) :
o o ; .~ ent number of clusters in different sliding windows and this
ilarity measures such as dynamic time warping, euchdegn h will not perf i h M
pproach will not perform well in such a case. Moreover,



in windows where there are no high correlations among tlrethe case of market basket data, supporting transactions
time series, this approach will find spurious clusters andfev a given set of items can be determined by computing
the resultant groups discovered could be potentially sputie intersection of the transactions in which each of the

ous. individual items are present. This is not trivial with time
series data. Moreover, the goal is to identify the intervals
4 Pattern Mining Framework during which a high correlation is exhibited.

Discovering groups of time series that behave similarly for Here we use a sliding window based approach to com-
at least a given number of time points is a challengimy€ coherence between time series for each window. Specif-
problem. It requires searching through all combinations &glly, we choose avindow-lengthu to determine the dura-
objects as well as determining intervals in time at whidtn of a window and to move the window across the time se-
the objects in question behave similarity. These challendies in steps of size. For example, the first window captures
have been addressed in market-basket data sets by freqiiénime pointgty, ..., t,) and the second window captures
pattern mining techniques. Market basket data captures ¥ time points(t,1, ..., ts+.,). We refer to each window
items purchased in a transaction in a binary data mat#&ing the index of the ending time point. For example, the
X, whose columns are items in a market, and whose rofff§t two windows are referred to as, andw,.,. For a
are transactions, and whose elemeifits have a value 1 given time series!’ ofllengthm, using.a choice of window
indicating the presence of an itejnin a transactioni, and lengthw and a step size, the set of windows is referred to
a value 0 otherwise. The goal of frequent pattern minifgw’ = (Wi, Wi, - -~wlm%w+1)-
techniques is to discover all subsets of items (also referre  We treat each window as a transaction in traditional
to as itemsets) that are purchased “frequently”. The rdtiofeequent pattern mining. To determine if a window supports
the number of times a set of items are purchased togetaegroup of time series we need to estimate if the group
to the total number of transactions is treated assthgport of time series exhibit high coherence within this window.
of an itemset. A user providedipport threshold is used to We perform this by computing the pairwise correlations
determine whether a given item-set is frequent. A transactbetween the time series for a given window. A window
in which all the items in an itemset in question are presenigssaid to support a group of time series if the minimum
said to “support” the itemset. of the pairwise correlations is greater than a user-pravide
A standard pattern mining approach that is widely usedrrelation threshold,. The number of time windows that
with binary data sets is the Apriori algorithm [1]. At thesupport a group of time series is referred taas support.
heart of this approach is the Apriori principle that guaesst Formally,ts — support for a set of object$ € {I,...I,}
that if a set of items are not frequently purchased togethisrgefined as follows:

then any bigger set that includes this set is not frequeris Th mee 4]
is due to the anti-monotonic nature of thepport measure, (4.1) ts — support(S,w, s,v) = Z Loinpuwe(Sws) >
i.e., support of a given set of items is less than equal to the —w U

support of any of its subsets. Relying on this principle, thghereminpwe(S, w;) is the minimum of the pairwise cor-
Apriori algorithm builds item sets bottom up, where it starte|ations between objects in the s¢tfor the windoww;.
with all single items and filters out items that are not fre|_-m,npw(Swv)>ﬂY is 1 whenminpwe(S, w;) is greater than a
quent. It then groups the frequent single items to enumergi@r provided threshold, 0 otherwise. Note that the win-
candidate item-pairs and then evaluates them to selea thgsws that support a given set of time series are the windows
pairs that are truly frequent. Then candidate item-trigles i which the given set exhibits sufficiently high correlatio
enumerated from the frequent pairs by joining the pairs thgteater thets — support of a set of objects, longer is the
share one item and the frequent triples are determined bydilyation of sufficiently high correlations among them.
tering out the infrequent ones from the candidate triples. |  \ye jllustrate the notion ofs — support with the help
this fashion it constructs higher-order sets until no mage b gn example shown in Figure 2. Here two time series are
ger sets can be enumerated. Note that the higher order caglswn for whichts — support needs to be estimated. The
date itemsets are only enumerated from the frequent itsms@lgice of window lengthv = 30, step sizes = 10, and
at a given level. This reduces the number of candidate itefyrelation threshold = 0.8 are used. In the first window
sets effectively. By systematically pruning the search:epqugo spanning(t1,. . . tso) the time series has a correlation
of all possible combinations of items, this approach can effi g The second window spams spanning(ti1, .. - t4)
ciently discover all possible itemsets that are frequeptify  and the two time series have a correlation 0.4 in this window.
chased together. Similarly, for the third and fourth windowsys, andwg, the

o . ) ] correlations are 0.82 and 0.83, respectively. Only thelthir
4.1 Designing a notion of support for time series data angd fourth windowsuso anduwgo, contribute to support as
The key difference between market basket data and tifagijr correlation surpasses thethreshold. Thereforets-
series data is that in market basket data we have a bingrgupport for the time series in this example is 2.
vector (a column inX) for every item indicating its presence Antimonotonicity of thets — support measure allows

a time seriesd® with continuous values for an objedf. groups of time series.



frequent sets are found.
The algorithm is outlined here:

ALGORITHM 4.1. (TiIME SERIESPATTERN MINING)

I nput:

i. D, areal valued time series data matrix of size x n|, where
columns are item$ = {I,I>,...I,} and rows are time points
T ={ti,t2,...tm}

ii. o, a support threshold

iii. w, window length

iv. v, minimum correlation threshold

1 Output:

All subsets of objects withs — support > o

20 40 60
[ window1 r=06 e

10 20 50

[ window?2, r=0.4
[ window3 r=08

[ windowd, r=0.8 1Lk=2
3. for each candidates, € C'Sy, do

4, computets — support(csk,w, s,7) using Eq. 4.1

Figure 2: Example to illustrate the notion @& — support with
w =30, s = 10andy = 0.8. = ond

4.2 Antimonotonicity of ts — support We now prove .6: Sy, = {csulcsi € CSk A ts — support(cs,w, s,7) > o}
that thets — support measure we defined above is antl; \hije 5, £ ¢ do

monotonic so it can be used in an Apriori like framewor E=k+1

[1] to discover all subsets of time series that satisfy amive, CSy = Apriori — gen(Sk_1)

ts — support threshold;y. 10. for each candidates;, € C'Sy, do

11. computes — support(csk,w, s,7y) using Eq. 4.1
THEOREMA4.1. ts— support(S,w, s,y) measure decreases;2  end

monotonically as new items are introduced for a given setmf. S, = {csi|csk € CSk Ats — support(csk,w,s,v) > o}
time seriesS, window lengthw, step sizes, and a pairwise 14.end

correlation thresholdy.

Proof. Consider a new sef’, such thatS’ = S U z.
A window w; that does not contribute tds —

15. Result= | Sk

Step 2 enumerates all possible pairs, while steps 3-
6 compute the support of a pattern and determine the

support(S,w, s,7), i.e.,minpwc(S,w;) < ~, will not con- frequent pairs that satisfy the support criterias —
tribute tots — support(S’,w, s,y) because the minimumsupport(csg,w,vy) > o. Steps 7 through 14 enumerates
pairwise correlationninpwe(S, w;) will not increase as a candidates and determines frequent bigger patterns in an it
new time series: is introduced to the sef. erative way, until no bigger frequent patterns can be found.
A window w; that contributes tos — support(S,w, ),
i.e., minpwe(S,w;) > -+, will either contribute or not 44 Handling issues due to highly similar time series
contribute tats — support(S’, w, s,v) depending on how the Note that in a given dataset there could be groups of time
new time series affects the minimum pairwise correlationseries that are correlated when all the time points consid-
If minpwe(S,w;) > v andminpwce(S’, w;) > v, thents — ered. For example, in stocks data many stocks that belong
support(S,w, s,v) = ts — support(S’,w, s,v), otherwise to a given sector (e.g., health sector) could exhibit high co
ts — support(S,w, s,v) > ts — support(S’,w, s,7). relations for the entire duration of time considered. These
Therefore, ts — support(S,w,s,”) > groups will have high value for our newly defined notion of
— support(S’,w, s,7) support and will make it computationally hard to discover th
low support patterns that are sufficiently correlated farla-r
4.3 Apriori-based approach for time series data Using tively shorter amount of time. To avoid finding these groups
the above notion of computing support from time series dgthat can be more easily found using alternate techniques),
we now describe a generalized Apriori algorithm that cawe add an additional constraint to our approach that discard
work with time series data. First, we start with all pairs ainy candidate set that has two objeftsind I; whose full
objects and then evaluate their — support to determine time seriesi’ andd’ have a correlation that is greater than a
the pairs that are interesting. Note that the original Apricuser providedfull — corr — thresh, before computing their
starts with single items and determine frequent itemsedspport. This is achieved by filtering out such candidates im
Here we cannot filter at the first level because we neetbdiately after the candidates are enumerated in steps 2 and
at least two time series to determine similarity and so W@eof Algorithm 4.1.
start by enumerating all pairs. Once the frequent pairs (i.e
pairs withts — support > ~) are determined, we therd.5 Handling artifacts due to globally similar behavior
enumerate the candidate triples as is done in a traditiohmmany cases high correlations among all the time series in
Apriori algorithm [1] by joining interesting pairs that stea an interval can be induced due to a global event in the sys-
one object. This approach continues until no more biggem. For example the 2007-2008 recession induces a similar

ts-



behavior in most of the stocks, and any windows that cc
tribute tots — support in this period will inflate the support
even though the event is not specific to the candidate
tern. Similarly, motion related artifacts create glob&tg@ans
in neuroimaging data [12]. There is a need to control f
windows that have such globally similar behavior from col
tributing towards theés — support. One approach to addres:
this challenge would be to discard all windows that capture
globally similar behavior and work with the remaining win
dows. Another approach is to weight the windows dependi
on how similar the behavior of a candidate set for a windc
is to the global behavior (e.g., correlation between meaa ti
series for a candidate set with that of the entire set). In 1
context of market basket data this will be akin to developit
a weighted version in which transactions that have too me
items provide no support (former approach) or smaller st
port (later approach). We use the former approach and
show its utility in finding groups of time series that exhibit

Intermlttent _Co_rrelatl.ons not d_ue tq a global scenario IO'Sq:igure 3: Four groups of synthetically generated intermittently
tion 53 Thls_ls gch|eved by ignoring those wmdoyvs Who_%@rrelated time series: (ij1,2, 3,4} (ii) {5,6) (i) {7,8} (V)
median of pairwise correlations between all the time serig$ 1}, Regions of the bold time series are the correlated intervals.
is greater than global — corr — thresh threshold. We in-
corporate this into our definition @ — support as follows:

= 400
1350
1300

1250

Time

1200
1150

1100

time points in a time series have similar values. We then
impute four set§(1, 2, 3,4), (5,6), (7,8), (9, 10) } of strong
correlations for 120 time points (separate intervals ofthn
60 and 60). This is done for every set by copying the first
time series for a chosen set of 60 contiguous time points

4.2)
ts — support(S,w, s, 7, global — corr — thresh) =

=+ in the other members of the set with a small amount of
> Lminpwe(Sawn) >7)&(mediangpwe(w,) <globalcorrthresh) 2dditive noise sampled from a Gaussian distribution with
i=w a mean of 0, and a standard deviation of 0.01. The four

) i o groups of time series are shown in Figure 3. The regions
wheremediangpwe(w;) is the median of the pairwise cor-of time series shown in bold curves in each of these groups
relations between all objects in the gefor the windoww;.  are the imputed highly correlated intervals that we expest t

) following approaches to capture.
5 Evaluation Approaches. We used three other competing approaches, in
Designing a thorough evaluation pipeline is a challenge faddition to the proposed approach:
the problem at hand as is the case with many unsupervide#-means clustering (K-means)
algorithms. We used a synthetic dataset to highlight the Réfe clustered the set of 10 time series into four clustergusin
strength of the proposed approach and the weakness of coamnrelation as a distance metric. We clustered them into fou
peting approaches. The lack of ground truth in real wortgloups as the number of groups that were imputed was also
datasets limits us from directly comparing the groups oétinfour.
series discovered using the proposed and the competingZaphpriori on binarized time series (Apriotk, ;)
proaches. However, we performed a comparative evaluatitve first constructed a binary matrik,,; using a threshold
the quality of the discovered groups. Using a neuroimaging matrix R and then found maximal frequent patterns of
time series data collected from same set of subjects at tivoe series using a support threshold. We considered the
different time points we studied the replicability of thedin following choices of quantile based thresholds from the
ings which is necessary to test the validity of the results. matrix R: {0.5, 0.55, 0.6, 0.65, 0.7}. A value in the
addition to this, we demonstrate the utility of our approachatrix R,,; was 1, only if the corresponding value i

using a case-study on S&P stocks data. was above the chosen quantile based threshold. We used a
support threshold of 60 for consistency in comparison with
5.1 Evaluation on a Synthetic Dataset Data: We the other Apriori based schemes that are described below.

first created a random 400x10 matri¥, where rows are For the sake of interpretability, we treat number of rows
time points and columns are time series, by sampling eatlpporting a pattern (not fraction) as i¥'spport for Apriori
element from a uniform distribution with a range [0 1]. Eachased methods.

time series is further smoothed by computing the value aBaApriori on K-means clusters (K-means+Apriori)

time pointt as the average of neighboring points frombto  We used a sliding window of length 30 that is moved along
t + 5 to incorporate temporal auto-correlation that naturaltiie time series in steps of size 1. This resulted in 371 glidin
exists in real world time series datasets, i.e., consezutwindows. Within each window we considered the 10 time



Approach | Parameters Recoverability| Spuriousness  the groups/patterns discovered using the four approachkes a
K-means k=4 0.25 0.5 shown in Table 1. For the full time series based approaches
Apriori q=05 0.25 0.98 K-means and AprioriR,,;, the recoverability is poor and
~Ro/1 q=0.55 0.25 0.86 spuriousness is high. High spuriousness is mainly because
(o= 60) q_=(§).665 :'255 8'2% they take the full time series into account for finding groups
O('q_: 0'_7 0:25 0:20 and Iow recoverability is due to fact that f[hellocally high

Komeans k=2 025 096 correla_t|on§ are not apparent when correlation is asséssed

+ Apriori k=3 0.25 0.96 the entire time series.

(o = 60) k=4 05 0.89 K-means+Apriori performs differently for different
k=5 0.75 0.57 choices oft. Whenk is very small, the recoverability is very
k=6 0.75 0.36 poor and the spuriousness is very high. This is because the
k=7 0.75 0 clusters in each window are forced to be much bigger than
k=8 0.5 0 the imputed groups and they support spurious patterns in the

TS- 7=038 1 0 Apriori framework. Wherk is moderate X = 4, 5), the re-

Apriori coverability increases, and spuriousness increases toenWh

(o = 60) k is high (¢ = 6, 7), the recoverability is relatively high, and

spuriousness is relatively low. This is because the claster
Table 1:Comparison with competing approaches become smaller as increases. At the same time a high

. . . Fhoice ofk will not leave all the clusters intact, as it splits
series and clustered them intalusters. Several choices o : .
some real groups into smaller clusters. This is the reason re

k- were explored:k {.2’37 ---8}. Each cluster tha}t hascoverab|llty is only as high a&.75, for k = {4,5,6,7}, and
more than one member is then used to construct a bifidry . ;

i .2 decreases t0.5, for £ = 8. In general, it can be noticed that
matrix whose rows are clusters and whose columns indicate

time series. A value of 1 in this matrix indicates that a timré10re spurious groups are found when the choice isflow,

series was part of a cluster from the window in which it w dnd some real groups are missed whds high. Moreover,
) P . '3Rere are different number of imputed groups in different in
discovered. We then found maximal frequent sets of ti

e . i
; "Wtvals. For exam le, from Figure 3 it can be seen that for the
series that were p.art of more than 60 clusters. Note thay6\/|J[re1rterval 301to 368 there areg three groups that are imputed
candidate set Of. t|.me Series can be supported by at mqst While there is only one group imputed in the interval from
cluster from a sliding window, because k-means CILISteEng'Ol to 260. Spuriousness could also be a result of windows
partitional in nature. )

! . - . where there are no imputed groups, where K-means is forced

4. Time series pattern mining (TS-Apriori) : . . .
L X . to find &£ groups in all windows. Therefore, using the same

We used a sliding window lengtla = 30, step sizes = . ) ; . o

. .2 choice ofk for all windows will not yield a recoverability
1, minimum pairwise length thresholgd = 0.8, support : o .
thresholds — 60 of 1 and spuriousness of 0 in this synthetic dataset. Even

. . : in cases where same number of clusters are imputed in each
The rationale for the choice of suppert= 60 in all

the Apriori based approaches that work with sliding wir‘n’ymdow' choosing the right is still nontrivial, as a higk

dows (Apriori+K-means, and TS-Apriori) was that each iri/]yilglllhrtsais)ﬂlrticl)ﬁslg\évsgecoverab|I|ty and a lovk will result in

put group has two mdependent 60 t|me pointlong highly cor- For the proposed approach, TS-Apriori, the recoverabil-
related intervals. With the chosen window length of 30, atn . . . L . .
ity is 1 and spuriousness is 0, which is the ideal scenario.

interval of 60 time points will be visible in at least 30 shdi T{:is is mainly because it does not rely on clustering and it

windows and together the two intervals (for a given grou : : )
. . . aluates the relationship between candidate groups ¢br ea
will be visible for at least 60 windows. Therefore a sup-. : .
. ; : window independently and so it is able to recover all of the
port of 60 should suffice to discover all the imputed groups. - red arouns without disCovering anv Spurious arouns
Apriori- Ry, on the other hand does not use sliding windows P group ganysp groups.

and treats each time point independently. Therefore, a s
port of 60 is smaller than the sum of the duration of high
correlated intervals (120).

#% Case study on Neuroimaging Data Functional Mag-
Netic Resonance Image (fMRI) data measures the amount of

Comparison metrics For each approach presented abovoxygen consumed at every 2x2x2 mm cubic location in the
P ) bp P Stain (referred to as a voxel) and it is known to indicate the

we evaluated two key factorsecoverabilityand spurious- mount of activity occurring at any location. Data from an

ness Recoverability is the fraction of imputed groups th : .
) . ; | scan can be represented in the form of a timexel
were discovered. Only when an imputed group is a subset of, . . A
. . . matrix B, where every elemettv;; in the matrix indicates
a discovered group, an imputed group is treated as a recov:

ered group. Spuriousness is the fraction of discovereq:g;ro%l znzmact)u:tlgga?iiﬁr?ga:eascetx?é %Cctg'!;? \;a\;eaugg] de tﬁg'm
that were not imputed, i.e., those discovered groups tleat ar b . y VoY .

. : ataset from [18] that contains 6 minute resting state fMRI
not subsets of any imputed group. For an ideal approach, scans from 27 healthy subjects obtained at two differer tim
recoverability is expected to be high (1) and the spuriosisné " y Subj .
is expected to be low (0) points that are 9 months apart. We refer to the first set of

Observations: The recoverability and the spuriousness gf:ans from 27 subjects as Scan 1 data, and the second set as



800 : . from 300 to 800. The strength of our approach lies in find-
ing groups of brain regions that exhibit similar behavior in
Og multiple small intervals in time. Therefore, we us¢@ll-

~
o
(=]

D
o
o

- — corr — thresh = 0.6 to prune all those candidates that
§ have a hights — support to directly find those interesting
e groups that are otherwise unknown.
A We used the proposed TS-Apriori with window-length
Lot w=30,s =5,v = 0.7, 0 = 40 on Scan 1 appended
200} & time series data matrix and found 111 size-3 patterns. We
also used K-means+Apriori, that is the best of the competing
approaches from our evaluation using synthetic data, to
85 — 05 1 discover intermittently correlated groups of time seriesf
Global Correlation Scan 1 data, wittk = 30 clusters in each window using

parameters = 30, s = 5, ando = 40 that are same as those
used with TS-Apriori. We discovered 75 size 3 patterns.
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Figure 4:Comparison between pairwise global correlation &nd

~ support The union of the 111 and 75 patterns discovered using
140; . TS-Apriori and K-means+Apriori approaches, respectively
38 o 37 results in 149 patterns and their support computed using
£ 129 ! the two approaches is compared in Figure 5. Note that the
'5:51007 o ‘ o support in K-means+Apriori and thig — support in TS-
+ 1oe g Apriori can be compared, because both of them represent
§ 80} * NU A P the number of windows that support a group of brain regions
£ o, * r. R R ° (v > 0.7). Out of the 75 size 3 patterns discovered from K-
o0 . o }, .o, o means+Apriori, only 37 patterns haveésa— support > 40
‘é a0k - o ::.‘-';:!‘_ . e (49.3%, approximately). .Th|s suggests that the remaining
= S .' ° o . o 50.7% patterns are spurious according to our objective of
@ 20 ¥ .-..‘ L. ¢ finding group of time series that exhibit similar behavior
e < 74 in at least a given number of time steps. These patterns
% 20 40 60 80 100 120 140 are shown above the horizontal red dashed line indicating
Support in TS-Apriori support > 40 and to the left of the vertical dashed red

. _ _ o line indicatingts — support < 40. This spuriousness is
Figure 5: Patterns discovered using TS-Apriori and Kmainly due to the poor quality of the clusters discovered,
Means+Agpriori i.e., the minimum pairwise correlation of clusters is ldsat

Scan 2 data. The spatial resolution of each fMRI scan V\}Qe v thre_shold used in TS-Apriori. Flg_ure 6 .S.hOWS the
: relationship between the clusters and their quakityr{pwc
2x2x2 mm and the temporal resolution was 2 seconds. Sev- . .
. measure) from the windows they were discovered from. The
eral prepossessing steps have been performed on the data,0 . .
. lusters whoseninpwec is greater thany = 0.7 threshold
tained from the scanner and they have been elaborately dis- . . .
: o . . re those that lie above the dashed red line, while those that
cussed in [18]. In addition, following the approach in [10

. o - Tave relatively poominpwc lie below the red line. The
global mean time series is regressed from the data, as is 0:7% spurious patterns are supported by these clusters tha
in most fMRI studies. The resultant tim@oxel matrix for ' P P bp y

each scan was of dimensioh80 x 160,990. We further lie beneath the dashed red line in the figure.

: : ) . One could argue that a smallercan be used to ensure
group voxels into 90 brain regions based on an anatom|9naalIt all clusters have ainpwe > ~. However. a smallek
atlas provided by [15]. The resultant matri;-, for each pwe = 7. '

scan was of sizes0 x 90. We then appended the time Seriecould potentially result in splitting naturally existinfusters

|S ther windows into smaller clusters. Even at the choice
from each of the 27 scans from Scan 1 data to get a 4860 (2 '

. i . . Kk = 30, K-means+Apriori only recovered 37 of the 111
matrix. Similarly we appended the time series from Sca _Apriori patterns, indicating that the recoverabilisyinl
data to get another 4860x90 matrix. b P ' 9 y

. : . . 29.7% (along with spuriousness 50.7%). This is potentially
Out of the 90 brain regions, a few brain regions that @iTe to the different number of natural groups that exist in

related to visual system of the brain are found to be consis; .
; . . . different windows and so these groups cannot be recovered
tently correlated in earlier studies [16]. These set ofrbrai . : .
using a uniformk for all windows. On the other hand, our

gions with highly correlated time series will introduce rgan . .

. . . approach estimates the strength of correlation between the
high support patterns in our analysis and these patterns dr . . L .

4 ot : brain regions in a set usinginpwc measure and determines
uninteresting in our case as they can also be discovered us- :
S ; . ; . whether a window supports a pattern or not.
ing time series clustering techniques. In Figure 4 we show : .
the global correlation and the correspondirsg— support On Scan 2 dataset, using the same parameters as in
9 b g~ supp Scan 1 dataset, we found similar observations where K-

for all pairs of brain regions. The pairs of regions that are ST 0
highly correlated € > 0.6) have ats — support ranging means+Apriori missed 54.5% (73 out of 134) of the patterns



Using a hypergeometric distribution we computed that the
probability of expecting an overlap of 67 or more when
B N 111 and 134 objects are drawn independently from a set of
. 8 117,480 is less tharl 012,
g The correlations of contributions from subjects towards
2 ts — support (in Figure 7) are weak. The average of
the correlation of contributions for the 67 patterns tha ar
° common is approximately 0.24. This is indicating that
o the contribution of subjects towards patterns is different
in different scans, and that both the scans do not have
same information about these patterns. This is inline with
§ © observations made by many studies that the reliability ef th
-1 : : : : : W correlations between time series computed from two scans
Size of clusters of the same subject are poor [16, 18]. Despite this weak
similarity between scans, the fact that these patterns have
Figure 6:Relationship between cluster size and its quality high supportin both the datasets suggests that an undgrlyin
neurological phenomenon could be driving these patterns.
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1807 : 5.3 Case Study on Stock Market Data We obtained the
140t 67 ! 67 0.8 weekly closing stock prices of S&P500 companies over a
! . 10-year period from January 2000 to December 2009 (521
e 1201 I . 06 weeks) from Yahoo! Finance website. We then removed
g 100} N o " those companies from this list for which only part of the data
= & @, 0l (less than 521 weeks) was available. We were left with 443
g 80 ! ¢ . ' companies for which stock prices were available for all the
o 000 8 o ° . .
2 6o ey - 02 521 weeks. As the stock prices are at different scales, we
i L Y Sk T ' normalized each time seriéé such that
2 gore-e g™ : g ' .
r 0 i dt — min(d")
e 5.3 d_ = . .
20 ¢ 44 6:3) e = a(di) — min(d)
0 L : , _02 ,
0 50 100 150 where,d! is the original stock price of stockat timet¢, and

ts=supportin Scan 1 min(d') andmaz(d’) are the minimum and maximum stock

Erices of stocki, respectively.

Discovering groups of companies that exhibit strong
correlations in small intervals from a span of 10 years could
found by TS-Apriori and 21.8% (17 out of 78) of the patterngveal novel direct or indirect relationships among compa-
found by K-means+Apriori were spurious. As the recovemnies. We found that this stocks data has two key character-
ability and spuriousness of K-means+Apriori relies heaavilstics that can lead to the discovery of uninteresting paste
on the choice of, we tried several additional choices/af i) Two stocks that belonged to the same industry generally
including £ = 10, 20,40,50. We found that spuriousnesshowed very strong correlation during the 10 year period.
increases dramatically for lower choices fof while very For example, stocks APA and APC that belong to oil and
few of the TS-Apriori patterns were discovered for higheras industry have a correlation of 0.95, approximatelyhSuc
choices oft. These observations are similar to those demagroups can be directly discovered using traditional chisge
strated above using the synthetic dataset. These resgifts hbased schemes and are uninteresting for our purpose. i) Cer
light the limitations of the K-means+Apriori approach anthin incidents affect all the stocks, e.g., the mortgageisri
the strengths of the proposed TS-Apriori approach on a raald so contribution of such windows towarnds— support
world dataset. may lead to spurious and uninteresting patterns. Our ap-

We further studied the similarity in the 111 and 13groach addresses the first problem by building candidates
patterns that were discovered from Scan 1 and Scarindlving those companies whose minimum of 10 year pair-
datasets, respectively. In Figure7 we compare tthe- wise correlations is less than 0.6u{l — corr — thresh).
support of the 178 patterns (union of 111 and 134 pattern§he second problem is addressed by discarding the windows
in Scan 1 and Scan 2 data. The color of each circhdere the median of pairwise correlations for all companies
in this figure is the correlation between the number @fmediangpwcisbeyond 0.6. Under these conditions, using
windows contributed from 27 subjects in Scan 1 and Scaar time series pattern mining approach we found all groups
2 datasets. There are 67 patterns that are common indheompanies that share high correlations in at least 80
178 patterns. This overlap is very significant given ttigne windows, usingv = 30, s = 2, andvy = 0.8. There
large number of possible size-3 patter@)} = 117,480). were 2965 size-2 patterns and 41 size-3 patterns.

Figure 7:ts — support of patterns found in Scan 1 and Scan
datasets



(@) 6 Conclusion and Future Work

In this paper we presented a pattern mining based approach
for discovering groups of time series that exhibit strong
intermittent correlations. We have shown, using a syntheti
dataset, that the proposed approach is more suited to this
200 250 300 350 400 450 500 problem than the competing approaches. Our approach is
®) R——— guaranteed to discover all groups given a support threshold
We also demonstrated the reproducibility of the groups
4 found in fMRI data using two independent sets of scans
obtained from the same cohort of subjects. Using the same
dataset, we also demonstrated that the proposed approach
directly searches for the desired groups and so it is effecti
Sliding windows in discovering them in comparison to alternative approache
We also show the utility of the proposed approach on S&P
Figure 8: A selected Apriori-TS pattern generated from Stock&00 stocks dataset.
data set. A number of aspects of the proposed framework need
further investigation. The sliding window based support
is a surrogate to measure the extent of time for which a
candidate set of time series exhibit high correlations and i
does not always accurately reflect the duration. Consider

Figure 8(a) shows one group of three financial sect¥f0 time series that exhibit high correlation in two non-
companies American International Group (AIG), The Chuttyeérlapping windows. Consider another example where the
Corporation (CB), and Hartford Financial Services Grodpy0 time series exhibit high correlation in successive and
(HIG) that was discovered in our analysis. In Figure 8(b) vi&vérlapping windows. Although thes — support = 2
show the minimum of pairwise correlatiomgnpwc) among for both these examples, the total duration of the strong
these companies for each window using a red-colored curg@frelation in the first case can be approximately twice that
The horizontal dashed line in red indicates théhreshold Of the second, when the step-size is small. To address
used to determine the windows that contribute to#the- this issue, approaches that can directly capture the time
support. Theminpwe curve is above the line for windows intervals in which a given set of time series are hig_hl_y
that end in the time points from 30 to 75, 140 to 150, 1&®rrelated needs to be explored. The frequent pattern guinin
to 170, 185 to 195, 210 to 230 and 395 to 405, suggestii@mework introduces challenges in the context of noisy
that these stocks are highly correlated in these windowsd@@, high dimensional nature of the data, and continuous-
is interesting that these companies, despite belonginigeto Yalued nature of time series correlations. Existing patter
same sector, exhibit relatively weak correlations for moaining approaches that address these challenges needs to be
than half the time. The blue curve in Figure 8(b) indicatédvestigated for their use in time series data.
the median of the pairwise correlations among all compani&sk nowledgements This work was supported by NSF Grant
in each sliding windowediangpwe(w;)). Note that for 11S-1355072.
windows ending in time points 145 to 150, 175 to 200, 210
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