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Laplacian Spectral Properties of Graphs from Random Local Samples

Zhengwei Wu Victor M. Preciado

Abstract

The Laplacian eigenvalues of a network play an impor-
tant role in the analysis of many structural and dynam-
ical network problems. In this paper, we study the re-
lationship between the eigenvalue spectrum of the nor-
malized Laplacian matrix and the structure of ‘local’
subgraphs of the network. We call a subgraph local
when it is induced by the set of nodes obtained from
a breath-first search (BFS) of radius r around a node.
In this paper, we propose techniques to estimate spec-
tral properties of the normalized Laplacian matrix from
a random collection of induced local subgraphs. In par-
ticular, we provide an algorithm to estimate the spec-
tral moments of the normalized Laplacian matrix (the
power-sums of its eigenvalues). Moreover, we propose
a technique, based on convex optimization, to compute
upper and lower bounds on the spectral radius of the
normalized Laplacian matrix from local subgraphs. We
illustrate our results studying the normalized Laplacian
spectrum of a large-scale online social network.

1 Introduction

Understanding the relationship between the structure
of a network and its eigenvalues is of great relevance in
the field of network science (see [3], [16] and references
therein). The growing availability of massive databases,
computing facilities, and reliable data analysis tools
has provided a powerful framework to explore this
relationship for many real-world networks. On the other
hand, in many cases of practical interest, one cannot
efficiently retrieve and/or store the exact full topology
of a large-scale network. Alternatively, it is usually easy
to retrieve local samples of the network structure. In
this paper, we focus our attention on local sample of
the network structure given in the form of a subgraph
induced by the set of nodes obtained from a breath-first
search (BFS) of small radius r around a particular node.

We study the relationship between the normalized
Laplacian spectrum of a graph and a random collection
of local subgraphs. We show how local structural
information contained in these localized subgraphs can
be efficiently aggregated to infer global properties of the
normalized Laplacian spectrum. Our analysis reveals
that certain spectral properties, such as the so-called

spectral moments (the power-sums of the eigenvalues),
can be efficiently estimated from a random collection
of localized subgraphs. Furthermore, applying recent
results connecting the classical moment problem and
convex optimization, we propose a series of semidefinite
programs (SDP) to compute upper and lower bounds on
the Laplacian spectral radius from a collection of local
structural samples.

1.1 Previous Work Studying the relationship be-
tween the structure of a graph and its eigenvalues is
the central topic in the field of algebraic graph theory
[1],[3],[5],[12]. In particular, the spectrum of the Lapla-
cian matrix has a direct connection to the behavior of
several networked dynamical processes, such as random
walks [10], consensus dynamics [16], and a wide variety
of distributed algorithms [11].

In many cases of practical interest it is unfeasible to
exactly retrieve the complete structure of a network of
contacts, making it impossible to compute the graph
spectrum directly. However, in most cases one can
easily retrieve local subgraphs obtained via BFS of
small radius. To estimate spectral properties from
localized structural samples, researchers have proposed
a variety of random network models in which they can
prescribe features retrieved from these samples, such
as the degree distribution [4],[15], local correlations
[13],[17], or clustering [14].

Although random networks are the primary tool
to study the impact of local structural features on
spectral network properties [4], this approach presents a
major flaw: Random network models implicitly induce
structural properties that are not directly controlled
in the model construction, but can have a strong
influence on the eigenvalue spectrum. For example, it
is possible to find two networks having the same degree
distribution, but with very different eigenvalue spectra.

1.2 Our contribution In this paper, we develop a
mathematical framework, based on algebraic graph the-
ory and convex optimization, to study how localized
samples of the network structure can be used to com-
pute spectral properties of the normalized Laplacian
matrix of (possibly weighted) graphs. The following are
our main contributions:
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• We develop a sublinear time algorithm to estimate
the spectral moments (power-sums of the eigenval-
ues) of the normalized Laplacian matrix of a graph
from a random set of local subgraphs samples. In
our analysis, we use Hoeffding inequality to provide
quality guarantees of our estimators as a function
of the number of samples.

• We provide a convex program to compute, in lin-
ear time1, upper and lower bounds on the Lapla-
cian spectral radius from a random set of local sub-
graph samples. Our results are based on recent re-
sults connecting the classical moment problem with
semidefinite programs (SDP).

2 Problem Formulation.

2.1 Notation and Preliminaries. Let G := (V , E)
be an undirected unweighted graph (or network), where
V := {v1, v2, ...vn} represents the set of nodes and
E ⊆ V×V represents the set of edges2. The neighborhood
of vi ∈ V is defined as Ni := {vj ∈ V : {vi, vj} ∈ E}.
The degree of node vi is di := |Ni|. A weighted graph
is defined as the triad H := (V , E ,W), where W is
a weight function W : E → R+ that assigns a real
positive weight to each edge in E . We define the weight
coefficient as wij := W({vi, vj}) if {vi, vj} ∈ E , and
wij = 0 otherwise. The weighted degree of node vi in a
weighted graphs is defined as dHi :=

∑n
j=1 wij .

A walk of length k from node vi0 to vik is defined as
an ordered sequence of vertices p := (vi0 , vi1 , . . . , vik),
where {vil , vil+1

} ∈ E , l = 0, 1, . . . , k − 1. If vi0 = vik ,
the walk is said to be closed. Given a walk p =
(vi0 , vi1 , . . . , vik) in a weighted graph H, its weight is
defined as the product of the edge weights, ωH(p) :=
wi0i1wi1i2 ....wik−1ik . The distance δij between nodes vi
and vj is defined as the minimum number of hops from
vi to vj .

The adjacency matrix of an unweighted network G
is defined as the n×n Boolean symmetric matrix AG :=
[aij ], defined entry-wise as aij = 1 if vi is connected to
vj , and aij = 0 otherwise. The adjacency matrix of a
weighted graph H is defined as the symmetric matrix
WH := [wij ], where wij are the weight coefficients. The
degree matrix of a weighted graph H is the diagonal
matrix of its weighted degrees, i.e., DH = diag(dHi ).
The normalized Laplacian matrix of a weighted graph
H is defined as

LH := I −DH
−1/2WHDH

−1/2.(2.1)

1Our algorithm runs in linear time assuming that the size of
the local subgraphs are much smaller than n.

2We consider only graphs with no self-loops (i.e., edges of the
type {vi, vi}).

The normalized Laplacian LH is a symmetric, positive
semidefinite matrix [3]. Thus, it has n nonnegative
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 and a full
set of orthogonal eigenvectors v1, . . . , vn. The largest
eigenvalue λ1 is called the spectral radius of LH, which
satisfies λ1 ≤ 2, [3]. Given a n × n symmetric matrix
M with (real) eigenvalues ν1, . . . , νn, we define the k-th
spectral moment of M as

mk(M) :=
1

n

n∑

i=1

νki .(2.2)

We now provide graph-theoretical elements to char-
acterize the information contained in local subgraphs
of the network. Given a weighted graph H, we de-
fine the r-th order neighborhood around node vi as the
subgraph Hi,r = (Ni,r, Ei,r,W) with node-set Ni,r :=
{vj ∈ V : δi,j ≤ r} and edge-set Ei,r := {{v, w} ∈ E s.t.
v, w ∈ Ni,r}. Notice that Hi,r is the subgraph of H
induced3 by the set of nodes that are at a distance r or
less from vi. This set of nodes can be found using a BFS
of radius r starting at node vi. Motivated by this in-
terpretation, we call Hi,r the egonet of radius r around
node vi. Egonets can be algebraically represented via
submatrices of the weighted adjacency matrix WH, as
follows. Given a set of k nodes K ⊆ V , we denote by
WH (K) the k× k submatrix of WH formed by selecting
the rows and columns of WH indexed by K. In par-
ticular, given the egonet Hi,r, we define its adjacency
matrix as Wi,r(H) := WH (Ni,r). By convention, we as-
sociate the first row and column of the submatrix Wi,r

with node vi ∈ V (the ‘center’ of the egonet), which can
be done via a simple permutation of Wi,r.

2.2 Problem Statement. The Laplacian eigenval-
ues of a graph can be efficiently computed for graphs
of small and medium size. In graphs of large size, this
computation is much more challenging. Furthermore,
in many real-world networks, one cannot retrieve the
complete network structure due to, for example, pri-
vacy and/or security constrains (e.g. Facebook). Al-
ternatively, it is usually easy to retrieve local samples
of the graph structure in the form of egonets. For ex-
ample, one can acquire information about the network
structure by extracting egonets of radius r around a ran-
dom sample of nodes. Therefore, it is realistic to assume
that one does not have access to the complete topology
of a large-scale network; instead, one can access only a
(relatively small) number of egonets in the network.

Clearly, egonets do not completely describe the
network structure; thus, it is impossible to compute

3An induced subgraph is a subset of the vertices of a graph G
together with any edges whose endpoints are both in this subset.



exactly the graph spectrum from local egonets. In
this paper, we show that, despite this limitation, we
are able to compute many spectral graph properties
from the egonets. We show that given a (sufficiently
large) random collection of egonets of radius r, one
can efficiently estimate the spectral moments of the
normalized Laplacian matrix, mk(LH), for k ≤ 2r + 1.
Furthermore, we show that, given a truncated sequence
of spectral moments, one can derive bounds on relevant
spectral properties, such as the spectral radius of the
Laplacian. As part of our analysis, we provide quality
guarantees for all the estimators and bounds herein
proposed.

3 Spectral Moments for Random Egonets

We start our analysis assuming the (unrealistic) situ-
ation in which one can access all the egonets in the
network. Under this assumption, we shall derive ex-
pressions for the spectral moments of the normalized
Laplacian matrix. Afterwards, we shall relax our as-
sumptions and consider the more realistic case in which
one can only access a (relatively small) number of ran-
dom egonets. In this case, we propose estimators for
the spectral moments and analyze their quality using
Hoeffding inequality.

3.1 Spectral Moments as Averages. We derive
an expression for the k-th spectral moments of the
normalized Laplacian matrix of a weighted graph, LH,
from local egonets of radius r, Hi,r. In our derivations,
we use the following lemma from algebraic graph theory
[1]:

Lemma 3.1. Let H be an undirected, weighted graph
with adjacency matrix WH = [wij ], then

[
W k

H

]
ii
=
∑

p∈Pi,k

ωH(p),(3.3)

where
[
W k

H

]
ii
is the (i, i)-th entry of the k-th power of

the adjacency WH and Pi,k is the set of all closed walks
of length k starting and finishing at node vi.

Using Lemma 3.1, we can compute the spectral
moments of the weighted adjacency matrix WH, as
follows:

Theorem 3.1. Consider a weighted, undirected graph
H with adjacency matrix WH. Let Wi,r(H) be the
(weighted) adjacency matrix of the egonet of radius r
around node vi, Hi,r. Then, the spectral moments of
WH can be written as

mk (WH) =
1

n

n∑

i=1

[
W k

i,r (H)
]
11

,(3.4)

for k ≤ 2r + 1.

Proof. Since the trace of a matrix is the sum of its
eigenvalues, we can expand the k-th spectral moment
of the adjacency matrix as follows:

mk (WH) =
1

n
Trace

(
W k

H

)
=

1

n

n∑

i=1

[
W k

H

]
ii
.(3.5)

From Lemma 3.1, we have that
[
W k

H

]
ii

=∑
p∈Pk,i

ωH(p). Notice that for a fixed value of k,
closed walks of length k in H starting at node vi can
only touch nodes within a certain distance r (k) of
vi, where r (k) is a function of k. In particular, for k
even (resp. odd), a closed walk of length k starting
at node i can only touch nodes at most k/2 (resp.
⌊k/2⌋) hops away from vi. Therefore, closed walks of
length k starting at vi are always contained within
the neighborhood of radius ⌊k/2⌋. In other words,
the egonet Hi,r of radius r contains all closed walks
of length up to 2r + 1 starting at node vi. We can
count these walks by applying Lemma 3.1 to the local
adjacency matrix Wi,r. In particular,

∑
p∈Pk,i

ωH(p)

is equal to
[
W k

i,r (H)
]
11

(since, by convention, node 1
in the local egonet Hi,r corresponds to node i in the
graph H). Therefore, for k ≤ 2r + 1, we have that

[
W k

i,r (H)
]
11

=
∑

p∈Pk,i

ωH(p) =
[
W k

H

]
ii
.(3.6)

Then, substituting (3.6) into (3.5), we obtain the state-
ment of our Theorem.

The above theorem allows us to com-
pute a truncated sequence of spectral moments
{mk (WH) , k ≤ 2r + 1}, given all the egonets of radius
r, {Hi,r, vi ∈ V}. According to (3.4), the k-th spec-
tral moment is simply the average of the quantities[
W k

i,r (H)
]
11
, i = 1, ..., n. For a fixed k, each value[

W k
i,r (H)

]
11
, i = 1, . . . , n, can be computed in time

O
(
|Ni,r|3

)
, where |Ni,r| is the number of nodes in the

local egonet Hi,r. Notice that, if |Ni,r| = o (n), we
can compute the k-th spectral moments in linear time
(with respect to the size of the network) using (3.4).

In what follows, we use the above results to compute
the spectral moments of the Laplacian matrix of a
weighted graph, LH. Before we present our results, we
define the so-called Laplacian graph:

Definition 3.1. Given a weighted graph H, we define

its Laplacian graph as L (H) :=
(
V , E ∪ Ẽ ,Π

)
, where



Ẽ := {{v, v} : v ∈ V} (the set of all self-loops), and the

weight function Π : E ∪ Ẽ → R is defined as:

Π({vi, vj}) :=





1, for vi = vj ,
−wij√
dH

i
dH

j

, for {vi, vj} ∈ E , vi 6= vj

0, otherwise,
(3.7)
where dHi is the weighted degree of node vi in H.

Notice that the weighted adjacency matrix of the
Laplacian graph L (H), denoted by WL(H), is equal
to the normalized Laplacian matrix of the weighted
graph H, LH. Thus, mk(LH) = mk

(
WL(H)

)
and we

can compute the spectral moments of the normalized
Laplacian matrix using weighted walks in the Laplacian
graph. In particular, the Laplacian spectral moments
satisfy

mk(LH) = mk

(
WL(H)

)

=
1

n

n∑

i=1

[
W k

L(H)

]
ii

=
1

n

n∑

i=1

[
W k

i,r (L (H))
]
11

(3.8)

where
[
W k

i,r (L (H))
]
11

is the (1, 1)-th entry of the k-
th power of the weighted adjacency matrix representing
the egonet of radius r around node vi in the Laplacian
graph L (H). Notice that

[
W k

i,r (L (H))
]
11

is a real
number that depends solely on the structure of the
egonet Wi,r(H); thus, it is a variable that can be
computed using local information about the structure
of the network around node vi.

In theory, if we had access to all the egonets in the
graph, we could calculate W k

i,r (L (H)) for all vi ∈ V ,
and compute the spectral moments of the Laplacian
matrix in linear time (under certain sparsity assump-
tions). However, it is often impractical to traverse all
the egonets of a real-world large-scale network because
of high computational cost. In the following subsection,
we introduce a method to approximate the spectral mo-
ments of a network in sublinear time from a random
collection of s egonets and analyze the quality of our
approximation as a function of s.

3.2 Sampling Egonets and Moment Estimation.

Define the following ‘local’ variable

φ
(k)
i,r :=

[
W k

i,r (L (H))
]
11

, k ≤ 2r + 1.(3.9)

Notice that φ
(k)
i,r is a function of the egonet of radius

r around node vi, since Wi,r (L (H)) is the weighted
adjacency matrix of the egonet in the Laplacian graph.

Thus, φ
(k)
i,r is a local variable associated to the r-th

neighborhood around node vi. According to (3.8), the
k-th Laplacian spectral moment can be computed as the
average,

mk(LH) =
1

n

n∑

i=1

φ
(k)
i,r ,(3.10)

Let us now assume that we do not have access to φ
(k)
i,r ,

for all vi ∈ V ; instead, we only have access to φ
(k)
i,r for

vi ∈ S, where S ⊂ V is a subset of randomly sampled
nodes. Since the spectral moment is a global average,
we propose the following estimator of mk(LH):

m̃k(LH) :=
1

|S|
∑

vi∈S

φ
(k)
i,r .(3.11)

In what follows, we establish the quality of this estima-
tor using Chernoff-Hoeffding inequality.

Lemma 3.2. (Hoeffding Inequality) Let X1, X2, . . . , Xk

be independent random variables with P (Xi ∈ [a, b]) = 1
for 1 ≤ i ≤ k. Define the mean of these variables as
X = 1

k

∑k
i=1 Xi, then for any positive t, the following

inequality holds

Pr{
∣∣X − E(X)

∣∣ ≥ t} ≤ 2 exp

( −2kt2

(b − a)2

)
,(3.12)

where E(X) is the expected value of X.

In order to apply the above lemma, we need the
following result:

Lemma 3.3. The variable φ
(k)
i,r satisfies 0 ≤ φ

(k)
i,r ≤ 2k−1

for all i ∈ [n], k ≥ 1.

Proof. Let λi and vi denote the eigenvalues and eigen-
vectors of the Laplacian matrix LH, for i = 1, 2, . . . , n.
Since LH is symmetric is always diagonalizable and it
has a complete set of orthonormal eigenvectors. Fur-
thermore, LH is also positive semidefinite; thus, its
eigenvalues are nonnegative. Define the matrix V whose
columns are the eigenvectors vi, and the diagonal ma-
trix Λ = diag(λ1, λ2..., λn). Then, LH = V ΛV T , and

Lk
H = V ΛkV T =

n∑

j=1

λk
jvjv

T
j .(3.13)

Denoting the i-th element of vector vj as vj,i, we have

[Lk
H]ii =

n∑

j=1

λk
j v

2
j,i.(3.14)



From (2.1), we have that [LH]ii = 1. Thus,

[LH]ii =

n∑

j=1

λjv
2
j,i = 1.(3.15)

According to [3], the eigenvalues satisfy 0 ≤ λi ≤ 2 for
any i ∈ [n]. Thus,

[Lk
H]ii =

n∑

j=1

λjv
2
j,i · λk−1

j

≤




n∑

j=1

λjv
2
j,i


λk−1

1

≤




n∑

j=1

λjv
2
j,i


 2k−1

= 2k−1,

where we have used the fact that 2 ≥ λ1 ≥ λi, for all
i. Also, notice from (3.14), that every element in the
summation is nonnegative, then [Lk

H]ii is nonnegative.

From Lemmas 3.3 and 3.2, we obtain the following
quality guarantee on our estimator:

Theorem 3.2. Consider a set S ⊂ V of nodes chosen
uniformly at random. Then, the estimator m̃k(LH) for
the k-th Laplacian spectral moment defined in (3.11)
satisfies

Pr {|m̃k(LH)−mk(LH)| ≥ tk} ≤ 2 exp

(−8t2k |S|
4k

)
.

Proof. The proof is a direct application of Lemma 3.2

after substituting φ
(k)
i,r for Xi and

[
0, 2k−1

]
for [a, b].

Using this result, we can calculate the number of
samples |S| needed to achieve a particular error in our
moment estimation with a given probability. For each
value of k, we denote by sk the sample size needed to
achieve an error tk with a probability less or equal to

δk = 2 exp
(

−8t2ksk
4k

)
. Let us define the normalized error

εk := tk
2k−1 , then taking sk = 1

2ε
−2
k ln 2

δk
samples, we

achieve an error tk with probability at most δk, i.e.,
Pr {|m̃k(LH)−mk(LH)| ≥ tk} ≤ δk.

4 Moment-Based Spectral Analysis.

Using Theorem 3.1, we can get a truncated sequence
of approximated spectral moments of the Laplacian
matrix LH, {mk(LH)}k≤2r+1, from a set of local egonets
of radius r. We now present a convex optimization
framework to extract information about the largest
eigenvalue of the weighted adjacency matrix, λ1 (LH),
from this sequence of moments.

4.1 Moment-Based Spectral Bounds We can
state the problem solved in this subsection as follows:

Problem. Given a truncated sequence of Laplacian
spectral moments {mk(LH)}k≤2r+1, find tight upper
and lower bounds on the largest eigenvalue λ1 (LH).

Our approach is based on a probabilistic interpreta-
tion of the eigenvalue spectrum of a given network. To
present our approach, we first need to introduce some
concepts:

Definition 4.1. Given a weighted, undirected Lapla-
cian matrix LH with (real) eigenvalues λ1, ..., λn, the
Laplacian spectral density is defined as,

µLH
(x) ,

1

n

n∑

i=1

δ (x− λi) ,(4.16)

where δ (·) is the Dirac delta function.

The spectral density can be interpreted as a discrete
probability density function with support4 on the set of
eigenvalues {λi, i = 1...n}. Let us consider a discrete
random variable X whose probability density function
is µLH

. The moments of this random variable satisfy
the following [19]:

EµLH

(
Xk
)
= mk (LH) ,

for all k ≥ 0.

We now present a convex optimization framework
that allows us to find bounds on the endpoints of
the smallest interval [a, b] containing the support of
a generic random variable X ∼ µ given a sequence
of moments (M0,M1, ...,M2r+1), where Mk ,

´

xkdx.
Subsequently, we shall apply these results to find bounds
on λ1 (LH). Our formulation is based on the following
matrices:

Definition 4.2. Given a sequence of moments
M2r+1 = (M0,M1, ...,M2r+1), let H2r (M2r+1) and
H2r+1 (M2r+1) ∈ R

(r+1)×(r+1) be the Hankel matrices
defined by5:

[H2r]ij , Mi+j−2, [H2r+1]ij , Mi+j−1.(4.17)

The above matrices are called the moment matrices
associated with the sequence M2r+1.

4Recall that the support of a finite Borel measure µ on R,
denoted by supp (µ), is the smallest closed set B such that
µ (R\B) = 0.

5For simplicity in the notation, we shall omit the argument
M2r+1 whenever clear from the context.



Given a truncated sequence of moments of a proba-
bility distribution, we can compute a bound on its sup-
port as follows [8][7]:

Theorem 4.1. Let µ be a probability density function
on R with associated sequence of moments M2r+1 =
(M0,M1, ...,M2r+1), all finite, and let [a, b] be the small-
est interval which contains the support of µ. Then,
b ≥ β∗ (M2r+1), where

β∗
r (M2r+1) := minx x

s.t. H2r � 0,
x H2r −H2r+1 � 0.

(4.18)

Observe that, for a given sequence of moments
M2r+1, the entries of xH2r −H2r+1 depend affinely on
the variable x. Then β∗ (m2r+1) is the solutions to a
semidefinite program6 (SDP) in one variable. Hence,
β∗ (M2r+1) can be efficiently computed using standard
optimization software, e.g. [6], from a truncated se-
quence of moments.

Applying Theorem 4.1 to the spectral density
µLH

of a given graph H with spectral moments
(m0,m1, ...,m2r+1), we can find a lower bound on its
largest eigenvalue, λ1 (LH), as follows [19]:

Theorem 4.2. Let LH be the normalized Laplacian
matrix of a weighted, undirected graph with (real) eigen-
values λ1 ≥ ... ≥ λn. Then, given a truncated
sequence of the spectral moments of LH, m2r+1 =
(m0,m1, . . . ,m2r+1), we have that

λ1 (LH) ≥ β∗
r (m2r+1) ,(4.19)

where β∗
r (m2r+1) is the solution to the SDP in (4.18).

Using the optimization framework presented above,
we can also compute upper bounds on the spectral
radius of H from a sequence of its spectral moments,
as follows. In this case, our formulation is based on the
following set of Hankel matrices:

Definition 4.3. Given the Laplacian matrix of a
weighted, undirected graph LH with n nodes and
spectral moments m2r+1 = (m0,m1, ...,m2r+1),
let T2r (y;m2r+1, n) and T2r+1 (y;m2r+1, n) ∈
R

(r+1)×(r+1) be the Hankel matrices defined by7:

[T2r]ij :=
n

n−1mi+j−2 − 1
n−1y

i+j−2,(4.20)

[T2r+1]ij :=
n

n−1mi+j−1 − 1
n−1y

i+j−1.(4.21)

6A semidefinite program is a convex optimization problem that
can be solved in time polynomial in the input size of the problem;
see e.g. [20].

7We shall omit the arguments from T2r and T2r+1 whenever
clear from the context.

Given a sequence of spectral moments, we can com-
pute upper bounds on the largest eigenvalue λ1 (LH)
using the following result [18][19]:

Theorem 4.3. Let LH be the normalized Laplacian
matrix of a weighted, undirected graph with (real) eigen-
values λ1 ≥ ... ≥ λn. Then, given a truncated se-
quence of its Laplacian spectral moments m2r+1 =
(m0,m1, ...,m2r+1), we have that

λ1 ≤ δ∗r (m2r+1, n) ,

where

δ∗r (m2r+1, n) := maxy y
s.t. T2r � 0,

yT2r − T2r+1 � 0,
T2r+1 � 0.

(4.22)

The optimization program in (4.22) is not an SDP,
since the entries of the matrices T2r (y;m2r+1, n) and
T2r+1 (y;m2r+1, n) are not affine functions in y. Never-
theless, the program is clearly quasiconvex [2] and can
be efficiently solved using a simple bisection algorithms.

In summary, using Theorems 3.1, 4.2, and 4.3, we
can compute upper and lower bounds on the largest
eigenvalue of the normalized Laplacian matrix of a
weighted, undirected network, λ1 (LH), from the set
of local egonets with radius r, as follows: (Step 1 )
Using (3.4), compute the truncated sequence of mo-
ments {mk(LH)}k≤2r+1 from the egonets, and (Step 2 )
using Theorems 4.2 and 4.3, compute the upper and
lower bounds, δ∗r (m2r+1, n) and β∗

r (m2r+1), respec-
tively. However, the approach presented in this section
is based on the assumption that we have access to all
the egonets in the network. In Subsection 3.2, we have
provided estimators of the spectral moments from a ran-
dom sample of egonets. In the following subsection, we
will illustrate how to use these estimators to derive up-
per and lower bounds on the Laplacian spectral radius
from a random sample of egonets.

4.2 Bounds on Spectral Radius from Sampling

Egonets From Theorem 3.2, we have that the k-th
Laplacian spectral moment mk = mk (LH) satisfies

Pr {mk ∈ [m̃k − tk, m̃k + tk]} ≤ 2 exp

(−8t2k |S|
4k

)
,

where m̃k = m̃k(LH) was defined in (3.11)8. Then,
the probability of a truncated sequence of moments

8We shall omit the arguments LH from mk and m̃k unless
there is need for specification.



(mk)k≤2r+1 satisfying mk ∈ [m̃k − tk, m̃k + tk] for
k = 2, . . . , 2r + 1, satisfies the following proposition
(notice that m1 = 1, for any LH):

Proposition 4.1. For a given ∆ ∈ [0, 1], we have that

Pr

(
2r+1⋂

k=2

{mk ∈ [m̃k − tk, m̃k + tk]}
)

≥ ∆,

if

tk =
2k−1

√
2 |S|

ln1/2
4r

1−∆
.(4.23)

Proof. First, we have that

Pr

(
2r+1⋂

k=2

{mk ∈ [m̃k − tk, m̃k + tk]}
)

= 1− Pr

(
2r+1⋃

k=2

{mk /∈ [m̃k − tk, m̃k + tk]}
)

≥ 1−
2r+1∑

k=2

Pr (mk /∈ [m̃k − tk, m̃k + tk])

≥ 1− 2
2r+1∑

k=2

exp

(−8t2k |S|
4k

)
.

The last probability can be made equal to a desired ∆
by choosing t2k/4

k = α for all k = 2, . . . , 2k + 1 with α
satisfying ∆ = 1 − 4r exp (−8α |S|). Or equivalently,
α = 1

8|S| ln
4r

1−∆ , which implies the statement of the

Proposition, after simple algebraic manipulations.

We can then apply the result in Theorem 4.2 to
compute a probabilistic lower bound on the spectral
radius by solving a modified version of the SDP in
(4.18), as follows. First, given a sample set of nodes
S, we extract the corresponding egonets of radius r.
Then, using (3.11) and (3.9), we compute a sequence of
estimators m̃k for k = 2, . . . , 2r+1. Finally, according to
Proposition 4.1, we modify the SDP in (4.18) to obtain
our main result.

Theorem 4.4. Given a uniform sample set S ⊂ V
and the egonets of radius r around the nodes in S,
the spectral radius of the normalized Laplacian matrix
satisfies

Pr
(
λ1 (LH) ≥ β̃r

)
≥ ∆,

where

β̃r := minx x
s.t. H2r � 0,

x H2r −H2r+1 � 0,
m̃k − tk ≤ mk ≤ m̃k + tk,
k = 2, . . . , 2r + 1,

with mk and m̃k defined in (3.9) and (3.11), H2r and
H2r+1 defined in (4.17), and tk defined in (4.23).

The proof of the above theorem is a direct adapta-
tion of Theorem 4.2 using Proposition 4.1. The same
adaptation can be applied to derive an upper bound on
the spectral radius of the normalized Laplacian matrix
from Theorem 4.3 and Proposition 4.1.

5 Numerical Analysis

In this section, we will present the numerical analysis
of spectral radius estimation, and verify the quality of
estimation based on sampled nodes. In our simulations,
we will use data from the Euro-Email network [9].
The network is composed of 36,692 nodes, which are
connected by 183,831 edges. Here we consider the
network as unweighted, undirected simple graph. Two
nodes are connected as long as either user sent email
to another. From the simple graph, we can construct
the weighted Laplacian graph that corresponds to the
simple graph.

To be able to compute the spectral radius, we
extract a small network with 5000 nodes via BFS, so
that we could compare the performance of sampling
with the accurate computation. The subgraph with
5000 nodes will be the object of our analysis.

The nodes are assigned with indexes without con-
sideration about their topology. To get a uniform sam-
pling, the indexes are picked randomly, which compose
the collection of sampled nodes.

In Figure 1, we take different number of samples
from the network to estimate the bounds of the spectral
radius based on egonet with radius r0 = 3. In the
simulation, the normalized error bound for the elements
in the moment sequence is fixed, i.e. tk

2k−1 = 0.08. Here
we assume that the moments for k = 1, 2...5 can be
accurately computed, because it does not cost much
to compute the power of the Laplacian matrix up to
5-th order. However, for the 6-th and 7-th moment,
we take uniform samples from the whole network and
approximate the moment using the estimator proposed
in the previous sections, i.e. using average of the
sampled egonets to approximate the global average.
Thus for each k > 5, mk ∈ [m̃k − tk, m̃k + tk]. With
the size of the sampled nodes increasing, the quality
(accuracy guarantee) of the estimator increases.

From the upper part of the figure, it can be seen
that the lower bound does not change much when the
number of samples changes. For the upper bound,
when the number of samples increases, the bound gets
looser, but the accuracy guarantee that the spectral
radius is within the bounds increase. The dotted lines
are the bounds calculated by considering the egonets
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Figure 1: Estimation when the size of the samples
varies. (1) The normalized error for each moment are
the same. Samples with different sizes give different
estimations of the bounds. (2) Quality guarantee is a
function of the size of the sample. When the number of
sample increases, the quality of the estimator increases.

of every nodes in the network. And the circles are
the estimated bounds when different sets of nodes are
taken as samples. The lower part of Figure 1 gives the
curve for the number of samples versus the accuracy
guarantee. Though the network has 5000 nodes, taking
600 samples will give the estimation with nearly 100
percent.

In Figure 2, we take different samples with the same
sample size to verify the quality of estimation. The
normalized error is set to be εk = 0.2, and δk = 0.4,
thus the sample size needed is S = 21. From the figure,
it can be seen that the lower bound is much loose, and
almost the same when the sample pool are different.
Checking whether the estimation range is correct for
each trial, we can see from Figure 3 that the accuracy
rate is 86%, which is much higher than the theoretical
accuracy probability 1− δk = 0.6.
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Figure 2: Spectral bounds for trials with the same
sample size S = 21. When the number of samples are
the same,
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Figure 3: Distribution of estimation when the size of
the sample is the same.

6 Conclusion

In this paper, we apply graph theories and convex op-
timization techniques to study the spectrum property
of the normalized Laplacian matrix. Instead of analyz-
ing the whole network, we focus on localized structural
features with radius r.

Due to the high cost of traversing all the nodes, we
have proposed to take uniform samples from the net-
work pool and use the sampled egonets to estimate the
moments of the normalized Laplacian. With Hoeffding
inequalities, we characterize the quality of the estima-
tors in terms of normalized error and size of the sam-
ple. In addition, we have derived the lower and upper
bounds of the spectral radius by solving a series of SDP
problems, based on the collection of random subgraphs.
The combination of quality guarantee of moment se-



quence and the optimization problems provides us with
the estimation guarantee of the spectral radius.
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