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Abstract

Data stream classification and imbalanced data learning are two important areas of data mining 

research. Each has been well studied to date with many interesting algorithms developed. 

However, only a few approaches reported in literature address the intersection of these two fields 

due to their complex interplay. In this work, we proposed an importance sampling driven, dynamic 

feature group weighting framework (DFGW-IS) for classifying data streams of imbalanced 

distribution. Two components are tightly incorporated into the proposed approach to address the 

intrinsic characteristics of concept-drifting, imbalanced streaming data. Specifically, the ever-

evolving concepts are tackled by a weighted ensemble trained on a set of feature groups with each 

sub-classifier (i.e. a single classifier or an ensemble) weighed by its discriminative power and 

stable level. The un-even class distribution, on the other hand, is typically battled by the sub-

classifier built in a specific feature group with the underlying distribution rebalanced by the 

importance sampling technique. We derived the theoretical upper bound for the generalization 

error of the proposed algorithm. We also studied the empirical performance of our method on a set 

of benchmark synthetic and real world data, and significant improvement has been achieved over 

the competing algorithms in terms of standard evaluation metrics and parallel running time. 

Algorithm implementations and datasets are available upon request.
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1 Introduction

Recent years have witnessed a dramatic increase in our ability to collect data continuously. 

Most of these data are characterized by fast arrival, high volume and infinite length, and thus 

are referred to as data streams. Applications involving streaming data are ubiquitous. 

Typical examples include stock market trend analysis, surveillance monitoring and so on. In 
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traditional classification tasks, data are assumed to be static. That is, the underlying concept 

that projects the attributes to the class labels is unchanging. However, in data streams, such a 

concept is not stable but drift over time due to changes in the environment. For example, the 

stock market fluctuates daily as a result of economy, corporate earnings, government 

monetary policy, etc. Often the incessant changes will outdate the classifier learned from old 

data on a temporal basis, and updating or retraining the model is indispensable. This is 

generally known as concept drift. Based on Bayes’s theorem, three kinds of concept drifts, 

including feature change, conditional change and dual change, are formally defined and 

analyzed in [7]. So far, numerous classification algorithms have been proposed with most of 

them focusing on the drifting concepts inherent in ever-evolving data streams.

Class imbalance is a practical problem and usually occurs when there are fewer instances in 

the target class (positive or minority class) compared to other classes (negative or majority 

class). Class imbalance can be introduced either due to the nature of an application, or the 

limitations in collecting a representative data set as a result of the cost or privacy issues. 

Class imbalance presents several challenges in learning tasks, including skewed class 

distribution, data insu ciency and more complicated concepts. As those challenges interfere 

with concept drifts in the context of data streams, it becomes an even more severe and 

compound problem. For example, over a data stream, the time interval of receiving a 

positive instance can be unpredictably long. Thus, it is always hard to collect su cient 

positive examples at a timestamp to unbiasedly infer the true function describing this class. 

In addition, successive positive examples may be drawn from arbitrarily distinct 

distributions. Therefore, distributional discrepancy can exist between any two positive 

examples not received at the same time. Algorithms designed for classifying skewed data 

streams must take those imbalance-posed challenges into account, while equipped with 

effective mechanisms for handling drifting concepts.

To date, data stream classification on skewed class distribution is a relatively unexplored 

area, and not much work has been reported. Existing methods [7, 8, 2, 4] do not well solve 

the class imbalance problem in the concept-drifting data steam scenario due to the following 

observations. First, to augment the minority set in the training data chunk, current 

approaches either aggregate all minority instances over time, or select part of the instances 

by some similarity or distance measures with rigorous thresholds. The former strategy 

implicitly assumes that there is no drift in the underling concept of the minority class, while 

the latter may fail to identify and proliferate adequate minority examples when the 

distribution is extremely skewed and(or) the underlying concepts drift rather heavily. 

Second, most of the methods [7, 2, 4] mainly count on the most recent data to handle the 

concept drifts, which actually disregards feature change that could be assessed by the just-

arrived, to-be-predicted chunk. [8] addressed this issue. However, by focusing only on the 

treatment of feature change via the unlabeled data, this approach is somewhat heuristic and 

lacks a theoretical basis for its design.

In view of these limitations, we introduce a novel framework for classifying imbalanced 

data streams arriving in batches. Specifically, to augment the positive examples in the 

training data chunk arrives at any timestamp t, a sliding window of limited size temporally 

pushes into the training chunk the positive instances received in previous batches. The 
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amplified training set is then projected onto a set of pre-defined feature groups for potential 

feature drift detection. In each feature group, the underlying skewed distribution is 

rebalanced by importance sampling of the positive examples. A light-weight hypothesis (i.e., 

a single classifier or an ensemble) is then built on each feature group with the balanced 

distribution. All feature-group hypotheses are finally combined as an ensemble for 

prediction purposes, with each hypothesis dynamically weighed by two factors. One is the 

hypothesis’s discriminative power tuned on a small amount of the labeled data in the most 

recent chunk. The other is its stable level estimated by the distributional similarity of the 

feature group from which the hypothesis is built with respect to the corresponding feature 

set in the just arrived, to-be-predicted chunk. The former factor reflects a hypothesis’s 

ability to adapt to the conditional change, while the latter indicates a hypothesis’s ability in 

response to the feature change, whereby the drifting concepts are neatly addressed in a 

timely manner.

The main contributions of this paper are summarized as follows.

• We propose an importance sampling driven, dynamic feature group weighting 

framework (DFGW-IS) for data stream classification with skewed distribution.

– the underlying ever-evolving concepts are tackled by a weighted 

ensemble trained on a set of feature groups with each sub-classifier 

weighed by its discriminative power and stable level.

– The un-even class distribution, on the other hand, is typically battled by 

the sub-classifier built in a specific feature group with the underlying 

distribution rebalanced by the importance sampling technique.

• We conduct time complexity analysis and derive the theoretical upper bound for 

the generalization error of the proposed algorithm.

• Extensive empirical results on multiple synthetic and real-world benchmark 

datasets demonstrate that the proposed framework statistically significantly 

outperforms the competing methods on multiple evaluation metrics.

2 Problem Setting

Let  be the feature space and  be the class label. Consider a data stream 

 comes in batches or chunks , where  denotes the data chunk at 

timestamp t. Let  and , where , , 

Nt is the number of instances in batch t, and Dt is the underlying distribution of batch t. Dt 

varies over time due to the type and/or the degree of the drifting concepts. Assume that there 

are two classes in batch t, i.e., positive class  and negative class , and the size of 

positive class is much smaller than that of negative class, that is, . In such a 

case,  is said to be imbalanced. Let  be the newly arrived chunk with unknown 

labels. Our learning task is to leverage the data chunks received so far (including the feature 

information carried by  to classify  in , with high prediction accuracy 
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achieved over the positive instances while maintaining reasonable accuracy for the negative 

class. Table 1 summarizes the major notations used in the paper.

3 Method

In this section, we present the proposed framework DFGW-IS. The overall learning flow is 

outlined in Figure 1. Two tightly integrated components, the dynamically weighed feature 

group ensemble for fast adaptation to changes and the importance sampling driven sub-

classifier to combat class imbalance, are discussed separately.

3.1 Drifting Concept Adaptation: Dynamically Weighed Feature Group Ensemble

In DFGW-IS, adaptation to changes is achieved through dynamically weighing the sub-

classifiers of an ensemble trained on a set of feature groups.

Defined as F1, F2, …, Fr ˄ F with F0 = F, where Fi ≠ Fj when i ≠ j, a set of possibly 

overlapping feature groups can be decided in advance according to some prior or domain 

knowledge regarding any possible feature change in a data stream. If such information is not 

available, they can be generated randomly. These randomly generated feature subspaces can 

provide multiple views into the data, and ensembles built on them have been shown to 

perform comparable to those built through the data partitioning methods [13]. Meanwhile, to 

reduce the bias that would be introduced through those random feature subspaces, we also 

include a full feature group F0 in the set. This design, from another aspect, accommodates 

the scenario when there is no feature change. Once the feature groups are determined, they 

remain unchanged in the entire learning process.

The weight of each sub-classifier trained over a feature group is determined by two factors, 

its discriminative power and stable level. The discriminative power can be estimated by 

solving a statistical optimization problem as described below. Specifically, we divide the 

most-recent data chunk into a training set and a holdout set. 85% of the data is used for 

training 1 and the rest, , is for the estimation purposes.

One can project  to a particular feature group Fi, and obtain a hypothesis (or sub-

classifier)  via minimizing some loss functions. The holdout set  is then used to 

estimate the discriminative power  of those models. Formally speaking, we estimate the 

hypothesis’s discriminative power with respect to each instance in the holdout set by solving 

the following convex optimization problem.

(3.1)

1In practice, besides those data from the most-recent chunk, training set also contains other positive instances collected by a temporal 
sliding window to augment the positive set.
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subject to Σjwj = 1 and wj ≥ 0 where Ci is the misclassification cost of instance i. The higher 

the value of wj, the more discriminative the hypothesis  is. This optimization is due to the 

following motivation. Since  also carries the same degree of skewness, misclassifying a 

positive instance in  will cause a hypothesis to be penalized more than misclassifying a 

negative instance. As a result, the discriminative power of a hypothesis should be 

determined by its performance on each instance in , rather than its overall performance 

on the entire set of . This design takes the class imbalance issue into account and is 

different from other practices dealing with balanced data streams [14]. In the 

implementation, we use the logistic loss function, i.e., Δ(f(x), y) = log(1 + exp(−yf(x))). The 

misclassification cost of a positive instance is set as , where  (or ) is the 

number of positive (or negative) instances in the holdout set. The misclassification cost for a 

negative instance is 1.

On the other hand, the stable level of a sub-classifier or hypothesis  is estimated by the 

similarity between its training distribution Dt
2 and its test distribution Dt+1. The feature drift 

degree between Dt and Dt+1 can indicate the stable level of , since a classifier trained on a 

stable feature group behaves more consistently than that built on an unstable group[12]. 

Thus a classifier with consistent performance should have high liability or weight. In this 

framework, we use distributional similarity measured by Hellinger distance[8] to indicate a 

sub-classifier’s stable level, which is formulated as follows.

(3.2)

(3.3)

where  is the distribution defined over Fi at timestamp t, and  is the distribution for 

feature f defined over Fi at timestamp t.

Since in reality, we can only access a limited sample of instances from those distributions, 

Hellinger distance is computed via its discrete version as defined below.

(3.4)

2Precisely,  is trained on two sets of samples. One are the samples of  from distribution Dt. The other are the positive 
instances from the previous batches whose distributions are similar to Dt due to the importance sampling technique.
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where k is the number of feature values,  and . The 

distribution divergence of continuous features can be measured by first discretizing the 

continuous feature into multiple equal intervals via the Binning technique. The pseudo code 

of the proposed framework is presented in Algorithms 3.1 and 3.2.
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3.2 Combat Imbalance: Importance Sampling Driven Sub-classifier

In our problem setting, the number of negative instances is much su cient to build an 

accurate model, while the positive instances always need to be amplified to balance the 

current training data. Therefore, the primary task is, for each feature group, how to build an 

imbalance-resistant model using the wisely-selected positive instances by considering the 

restrictions of data stream mining.

First, we proposed to use a sliding window of limited size to collect the positive instances 

temporally similar to the most recent batch. The size of the window is determined by a 

predefined threshold δ, which can be set according to the current system memory usage or 

the users’ specifications. In this way, we can control or guarantee a reasonable memory 

consumption. This design is motivated by the following considerations. First, over the 

course of time, ancient positive examples could be very different from and irrelevant to 

those in the recent data chunk due to the drift of the underlying concept. Training models on 

such data would introduce undesired bias and whereby greatly impairing the models’ 

performance. Second, memory is limited. Although the positive instances are very sparse in 

each batch, as the time approaches infinity, the total number could still be huge and even 

surpasses the negative instances in the recent chunk. Such a training set can not reside in the 

limited memory to build the model. The implementation of the sliding window for positive 

instances is presented in lines 2-7 of Algorithm 3.1.

Second, in the current training set, the positive instances collected over time by the sliding 

window should be weighed differently according to the similarity between the distribution 

of the most recent batch (i.e. Dt) and the distribution from which an instance is generated. 

Specifically, we assign an equal weight 1 to the positive instances in the most recent batch, 

and the weight of a positive instance from previous batches is determined by Eq. 3.5, where 

 measures the distributional similarity for an instance.

(3.5)

According to the diversity-focus rule for sampling weights[9], this formula can guarantee 

that examples with high weights will be sampled frequently and those with low weights 

have chance to be sampled.

In the following, we elaborate how to decide  via the principle of importance sampling. 

let  be a predictive model parameterized by θi. To optimize θi, we usually use 

the following criterion.

(3.6)

When the labelled instances are drawn from a distribution different from Dt, we can rewrite 

the above formula as follows with the concentration on the positive class.
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(3.7)

where  and . Note 

that . Dk(x, +), where T(x) denotes the timestamp of x.

Next, we discuss how to approximate R(θi, +) by the limited samples in our scenario. In the 

empirical risk minimization(ERM) framework, the integral R(θi, +) can be estimated by the 

following empirical risk.

(3.8)

where Z is a normalization factor.

Let . Similar to the naive Bayesian learning, we assume that the features are 

independent for Dk(xi|+). Consequently, we can rewrite  as 

 where  and .

For a categorical feature, Dk(xij | +) can be estimated by the ratio of the number of instances 

in class + having the value xij for the j-th feature to the number of instances in class + with 

the same feature. If a feature is continuous, we typically assume that it has a Gaussian 

distribution. Thus, Dk(xij | +) can be estimated by Eq. 3.9

(3.9)

where  and 

Lastly, based on the obtained importance weights for positive instances, we can choose to 

build either a single model or an ensemble according to the specific learning needs. As 

ensembles often achieve better predictive performance than individual models via variance 

reduction, in our implementation, we trained a light-weight ensemble on the current training 

set projected to a particular feature group. Specifically, we generated multiple subsets of 

positive samples using importance weights. A hypothesis is then built on each of these 

subsets plus a negative sample subset achieved through under-sampling with replacement. 

The averaged combination of these hypotheses is the imbalance-proof model for a specific 

feature group. The pseudo code of learning such an ensemble is summarized in algorithm 

3.3.
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4 Time Complexity Analysis

Suppose the base learner is a decision tree. Its time complexity is , where d 

is the data dimensionality and N is the total number of training points. Figure 2 presents the 

architecture of the parallel implementation of DFGW-IS. We can observe that the e ciency 

of the parallel training depends on the speed of the slowest sub-module, which is S0j in F0. 

In our framework, the size of training data of each sub-module Sij is bounded by 2δ. 

Therefore, the upper bound of the time complexity of S0j is . In the 

training phrase, in addition to the sub-module training, our framework needs to tune the 

discriminative power of the model obtained from each Fi. The tuning may cost a small 

amount of time, since it runs over a small portion of labelled data . For example, the 

time complexity of the tuning through L-BFGS with a block constraint is 

, where m is the number of iterations. m often is as small as 3-10. As a 

result, the total time complexity for training phrase is 

. In the testing stage, the instance prediction is 

conducted in batch, and thus can be done in linear time proportional to and dominated by the 

number of the test instances.

5 Theoretical analysis

In this section, we present the theoretical analysis of the proposed DFGW framework. In 

order to derive the upper bound of the generalization error, we define the following 

divergence called -distance, for our main result.

Definition 5.1. ( -distance) Let  be a hypothesis space. The -distance 

between two distributions D1 and D2 over  is defind as
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where  and 

Lemma 5.1. (Symmetry). For any distributions D1 and D2, we have

Proof. The result can be naturally derived based on Definition 5.1.

Lemma 5.2. (Convexity). For any distributions D, D1, D2 and D′, where D′ = γD1 + (1 − 

γ)D2, we have

Lemma 5.3. (Triangle Inequality). For any distributions D1, D2 and D′, we have

Lemma 5.2 and 5.3 can also be found in [12] along with the proof. Now we can have the 

following bound using the above three properties of -distance, i.e., symmetry, 

convexity and triangle inequality.

Theorem 5.1. For the hypothesis  with  and  obtained at 

timestamp t of the data stream in our framework, the following bound holds,

(5.10)

where  is the normalized marginal distribution defined over feature group Fi for the t-th 

data chunk,  and  with 

f(x) being the true label of x.

Proof. According to the triangle inequality of classification error[3], we have 

 Also,

Combining the two inequalities above and using Definition 5.1, we derive
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Applying the triangle inequality of classification error on , we have

(5.11)

Then, plugging  into Lemma 5.3, and applying symmetry and convexity of 

, we can derive

(5.12)

Also,

(5.13)

Substituting Eq. 5.12 and Eq. 5.13 into Eq. 5.11 yields the result.

Theorem 5.1 shows that  plays a significant role in the generalization bound. The first 

term of the upper bound in Eq. 5.10 is the combined error of the ideal hypothesis and thus it 

can be considered as a constant. As a result, the bound depends on the second term, which is 

a linear combination of three terms, i.e., the prediction error  of sub-classifier  trained 

on Fi at timestamp t, the distance  and the distance . 

From Theorem 5.1, we can observe that, in order to effectively reduce the upper bound, the 

sub-classifier with less generalization error and obtained from the distribution more similar 

to Dt+1 should be assigned a higher weight. An extreme case would be there is no concept 

drift, that is, the distributions of Dt and Dt+1 are identical. In such a case, both distances are 

zero, and the minimal upper bound can be achieved by putting all weight on sub-classifier h0 

trained from the only full feature space, i.e.,  and  where i ≠ 0.

6 Experiments

In this section, we empirically demonstrate the effectiveness of the proposed framework. 

DFGW-IS is compared with four baseline methods on nine synthetic and real-world 

benchmark datasets using multiple evaluation metrics.

6.1 Datasets

Table 2 summarizes the characteristics of five synthetic and four real-world datasets used in 

our experiment. The procedures of each streaming data preparation are presented below.
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6.1.1 Synthetic Data Synthetic Stream—The concept in this data stream is defined as 

 where x = (x1, x2, …, xd) and . An 

instance is labeled positive if g(x) < 0. Otherwise, it is labeled negative. Based on the 

method documented in [7], we created three datasets, i.e. Syn_feature, Syn_cond and Syn 

dual, each respectively simulating the feature change p(x), conditional change p(y|x) and 

dual change p(x, y). In the generation of each dataset, the number of dimensions involved in 

change is set as two.

Hyper Plane Stream4: This data stream contains gradually evolving concepts as specified 

by , where ai controls the shape of the decision surface. In our experiment, 

we used one vs. rest method to generate two datasets, HyperP1 and HyperP2, where class 3 

and class 4 are respectively labeled positive.

6.1.2 Real World Data Onehr & Eighthr[16]—Both data are ground ozone readings 

collected over seven years. To simulate the data stream, we split each set into seven chunks 

by year and then remove the date attribute. Ozone days are labeled positive and the rest are 

negative. The missing feature values are imputed by the corresponding mean values.

Adult5: To produce a data stream with su cient concept drifts, we follow the same 

procedure in [17] and create 14 chunks based on the unique values of the occupation 

attribute. All categorical attributes are removed and only six continuous features are kept. To 

make the data more skewed, we further undersample the positive examples in each chunk.

Weather6: Processed by Polikar et al. [4], this NOAA dataset spans 51 years and initially 

contains 31% positive instances. In our experiment, we first group yearly data into a chunk, 

and then we undersample the positive examples in each chunk to create more skewed class 

distribution.

6.2 Evaluation Metrics

While accuracy is an important evaluation metric for measuring a classifier’s performance, it 

is not an appropriate assessment criterion in learning the highly imbalanced data. Recently, 

several measures, such as F-measure, G-mean, and AUC, have been proposed to evaluate 

the classification performance for imbalanced problems [5]. In general, F-measure is defined 

as the harmonic mean of recall and precision. A high F-measure score signifies a high value 

for both precision and recall. G-mean is usually used to measure the balanced performance 

of a learning algorithm between the minority and majority classes. It is the geometric mean 

of sensitivity and specificity. In addition, AUC is the area under an ROC curve. It provides a 

single average measure of a classifier’s performance as the classification threshold varies. 

Since each measure is designed to access one particular property [11], we employ all three 

metrics to rank algorithms.

4http://www.cse.fau.edu/~xqzhu/stream.html
5http://archive.ics.uci.edu/ml/datasets/Adult
6ftp://ftp.ncdc.noaa.gov/pub/data/gsod/
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6.3 Experimental Setup

We compared the performance of the proposed algorithm with the following baseline 

methods. First is the Gao’s approach [7] based on Uncorrelated Bagging, and thus we denote 

it as “UB” hereafter. As suggested by [7], we set the skewness ratio to be 0.4 and the 

ensemble size to be 5 for its optimal performance. We also implement HUWRS.IP, and all 

parameters are set using recommended values [8]. To evaluate the effectiveness of the 

proposed technique for dealing with class imbalance, we implemented another two variants 

of our DFGW framework. One is DFGW with undersampling technique [10], and the other 

is DFGW with SMOTE approach [1]. We refer to them as DFGW-Under and DFGW-

SMOTE respectively. Specifically, in DFGW-Under, the sub-classifier built from each 

feature group is an ensemble trained on multiple balanced datasets. Each set contains all 

current positive examples and the equal number of under-sampled negative examples from 

the most recent chunk. On the other hand, in DFGW-SMOTE, the sub-classifier built from 

each feature group is a single model trained on one balanced dataset. In this balanced set, the 

most up-to-date positive examples plus the number of the synthetic positive instances 

generated by SMOTE is the same as the number of negative examples in the most recent 

chunk.

In our experiments, the base learner is J48 decision tree implemented in Weka [15]. For 

DFGW-IS and its variants, we set 10 for the ensemble size, 30 for the bin size and 0.5 for 

the weight parameter. The default value of the size of sliding window is the number of 

negative examples in the current batch. Due to the diverse characteristics of employed data, 

it is hard to use domain knowledge or other techniques to obtain optimal feature subspaces 

for each set. Therefore, for each data, 50 feature groups are randomly generated in each run 

and the reported results are the averages over five independent runs. We also utilized the 

interleaved Test-Then-Train (or Prequential)[6] scheme so that the over-time dynamic 

learning curves for all algorithms can be obtained.

6.4 Comparative Results

Table 3 presents the average chunk performance of the compared algorithms on different 

synthetic and real world data streams. Table 4 summarizes each algorithm’s overall rank by 

averaging the means of three evaluation metrics over all sets. From these empirical results, 

we can draw the following conclusions.

First, DFGW-IS statistically significantly outperforms both UB and HUWRS.IP on all 

datasets in terms of AUC, F-measure and G-mean. The average gains achieved by DFGW-

IS over UB (HUWRS.IP) on AUC, F-measure and G-mean are 5% (23%), 50.8% (116%), 

and 11.8% (238%), respectively. We attribute this to our better strategies of handling the 

class imbalance in the concept drifting environment. We also examine the time series 

comparisons of these three algorithms as shown in Figure 3. The over-time AUC and F-

measure learning curves of DFGW-IS dominate the corresponding curves of UB and 

HUWRS.IP for most of the timestamps. The G-mean curves of DFGW-IS and UB 

interweave with each other in the initial stage of the streams. As more and more data chunks 

arrive, however, DFGW-IS tends to achieve higher G-mean scores since its curves 

consistently prevail over UB’s curves for most of the datasets. Second, DFGW-IS also 
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consistently achieves higher scores in AUC, F-measure and G-mean than the two variants, 

i.e. DFGW-Under and DFGW-SMOTE, over most of the datasets. The only exception is 

that, on Eighthr dataset, the G-mean score of DFGW-IS is slightly lower than that of 

DFGW-Under. Nevertheless, this difference is not statistically significant. This, from 

another aspect, demonstrates the efficacy of our technique in dealing with the skewed 

distribution. Third, DFGW-Under has also passed UB and HUWRS.IP, hitting the second 

place among the five algorithms. This observation further indicates that (1) the inappropriate 

use of all positive instances could introduce undesired bias in the streaming data mining 

process; (2) positive instance selection via the rigorous threshold setting can fail to identify 

and proliferate adequate instances when the distribution is extremely skewed and(or) the 

underlying concepts drift rather heavily; and (3) the proposed DFGW framework provides a 

more robust way to address the underlying drifting concepts. Lastly, DFGW-SMOTE is the 

weakest performer compared to DFGW-IS and DFGW-Under. As most of our streams are 

quite skewed, this suggests that oversampling via synthetic positive instance creation may 

not be an effective way to battle imbalance when there are only few positive instances 

available.

6.5 Study on the impact of λ

Now we study the impact of the parameter λ in our DFGW framework with respect to 

different performance metrics. Parameter λ is a trade-o term in the weight of a sub-classifier 

that balances the contributions from the sub-classifier’s discriminative power and stable 

level, as defined in line 6 of Algorithm 3.2. For this set of experiments, DFGW-IS was 

trained on the datasets of syn_feature, syn_cond and syn_dual as λ varies in the range [0,1] 

with step length being 0.1. The corresponding learning curves for AUC, F-measure and G-

mean are presented in Figure 4. We can observe that, for most of the cases, the highest 

scores of three metrics are achieved when λ is approximately 0.5. This indicates that a 

balanced tradeo between those two factors would lead to the best generalization 

performance of the proposed algorithm, which also well corroborates with the theoretical 

analysis established in the paper.

6.6 Running Time Efficiency

Since DFGW-IS, UB and HUWRS.IP are all ensemble classifiers, we record their parallel 

running time on a Mac Pro of 6-core Intel Xeon 3.33GHz and 32G memory for fair 

comparison. In the experiment, we generate 1000 chunks from Synthetic Stream with 1000 

data points in each chunk. The skewness ratio is fixed at 0.5%. The ensemble size for each 

algorithm is set to be 100. As shown in Figure 2, in the parallel execution, the running time 

of DFGW-IS is primarily determined by the slowest sub-module, that is, S0j in the only full 

feature space F0. Therefore, we recorded the sub-module’s running time for DFGW-IS. 

Similarly, the running time of UB and HUWRS.IP was respectively recorded by a single 

sub-classifier’s time. Figure 5 presents the parallel running time of three algorithms over 

1000 chunks. It is evident that HUWRS.IP consumes less time than UB and DFGW-IS as its 

sub-classifier always operates on a sub-feature space. UB needs longer time than DFGW-IS 

since over-time more data points are involved in its training. In addition, the running time of 

DFGW-IS remains rather stable after around timestamp 180. This can be ascribed to the 
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fixed size of training set determined by the temporal sliding window for the positive 

examples.

7 Conclusion

In this paper, we introduced a new importance sampling driven, dynamic feature group 

weighting framework for classifying data streams with skewed distributions. Several useful 

strategies, a temporal sliding window with the awareness of memory usage and importance 

sampling to remedy skewness, are tightly integrated into the proposed approach to tackle the 

class imbalance problem. The over-time drifting feature change, can be first detected by a 

set of pre-defined feature groups, and then, along with the conditional change, is 

successfully addressed by dynamically weighing the sub-classifiers of the ensemble trained 

on those feature groups. Our approach provides a unified and adjustable treatment to the 

different types of drifting concepts present in the imbalanced streaming data. This design is 

motivated by the theoretical analysis, and its empirical efficacy has been demonstrated on 

both synthetic and real-world benchmark datasets, where our algorithm significantly 

outperforms several state-of-the-art methods and techniques on standard performance 

metrics.

The use of feature groups in DFGW-IS is somewhat analogous to the domain adaptation 

where more or less labeled examples always available in the target domain[12], which is 

clearly not the case in our setting. Although we have shown that a weighted ensemble 

trained on randomly generated feature groups can outperform competing methods in 

classifying imbalanced data streams, it is worth further exploring the e cient algorithms for 

generating the best feature groups by incorporating prior domain knowledge in the context 

of general data stream mining. We leave this as future work.
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Figure 1. 
The learning flow of DFGW-IS
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Figure 2. 
Structure of the parallel implementation
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Figure 3. 
Time series comparison (Left: AUC; Middle: F-measure; Right: G-mean) of UB, DFGW-IS 

and HUWRS.IP on Syn_feature(1), Syn_cond(2), Syn_dual(3), Eighthr(4) and Weather(5) 

datasets. UB: green dashed lines. DFGW-IS: red solid lines. HUWRS.IP: blue dash-dot line. 

The x-axis represents the timestamp of a data chunk.
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Figure 4. 
AUC(left),F-measure(middle),G-mean(right) of DFGW-IS on Syn_feature(1), Syn_cond(2) 

and Syn_dual(3) datasets with different λ.

Wu et al. Page 20

Proc SIAM Int Conf Data Min. Author manuscript; available in PMC 2015 January 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Parallel running time comparison: DFGW-IS, UB and HUWRS.IP
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Table 1

Major notations

Notation Description

X Feature space

Y Class label

S
(t) Data chunk at timestamp t

P
(t) Positive set at timestamp t

N
(t) Negative set at timestamp t

Dt Data distribution at timestamp t

xi
(t) ith data point in data chunk at timestamp t

yi
(t) ith class label in data chunk at timestamp t

Nt Size of the data chunk at timestamp t

�( ⋅ , ⋅ ) Indicator function

Δ Convex loss function

F Full feature set

Fi A feature subset or group in F

H(t)
i Hypothesis space defined over Fi

h (t)
i Hypothesis built over Fi on data chunk at timestamp t

Ltr
(t) Training set at timestamp t

Lho
(t) Holdout set at timestamp t

Ci Misclassification cost of ith instance

dH Hellinger distance
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Table 2

Dataset Description

data sets two classes #inst. #feature #minority inst. %Minority #chunk chunk size

Syn_feature < 0 vs. ≥0 51,000 10 510 1.0 51 1,000

Syn_cond < 0 vs. ≥0 51,000 10 510 1.0 51 1,000

Syn_dual < 0 vs. ≥ 0 51,000 10 510 1.0 51 1,000

HyperP1 C3 vs. others 100,000 10 10,811 8.85-12.55 50 2,000

HyperP2 C4 vs. others 100,000 10 17,705 15.40-20.80 50 2,000

Onehr ozone vs. normal 2,536 72 73 0.56-6.03 7 356-366

Eighthr ozone vs. normal 2,534 72 160 2.81-10.96 7 356-366

Adult >50k vs. ≤50k 35,760 6 1,149 0.42-9.09 14 11-4,920

Weather rain vs. no rain 13,094 8 633 4.62-5.00 50 186-295
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Table 3

Performance comparison of different algorithms on all datasets(average ± standard deviation(rank)).

Data sets Methods AUC F-measure G-mean Average Rank

Syn_feature UB 0.9091 ± 0.0032(2)
•

0.0870 ± 0.0018(3)
•

0.8155 ± 0.0057(2)
• 2.3

HUWRS.IP 0.7729 ± 0.1050(4) 
•

0.0256 ± 0.0106(5)
•

0.0488 ± 0.0210(5)
• 4.7

DFGW-Under 0.7769 ± 0.0035(3) 
•

0.0960 ± 0.0029(2)
•

0.5400 ± 0.0046(3)
• 2.6

DFGW-SMOTE 0.6893 ± 0.0086(5) 
•

0.0749 ± 0.0013(4)
•

0.3034 ± 0.0055(4)
• 4.3

DFGW-IS 0.9577±0.0031(1) 0.2281±0.0056(1) 0.8806±0.0071(1) 1.0

Syn_cond UB 0.9124 ± 0.0039(2) 
•

0.0870 ± 0.0018(4)
•

0.8167 ± 0.0080(2)
• 2.7

HUWRS.IP 0.7781 ± 0.0164(4) 
•

0.0331 ± 0.0227(5)
•

0.0679 ± 0.0488(5)
• 4.7

DFGW-Under 0.8194 ± 0.0016(3) 
•

0.1185 ± 0.0034(2)
•

0.5501 ± 0.0065(3)
• 2.7

DFGW-SMOTE 0.7098 ± 0.0080(5) 
•

0.0919 ± 0.0048(3)
•

0.3632 ± 0.0072(4)
• 4.0

DFGW-IS 0.9643±0.0033(1) 0.1743±0.0025(1) 0.8846±0.0097(1) 1.0

Syn_dual UB 0.9139 ± 0.0033(2)
•

0.0920 ± 0.0021(2)
•

0.8219 ± 0.0074(2)
• 2.0

HUWRS.IP 0.8170 ± 0.0077(3)
•

0.0536 ± 0.0287(5)
•

0.1028 ± 0.0524(5)
• 4.3

DFGW-Under 0.8085 ± 0.0023(4)
•

0.0643 ± 0.0011(4)
•

0.7055 ± 0.0063(3)
• 3.7

DFGW-SMOTE 0.7179 ± 0.0098(5)
•

0.0781 ± 0.0044(3)
•

0.2958 ± 0.0134(4)
• 4.0

DFGW-IS 0.9599±0.0021(1) 0.1730±0.0044(1) 0.8817±0.0050(1) 1.0

HyperP1 UB 0.7481 ± 0.0014(3)
•

0.2743 ± 0.0006(4)
•

0.5820 ± 0.0013(3)
• 3.3

HUWRS.IP 0.6319 ± 0.0291(5)
•

0.0004 ± 0.0007(5)
•

0.0031 ± 0.0050(5)
• 5.0

DFGW-Under 0.7868 ± 0.0013(2)
•

0.3506 ± 0.0007(2)
•

0.7227 ± 0.0021(2)
• 2.0

DFGW-SMOTE 0.7173 ± 0.0041(4)
•

0.2971 ± 0.0042(3)
•

0.5413 ± 0.0051(4)
• 3.7

DFGW-IS 0.8107±0.0012(1) 0.3862±0.0014(1) 0.7351±0.0010(1) 1.0

HyperP2 UB 0.9269 ± 0.0007(3)
•

0.5462 ± 0.0011(4)
•

0.7864 ± 0.0011(4)
• 3.7

HUWRS.IP 0.7803 ± 0.0373(5)
•

0.3900 ± 0.0868(5)
•

0.5105 ± 0.0803(5)
• 5.0

DFGW-Under 0.9393 ± 0.0010(2)
•

0.7194 ± 0.0014(3)
•

0.8663 ± 0.0011(2)
• 2.3

DFGW-SMOTE 0.9200 ± 0.0012(4)
•

0.7219 ± 0.0031(2)
•

0.8336 ± 0.0046(3)
• 3.0

DFGW-IS 0.9536±0.0016(1) 0.7646±0.0008(1) 0.8864±0.0007(1) 1.0

Onehr UB 0.8196 ± 0.0187(2)
•

0.1466 ± 0.0093(3)
•

0.6087 ± 0.0285(2)
• 2.3

HUWRS.IP 0.8001 ± 0.0151(3)
•

0.1392 ± 0.0315(4)
•

0.3896 ± 0.0552(5)
• 4.0

DFGW-Under 0.7622 ± 0.0100(4)
•

0.1364 ± 0.0100(5)
•

0.5375 ± 0.0043(3)
• 4.0

DFGW-SMOTE 0.6962 ± 0.0296(5)
• 0.2014 ± 0.0118(2) 0.4112 ± 0.0591(4)

• 3.7
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Data sets Methods AUC F-measure G-mean Average Rank

DFGW-IS 0.8558±0.0182(1) 0.2024±0.0069(1) 0.7004±0.0130(1) 1.0

Eighthr UB 0.8011 ± 0.0110(4)
•

0.2382 ± 0.0080(5)
•

0.7017 ± 0.0104(3)
• 4.0

HUWRS.IP 0.8442 ± 0.0033(2)
•

0.2711 ± 0.0358(3)
•

0.5006 ± 0.0535(5)
• 3.3

DFGW-Under 0.8365 ± 0.0100(3)
•

0.2736 ± 0.0052(2)
• 0.7440 ± 0.0117(1) 2.0

DFGW-SMOTE 0.7399 ± 0.0349(5)
•

0.2711 ±0.0354(3)
•

0.5172 ± 0.0590(4)
• 4.0

DFGW-IS 0.8724 ± 0.0095(1) 0.3084 ± 0.0038(1) 0.7330 ± 0.0076(2) 1.3

Adult UB 0.7902 ± 0.0090(3)
•

0.1412 ± 0.0043(4)
•

0.6431 ± 0.0082(2)
• 3.0

HUWRS.IP 0.5869 ± 0.0106(5)
• 0.2706 ± 0.0400(1) 0.3845 ± 0.0662(4)

• 3.3

DFGW-Under 0.7968 ± 0.0012(2) 
•

0.1418 ± 0.0009(3)
•

0.6376 ± 0.0036(3)
• 2.7

DFGW-SMOTE 0.7470 ± 0.0019(4)
•

0.1363 ± 0.0097(5)
•

0.2487 ± 0.0223(5)
• 4.7

DFGW-IS 0.8334±0.0009(1) 0.1704±0.0021(2) 0.7185±0.0019(1) 1.3

Weather UB 0.7693 ± 0.0036(3)
•

0.1524 ± 0.0028(4)
•

0.5982 ± 0.0068(3)
• 3.3

HUWRS.IP 0.5086 ± 0.0073(5)
•

0.0470 ± 0.0221(5)
•

0.1003 ± 0.0478(5)
• 5.0

DFGW-Under 0.7731 ± 0.0016(2)
•

0.1699 ± 0.0015(3)
•

0.6836 ± 0.0028(2)
• 2.3

DFGW-SMOTE 0.7571 ± 0.0034(4)
•

0.2360 ± 0.0061(2)
•

0.5656 ± 0.0082(4)
• 3.3

DFGW-IS 0.8176±0.0019(1) 0.2549±0.0033(1) 0.7091±0.0051(1) 1.0

•
indicates that DFGW-IS significantly outperforms the corresponding method wrt a paired t-test with a 95% confidence interval.
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