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Abstract

Multiclass problems are often decomposed into multiple binary
problems that are solved by individual binary classifiers whose
results are integrated into a final answer. Various methods, including
all-pairs (APs), one-versus-all (OVA), and error correcting output
code (ECOC), have been studied, to decompose multiclass problems
into binary problems. However, little study has been made to
optimally aggregate binary problems to determine a final answer
to the multiclass problem. In this paper we present a convex opti-
mization method for an optimal aggregation of binary classifiers to
estimate class membership probabilities in multiclass problems. We
model the class membership probability as a softmax function which
takes a conic combination of discrepancies induced by individual
binary classifiers, as an input. With this model, we formulate the
regularized maximum likelihood estimation as a convex optimization
problem, which is solved by the primal-dual interior point method.
Connections of our method to large margin classifiers are presented,
showing that the large margin formulation can be considered as a
limiting case of our convex formulation. Numerical experiments on
synthetic and real-world data sets demonstrate that our method
outperforms existing aggregation methods as well as direct methods,
in terms of the classification accuracy and the quality of class
membership probability estimates.
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1 Introduction

Multiclass classification is an important supervised learning problem, the goal of which is
to assign data points to a finite set of K classes, which is solved by one of two different
approaches (direct and indirect methods). Direct approach involves constructing a discrim-
inant function directly for the multiclass problem. For example, the multiclass SVM [1, 2]
models a K-way classifier which directly separates the correct class label from the rest of
class labels in the large margin framework. Alternatively, in indirect approach, one decom-
poses the multiclass problem into multiple binary classification problems which are solved by
individual binary classifiers whose results are integrated into a final answer. All-pairs (APs)
and one-versus-all (OVA) are well-known methods for decomposing multiclass problems into
binary problems.

In this paper we consider the indirect approach where binary-decomposition methods
enjoy several advantages over direct methods in multiclass problems. It is much easier
and simpler to learn a set of binary classifiers than to train one unique classifier which
separates all classes simultaneously [3]. For example, a digit recognition problem can be
decomposed into a set of simpler sub-problems, which can be easily solved by linear classifiers
[4]. Even in such a case, the performance is comparable to that obtained by a more complex
classifier. A comparison study [5] observed that the direct methods, such as multiclass SVM
[1, 2], generally require more training time than binary-decomposition methods. It was
also observed in [5] that APs-based decomposition methods show higher predictive accuracy
than the multiclass SVM for most of cases. Moreover, in the case of binary-decomposition
methods, binary classifiers can be independently trained on different processors, which is
well suited to parallel processing in the training phase.

Reducing multiclass problems to multiple binary problems can be viewed as encoding,
since binary codewords are assigned to class labels. Several encoding methods are widely
used, including APs, OVA, and error correcting output code (ECOC) [6]. Aggregation of
binary classifiers involves combining prediction results determined by binary classifiers into
a final answer to the multiclass problem. Aggregation methods can be categorized into two
types: hard decoding and probabilistic decoding.

In hard decoding, one seeks a codeword which best matches binary predictions, to de-
termine a most probable label. Hamming distance is often used as a discrepancy measure
between a codeword and binary predictions, in the case where individual binary classifiers
yield binary outputs. Various loss functions (such as exponential loss and logistic loss) are
considered in the case where binary classifiers yield a score whose magnitude is a measure
of confidence in the prediction, referred to be as loss-based decoding [7]. In many applica-
tions, however, class membership probabilities need to be computed, which is not possible
in the hard decoding. For instance, in the case of cost-sensitive decision [8, 9, 10], the Bayes
optimal prediction is to assign an example to the class label that has a lowest expected cost
(which is also called conditional risk [11]). To this end, one needs to correctly calculate class
membership probabilities for the given data point.

In probabilistic decoding, we are given binary class membership probability estimates
(scores in [0,1]) determined by binary classifiers. One couples these probability estimates to
determine a set of class membership probabilities for multiclass problems. In the case of APs,
Hastie and Tibshirani [12] developed a method, pairwise coupling, in which pairwise class
membership probability estimates are combined to form a joint probability estimates for
all K classes, fitting the Bradley-Terry model [13] by minimizing a KL-divergence criterion.
This was extended for arbitrary code matrix (OVA and ECOC in addition to APs) [14, 15],
where a generalized Bradley-Terry model [15] was considered to relate probability estimates
obtained by binary classifiers to class membership probability estimates.

The (generalized) Bradley-Terry model provides a natural way to relate probability esti-
mates computed by binary classifiers to class membership probabilities, but there are some



4 S. Park et al. 1 INTRODUCTION

drawbacks. Most of aforementioned methods based on the Bradley-Terry model treat all
binary classifiers equally, leading to the performance degradation in the presence of bad
binary classifiers. This problem is alleviated by introducing confidence weights placed on
individual binary classifiers that are optimally tuned based on training data [16]. However,
the method in [16] involves a huge number of parameters, NK + M, where N is the num-
ber of training data points and M is the number of binary classifiers. In other words, the
computational complexity scales linearly with the number of training data points, which
makes the method prohibitive even for mid-scale problems. Moreover, additional iterative
optimization is required to estimate the class memberships probabilities for test data.

Takenouchi and Ishii [17] proposed a different type of decoding method in which misclas-
sification in binary classifier is formulated as a bit inversion error problem, as in information
transmission theory. The dependency between classifiers are directly modeled by Bolzmann
machine and the hard decoding problem (which can also be extended to probabilistic decod-
ing) is formulated as a probabilistic inference problem in Bolzmann machine. The method
provides a new viewpoint to the multiclass problems in the context of information trans-
mission theory. However it involves exponential-order computational complexity, due to the
partition function in the Bolzmann machine, requiring approximate inference techniques
such as Monte Carlo Markov Chain (MCMC) or mean filed approximation. It might suffer
from multiple local minima and is sensitive to initial conditions.

Recently, we have developed a Bayesian aggregation method [18] for probabilistic decod-
ing. In contrast to most of existing probabilistic decoding methods where the Bradley-Terry
model was used to relate binary probability estimates to class membership probabilities, we
directly modeled class membership probabilities as softmax function whose input argument
is a linear combination of discrepancies induced by binary classifiers. In this way, aggre-
gation weights are the only parameters to be tuned (M), while the existing method [16]
scales linearly with the number of samples (NK + M). Based on the likelihood modeled by
the softmax function and the appropriate prior on the aggregation weights, we formulated
the problem of estimating aggregation weights as variational logistic regression in which
predictive distribution yielded class membership probabilities. In such a case, regularization
parameter was learned in Bayesian framework and over-fitting was alleviated, compared to
maximum likelihood methods.

There are two computational issues in the Bayesian aggregation framework: (1) the
solution suffers from local minima; (2) the evaluation of class membership probabilities
for data instances requires additional computations (through variational optimization). To
solve these problems, one can consider the maximum likelihood estimation instead of full
Bayesian learning [18], in which class membership probabilities can be easily computed
by evaluating the softmax function with the learned aggregation weights. In our previous
work [19], we proposed the ¢; norm regularized maximum likelihood method to determine
the optimal aggregation weights, which is a convex problem. We then convert the convex
optimization problem to an equivalent geometric programming in order to make use of an
off-the-shelf optimization toolbox. With this approach, a global solution is determined and
class membership probabilities can be easily evaluated without additional optimizations.
However, our previous method [19] still has several limitations: (1) the optimization problem
can be directly solved by the standard convex optimization algorithms without transforming
it to geometric programming; (2) it only allows ¢; norm regularization. In contrast to
[19] where the problem was converted to geometric programming, we directly solve the
optimization problem using primal-dual interior point method that is an efficient solver
for convex optimization problems, which allows us to use various types of regularization.
Especially, when ¢35 norm regularization considered, we can provide an interesting connection
of our method to the large margin formulation. The main contribution of this paper is
summarized below.
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e Our method is more computationally efficient than the existing probabilistic decoding
methods. In our formulation, the aggregation weights are the only parameters to be
tuned (M), while the existing method [16] scales linearly with the number of samples
(NK + M).

e We formulate the regularized maximum likelihood estimation as a convex optimization,
so a global solution is found. We use the primal-dual interior point method to solve
this optimization problem.

e Connections of our method to large margin classifiers are presented, showing that the
large margin formulation can be considered as a limiting case of our convex formulation.
Moreover, we present data-dependent generalization error bound, based on margins
and Rademacher complexity, extending existing work on binary problems [20] to our
multiclass problems which are solved by aggregating binary solutions.

The rest of this paper is organized as follows. The next section describes notations
and preliminaries which are needed to explain our method. Section 3 provides the main
contribution, in which we describe our model and show how an optimal aggregation of
binary classifiers is formulated as a convex optimization, which is solved by the primal-dual
interior point method. Connections to large margin classifiers and generalization error bound
are described in Section 4. Experiments on synthetic and real-world data sets are provided
in Section 5, demonstrating that our method outperforms existing aggregation methods
in terms of the classification accuracy and the quality of class membership probabilities.
Finally conclusions are drawn in Section 6. In addition, the appendix provides details about
the proof of propositions in Section 4.

2 Preliminaries

We are given N training examples {(z;, )}, where ¢; € X C RP are data vectors and
y, € Y ={1,...,K} (K > 3) are class labels associated with a;. Multiclass prediction
involves estimating the class membership probabilities of x;,

Pyi = Py = k| ), (1)
fork=1,...,K,and i =1,...,N. A class label for «; is determined by

Yi; = argmax Py ;.
k

We denote by p;, = [P1,-- -, PKJ-]T € R¥ the class membership probability vector for data
point x;. We also define the data matrix as X = [x1,...,xy] and the class label vector as
y = [y1, ---7yN]T-

Multiclass problems are decomposed into a set of binary problems that are solved by
individual binary classifiers. Such decomposition can be viewed as encoding and various
methods are widely used:

e OVA involves a set of K binary functions, each of which discriminates one class from
the other classes.

e APs learns a set of K(Ig_l)

classes.

binary classifiers, each of which distinguishes each pair of

e ECOC assigns a binary codeword to each class such that Hamming distances between
codewords are maximized (to increase the separability) and the length of codewords
determines the number of binary functions to be learned.
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Aforementioned encoding methods yield a code matriz C = [C} ;] € RM*X where M is

the number of binary classifiers involved and K is the number of class labels. For instance,
Table 1 shows the 3x 3 code matrix for a 3-class problem in the case of APs coding. According
to the code matrix, multiclass problem is reduced to a set of binary problems that are solved
independently. Each column in the code matrix C, denoted by ¢;, corresponds to codeword,
while each row defines a binary problem to be solved by a binary classifier (BC;). For
instance, BCy discriminates class 2 from class 3, while samples in class 1 is not used.

Table 1: code matrix in the case of APs for 3-class problem is shown, where BC; denote
binary classifiers, 1 and 0 represent positive and the negative class labels, and A indicates
unused class label (don’t care terms).

class 1 class 2 class 3
BC; 1 0 A
BCy A 1 0
BCj3 1 A 0

Given the code matrix C, the jth binary classifier is trained using examples {(x;, Cj )},
where binary values of target C},,, associated with data x;, are determined by the code
matrix. For instance, in the case of the 2nd binary classifier in Table 1, the binary target
value for x; is C2 2 = 1 when x; belongs to 'class 2" and is C'y 3 = 0 if x; belongs to ’class 3’.

We assume that each binary classifier yields a probabilistic prediction, the value of which
ranges between 0 and 1. For example, we can use probabilistic SVM [21]. We denote by
Q;,; the probabilistic prediction by binary classifier j for the class label of x;:

QJ'-,Z' = P(ij’yi =1 | mi)v (2)

for j =1,...,M,and i = 1,..., N. We denote by q; = [Q1,i,--.,Qn:]" € RM the prob-
ability estimates computed by M binary classifiers for data point x;. In the paper, our
goal is to estimate class membership probabilities p,; using a collection of binary classifiers’
probability estimates, g;.

3 Convex Optimization for Binary Classifier Aggrega-
tion

In this section we present our main contribution, convex formulation, where an optimal
aggregation of binary classifiers into a final answer to multiclass problems is formulated
as a convex optimization, which is solved by the primal-dual interior point method. We
make use of the softmax function to relate class membership probabilities with binary prob-
ability estimates. The softmax model takes a conic combination the discrepancies between
codewords and the probability estimates of binary classifiers, as input arguments, to rep-
resent class membership probabilities. This approach provides a simple model to evaluate
class membership probabilities, compared to the (generalized) Bradley-Terry model-based
method [16].

3.1 Convex Formulation

Given probabilistic predictions of binary classifiers, g;, for data point x;, we evaluate which
codeword ¢y, is closest to g; in the sense of a pre-specified discrepancy measure, in order
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to guess a class label for x;. To this end, we define the discrepancy p(ck, g;, w) as a conic
combination of errors induced by M binary classifiers:

M
p(ckqu'vw) = ij d(cj,kan,i)u (3)
=
where
d(Cjr, Qji) = —Cjrlog Qi — (1 = Cjr)log(l — Qj4), (4)

is the cross-entropy error function for two classes where the model probability for mem-
bership of one class is @);; and the corresponding true probability is Cj j, while the model
probability for membership of the other class is 1 — @);,; and the corresponding true proba-
bility is 1 — Cj . Coefficients w; > 0 for j = 1,..., M are aggregation weights. In the case of
Cjr = A, we do not care what a probability estimate of the corresponding binary classifier
yields, so we set d(A, Q;,;) = 0. Our method to be described below is not restricted to the
case of cross-entropy error function. For any proper loss function, it holds. For instance, we
can also choose the exponential loss function that was used in loss-based decoding [7]

Ae(Cis Qs) = exp { ~Cin(Qjs — 1/2)} (5)

where éj_’kzl,—l, or 0, when Cj ;=1, 0, or A, respectively.

We define aggregation weight vector as w = [wy,...,wy]’ € RM. Given data point
x; and the probabilistic predictions g, determined by M binary classifiers, we model class
membership probability using the softmax function that takes the form:

exp {—p(ck, q;, w)} (6)

P(yl:k|w7wl): 3
Zgl‘il exp{_p(cjv(hvw)}

where p(cg, q;, w) is given in (3). The index k yielding the smallest p(ck, q;, w) leads to
the highest class membership probability. The prediction based on the loss-based decoding
[7] is a special case of our model. Fixing aggregation weights with w; = - = wy = 1/M,
the prediction y; = argmax;, P(y; = k|w,x;) under the model (6) with the exponential
loss function (5) leads to the results determined by the loss-based decoding. In contrast, as
will be explained below, we attempt to optimally tune aggregation weights using a convex
optimization.

We re-arrange the class membership model probability (6) by multiplying its numerator
and denominator by exp {p(ck, q;, w)}:

1
e @
ijlexp{w ] }

where cpg’k € RM™ are M-dimensional vectors, the [th entry of which is given by

(" = d(Cok, Qui) — d(Crjy Qui).- (8)

That is, <p‘g’k contains differences between two discrepancies, each of which is induced when
q; is compared to codewords ¢i and c;, respectively. With these relations (7) and (8), we
write the likelihood as

p(y|w, X)
N 0(k,yi)

K 1
= H ) (9)

K 7,k
i=1 k=1 Zj:1exp{wT% }
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where 0(k, j) is the Kronecker delta which equals 1 if j = k and otherwise 0.
We impose ¢ norm regularization on the aggregation weight vector w and consider the
negative log-likelihood, leading to the following minimization problem:

minimize fo(w)
subject to w; >0, j=1,..., M, (10)

where

(1>

1 A
Jo(w) —Nlogp(y|w,X)+§||w||§

| & K . N M
= ¥ Zlog Zexp {w—rcpf’yi} + 3 wa,
i=1 j=1 j=1

where A > 0 is a regularization parameter. Note that the term log (Zszl exp {w—rgof%})

associated with data point x; in the objective function (11) is called log-sum-exzp which is a
well known convex function used for geometric programming [22, 23]. The objective function
and constraints w; > 0 for j = 1,..., M are convex in our formulation (10), so we apply a
convex optimization method to determine optimal aggregation weights w.

Note that maximum likelihood estimation is often interpreted as the minimization of
Kullback-Leibler (KL) divergence between oracle and model. We define the true class label
matrix as T = [T};] € REXN  where each column vector ¢; follows the 1-of-K encoding
to represent true class label for a;, such that only element associated with y; is 1 and all
remaining elements equal 0. We denote by p € RX the K-dimensional class membership
model probability vector given the aggregation weight vector w, in which the kth element
is p(y; = k| w, ;) in (6). With these definitions, we write the KL-divergence between the
oracle and the model as

N
S KL[t: | pY ]
i=1

N

K
Th,i
ZZT’” log _( — ]§| 5
i=1 k=1 i = KW, Ti

N K
= Zlog ( exp {w—rgof’yi}> . (11)
i=1 k=1

It follows from (11) and (9) that the maximization of the likelihood (9) (with the regulariza-
tion ignored) equals the minimization of the KL-divergence (11). Thus the optimal aggrega-
tion weight w* determined by the maximum likelihood estimation enforces P(y; = k | w*, ;)
to be as close as to 1 for k = y; and 0 for k& # y;. We can also easily predict class labels
for test data points, by evaluating corresponding class membership model probabilities (6)
using the optimal aggregation weight vector.

3.2 Primal-Dual Interior Point Method

We make use of the primal-dual interior point method [22, 24, 25, 26] to solve the con-
vex optimization problem (10) to estimate the optimal aggregation weight vector w*. The
primal-dual interior point method exhibits better than linear convergence and outperforms
the standard interior point methods in most of applications such as linear, quadratic, geo-
metric and semidefinite programming [22]. We explain the primal-dual interior point method
briefly in this section to make our paper self-contained and the algorithm is outlined in Al-
gorithm 1. Readers who are familiar with the primal-dual interior point method can skip
this section and more details can be found in [22].
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We first examine Karush-Kuhn-Tucker (KKT) optimality conditions for the problem
(10). We denote dual variables by z = [z1,...,2zm]" (2; > 0 for j = 1,...,M). Then the
Lagrangian is written as

M
L(w,z) & fo(w) — szwj. (12)
j=1

KKT optimality conditions are given by

w; > 0, j=1,..,M, (13)

z; > 0, j=1,..,M, (14)

Vfo(w) — z 0, (15)
ijj = O, j = 1, ...,]\47 (16)

where V fo(w) represents the gradient of fo(w) with respect to w. One can easily see that
Slater’s constraint qualification holds for the problem (10), since any point on the positive
orthant (w € R}, ) could be a strictly feasible solution to the problem [22]. In such a case,
there exist optimal primal-dual points satisfying the KKT conditions (13) - (16) and the
optimal duality gap is zero. We define w* and z* to be optimal primal and dual points,
respectively. Then we have

1= fo(w*) —g(z") =0, (17)

where g(z) is the Lagrange dual function, i.e., g(2) £ infyy £(w, z). The primal-dual interior
point method finds the optimal primal solution w* and dual solutionz*, which satisfy the
KKT conditions (13) - (16).

We augment the objective function fo(w) by a logarithmic barrier [24] such that the
constrained optimization problem (10) is converted to an unconstrained optimization:

M
minimize fo(w) — u Zlog(wj), (18)
j=1

where p is the barrier parameter. The accuracy of approximation increases as the barrier
parameter y approaches zero. The (primal-dual) interior point methods solve the barrier sub-
problems for a sequence of the barrier parameters {u} that converge to 0. The logarithmic
barrier penalizes the points that are close to zero, so the primal solution for each barrier
sub-problem is strictly feasible, i.e., w(u) > 0 (where w(u) represents the solution to the
optimization (18) when a fixed value of p is given and > 0 means that each entry in vector
is greater than 0) and eventually converges to the optimal solution as u approaches 0.

The optimality conditions for the barrier sub-problem (18) can be interpreted as the
perturbed KKT conditions. Given the barrier parameter u, the optimality conditions for
(18) are given by

Vfo(w) — pw™t = 0. (19)

where w1 = [1 /w1, ...,1/wy]" € RM. Comparing (19) and (15), we have z; () = p/w; (1),
where z(u) is the dual solution for the barrier sub-problem when pu is given. With w > 0,
the optimality conditions for the barrier sub-problem (18) are equivalently expressed as

z > 0, j=1,..,M, (20)

Vfo(w) — z 0, (21)
ziw; = p, j=1,...,M. (22)
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The main difference between these conditions and the KKT conditions (13), (14), (15), and
(16) is in complementary slackness conditions, i.e., zjw; = 0 is replaced with z;w; = p.
Furthermore these conditions (20), (21), and (22) can explain that w(u) converges to the
optimal solution as y approaches zero:

M
folw(p) —p* < ZZj(u)wj(u)

= uM, (23)

Taw(p) to measure

where p* is a dual optimum, p* £ sup, g(z) = g(z*). We use 1 = ()
the duality gap of the barrier sub-problem with the given pu.

The iterative update rule for primal-dual interior point method is derived by approxi-
mately solving the sequence of the perturbed KKT conditions (20), (21), and (22) using the
Newton method. Given the barrier parameter u, the method tries to compute the Newton
step at the current solutions, w(p) and z(u). With abuse of notations, we denote the current
primal and dual variables by w and z without p. Then, it follows from the perturbed KKT

conditions (20), (21), and (22) that the residual r,(w, z) is defined as

)= [t == . 24

where diag(-) takes a vector and return a diagonal matrix with entries of the vector placed on
the diagonal, and 1 is the vector of all ones. The residual is not necessary 0 at each iteration,
except in the limits as the algorithm converges [22]. With a first order approximation of
ru(w, 2)=0, we can obtain the Newton step by solving the following linear equations

Vet 1 11ae]

).

where I is an M x M identity matrix. Calculating the Newton step is further simplified by
eliminating the variable Az that can be expressed as

(25)

Az = —diag(w) 'diag(z)Aw — diag(w)™* (diag(z)w - ,ul). (26)

Substituting this into (25), the linear equations are simplified as

HAw = —g, (27)
where
H = V2f0(w) + diag(z)[diag(w)]_l,
g = Violw)—pw .

Note that the derivations of gradient and Hessian of the objective function (10), V fo(w)
and V2 fy(w), are provided in Appendix 7.1. We use the preconditioned conjugate gradient
(PCG) to solve the linear system (27). Denoting by P € RM*M the pre-conditioning matrix,
the PCG algorithm yields an approximate solution within a smaller number of steps than M,
when P~Y2HP~'/2 has just a few extreme eigenvalues. As proposed in [27], we construct
P as a diagonal matrix in which the diagonal entries are set to that of H.

Given the Newton steps, Aw and Az, we update the primal-dual variables:

w(p™) =w + sAw, and z(p") = 2 + sAz, (28)

where s is a step length and p™ denotes the updated barrier parameter. The step length s
can be computed by a backtracking line search as described in [22]. It should be carefully
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chosen so that w(u™) > 0 and z(u™*) = 0 are always satisfied. To do this, we first compute
sM8X t6 ensure z(pu™) = 0:

sMAX = sup{s € [0,1]|z + sAz = 0}
= min{l, min{—z;/Az;|Az; < 0}}. (29)

Then, we start the backtracking with s = 0.99s™8%X and multiply s by 8 until we have
w(pt) > 0 and

Iru(w (™), 2()l2 < Iru(w, 2)[2(1 - as), (30)

where « is a small constant (o = 0.01 was used in our experiments). In order to update
the barrier parameter u, we use an adaptively strategies that determines it according to the
reduction of the duality gap as in [27]:

,LLJF — { ﬁ/(2M) if s > S.mln; (31)
I otherwise.
where we use s"™! = (.5.

The primal-dual interior point method to solve the convex optimization problem (10) is
summarized in Algorithm 1. The most dominant operation in Algorithm 1 is to compute
the Newton step Aw at each iteration, which involves calculating Hessian matrix of the
objective function, V2 fo(w), and solving the linear system (27). Given a set of {¢p]V},
whose construction time is O(MNK), we can form V?fy(w) at a cost of O(M2NK). For
convenience, we assume that the linear system is solved by the standard matrix inversion at
a cost of O(M?3), while the PCG algorithm generally requires less computational cost. Thus
the total cost of computing the Newton direction is O(M2NK + M?3), which is the same
as O(M?NK) when there are more training points than binary classifiers involved into the
binary decomposition for a multiclass problem.

Algorithm 1: Primal-dual interior point method for convex aggregation

Data: X,y,C
Result: Optimal aggregation weights w*
Binary classifications
Solve the set of binary classification problems:
obtain q; for i =1,..., N,
compute {cpf’yi}szl fori=1,...,N by (8),
Primal-dual interior point method
Initialize parameters
set « = 0.0l and 8= 0.5, u = (w'z)/2M,
set wy =1/M, and z; =1, forj=1,.., M,
set tolerance parameters €., = € = 10~
repeat
1. Update the barrier parameter p using (31).
2. Calculate the Newton steps, Aw and Az:
- compute V fo(w) and V2 fy(w) (see Appendix 7.1),
- solve r,(w, z) = 0 using by Newton method.
3. Update with line search:
- determine the learning step s,
- update the primal-dual variables by (28).
antil [|r, (w(p ), 2(0)| < €sea and ) <
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4 Connections to Large Margin Classifiers

In this section we show the connections of our convex formulation to large margin classifiers,
in which the discrepancy differences {cpf’yi}szl induced by binary classifiers (instead of
training examples ;) are inputs to a large margin classifier. Following the work in [28§]
where a close relation between large margin and logistic regression formulations is shown
in the case of binary classification, we provide its multiclass extension in this section. We
emphasize that the large margin formulation can be understood as a limiting case of our
convex formulation.
We assume that we assign data point x; to class y; if

y; = argmin p(ck, q;, w),
k

where p(cg, q;, w) = ij\il w;d(Cjk, Q) is defined in (3). Then the misclassification error
is given by

1 N
=31 # v, (32)
z:l

where 1(m) is the 0-1 loss function which equals 1 if the predicate 7 is true, otherwise 0.

A direct optimization of the misclassification error (32) is not an easy task due to the
discrete nature of the 0-1 loss. The multiclass hinge loss function, which is a convex upper
bound on the 0-1 loss 1(; # y;) [2], was considered as a surrogate function:

N
1 Lyi 2 i K,y;
SNZlh( 7901 7901‘ ,’LU), (33)
where the hinge loss function h ( AN cle i, w) is given by

1)1 1 J )1
h(soi”,%” g )

= 1_( s Qg - iv 499 ):|
k?ﬁ\’i[ p(ck, q;;w) — p(ey,, q;, w)

= max {(1 = 3y, 1) +w ol | (34)

+

where [a]4+ = max{a,0} and ¢!"¥" =0 is used to arrive at the second equality. To validate

the inequality (33), we define margin as

Vw(wivyi) = ]ICI;IH p(ckaqiaw) _p(cyiaqivw)' (35)
The multiclass hinge loss function (34) yields 0 only when the margin is greater than or equal
to 1. When the margin is between 0 and 1, the predicted class label ¥; is still correct, i.e.,
Ui = y; but the loss 1—wy,(x;, y;) (which is less than 1) is produced by the hinge loss function.
The negative value of margin, where §; # y;, implies h( by oY oo w) > 1,
leading to (33). Pictorial illustration is shown in Figure 1.

Thus, the problem of estimating aggregation weights can be formulated as the large
margin learning with the nonnegativity constraints on aggregation weights:

minimizeqy fra(w)
subject to w; >0, j=1,...,M, (36)
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p(cym qi, W) p(Cy,., i, W) /’(Cy,? i, W)

Figure 1: Pictorial illustrations for three difference cases where the margin, v, (x;,y;), is:
(a) greater than or equal to 1; (b) between 0 and 1; (c) less than 0. Cases (a) and (b)
yield correct predictions of labels. In the case (c), the true label is y; but some codeword ¢
yields the smaller discrepancy than the correct codeword c,,, leading to misclassification.

The value produced by the hinge loss function is: (a) h (cpg’yi, @Y .,gof{’yi,w) =0

. Lyi 2.0 K.yi
when mingzy, p(ck, q;, w) — p(ey,,q;, w) > 1; (b) h (cpi ViV ,'w) =1-
mlnk?&yw p(cku q;, ’LU) + p(cym q;, ’UJ) when 0 S mlnk?&’ljw p(Ck, q;, ’LU) - P(Cy“qia ’UJ) < 17 (C)

L (Lp}’yi Yi ’yi,w) > 1 when ming,, p(ck, q,,w)— p(Cyi, q;,w) <0.

2 K
Y P T Py

where

fra(w)

1 & K A
2Yi 2Yi 2Yi
= —NE h(cp%y,cpfy,...,cpi y,w)—l—EHng.
i=1

In this setting, we seek an aggregation weight vector w such that the empirical misclassifica-
tion is minimized, while the margin is maximized. The projected subgradient methods [29]
can be applied to directly solve the primal form (36). Note that the projected subgradient
method is a first-order method which exploits the gradient only, thus its performance much
depends on the problem scaling or conditioning [26, 30]. On the other hand, the primal-dual
interior point method used in our aggregation method is a second-order method where the
gradient and Hessian information are exploited, so its performance is not affected by the
problem scaling. In general, (projected) subgradient methods are slower than (primal dual)
interior point methods [30]. Thus, our convex formulation (10) benefits from (primal-dual)
interior point methods, compared to the large margin formulation (36).

We now show a close connection between our convex formulation (10) and the large
margin formulation (36). To this end, we slightly modify the class membership model
probability (6), introducing misclassification cost 1 — §(y;, j) and stiffness parameter 7 > 0:

Py =k|w,z;)
exp {T((l —0(yi, k) — plex, q; w)) }

Sy exp {r((1 = 6(3:)) — plesaw)) }
1

Sy exp { (3, k) = 0(yin )+ wT}*)

)
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This modification leads to the following minimization problem for estimating aggregation
weights:

minimize f,(w),

subject to w; >0, j=1,...,M, (38)

where

o (w)
1 N

= oy (s

i= j

The objective function f,(w) is nothing but the negative log-likelihood defined by the mod-
ification (37), with f2 norm regularization. The parameter 7 controls the stiffness and
1 — 6(ys,J) leads to a shift of the loss function fo(w) (11) by 1 when the Kronecker delta
equals 0. Proposition 1 outlines that the large margin formulation can be interpreted as a
limiting case of our convex formulation (38).

K , A
exp { (1= 0y, 1)) + wT " ) }) + S w3
1

Proposition 1. The sequence of functions { fr(w)} (1 = 1,2,...) uniformly converges to the
objective function fra(w) in the large margin formulation (36). That is, given any ¢ > 0,
there exists a natural number = = =Z(e) such that

|f-(w) — fom(w)| <€, forVr>Z andV w € RM.

Proof. See Appendix 7.2.
We would like to point out a few things about our convex formulations (10) and (38),
and the large margin formulation (36).

e A special case of (38) when fixing 7 = 1 and neglecting the misclassification loss
1 —6(yi,7), leads to our original convex formulation (10).

e In contrast to the large margin formulation (36), the convex formulation (38) allows
us to calculate the gradient and Hessian, so the primal-dual interior point method can
be used to find the optimal value of w, as in the case of (10), while the subgradient
method is used to solve the large margin formulation (36).

e Solving (38) requires a successive application of the primal-dual interior point method,
gradually increasing the value of 7. Starting from 7 = 1, the primal-dual interior point
method is used to determine the optimal w. This optimal value of w is used as an
initial condition at the next iteration with increasing 7.

e In our experience with extensive numerical experiments, these three formulations (10),
(36) and (38) yield similar performance in terms of classification accuracy. However,
we prefer our original convex formulation (10) to others, due to its computational
efficiency and implementation simplicity.

In addition, we present a data-dependent generalization error bound, based on the large
margin formulation (36) using the Rademacher complexity [20]. Our result is an extension
of existing work on binary problems [20] to the multiclass problems solved by aggregating
binary solutions. To this end, we treat the margin (50) as a decision function for multiclass
problems, so that a class of functions is given by F = {f : X x Y — R| f(z,y) = w p*¥},
where w € R the aggregation weight vector and k = arg ming ., p(ck, q,, w). Note that

cpg*y can be considered as feature mapping, as in kernel methods. Applying Theorem 7 in [20]
to our problem, with the empirical Rademacher complexity, yields the following proposition.
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Proposition 2. Let P, be a probability distribution on X x ), from which (x,y) is drawn.
Given € > 0, with probability > 1— e over training samples {(z;,y;)}}., drawn independently
from P, for every aggregation weight vector w € RY for |w||2 < B,

¢ L [oos/g
S og(2/e
Ply#9) < — Z (Vw Tis Yi ) + —<Zm1n|gol’y |§> + TN

where vy, (x4, y;) s the margin (50) and ¢(z) = min(1, max(0,1 — z)), for z € R, is the ramp
loss that is a clipped version of hinge loss [31].

Proof. See Appendix 7.3.

In Proposition 2, the generalization error P(y # ) is upper-bounded by a sum of three
terms, each of which is the average empirical loss, the empirical Rademacher complexity of
the function class F, and a constant term depending on e (confidence parameter) as well as
the number of training samples N. Lemma 22 in [20] was used to compute the empirical
Rademacher complexity in our problem. Note that the average empirical loss in Proposition
2 is not convex. Thus Replacing the ramp loss ¢ by the multiclass hinge loss function h (34)
that is a convex upper bound on ¢, with regularization, yields the large margin formulation
(36) which can be solved by convex optimization.

Proposition 2 theoretically supports the validity of our aggregation method, including
the large margin formulation (36) and the convex formulation (38). The aggregation weights
are determined by minimizing the average multiclass hinge loss, equivalently maximizing the
margin. Thus, our aggregation method yields the lower generalization error, since Propo-
sition 2 implies the larger the margin the lower the generalization error of classifiers. This
is also applied to our convex formulation (10), due to its strong connection to the formula-
tion (38). Note that our generalization error bound is similar to the ones for boosting with
loss-based decoding [7], while the error bound in [7] is based on VC dimension which does
not depend on sample distribution in contrast to Rademacher complexity. In addition, it
also follows from Proposition 2 that our aggregation method yields the lower generalization
error, compared to the loss-based decoding, because our method minimize the average mul-
ticlass hinge loss while the loss-based decoding use fixed aggregation weights (w; = 1/M for
j=1,...,M).

5 Experiments

We evaluated the performance of our method on several data sets in terms of the classi-
fication accuracy and the quality of class membership probability estimates, compared to
existing multiclass classification methods. They include two direct methods for multiclass
problems, {multiclass SVM (M-SVM) [2] and lasso multinomial regression (LMR) [32]}, and
three aggregation methods, {loss-based decoding [7], GBTM in [15] (which is a probabilistic
decoding method based on the generalized Bradley-Terry models) and WMAP [16].} We
carried out numerical experiments on two synthetic and eight real-world data sets, in order
to show the usefulness and high performance of our convex aggregation method.

5.1 Experimental Setting

M-SVM [2] aims to directly construct a K-way classifier which separates the correct class la-
bels from the rest of class labels by maximizing the margin defined as gy, (&;) —maxgy, gi (i),
where {gi }_, are classification functions for each class. Thus the prediction for a new point
x, is made by §, = maxy gr(x,). In the experiments, we used a linear kernel and the reg-
ularization parameter Ap;, which trades off the empirical misclassification error and the
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margin, was obtained by maximizing the classification accuracy on randomly chosen vali-
dation set on a parameter space Ay; € {10°,10,...,10°}. We used a toolbox available at
http://svmlight.joachims.org/svm multiclass.html.

LMR [32] is a variant of generalized liner model (GML) [33] that generalizes linear
regression by allowing a linear model to be related with the response variables (characterized
by exponential family distribution) through the response function. Especially, multinomial
regression (MR) defines a linear model which is related with the categorical response variable
(class labels). In this case, the response function turns out to be the class membership
probability in multiclass problems:

exp{yro +v4 2}
e .
Zj:l exp{7yjo + 'VJT:B}

Ply = klz) = (39)

where parameters are ;0 € R, v, € RP, for j = 1,..,K. LMR [32] determines the
parameters by maximum likelihood with the ¢; norm (lasso) regularization. We used a
Matlab toolbox which is available at http://www-stat.stanford.edu/ tibs/glmnet-matlab/.

For binary-decomposition methods, we used three encoding schemes, OVA, APs and
ECOC, where the code matrix C is determined as in Section 2. The most simple case is
OVA encoding: the code matrix C' is set to a K x K identity matrix. In APs encoding,
we learned a set of M = w binary classifiers, each of which distinguishes each pair of
classes. The code matrix for APs is a M x K rectangle matrix in which each column includes
only one 1 and 0. In the case of ECOC encoding, we used two strategies to generate the code
matrix C: complete code and sparse random code [7]. For K < 8, we used the complete
code, yielding M = 2K~1 — 1 binary classifiers and generating a binary code matrix without
don’t care terms (A). For K > 8, we generated a spare random code matrix as in [7], in
which M = [15log, K], and entries of the code matrix are chosen as A with probability 1/2
and 0 or 1 with probability 1/4 for each. To increase the separability between codewords,
Hamming distance x between each pair of columns in C should be large. We selected the
matrix with a maximum x by generating 20,000 random matrices and ensuring that each
column has at least one 0 and one 1.

We used two linear SVMs to implement the base binary classifier, LibSVM and Liblinear
[34]. In fact, the loss-based decoding and our method do not require that the binary classifier
yields probability estimates. However, for fair comparison with GBTM and WMAP which
are based on the probability estimates of binary classifiers, we converted the score obtained
by SVM into the probability. In the case of LibSVM, Platt’s sigmoid model [21] is used to
calculate the binary class membership probability:

1

Qi =17 exp {—Ag; (z;) + B}’

(40)

where g; is the function learned by the jth SVM and A, B € R are parameters are tuned by
the regularized maximum likelihood framework [21, 35]. Note that, in the case of Liblinear
the binary class membership probabilities are directly calculated by f2 norm regularized
logistic regression. For linear kernel case, the regularization parameter Ap, only user pa-
rameter to be set, is obtained by maximizing the classification accuracy on randomly chosen
validation set on a parameter space [273,272,...,23 24].

As mentioned in Section 3.1, the loss-based decoding [7] can be implemented as a special
case of our aggregation method, where the aggregation weights are set to wy = ... = wyr =
1/M. In this setting, the method can be easily extended to probabilistic decoding. The
class membership probability of the instance x; in the loss-based decoding is given by

exp{—pe(cr,q;, W)}
K ~
> j=1exXp{—pe(c), q;, w)}

Pyi = klz, w) = ; (41)
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where pe(ck, q, W) = 75 Zﬁl de(Cj 1k, Qj:) and d, is the exponential loss defined in (5).

WMAP [16] is an existing optimal aggregation method, which also tunes aggregation
weights based on training data. The method is also based on the generalized Bradley-Terry
models to connect class membership probabilities to the probability estimates obtained
by binary classifiers. The aggregation weights are assigned to each classifier an learned
by maximizing the objective function which represents the concordance between the class
membership probability estimates and the target labels [16]. Note that, since the aggregation
weights are indirectly related with the objective function, the calculation of the gradient of
the objective function with respect to the aggregation weights is tricky and involves the
optimization of class membership probabilities for whole training data. It usually takes too
much of time to compute the gradient at each iteration, so WMAP is prohibitive even for
mid-scale problems. In the experiments, we estimated the aggregation weights using WMAP
only for small datasets, otherwise class membership probabilities for the test data were just
estimated with the fixed aggregation weights, w; = N;/ Zﬁl Nj, where N; is the number
of training points involved in the jth binary classification problem. Some user parameters
were manually set, choosing the values yielding the best performance after several trials were
made.

GBTM is also a probabilistic decoding method based on generalized Bradely-Terry mod-
els [15], which can be understood as a special case of WMAP with the uniform aggregation
weighs. Similar to WMAP, class membership probabilities are computed by minimizing
KL divergence between the generalized Bradely-Terry models and the probability estimates
obtained by binary classifiers. However, the method does not includes the learning proce-
dure of aggregation weights: it only provides the fixed-point type update rule for computing
class membership probabilities for test points. We implemented the method according to
Algorithm 2 in [15]. Both GBTM and WMAP were implemented in Matlab.

For our method, we need to determine the regularization parameter A in (10). To do
this, we investigated the regularization path, which explains how the value of A affects the
optimal solution of aggregation weights. For example, we examined "Vowel’ dataset from
UCT repository [36], which contains 11 classes and about 1000 examples. In this case, we
used LibSVM with linear kernel for the base binary classier and ECOC (sparse random code)
encoding for binary-decomposition, in which the number of classifiers is [15log, K] = 52,
so is the dimension of w. The regularization path to this problem is shown in Figure 2. We
also reported the training classification accuracy of this dataset: the square in the figure
indicates the classification accuracy for the training data at each value of \. The method
showed reasonable performance for A < 1072. With extensive numerical experiments, we
found that our method shows the stable performance for the wide range of the value of A. For
simplicity, we set A = 10~% for all experiments. The primal-dual interior point algorithm
in Table 1 was implemented in Matlab. All experiments were run on Intel i7 quad-core
2.67GHz cpu with 12GB main memory.

5.2 Synthetic Data

In this subsection, we show that how our method improves the overall classification accuracy
of the loss-based decoding by adapting the aggregation weights on the given dataset. We first
considered a 3 class problem, in which each class includes 100 training examples. The APs
encoding was used for the binary-decomposition, so three binary classification problems were
defined based on the code matrix C which equals Table 1. We assumed that one of three
classifiers fails to correctly separate the given pair of classes. To realize this assumption,
we directly generated the probability estimates for three binary classifiers, i.e., {Q;;} for
t=1,...,300 and j = 1,...,3. Denote Z; by a set of indexes of the training examples with
class label k. We assumed that the first and second classifiers are well designed for their
purposes, but, the third classifier, BCs5, was designed to fail to achieve its goal. Thus, {Q;;}
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Figure 2: Regularization path versus the regularization parameter A for vowel dataset with
ECOC encoding, where the square indicates the training accuracy at each value of .

were generated as follows

e from BC; (the classifier that separates classes 1 and 2):
Ql,i =09+ O.lul,i for i € I, QLi =01+ O.lul,i fori € Iy

e from BC5 (the classifier that separates classes 1 and 3):
Qg)i =0.6+ 0.4’(1,2)1‘ for i € I, Qgﬂ' =01+ O.l’u,z)i fori € I3

e from BCj5 (the classifier that separates classes 2 and 3):
QB,i =05+ 0.57"(1)371')11,371' for ¢ € s, Qgﬁi =0.5+ 0.57”(’0311)11,311' for i € Z3.

Here, u;; and v;; were generated from the uniform distribution, w;;, v;; ~ Uy 1) and 7(a) is
a binary function that is 1 if @ > 0.5, otherwise -1. For each binary classifier, the probabilistic
estimates for the training examples associated with unused class label A were assumed to
be generated from the uniform distribution. For example, in the case of BCy, Q1,; = u1,
for i € Z3, where uy ; ~ Ujg 1. Note that the classifier BC3 totally fails to separate classes
2 and 3.

The loss-based decoding method gives undesirable classification results due to the in-
correct classifier, BC5. In this case, the training classification accuracy is 0.780, and the
method often misclassify classes 2 and 3. We can check this point from the confusion matrix
of the loss-based decoding method on this dataset, shown in Table 2.

Table 2: Confusion matrix of the loss-based decoding method for 3 class problem.

Predict
class 1 class 2 class 3
class 1 100 0 0
True class 2 2 67 31
class 3 5 28 67

Our method can give the better solution for this problem by adapting the aggregation
weights based on the observed data. When the results from a certain classifiers are unreliable,
our method can remove the effect of this incorrect classifier on the overall classification
accuracy by setting the corresponding aggregation weight to as close as to zero. We obtained
the optimal aggregation weight vector w* by solving the optimization problem (10). Figure
3 shows the progress of primal-dual interior point method for this dataset. As mentioned
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in Section 3.1, the initial solution of the algorithm was set to a uniform weight vector,
wy = we = w3 = 1/3, in which our method produces the identical prediction to the loss-
based decoding. As the algorithm converges, the classification accuracy evaluated using
w(p) (the solution of each iteration) increases. The final solution of our method, w*, is
given by

w* = [8.3146, 8.2828, 0.0161]". (42)
As we expected, the aggregation weight for BC3, ws, becomes close to zero. With the
optimal aggregation weight vector w*, the training classification accuracy is 0.940, which is
much higher than that of loss-based decoding. The confusion matrix of our method is also
given in Table 3.

] — fD
-] L] accuracy

2 0.5F —0.

o
©
accuracy

0 I I I I I 0.6
0 2 4 6 8 10 12

iteration number

Figure 3: Progress of primal-dual interior point method for 3 class dataset. The plot shows
the objective function value fo(w) versus the number of iteration. The red square represents
the classification accuracy evaluated at the solution of each iteration.

Table 3: Confusion matrix of our aggregation method for 3 class problem.

Predict
class 1 class 2 class 3
class 1 100 0 0
True class 2 0 92 8
class 3 0 10 90

We further compared the performance of the loss-based decoding and our method, in
the case where the number of classes is increased with the fixed number of training data.
The data instances evenly sampled from K number of 2-dimensional Gaussian distributions,
the mean vectors of which are chosen as D independent uniform [0, 20] random variables.
We allowed the overlap of classes, thus the separation of classes might be harder as the
number of classes is increased. For each trial 1300 samples were drawn from each Gaussian
distribution, in which 300 samples were used for training and 1000 samples for test. As the
number of classes increase, the data points in each class became spares. With this synthetic
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data, we can examine the performance of our method for sparse dataset varying with the
number of classes. We used the Liblinear (linear SVM) for the base binary classifier.
Figure 4 (b)-(d) represent the classification accuracy averaged over 20 independent runs,
when the number of classes, K, varies from 3 to 50 in the cases of APs, OVA and ECOC,
respectively. Our method improves the classification accuracy of the loss-based decoding in
the all cases. In addition, we can confirm that our method well works for the case where the
number of data points in each class is relatively small compared to the number of classes.

APs encoding

=&~ Our method
++ & loss-based decoding

accuracy

56)
o]

1
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number of classes (K)

(a) (c)

OVA encoding ECOC encoding
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Figure 4: Classification accuracy of the loss-based decoding and our method on a 2-
dimensional synthetic dataset. (a): One example of the synthetic dataset is shown, where
the number of classes is 11 and each color represents the different class. (b)-(d): Classifica-
tion accuracy of each method is averaged over 20 independent runs, when K varies from 3
to 50, in the cases of (b) APs, (¢) OVA and (d) ECOC.

5.3 Real-World Data

To compare the performance of each method on real-world problems, we used two cancer
datasets and six UCT data sets [36]. The cancer data sets are acute lymphoblastic leukemia
(ALL) [37] and global cancer map (GCM) [38], which were used to evaluate the performance
of WMAP [16]. The detailed descriptions for the datasets are summarized in Table 4. All
datasets were pre-processed such that all attributes are normalized to have unit variance, in
order for attributes to reside in similar dynamic ranges. Especially, for two cancer datasets,
we only selected a subset of genes as classification features: we chose 1,000 genes as the input
features by using a gene ranking based on the ratio of between group- to within group sum
of squares. In addition to the cancer datasets, the input dimensionality of ’isolet’ dataset
was reduced into 25 (equals to K — 1) by Fisher linear discriminant analysis in order to
reduce the computational complexity without loss of classification performance.
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Table 4: Data description.

# samples  # attributes # classes

ALL 248 12,558 6
GCM 198 16,063 14
glass 214 9 7
segmentation 2,310 19 7
satimage 6,435 36 7
pendigits 10,992 16 10
isolet 7,797 617 26
letter 20,000 16 26

In addition to classification accuracy, we evaluated mean square error (MSE) to examine
the quality of class membership probability estimates obtained by the method. For a new test
point x,, we usually have a corresponding true label, but not class membership probabilities.
As in [10, 39], we can assume that the class membership probabilities are given by &, =
[Tj,0] € RE where T},o is defined to be 1 if the label of x, is j and 0 otherwise. Then, MSE
is calculated as

K . 2
MSE(J:O) = Z (Tj,o — P(yo = ]lwo)) ) (43)

Jj=1

where p(yo = jlax,) is the class membership probability estimated by the method. Note
that MSE is also called Brier score [40], and the lower value the better performance.

For binary-decomposition methods, the base binary classifier was chosen according to
the scale of dataset: LibSVM for the datasets {GCM, ALL}, and Liblinear [34] for other
datasets. After learning of the binary classifiers, our method and WMAP were applied to
learn the aggregation weights. Due to computational complexity, WMAP was applied to the
small datasets, {GCM, ALL}. Otherwise, class membership probabilities for test dataset are
calculated in the WMAP framework with the fixed aggregation weights. Each experiment
was repeated 20 times by the random 10-fold cross-validation, in which the original data
are randomly split into 10 subsets with the equal size, and then 1 subset is used for the
validation data, and 9 subsets for the training data.

Table 5 summarizes the average accuracy for the different methods, M-SVM, LMR,
loss-based decoding, GBTM, WMAP, and our method. The aggregation methods with APs
encoding usually show the higher classification accuracy than two direct methods. This result
is consistent with the comparison study in [5] which reported that APs-based decomposition
methods generally show higher predictive accuracy than the direct methods for multiclass
problems, such as M-SVM. In addition, our aggregation method shows superior performance
than other methods across most of cases.

Table 6 shows the average MSE, which measures the quality of class membership prob-
ability estimate obtained by each method. At first we can check out that our method sig-
nificantly improves the quality of class membership probability estimates of the loss-based
decoding by tuning the aggregation weights. In addition, LMR generally shows high perfor-
mance for most data sets, however, its performance does not exceed that of our method with
APs encoding. We finally conclude that our aggregation method outperforms other meth-
ods, including the direct method, LMR, and two aggregation methods, GBTM and WMAP,
in terms of the quality of class membership probability estimates. Note that, M-SVM is not
considered in these cases due to its deterministic nature.

We also evaluated the performance of our method in terms of training time, reported in
Table 7. As mentioned before, WMAP is prohibitive even for medium-scale problems: for
GCM dataset, it averagely took 360.297 and 92.971 second to learn the aggregation weights
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in AP and OVA encodings, respectively. On the other hand, our method was terminated in
seconds for most cases. Furthermore, our method has an additional computational advan-
tage over the probabilistic decoding method based on (generalized) Bredely-Terry model,
such as GBTM and WMAP, which involve additional optimizations to estimate the class
membership probabilities for test data. In our method they are easily calculated by evaluat-
ing the softmax function (6) with the learnt aggregation weights. For example, we compared
the test time of 3 probabilistic decoding methods, GBTM, WMAP and our method, on 6
UCI datasets. As shown in Table 8, our method is remarkably faster than other meth-
ods. As a results, we can confirm the superiority of our method in terms of computational
efficiency as well as classification performance. Our method becomes more useful for large-
scale multiclass problems which involve evaluating class membership probabilities for the
data points.



Table 5: Comparison of classification performance for two direct methods (M-SVM and LMR), and four aggregation methods (loss-based
decoding, GBTM, WMAP, and our method), in which results are the average accuracy and the number in parenthesis represents the standard

deviation. The numbers in bold face denote the best performance for each dataset.

Dataset | M-SVM | LMR | Encoding Loss-based GBTM WMAP Our method
APs 0.650(0.097) 0.632(0.092) | 0.695(0.109) | 0.726(0.100)

GCM 0.708 0.684 OVA 0.784(0.101) 0.784(0.101) | 0.784(0.101) | 0.795(0.090)
(0.110) | (0.109) ECOC 0.758(0.096) 0.771(0.101) | 0.721(0.123) | 0.766(0.100)

APs 0.978(0.033) 0.978(0.033) | 0.978(0.033) | 0.972(0.035)

ALL 0.972 0.976 OVA 0.978(0.030) 0.978(0.030) | 0.976(0.030) | 0.978(0.030)
(0.037) | (0.027) ECOC | 0.980(0.028) | 0.980(0.028) | 0.978(0.027) | 0.980(0.028)

APs 0.564(0.102) 0.576(0.094) | 0.564(0.099) | 0.602(0.098)

glass 0.638 0.631 OVA 0.600(0.098) 0.600(0.098) | 0.598(0.102) | 0.610(0.108)
(0.091) | (0.091) ECOC 0.629(0.109) 0.629(0.109) | 0.626(0.111) | 0.640(0.088)

APs 0.950(0.017) 0.947(0.017) | 0.948(0.017) | 0.952(0.017)

segment 0.950 0.907 OVA 0.910(0.024) 0.910(0.024) | 0.910(0.024) | 0.917(0.022)
(0.020) | (0.019) ECOC 0.905(0.022) 0.905(0.022) | 0.905(0.022) | 0.951(0.016)

APs 0.862(0.011) | 0.861(0.011) | 0.861(0.011) | 0.862(0.011)

satimage | 0.847 0.846 OVA 0.832(0.014) 0.832(0.014) | 0.832(0.014) | 0.836(0.013)
(0.011) | (0.015) ECOC 0.818(0.011) 0.818(0.011) | 0.818(0.011) | 0.856(0.013)

APs 0.979(0.005) 0.977(0.006) | 0.977(0.006) | 0.979(0.005)

pendigits | 0.956 0.934 OVA 0.931(0.007) 0.931(0.007) | 0.931(0.007) | 0.934(0.008)
(0.007) | (0.007) ECOC 0.918(0.025) 0.928(0.009) | 0.928(0.009) | 0.958(0.008)

APs 0.974(0.005) 0.973(0.005) | 0.973(0.005) | 0.978(0.004)

isolet 0.976 0.960 OVA 0.972(0.005) 0.972(0.005) | 0.972(0.005) | 0.972(0.005)
(0.004) | (0.007) ECOC 0.959(0.008) 0.965(0.006) | 0.965(0.006) | 0.969(0.006)

APs 0.837(0.006) 0.830(0.007) | 0.831(0.007) | 0.844(0.007)

letter 0.784 0.748 OVA 0.723(0.008) 0.723(0.008) | 0.723(0.008) | 0.723(0.009)
(0.009) | (0.010) ECOC 0.565(0.024) 0.619(0.016) | 0.618(0.016) | 0.635(0.027)
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Table 6: Comparison of MSE for LMR and four aggregation methods (loss-based decoding,
GBTM, WMAP, and our method).

Dataset LMR Encoding | Loss-based GBTM WMAP Our method
APs 0.923(0.001) | 0.569(0.068) | 0.553(0.066) 0.417(0.148)
GCM 0.476(0.084) OVA | 0.917(0.002) | 0.322(0.082) | 0.347(0.079) | 0.287(0.125)
ECOC 0.910(0.002) | 0.401(0.077) | 0.423(0.084) 0.340(0.136)
APs | 0.784(0.002) | 0.067(0.048) | 0.060(0.047) | 0.039(0.050)
ALL 0.068(0.041) OVA 0.739(0.005) | 0.042(0.041) | 0.048(0.046) 0.038(0.049)
ECOC | 0.680(0.008) | 0.043(0.044) | 0.044(0.044) | 0.037(0.049)
APs 0.799(0.003) | 0.552(0.092) | 0.550(0.089) 0.554(0.135)
glass 0.516(0.116) OVA 0.807(0.004) | 0.584(0.070) | 0.585(0.070) 0.568(0.113)
ECOC | 0.791(0.006) | 0.568(0.068) | 0.569(0.067) | 0.538(0.116)
APs | 0.819(0.000) | 0.107(0.018) | 0.132(0.017) | 0.075(0.023)
segment | 0.149(0.028) OVA | 0.798(0.002) | 0.149(0.022) | 0.153(0.022) | 0.112(0.023)
ECOC 0.758(0.003) | 0.189(0.021) | 0.190(0.021) 0.077(0.020)
APs | 0.783(0.000) | 0.192(0.013) | 0.196(0.012) | 0.187(0.015)
satimage | 0.206(0.013) OVA | 0.764(0.001) | 0.242(0.012) | 0.244(0.012) | 0.224(0.015)
ECOC | 0.731(0.002) | 0.260(0.010) | 0.261(0.010) | 0.197(0.014)
APs | 0.880(0.000) | 0.060(0.006) | 0.141(0.006) | 0.033(0.007)
pendigits | 0.110(0.009) OVA | 0.867(0.000) | 0.121(0.009) | 0.128(0.009) | 0.102(0.010)
ECOC | 0.860(0.002) | 0.162(0.015) | 0.178(0.014) | 0.065(0.011)
APs | 0.959(0.000) | 0.228(0.006) | 0.625(0.002) | 0.035(0.005)
isolet 0.085(0.007) OVA | 0.956(0.000) | 0.062(0.006) | 0.165(0.007) | 0.042(0.005)
ECOC 0.945(0.001) | 0.114(0.008) | 0.171(0.008) 0.048(0.007)
APs | 0.959(0.000) | 0.339(0.006) | 0.663(0.002) | 0.232(0.007)
letter 0.408(0.012) OVA 0.959(0.000) | 0.495(0.006) | 0.592(0.005) 0.396(0.009)
ECOC | 0.955(0.000) | 0.674(0.011) | 0.697(0.010) | 0.505(0.026)

We additionally evaluated the classification performance of the aggregation methods

with nonlinear binary classifiers. We used the LibSVM with a rbf kernel function for a base
binary classifier, where the rbf-kernel width v and the regularization parameter Ap were
determined by maximizing the classification accuracy of randomly chosen validation set on
the 2-dimensional grid space (v, Ag), v € [276,275,...,22,23] and A\p € [273,272, ..., 23,21].
Note that, the results on 2 cancer datasets (GCM and ALL) are not included in here because
the performance on these datasets were considerable worse than using the linear kernel.

The average classification accuracy and MSE are shown in Table 9 and 10, respectively.
As similar to the linear kernel case, our method showed the stable performance for the
wide range of the value of \. However, there was the slight degradation of performance of
our method on the datasets {glass, satimage} due to overfitting, so we just increased the
regularization parameter as A = 10~ for these datasets. We can see that all probabilistic
decoding methods yield the similar classification performance for most cases. Although our
method improves the results of the loss-based decoding in terms of MSE, its performance is
not significantly better than that of GBTM and WMAP. The reason being is that optimal
tuning of aggregation weights favors for good binary classifiers while de-emphasizing no good
binary classifiers. When suitably-chosen nonlinear kernels are used, all binary classifiers
are already good, so no much performance gain is shown even when optimal tuning of
aggregation weights is made.
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Table 7: Performance of our method in terms of training time, in which results are the
average iterations of the primal-dual interior point method required to find the optimal
solution and the average training time in second.

Dataset | Encoding iter Time Dataset Encoding  iter Time
APs 18.5  0.114(0.013) APs 11.2 0.170(0.008)
GCM OVA 11.0  0.022(0.008) || satimage OVA 9.3 0.111(0.012)
ECOC 12.6  0.053(0.007) ECOC 14.0 0.392(0.017)
APs 11.0  0.021(0.007) APs 13.8 1.350(0.044)
ALL OVA 9.0 0.015(0.007) || pendigits OVA 9.0 0.313(0.013)
ECOC 10.0  0.021(0.005) ECOC 14.9 1.544(0.046)
APs 13.7  0.032(0.010) APs 23.5  41.879(1.490)
glass OVA 10.9  0.017(0.009) isolet OVA 13.5 1.412(0.059)
ECOC 15.0  0.043(0.008) ECOC 14.3 3.903(0.132)
APs 12.8  0.132(0.122) APs 23.5 106.299(2.249)
segment OVA 10.0  0.052(0.002) letter OVA 15.0  3.916(0.104)
ECOC 15.9  0.355(0.028) ECOC 16.6  11.201(0.397)

Table 8: Comparison of test time for three probabilistic decoding methods (GBTM, WMAP,
and our method) on 6 UCI datasets, in which results are the average test time in second
and Ny is the number of test points.

Dataset Encoding GBTM WMAP Our method
APs 0.178(0.026) | 0.174(0.006) | 0.000(0.000)

glass OVA 0.258(0.024) | 0.163(0.005) | 0.000(0.000)
(No = 21) ECOC 0.416(0.039) 0.258(0.009) | 0.000(0.000)
APs 6.286(0.083) | 2.316(0.034) | 0.001(0.000)

segment OVA 5.234(0.170) 2.264(0.052) | 0.001(0.000)
(No = 231) ECOC | 6.700(0.242) | 5.000(0.032) | 0.004(0.000)
APs 15.331(0.134) 6.398(0.114) | 0.001(0.000)

satimage OVA 8.652(0.270) | 6.027(0.055) | 0.002(0.000)
(No = 644) ECOC | 11.776(0.582) | 9.247(0.032) | 0.004(0.000)
APs 43.769(0.152) | 14.356(0.115) | 0.007(0.000)

pendigits OVA 39.294(0.302) | 10.811(0.192) | 0.004(0.000)
(No = 1,099) ECOC 45.466(0.957) | 28.057(0.873) | 0.008(0.001)
APs 88.243(0.554) | 26.034(0.156) | 0.032(0.002)

isolet OVA 68.645(0.210) 9.614(0.305) | 0.019(0.002)
(No = 780) ECOC | 84.369(0.263) | 30.492(0.848) | 0.024(0.002)
APs 214.264(2.927) | 94.640(1.006) | 0.133(0.176)

letter OVA | 167.560(6.766) | 24.462(0.358) | 0.051(0.005)
(No = 2,000) ECOC 206.253(2.420) | 60.249(0.727) | 0.063(0.007)
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Table 9: Comparison of average classification accuracy for four aggregation methods (loss-
based decoding, GBTM, WMAP, and our method), in the case where the nonlinear kernel
(rbf function) is used for the SVM classifier. The symbol (x) presented with the dataset
name means that we set the regularization parameter in our method, A, to 10~! for the

given dataset.

Dataset Encoding Loss-based GBTM WMAP Our method
APs 0.681(0.090) 0.681(0.088) 0.695(0.070) | 0.683(0.094)

glass () OVA 0.676(0.090) 0.676(0.090) 0.676(0.090) 0.681(0.085)
ECOC 0.683(0.104) 0.686(0.105) 0.683(0.096) 0.695(0.093)

APs 0.968(0.011) 0.967(0.012) 0.967(0.012) 0.969(0.013)

segment OVA 0.971(0.012) 0.971(0.012) 0.971(0.012) 0.971(0.012)
ECOC 0.975(0.009) 0.975(0.009) 0.975(0.009) 0.977(0.010)

APs 0.924(0.009) 0.924(0.009) 0.924(0.009) 0.924(0.010)

satimage (x) OVA 0.925(0.009) 0.925(0.009) 0.925(0.009) 0.925(0.010)
ECOC 0.927(0.010) | 0.927(0.010) | 0.927(0.010) | 0.927(0.010)

APs 0.995(0.002) 0.995(0.002) 0.995(0.002) 0.995(0.003)

pendigits OVA 0.996(0.002) | 0.996(0.002) | 0.996(0.002) | 0.996(0.002)
ECOC 0.993(0.008) 0.996(0.002) | 0.996(0.002) | 0.996(0.002)

APs 0.971(0.004) 0.970(0.005) 0.970(0.005) 0.977(0.004)

isolet OVA 0.979(0.004) 0.979(0.004) 0.979(0.004) 0.979(0.004)
ECOC 0.980(0.004) 0.981(0.003) | 0.981(0.003) | 0.979(0.004)

APs 0.973(0.004) 0.973(0.004) 0.972(0.003) 0.974(0.003)

letter OVA 0.978(0.004) | 0.978(0.004) | 0.978(0.004) | 0.977(0.004)
ECOC 0.976(0.005) 0.978(0.003) | 0.978(0.003) | 0.978(0.004)

Table 10: Comparison of MSE for four aggregation methods (loss-based decoding, GBTM,
WMAP, and our method), in the case where the rbf-kernel function is used for the SVM

classifier.
Dataset Encoding Loss-based GBTM WMAP Our method
APs 0.795(0.002) 0.441(0.081) 0.447(0.064) 0.440(0.082)
glass (*) OVA 0.787(0.008) 0.442(0.091) 0.443(0.089) 0.442(0.102)
ECOC 0.762(0.010) 0.426(0.083) 0.447(0.079) 0.472(0.121)
APs 0.818(0.000) 0.059(0.015) 0.075(0.014) 0.047(0.018)
segment OVA 0.783(0.001) 0.043(0.015) 0.044(0.014) 0.046(0.017)
ECOC 0.718(0.002) | 0.037(0.012) | 0.037(0.012) | 0.039(0.017)
APs 0.782(0.000) 0.115(0.012) 0.119(0.012) 0.124(0.011)
satimage (x) OVA 0.744(0.001) 0.113(0.014) 0.114(0.014) 0.115(0.014)
ECOC 0.692(0.002) | 0.111(0.013) | 0.111(0.013) | 0.114(0.014)
APs 0.881(0.000) 0.018(0.003) 0.089(0.003) 0.008(0.004)
pendigits OVA 0.860(0.000) | 0.006(0.003) 0.009(0.003) 0.006(0.003)
ECOC 0.853(0.003) 0.007(0.003) 0.011(0.003) 0.006(0.003)
APs 0.959(0.000) 0.115(0.007) 0.563(0.002) 0.036(0.005)
isolet OVA 0.956(0.000) 0.035(0.005) 0.114(0.005) 0.034(0.005)
ECOC 0.944(0.001) | 0.032(0.004) 0.067(0.005) 0.035(0.006)
APs 0.959(0.000) 0.112(0.003) 0.576(0.001) 0.040(0.005)
letter OVA 0.956(0.000) 0.036(0.005) 0.116(0.004) 0.035(0.006)
ECOC 0.943(0.001) 0.037(0.004) 0.073(0.005) 0.036(0.006)
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6 Conclusions

We have presented a method for optimally combining the results of binary classifiers into
a final answer to multiclass problems. The softmax function was used to model the class
membership probability, taking a conic combination of discrepancies induced by binary
classifiers and returning a guess of class membership. The corresponding log-likelihood was
a convex function in the form of log-sum-ezxp, leading to a convex formulation for optimal
binary classifier aggregation. The primal-dual interior point method was adopted to solve
the convex optimization problem.

Our method has several advantages over an existing optimal aggregation method, WMAP
[16] which optimally combines binary class membership probability estimates to form a
joint probability estimates for all K classes, fitting the generalized Bradley-Terry model. In
WMAP, both aggregation weights and class membership probabilities are treated as param-
eters to be estimated, so the computational complexity grows linearly with the number of
training examples. In contrast, our method has a few strong points: (1) aggregation weights
are the only parameters to be tuned (low complexity); (2) the convex formulation yields the
global solution; (3) class membership probabilities for test data are easily evaluated without
further optimizations. In addition, our method is available for any types of discrepancy
measures, while the aggregation methods based on the (generalized) Bradley-Terry model
always require that the binary classifier yields the probability estimates.

The (primal-dual) interior point method still suffers from computational burden in large
scale problems. We may use a stochastic approximation of interior point methods [41] to
improve the scalability. It is our future work to adopt more efficient optimization to speed
up the computation and to improve the scalability, in our convex aggregation method.

7 Appendix

7.1 Derivations of gradient and Hessian of the objective function
(10)

In this section, we include the gradient and Hessian of the objective function (10), which
can be easily calculated based on the derivations of gradient and Hessian of the log-sum-exp
function, described in Appendix in [22].

We first compute ¢}¥" for j = 1,...., K and i = 1,...,N by (8). Then we define ¥, €
REXM and u; € REX! for the ith data point:

(i)
v, = :
(@i )T
u; = {exp{w—rgozl’yi}, - exp{w—rcle’yi}} ! . (44)
The objective function is given by
| X K .
fo(w) = N Zg}log (;[uz]k> tow w (45)

The gradient is computed as

N
V fo(w) = Z (]_TL’U%‘I’ZT’L%> + \w.
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The Hessian is obtained by

V2 fo(w)
N
= Z\IllT (1T diag(u;) (sz_)Qu (ul)T) ¥, + diag(\),
=1 i i

where A = [\, .., \]T € RM,

7.2 Proof of Proposition 1

Proof. Let us define [ as the modified log-sum-exp function with 7, such that

I, (SDZLyi, 90127%, - (Pg()yi7 ,w)
1 K
= Los (S {r(0 - sty 4"t}
k=1

We first show that the sequence of functions {lT (cpg’yi, <p?’yi, s <piK’yi, w) } forr=1,2,...,

sYi sYi

uniformly converges to the multiclass hinge loss function A (cpi , <pf sy <piK’yi, w). Then,

we can easily prove that the sequence of functions {f,(w)} also uniformly converges to
fram(w). This proposition is an extension of the results in [42] which provide a connec-
tion between the hinge loss function and logistic loss function (that is a special case of the
log-sum-exp function) in the case of binary problems.

For all ¢ € RX, we are given the following inequalities for the log-sum-exp function [22]:

K
max{&, &, ... Ex} < log (Z exp{gk}>
k=1
< max{&,&,....¢x} + log K. (46)
Substituting & = 7'((1 —0(yi k) + chpf’yi) into (46), one can easily see that

Lyi ,2:¥i K.yi
h((pz 17901' 17"'7()07; Zaw)

Ly 2y K,y;
S l‘r (907, 5907; a"'asoi , W

< h(903”’2905"”3---asof{”“aw)+10gTK- (47)
It follows from this inequality that we have
R = i (e el )
—h (@l e w) | (48)

Thus, for any given € > 0, we can choose sufficiently large 7 such that

Ly 2,y K,y; Ly 2y K,y;
ZT(Soiyasoiya"'aSoi va)_h(soiyvsoiyv"'asoi va)‘<€'

Summing over all training data points, we obtain the inequality log K /7 > maxw {f-(w) — fom(w)},
which implies the uniform convergence of f;(w) to fra(w).
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7.3 Proof of Proposition 2

Proof. We first give the detailed explanations for some notations used in the proof. We
can consider the margin of each example, vy, (x;,y;), as a decision function for multiclass
problems. For example, the data point x; is misclassified if and only if v, (x;, y;) < 0. Thus
the empirical misclassification error can be defined by

1 N
Zl Vi (3,y;) < 0), (49)
z:l

where 1(m) is the 0-1 loss function which equals 1 if the predicate = is true, otherwise 0. In
addition, due to the definition of the margin, we have

Vw(wi;yi) = ]?;inp(ckaqivw) _p(cyivqiaw)

= wip (50)

where k; = arg ming, . plek, q;,w). Note that, since cp’“v’ can be considered as feature
mapping, as in kernel methods, the hypothesis set considered here is defined as a bounded
linear function class, i.e., F = {f : X x Y — R | f(z,y) = w' " for some w €
RY, |w|2 < B}. In this work, we aim at finding an aggregation weight vector among
the function class F, which minimizes the expected misclassification error (generalization
error), E [1 (l/w(w,y) < 0)] (= P(y # 9)). However, a direct optimization involving the

0-1 loss is not an easy task because of its discrete nature. We instead consider a ramp loss
¢ : R — [0, 1], which is a continuous upper bound on 0-1 loss function:

0 ifz>1
plz)=¢ 1—2z if0<z<l . (51)
1 ifz2<0

Note that, ¢ is a clipped version of hinge loss [31]. Finally, we define the empirical
Rademacher complexity [20] of a class of functions we are interested in. Let G be a
class of functions mapping from X x ) to R and given samples {(z;,y;)}Y,, the empir-
ical Rademacher complexity of the class G is given by [20]

%N(g): glsup( ZO’Z T, Yi )1, (52)

heg

where 0; € {—1,1} are independent uniform random variables. Note that, the empirical
Rademacher complexity is based on the training examples and thus is practically com-
putable. In addition, it can be viewed as the correlation between a random binary noise
and functions in the function class G, in the supermum sense. In our case, the empir-
ical Rademacher can be calculated based on Lemma 22 in [20]. Defining a new index
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k; = argmin, . ||cpfy |l2, the empirical Rademacher complexity of the class F is given by

S)A%N(]:) = E, sup ( Zal kyl)]

w:||w|.<B and weRM

B k’,yl T k Vs
< g, |3 S et Tk
=1 j=1 ]
B [ T ]
- k' 91 k. ,y;
< 3B ZZ ) @)
i=1 j=1

1/2
= <Z min ||¢; ’”ﬂ%) ) (53)

where Cauchy-Schwarz and Jensen’s inequalities are used to arrive at the second and the
third inequalities respectively.

Applying Theorem 7 and 8 in [20], yields the following generalization bound. With the
empirical Rademacher complexity in (53), for any € > 0, with probability greater than 1 — ¢
over samples of length N, every aggregation weight vector w € F satisfies

E[1(vu(@,y) <0)] < %i¢(uw(wi,yi))+2§%]v(}')+ %ﬁ/e) (54)
i=1

Using P(y #4) =E [1 (Vw(w, y) < O)] , we directly obtain Proposition 2.
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