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Abstract

The focus of this paper is to address the problem of discovering
groups of time series that share similar behavior in multiple small
intervals of time. This problem has two characteristics: i) There
are exponentially many combinations of time series that needs to
be explored to find these groups, ii) The groups of time series
of interest need to have similar behavior only in some subsets
of the time dimension. We present an Apriori based approach
to address this problem. We evaluate it on a synthetic dataset
and demonstrate that our approach can directly find all groups
of intermittently correlated time series without finding spurious
groups unlike other alternative approaches that find many spurious
groups. We also demonstrate, using a neuroimaging dataset, that
groups of intermittently coherent time series discovered by our
approach are reproducible on independent sets of time series data.
In addition, we demonstrate the utility of our approach on an S&P
500 stocks data set.

1 Introduction

Time series data has become increasingly ubiquitous during
the last two decades in several domains including climate,
bioinformatics, social media and neuroimaging [3, 13]. The
data mining community has studied several problems per-
taining to analyzing time series data [2, 13]. They include
clustering [4, 19], classification [17], anomaly detection[6],
forecasting [8], and segmentation [9]. The focus of this pa-
per is to address the problem of discovering groups of time
series that share similar behavior in multiple small intervals
of time. We refer to such groups as ‘intermittently coherent
time series’ in the rest of this paper.

In a complex dynamic system different groups of enti-
ties in the system may behave coherently for short intervals
of time to achieve a specific objective. For example, in a hu-
man brain, a brain region can be treated as an entity and the
amount of activity measured over time at a brain region could
be treated as its behavior. Multiple brain regions are said to
behave coherently for a short period of time when the time
series of their activity levels become highly similar within
this time period. Consider the hypothetical example shown
in Figure 1, that depicts four time series each with 200 time
points. These time series do not appear to be similar when
all the 200 time points are considered. However, in the time
intervals from 51 to 90 and from 141 to 180 they exhibit
high similarity. If such time series represent activity levels
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of brain regions over time (measured using fMRI technol-
ogy) the corresponding brain regions could be hypothesized
to work together to accomplish a specific task [14].

The problem of discovering groups of intermittently co-
herent time series from a given time series data set has two
characteristics: i) There are exponentially many combina-
tions of time series that needs to be explored to find these
groups, ii) The groups of time series of interest need to have
similar behavior only in some subsets of the time dimension.

Pattern mining approaches that have been studied in the
context of market basket data [1, 5] address these two char-
acteristics directly. The goal of these approaches is to find
groups of items that occur together in many transactions (i.e.,
they are frequent itemsets). These techniques explore the
combinatorial nature of the search space in a systematic fash-
ion relying on the Apriori principle [1] that guarantees that
if an item set is frequent then all of its subsets are frequent
too. However, these pattern mining approaches have been
designed to work with binary features, that indicate whether
an item is contained in a transaction or not. Recently, they
have also been explored for continuous valued datasets [11],
but there is no existing framework that works with time se-
ries data.

In this paper we generalize the well studied frequent pat-
tern mining techniques to work with time series data in or-
der to discover all groups of objects whose time series are
intermittently coherent. Specifically we use a sliding win-
dow based approach and we propose the notion of support
for time series data with a goal of capturing intermittent co-
herence for a candidate group of time series. Using this,
we provide an Apriori based framework that can discover
all groups of intermittently coherent time series such thatthe
total length of coherent intervals for a group is longer thana
given window-based threshold. We evaluate our approach on
a synthetic dataset and show its effectiveness in discovering
all the desired intermittently coherent groups in comparison
to that of alternative approaches. We then show the utility of
our approach on a real world neuroimaging dataset, where
we demonstrate that our approach can be used to discover
significantly reproducible groups from independent sets of
time series data collected from the same set of subjects. On
the same dataset, we show its effectiveness in comparison
with an alternative approach. We also demonstrate the utility
of our approach on an S&P500 weekly stock prices data set.

The following are the key contributions of this paper:
• A novel approach to quantify the duration of intermittent
coherence for a given set of time series.
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Figure 1:Four time series exhibiting intermittently coherent behavior. (All figures in this manuscript are best seen in color.)

• A systematic framework for discovering all groups of time
series that exhibit intermittently coherent behavior.
• Comparative evaluation of the proposed approach with
alternative approaches to demonstrate its effectiveness on
synthetic and real world datasets.

This paper is organized as follows: In section 2, we for-
mally define the problem. We present alternative approaches
and the proposed approach in sections 3 and 4, respectively.
In section 5, we present the evaluation of our approach on
two real world datasets. We conclude with section 6.

2 Problem Formulation

Consider a set of observations made onn objects
{I1, I2, . . . In} at m different time points{t1, t2, . . . tm}.
Let the observations made onith objectIi be represented as
a time seriesdi = (di1, d

i
2, . . . d

i
m). Let D be a matrix whose

columns are the vectorsdi, ∀i ∈ (1, . . . , n). Consider a time
window of lengthwindow-lengthω that is moved across the
time series in steps of sizes. Our goal is to find those sub-
set of objects{Ij1 , Ij2 , . . . Ijp} such that the time series ob-
served on these objects behave ‘similarly’ in at least a user
provided number of windows. A number of different ways of
characterizing “similarity” for time series have been studied
in the literature [7, 13]. We will use Pearson’s correlationas
a measure of similarity between two objects for a given time
interval in this paper. A given set of objects is deemed to
behave similarly if the minimum of the pairwise correlation
of all the time series obtained from these objects is above a
user provided correlation threshold.

3 Alternative Approaches

To the best of our knowledge, there is no existing approach
that can directly discover all groups of time series such that
for every group there are sufficiently many time windows
in which all constituent time series exhibit sufficiently high
correlations among themselves. In this section we outline
possible approaches that can help one find such groups.

Clustering of time series data is one way to determine
groups of time series that are highly correlated. Traditional
clustering approaches like k-means, hierarchical and density
based clustering are often used with time series data sets by
choosing an appropriate measure of similarity. Several sim-
ilarity measures such as dynamic time warping, euclidean

distance, and correlation have been studied in the literature
[13, 7]. Note that these similarity measures have also been
used to capture lagged relationships in the data which is not
the focus of the problem that is being studied. Nevertheless,
these techniques cannot capture the similarity (high correla-
tion) in small time intervals, as they take into consideration
the full time series available.

Frequent pattern mining techniques can be applied to
time series data after binarizing the data using a suitable
threshold. Consider a matrixD whose columns are the time
series vectorsdi for every objecti, and whose rows are time
points. Using a binarization threshold this matrix can be con-
verted toD0/1 where an element takes a value 1, if its value
in D is greater than the binarization threshold, and 0 other-
wise. Frequent pattern mining on this data can explore all
combinations of objects, but it is limited to capturing groups
of objects whose value is beyond a threshold for a number
of time points that is greater than a user provided thresh-
old. This approach does not directly look for intermittently
strong correlations, i.e., time intervals where the time series
are highly correlated among them. Moreover, the binariza-
tion threshold based similarity cannot capture correlations in
the full time series, let alone the intermittently strong corre-
lations. Therefore the traditional binary pattern mining tech-
nique applied on a binarized version of time series data is not
suitable to address the problem at hand.

Alternatively, one can use frequent pattern mining tech-
niques on time series clusters obtained from sliding time
windows. To achieve this, one can use a sliding time window
of a chosen length and compute time series clusters within
each window, by moving the window in steps of a predeter-
mined size along the length of time series. These clusters can
be used to construct a binary matrixCT , where each row is
a cluster and each column is a time series. A value of 1 in
the matrix indicates the presence of time series in the corre-
sponding cluster. Frequent pattern mining can then be used
on thisCT matrix to find groups of time series that partici-
pate together in the same cluster for sufficiently many time
windows. This approach has the potential to recover groups
of time series that share high correlations in many windows.
A challenge with this approach is that it is not trivial to de-
termine the choice of number of clusters within each sliding
window. One can construct a scenario where there are differ-
ent number of clusters in different sliding windows and this
approach will not perform well in such a case. Moreover,



in windows where there are no high correlations among the
time series, this approach will find spurious clusters and so
the resultant groups discovered could be potentially spuri-
ous.

4 Pattern Mining Framework

Discovering groups of time series that behave similarly for
at least a given number of time points is a challenging
problem. It requires searching through all combinations of
objects as well as determining intervals in time at which
the objects in question behave similarity. These challenges
have been addressed in market-basket data sets by frequent
pattern mining techniques. Market basket data captures the
items purchased in a transaction in a binary data matrix
X, whose columns are items in a market, and whose rows
are transactions, and whose elementsXij have a value 1
indicating the presence of an itemj in a transactioni, and
a value 0 otherwise. The goal of frequent pattern mining
techniques is to discover all subsets of items (also referred
to as itemsets) that are purchased “frequently”. The ratio of
the number of times a set of items are purchased together
to the total number of transactions is treated as thesupport
of an itemset. A user providedsupport threshold is used to
determine whether a given item-set is frequent. A transaction
in which all the items in an itemset in question are present is
said to “support” the itemset.

A standard pattern mining approach that is widely used
with binary data sets is the Apriori algorithm [1]. At the
heart of this approach is the Apriori principle that guarantees
that if a set of items are not frequently purchased together,
then any bigger set that includes this set is not frequent. This
is due to the anti-monotonic nature of thesupport measure,
i.e., support of a given set of items is less than equal to the
support of any of its subsets. Relying on this principle, the
Apriori algorithm builds item sets bottom up, where it starts
with all single items and filters out items that are not fre-
quent. It then groups the frequent single items to enumerate
candidate item-pairs and then evaluates them to select those
pairs that are truly frequent. Then candidate item-triplesare
enumerated from the frequent pairs by joining the pairs that
share one item and the frequent triples are determined by fil-
tering out the infrequent ones from the candidate triples. In
this fashion it constructs higher-order sets until no more big-
ger sets can be enumerated. Note that the higher order candi-
date itemsets are only enumerated from the frequent itemsets
at a given level. This reduces the number of candidate item-
sets effectively. By systematically pruning the search space
of all possible combinations of items, this approach can effi-
ciently discover all possible itemsets that are frequentlypur-
chased together.

4.1 Designing a notion of support for time series data
The key difference between market basket data and time
series data is that in market basket data we have a binary
vector (a column inX) for every item indicating its presence
in each of the transactions, while in time series data we have
a time seriesdi with continuous values for an objectIi.

In the case of market basket data, supporting transactions
for a given set of items can be determined by computing
the intersection of the transactions in which each of the
individual items are present. This is not trivial with time
series data. Moreover, the goal is to identify the intervals
during which a high correlation is exhibited.

Here we use a sliding window based approach to com-
pute coherence between time series for each window. Specif-
ically, we choose awindow-lengthω to determine the dura-
tion of a window and to move the window across the time se-
ries in steps of sizes. For example, the first window captures
the time points(t1, . . . , tω) and the second window captures
the time points(ts+1, . . . , ts+ω). We refer to each window
using the index of the ending time point. For example, the
first two windows are referred to aswω andws+ω. For a
given time seriesdi of lengthm, using a choice of window
lengthω and a step sizes, the set of windows is referred to
aswi = (wi

ω, w
i
ω+s, . . . w

i
m−ω

s
+1

).

We treat each window as a transaction in traditional
frequent pattern mining. To determine if a window supports
a group of time series we need to estimate if the group
of time series exhibit high coherence within this window.
We perform this by computing the pairwise correlations
between the time series for a given window. A window
is said to support a group of time series if the minimum
of the pairwise correlations is greater than a user-provided
correlation thresholdγ. The number of time windows that
support a group of time series is referred to asts− support.
Formally,ts− support for a set of objectsS ∈ {I1, . . . In}
is defined as follows:

(4.1) ts− support(S, ω, s, γ) =

m−ω

s
+1

∑

i=ω

1minpwc(S,wi)≥γ

whereminpwc(S,wi) is the minimum of the pairwise cor-
relations between objects in the setS for the windowwi.
1minpwc(S,wi)≥γ is 1 whenminpwc(S,wi) is greater than a
user provided thresholdγ, 0 otherwise. Note that the win-
dows that support a given set of time series are the windows
in which the given set exhibits sufficiently high correlations.
Greater thets − support of a set of objects, longer is the
duration of sufficiently high correlations among them.

We illustrate the notion ofts − support with the help
of an example shown in Figure 2. Here two time series are
shown for whichts − support needs to be estimated. The
choice of window lengthω = 30, step sizes = 10, and
correlation thresholdγ = 0.8 are used. In the first window
w30 spanning(t1, . . . t30) the time series has a correlation
0.6. The second window spansw40 spanning(t11, . . . t40)
and the two time series have a correlation 0.4 in this window.
Similarly, for the third and fourth windows,w50 andw60, the
correlations are 0.82 and 0.83, respectively. Only the third
and fourth windows,w50 andw60, contribute to support as
their correlation surpasses theγ threshold. Therefore,ts-
− support for the time series in this example is 2.

Antimonotonicity of thets − support measure allows
us to use the Apriori framework to enumerate all frequent
groups of time series.



Figure 2: Example to illustrate the notion ofts − support with
ω = 30, s = 10 andγ = 0.8.

4.2 Antimonotonicity of ts − support We now prove
that thets − support measure we defined above is anti-
monotonic so it can be used in an Apriori like framework
[1] to discover all subsets of time series that satisfy a given
ts− support threshold,γ.

THEOREM 4.1. ts−support(S, ω, s, γ) measure decreases
monotonically as new items are introduced for a given set of
time seriesS, window lengthω, step sizes, and a pairwise
correlation thresholdγ.

Proof. Consider a new setS′, such thatS′ = S ∪ x.
A window wi that does not contribute tots −

support(S, ω, s, γ), i.e.,minpwc(S,wi) < γ, will not con-
tribute to ts − support(S′, ω, s, γ) because the minimum
pairwise correlationminpwc(S,wi) will not increase as a
new time seriesx is introduced to the setS.

A windowwi that contributes tots− support(S, ω, γ),
i.e., minpwc(S,wi) ≥ γ, will either contribute or not
contribute tots−support(S′, ω, s, γ) depending on how the
new time seriesx affects the minimum pairwise correlation.
If minpwc(S,wi) ≥ γ andminpwc(S′, wi) ≥ γ, thents−
support(S, ω, s, γ) = ts − support(S′, ω, s, γ), otherwise
ts− support(S, ω, s, γ) > ts− support(S′, ω, s, γ).

Therefore, ts − support(S, ω, s, γ) ≥ ts-
− support(S′, ω, s, γ)

4.3 Apriori-based approach for time series data Using
the above notion of computing support from time series data
we now describe a generalized Apriori algorithm that can
work with time series data. First, we start with all pairs of
objects and then evaluate theirts − support to determine
the pairs that are interesting. Note that the original Apriori
starts with single items and determine frequent itemsets.
Here we cannot filter at the first level because we need
at least two time series to determine similarity and so we
start by enumerating all pairs. Once the frequent pairs (i.e.,
pairs with ts − support ≥ γ) are determined, we then
enumerate the candidate triples as is done in a traditional
Apriori algorithm [1] by joining interesting pairs that share
one object. This approach continues until no more bigger

frequent sets are found.
The algorithm is outlined here:

ALGORITHM 4.1. (TIME SERIESPATTERN M INING)
Input:
i. D, a real valued time series data matrix of size|m × n|, where
columns are itemsI = {I1, I2, . . . In} and rows are time points
T = {t1, t2, . . . tm}
ii. σ, a support threshold
iii. ω, window length
iv. γ, minimum correlation threshold
Output:
All subsets of objects withts− support ≥ σ

1. k = 2
2. CSk = {(Ii, Ij)|i 6= j, Ii ∈ I, Ii ∈ I}
3. for each candidatecsk ∈ CSk do
4. computets− support(csk, ω, s, γ) using Eq. 4.1
5. end
6. Sk = {csk|csk ∈ CSk ∧ ts− support(csk, ω, s, γ) ≥ σ}
7. while Sk 6= ∅ do
8. k = k + 1
9. CSk = Apriori− gen(Sk−1)
10. for each candidatecsk ∈ CSk do
11. computets− support(csk, ω, s, γ) using Eq. 4.1
12. end
13. Sk = {csk|csk ∈ CSk ∧ ts− support(csk, ω, s, γ) ≥ σ}
14. end
15. Result=

⋃
Sk

Step 2 enumerates all possible pairs, while steps 3-
6 compute the support of a pattern and determine the
frequent pairs that satisfy the support criteria,ts −
support(csk, ω, γ) ≥ σ. Steps 7 through 14 enumerates
candidates and determines frequent bigger patterns in an it-
erative way, until no bigger frequent patterns can be found.

4.4 Handling issues due to highly similar time series
Note that in a given dataset there could be groups of time
series that are correlated when all the time points consid-
ered. For example, in stocks data many stocks that belong
to a given sector (e.g., health sector) could exhibit high cor-
relations for the entire duration of time considered. These
groups will have high value for our newly defined notion of
support and will make it computationally hard to discover the
low support patterns that are sufficiently correlated for a rela-
tively shorter amount of time. To avoid finding these groups
(that can be more easily found using alternate techniques),
we add an additional constraint to our approach that discards
any candidate set that has two objectsIi andIj whose full
time seriesdi anddj have a correlation that is greater than a
user providedfull− corr− thresh, before computing their
support. This is achieved by filtering out such candidates im-
mediately after the candidates are enumerated in steps 2 and
9 of Algorithm 4.1.

4.5 Handling artifacts due to globally similar behavior
In many cases high correlations among all the time series in
an interval can be induced due to a global event in the sys-
tem. For example the 2007-2008 recession induces a similar



behavior in most of the stocks, and any windows that con-
tribute tots− support in this period will inflate the support
even though the event is not specific to the candidate pat-
tern. Similarly, motion related artifacts create global patterns
in neuroimaging data [12]. There is a need to control for
windows that have such globally similar behavior from con-
tributing towards thets− support. One approach to address
this challenge would be to discard all windows that capture a
globally similar behavior and work with the remaining win-
dows. Another approach is to weight the windows depending
on how similar the behavior of a candidate set for a window
is to the global behavior (e.g., correlation between mean time
series for a candidate set with that of the entire set). In the
context of market basket data this will be akin to developing
a weighted version in which transactions that have too many
items provide no support (former approach) or smaller sup-
port (later approach). We use the former approach and we
show its utility in finding groups of time series that exhibit
intermittent correlations not due to a global scenario in Sec-
tion 5.3. This is achieved by ignoring those windows whose
median of pairwise correlations between all the time series
is greater than aglobal − corr − thresh threshold. We in-
corporate this into our definition ofts− support as follows:

(4.2)
ts− support(S, ω, s, γ, global − corr − thresh) =

m−ω

s
+1

∑

i=ω

1(minpwc(S,wi)≥γ)&(mediangpwc(wi)≤globalcorrthresh)

wheremediangpwc(wi) is the median of the pairwise cor-
relations between all objects in the setI for the windowwi.

5 Evaluation

Designing a thorough evaluation pipeline is a challenge for
the problem at hand as is the case with many unsupervised
algorithms. We used a synthetic dataset to highlight the key
strength of the proposed approach and the weakness of com-
peting approaches. The lack of ground truth in real world
datasets limits us from directly comparing the groups of time
series discovered using the proposed and the competing ap-
proaches. However, we performed a comparative evaluation
the quality of the discovered groups. Using a neuroimaging
time series data collected from same set of subjects at two
different time points we studied the replicability of the find-
ings which is necessary to test the validity of the results. In
addition to this, we demonstrate the utility of our approach
using a case-study on S&P stocks data.

5.1 Evaluation on a Synthetic Dataset Data: We
first created a random 400x10 matrixR, where rows are
time points and columns are time series, by sampling each
element from a uniform distribution with a range [0 1]. Each
time series is further smoothed by computing the value at a
time pointt as the average of neighboring points fromt−5 to
t + 5 to incorporate temporal auto-correlation that naturally
exists in real world time series datasets, i.e., consecutive
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Figure 3: Four groups of synthetically generated intermittently
correlated time series: (i){1, 2, 3, 4} (ii) {5, 6} (iii) {7, 8} (v)
{9, 10}. Regions of the bold time series are the correlated intervals.

time points in a time series have similar values. We then
impute four sets{(1, 2, 3, 4), (5, 6), (7, 8), (9, 10)} of strong
correlations for 120 time points (separate intervals of length
60 and 60). This is done for every set by copying the first
time series for a chosen set of 60 contiguous time points
in the other members of the set with a small amount of
additive noise sampled from a Gaussian distribution with
a mean of 0, and a standard deviation of 0.01. The four
groups of time series are shown in Figure 3. The regions
of time series shown in bold curves in each of these groups
are the imputed highly correlated intervals that we expect the
following approaches to capture.
Approaches: We used three other competing approaches, in
addition to the proposed approach:
1. K-means clustering (K-means)
We clustered the set of 10 time series into four clusters using
correlation as a distance metric. We clustered them into four
groups as the number of groups that were imputed was also
four.
2. Apriori on binarized time series (Apriori-R0/1)
We first constructed a binary matrixR0/1 using a threshold
on matrixR and then found maximal frequent patterns of
time series using a support threshold. We considered the
following choices of quantile based thresholds from the
matrix R: {0.5, 0.55, 0.6, 0.65, 0.7}. A value in the
matrix R0/1 was 1, only if the corresponding value inR
was above the chosen quantile based threshold. We used a
support threshold of 60 for consistency in comparison with
the other Apriori based schemes that are described below.
For the sake of interpretability, we treat number of rows
supporting a pattern (not fraction) as it’ssupport for Apriori
based methods.
3. Apriori on K-means clusters (K-means+Apriori)
We used a sliding window of length 30 that is moved along
the time series in steps of size 1. This resulted in 371 sliding
windows. Within each window we considered the 10 time



Approach Parameters Recoverability Spuriousness
K-means k=4 0.25 0.5
Apriori q = 0.5 0.25 0.98
-R0/1 q = 0.55 0.25 0.86
(σ = 60) q = 0.6 0.5 0.81

q = 0.65 0.25 0.57
q = 0.7 0.25 0.20

K-means k = 2 0.25 0.96
+ Apriori k = 3 0.25 0.96
(σ = 60) k = 4 0.5 0.89

k = 5 0.75 0.57
k = 6 0.75 0.36
k = 7 0.75 0
k = 8 0.5 0

TS - γ = 0.8 1 0
Apriori
(σ = 60)

Table 1:Comparison with competing approaches

series and clustered them intok clusters. Several choices of
k were explored:k = {2, 3, . . . 8}. Each cluster that has
more than one member is then used to construct a binaryCT

matrix whose rows are clusters and whose columns indicate
time series. A value of 1 in this matrix indicates that a time
series was part of a cluster from the window in which it was
discovered. We then found maximal frequent sets of time
series that were part of more than 60 clusters. Note that every
candidate set of time series can be supported by at most one
cluster from a sliding window, because k-means clustering is
partitional in nature.
4. Time series pattern mining (TS-Apriori)
We used a sliding window lengthω = 30, step sizes =
1, minimum pairwise length thresholdγ = 0.8, support
thresholdσ = 60.

The rationale for the choice of supportσ = 60 in all
the Apriori based approaches that work with sliding win-
dows (Apriori+K-means, and TS-Apriori) was that each in-
put group has two independent 60 time point long highly cor-
related intervals. With the chosen window length of 30, an
interval of 60 time points will be visible in at least 30 sliding
windows and together the two intervals (for a given group)
will be visible for at least 60 windows. Therefore a sup-
port of 60 should suffice to discover all the imputed groups.
Apriori-R0/1 on the other hand does not use sliding windows
and treats each time point independently. Therefore, a sup-
port of 60 is smaller than the sum of the duration of highly
correlated intervals (120).
Comparison metrics: For each approach presented above,
we evaluated two key factors:recoverabilityandspurious-
ness. Recoverability is the fraction of imputed groups that
were discovered. Only when an imputed group is a subset of
a discovered group, an imputed group is treated as a recov-
ered group. Spuriousness is the fraction of discovered groups
that were not imputed, i.e., those discovered groups that are
not subsets of any imputed group. For an ideal approach, the
recoverability is expected to be high (1) and the spuriousness
is expected to be low (0).
Observations: The recoverability and the spuriousness of

the groups/patterns discovered using the four approaches are
shown in Table 1. For the full time series based approaches
K-means and Apriori-R0/1, the recoverability is poor and
spuriousness is high. High spuriousness is mainly because
they take the full time series into account for finding groups
and low recoverability is due to fact that the locally high
correlations are not apparent when correlation is assessedfor
the entire time series.

K-means+Apriori performs differently for different
choices ofk. Whenk is very small, the recoverability is very
poor and the spuriousness is very high. This is because the
clusters in each window are forced to be much bigger than
the imputed groups and they support spurious patterns in the
Apriori framework. Whenk is moderate (k = 4, 5), the re-
coverability increases, and spuriousness increases too. When
k is high (k = 6, 7), the recoverability is relatively high, and
spuriousness is relatively low. This is because the clusters
become smaller ask increases. At the same time a high
choice ofk will not leave all the clusters intact, as it splits
some real groups into smaller clusters. This is the reason re-
coverability is only as high as0.75, for k = {4, 5, 6, 7}, and
decreases to0.5, for k = 8. In general, it can be noticed that
more spurious groups are found when the choice ofk is low,
and some real groups are missed whenk is high. Moreover,
there are different number of imputed groups in different in-
tervals. For example, from Figure 3 it can be seen that for the
interval 301 to 360, there are three groups that are imputed,
while there is only one group imputed in the interval from
201 to 260. Spuriousness could also be a result of windows
where there are no imputed groups, where K-means is forced
to find k groups in all windows. Therefore, using the same
choice ofk for all windows will not yield a recoverability
of 1 and spuriousness of 0 in this synthetic dataset. Even
in cases where same number of clusters are imputed in each
window, choosing the rightk is still nontrivial, as a highk
will result in low recoverability and a lowk will result in
high spuriousness.

For the proposed approach, TS-Apriori, the recoverabil-
ity is 1 and spuriousness is 0, which is the ideal scenario.
This is mainly because it does not rely on clustering and it
evaluates the relationship between candidate groups for each
window independently and so it is able to recover all of the
imputed groups without discovering any spurious groups.

5.2 Case study on Neuroimaging Data Functional Mag-
netic Resonance Image (fMRI) data measures the amount of
oxygen consumed at every 2x2x2 mm cubic location in the
brain (referred to as a voxel) and it is known to indicate the
amount of activity occurring at any location. Data from an
fMRI scan can be represented in the form of a time×voxel
matrix B, where every elementBvij in the matrix indicates
the amount of neuronal activity occurring at a time point
i and at a location represented by voxelj. We used the
dataset from [18] that contains 6 minute resting state fMRI
scans from 27 healthy subjects obtained at two different time
points that are 9 months apart. We refer to the first set of
scans from 27 subjects as Scan 1 data, and the second set as
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Figure 5: Patterns discovered using TS-Apriori and K-
Means+Apriori

Scan 2 data. The spatial resolution of each fMRI scan was
2×2×2 mm and the temporal resolution was 2 seconds. Sev-
eral prepossessing steps have been performed on the data ob-
tained from the scanner and they have been elaborately dis-
cussed in [18]. In addition, following the approach in [10],
global mean time series is regressed from the data, as is done
in most fMRI studies. The resultant time×voxel matrix for
each scan was of dimensions180 × 160, 990. We further
group voxels into 90 brain regions based on an anatomical
atlas provided by [15]. The resultant matrix,Br, for each
scan was of size180× 90. We then appended the time series
from each of the 27 scans from Scan 1 data to get a 4860x90
matrix. Similarly we appended the time series from Scan 2
data to get another 4860x90 matrix.

Out of the 90 brain regions, a few brain regions that are
related to visual system of the brain are found to be consis-
tently correlated in earlier studies [16]. These set of brain re-
gions with highly correlated time series will introduce many
high support patterns in our analysis and these patterns are
uninteresting in our case as they can also be discovered us-
ing time series clustering techniques. In Figure 4 we show
the global correlation and the correspondingts − support

for all pairs of brain regions. The pairs of regions that are
highly correlated (r ≥ 0.6) have ats − support ranging

from 300 to 800. The strength of our approach lies in find-
ing groups of brain regions that exhibit similar behavior in
multiple small intervals in time. Therefore, we use afull-
− corr − thresh = 0.6 to prune all those candidates that
have a hights − support to directly find those interesting
groups that are otherwise unknown.

We used the proposed TS-Apriori with window-length
ω = 30, s = 5, γ = 0.7, σ = 40 on Scan 1 appended
time series data matrix and found 111 size-3 patterns. We
also used K-means+Apriori, that is the best of the competing
approaches from our evaluation using synthetic data, to
discover intermittently correlated groups of time series from
Scan 1 data, withk = 30 clusters in each window using
parametersω = 30, s = 5, andσ = 40 that are same as those
used with TS-Apriori. We discovered 75 size 3 patterns.
The union of the 111 and 75 patterns discovered using
TS-Apriori and K-means+Apriori approaches, respectively,
results in 149 patterns and their support computed using
the two approaches is compared in Figure 5. Note that the
support in K-means+Apriori and thets − support in TS-
Apriori can be compared, because both of them represent
the number of windows that support a group of brain regions
(γ > 0.7). Out of the 75 size 3 patterns discovered from K-
means+Apriori, only 37 patterns have ats − support ≥ 40
(49.3%, approximately). This suggests that the remaining
50.7% patterns are spurious according to our objective of
finding group of time series that exhibit similar behavior
in at least a given number of time steps. These patterns
are shown above the horizontal red dashed line indicating
support ≥ 40 and to the left of the vertical dashed red
line indicating ts − support ≤ 40. This spuriousness is
mainly due to the poor quality of the clusters discovered,
i.e., the minimum pairwise correlation of clusters is less than
the γ threshold used in TS-Apriori. Figure 6 shows the
relationship between the clusters and their quality (minpwc

measure) from the windows they were discovered from. The
clusters whoseminpwc is greater thanγ = 0.7 threshold
are those that lie above the dashed red line, while those that
have relatively poorminpwc lie below the red line. The
50.7% spurious patterns are supported by these clusters that
lie beneath the dashed red line in the figure.

One could argue that a smallerk can be used to ensure
that all clusters have aminpwc ≥ γ. However, a smallerk
could potentially result in splitting naturally existing clusters
in other windows into smaller clusters. Even at the choice
of k = 30, K-means+Apriori only recovered 37 of the 111
TS-Apriori patterns, indicating that the recoverability is only
29.7% (along with spuriousness 50.7%). This is potentially
due to the different number of natural groups that exist in
different windows and so these groups cannot be recovered
using a uniformk for all windows. On the other hand, our
approach estimates the strength of correlation between the
brain regions in a set usingminpwc measure and determines
whether a window supports a pattern or not.

On Scan 2 dataset, using the same parameters as in
Scan 1 dataset, we found similar observations where K-
means+Apriori missed 54.5% (73 out of 134) of the patterns
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Figure 7: ts − support of patterns found in Scan 1 and Scan 2
datasets

found by TS-Apriori and 21.8% (17 out of 78) of the patterns
found by K-means+Apriori were spurious. As the recover-
ability and spuriousness of K-means+Apriori relies heavily
on the choice ofk, we tried several additional choices ofk,
including k = 10, 20, 40, 50. We found that spuriousness
increases dramatically for lower choices ofk, while very
few of the TS-Apriori patterns were discovered for higher
choices ofk. These observations are similar to those demon-
strated above using the synthetic dataset. These results high-
light the limitations of the K-means+Apriori approach and
the strengths of the proposed TS-Apriori approach on a real
world dataset.

We further studied the similarity in the 111 and 134
patterns that were discovered from Scan 1 and Scan 2
datasets, respectively. In Figure7 we compare thets −
support of the 178 patterns (union of 111 and 134 patterns)
in Scan 1 and Scan 2 data. The color of each circle
in this figure is the correlation between the number of
windows contributed from 27 subjects in Scan 1 and Scan
2 datasets. There are 67 patterns that are common in the
178 patterns. This overlap is very significant given the
large number of possible size-3 patterns (

(

90
3

)

= 117, 480).

Using a hypergeometric distribution we computed that the
probability of expecting an overlap of 67 or more when
111 and 134 objects are drawn independently from a set of
117, 480 is less than10−12.

The correlations of contributions from subjects towards
ts − support (in Figure 7) are weak. The average of
the correlation of contributions for the 67 patterns that are
common is approximately 0.24. This is indicating that
the contribution of subjects towards patterns is different
in different scans, and that both the scans do not have
same information about these patterns. This is inline with
observations made by many studies that the reliability of the
correlations between time series computed from two scans
of the same subject are poor [16, 18]. Despite this weak
similarity between scans, the fact that these patterns have
high support in both the datasets suggests that an underlying
neurological phenomenon could be driving these patterns.

5.3 Case Study on Stock Market Data We obtained the
weekly closing stock prices of S&P500 companies over a
10-year period from January 2000 to December 2009 (521
weeks) from Yahoo! Finance website. We then removed
those companies from this list for which only part of the data
(less than 521 weeks) was available. We were left with 443
companies for which stock prices were available for all the
521 weeks. As the stock prices are at different scales, we
normalized each time seriesdi such that

(5.3) d newi
t =

dit −min(di)

max(di)−min(di)

where,dit is the original stock price of stocki at timet, and
min(di) andmax(di) are the minimum and maximum stock
prices of stocki, respectively.

Discovering groups of companies that exhibit strong
correlations in small intervals from a span of 10 years could
reveal novel direct or indirect relationships among compa-
nies. We found that this stocks data has two key character-
istics that can lead to the discovery of uninteresting patterns:
i) Two stocks that belonged to the same industry generally
showed very strong correlation during the 10 year period.
For example, stocks APA and APC that belong to oil and
gas industry have a correlation of 0.95, approximately. Such
groups can be directly discovered using traditional clustering
based schemes and are uninteresting for our purpose. ii) Cer-
tain incidents affect all the stocks, e.g., the mortgage crisis,
and so contribution of such windows towardsts − support

may lead to spurious and uninteresting patterns. Our ap-
proach addresses the first problem by building candidates
involving those companies whose minimum of 10 year pair-
wise correlations is less than 0.6 (full − corr − thresh).
The second problem is addressed by discarding the windows
where the median of pairwise correlations for all companies
ismediangpwc is beyond 0.6. Under these conditions, using
our time series pattern mining approach we found all groups
of companies that share high correlations in at leastσ = 80
time windows, usingω = 30, s = 2, andγ = 0.8. There
were 2965 size-2 patterns and 41 size-3 patterns.
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Figure 8: A selected Apriori-TS pattern generated from Stocks
data set.

Figure 8(a) shows one group of three financial sector
companies American International Group (AIG), The Chubb
Corporation (CB), and Hartford Financial Services Group
(HIG) that was discovered in our analysis. In Figure 8(b) we
show the minimum of pairwise correlation (minpwc) among
these companies for each window using a red-colored curve.
The horizontal dashed line in red indicates theγ threshold
used to determine the windows that contribute to thets −
support. Theminpwc curve is above theγ line for windows
that end in the time points from 30 to 75, 140 to 150, 160
to 170, 185 to 195, 210 to 230 and 395 to 405, suggesting
that these stocks are highly correlated in these windows. It
is interesting that these companies, despite belonging to the
same sector, exhibit relatively weak correlations for more
than half the time. The blue curve in Figure 8(b) indicates
the median of the pairwise correlations among all companies
in each sliding window (mediangpwc(wi)). Note that for
windows ending in time points 145 to 150, 175 to 200, 210
to 220, and 460 to 470 this curve crosses theglobal − corr-
− thresh = 0.6 threshold, suggesting that almost all of
the companies exhibit similar behavior in these windows.
Overall, 82 of the 492 sliding windows are discarded.

The three stocks AIG, CB, and HIG that belong to the
finance sector are expected to behave similarly for the entire
duration. However, from Figure 8(b) it can be seen that
during the first 80 weeks starting from the January 2000
they share a strong relationship. As time progresses, this
relationship deteriorates and resurfaces due to several events
that punctuate the time series. In period 2004-2005 (250
to 300 time points) AIG faced civil actions from regulatory
authorities and later reached a settlement. AIG and HIG
were hit by the financial crisis that occurred in late 2008
(400 to 450 time points). These events have impacted the
stock prices and so they deviated from the other stocks with
which they exhibited similar behavior at the beginning of the
decade. The proposed approach allows one to discover such
groups of intermittently correlated time series.

6 Conclusion and Future Work

In this paper we presented a pattern mining based approach
for discovering groups of time series that exhibit strong
intermittent correlations. We have shown, using a synthetic
dataset, that the proposed approach is more suited to this
problem than the competing approaches. Our approach is
guaranteed to discover all groups given a support threshold.
We also demonstrated the reproducibility of the groups
found in fMRI data using two independent sets of scans
obtained from the same cohort of subjects. Using the same
dataset, we also demonstrated that the proposed approach
directly searches for the desired groups and so it is effective
in discovering them in comparison to alternative approaches.
We also show the utility of the proposed approach on S&P
500 stocks dataset.

A number of aspects of the proposed framework need
further investigation. The sliding window based support
is a surrogate to measure the extent of time for which a
candidate set of time series exhibit high correlations and it
does not always accurately reflect the duration. Consider
two time series that exhibit high correlation in two non-
overlapping windows. Consider another example where the
two time series exhibit high correlation in successive and
overlapping windows. Although thets − support = 2
for both these examples, the total duration of the strong
correlation in the first case can be approximately twice that
of the second, when the step-size is small. To address
this issue, approaches that can directly capture the time
intervals in which a given set of time series are highly
correlated needs to be explored. The frequent pattern mining
framework introduces challenges in the context of noisy
data, high dimensional nature of the data, and continuous-
valued nature of time series correlations. Existing pattern
mining approaches that address these challenges needs to be
investigated for their use in time series data.
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