
A Weighted Adaptive Mean Shift Clustering Algorithm

Yazhou Ren∗ Carlotta Domeniconi† Guoji Zhang‡ Guoxian Yu§

Abstract

The mean shift algorithm is a nonparametric clustering

technique that does not make assumptions on the number

of clusters and on their shapes. It achieves this goal

by performing kernel density estimation, and iteratively

locating the local maxima of the kernel mixture. The

set of points that converge to the same mode defines a

cluster. While appealing, the performance of the mean shift

algorithm significantly deteriorates with high dimensional

data due to the sparsity of the input space. In addition, noisy

features can create challenges for the mean shift procedure.

In this paper we extend the mean shift algorithm to

overcome these limitations, while maintaining its desirable

properties. To achieve this goal, we first estimate the

relevant subspace for each data point, and then embed such

information within the mean shift algorithm, thus avoiding

computing distances in the full dimensional input space. The

resulting approach achieves the best-of-two-worlds: effective

management of high dimensional data and noisy features,

while preserving a nonparametric nature. Our approach

can also be combined with random sampling to speedup the

clustering process with large scale data, without sacrificing

accuracy. Extensive experimental results on both synthetic

and real-world data demonstrate the effectiveness of the

proposed method.

Keywords: mean shift, subspace clustering, feature
relevance estimation, curse of dimensionality.

1 Introduction.

Clustering is the key step for many tasks in data
mining. The clustering problem concerns the discovery
of homogeneous groups of data according to a certain
similarity measure. Traditional clustering algorithms
(i.e., k-means) have two inherent disadvantages: the
number of clusters must be fixed a-priori, and the
generated clusters are restricted to have a spherical or
elliptical shape [15].

∗School of Computer Science and Engineering, South China
University of Technology. Email: yazhou.ren@mail.scut.edu.cn.
†Department of Computer Science, George Mason University,

USA. Email: carlotta@cs.gmu.edu.
‡School of Sciences, South China University of Technology.

Email: magjzh@scut.edu.cn.
§College of Computer and Information Science, Southwest

University, China. Email: gxyu@swu.edu.cn.

In contrast, the mean shift procedure, a nonpara-
metric clustering technique, can overcome these two
drawbacks. It achieves this goal by performing ker-
nel density estimation, and iteratively locating the local
maxima of the kernel mixture. The set of points that
converge to the same mode defines a cluster [7, 15]. The
key parameter of mean shift is the bandwidth. The orig-
inal mean shift procedure uses a fixed bandwidth, while
the adaptive mean shift [8] sets a different bandwidth
value for each point.

While appealing, the performance of the mean shift
algorithm significantly deteriorates with high dimen-
sional data due to the sparsity of the input space. Noisy
features can also challenge the search of dense regions
in the full space. An example is given in Fig. 1. The
three classes are generated by two-dimensional Gaus-
sians embedded in a three-dimensional space. As we
show in Section 4, the mean shift algorithm does not
perform well in this scenario.

Local-sensitive hashing (LSH) has been used to re-
duce the computational complexity of adaptive mean
shift, which is quadratic in the number of points [15].
Freedman et al. [13] proposed a fast mean shift proce-
dure based on random sampling. However, these tech-
niques still compute distances between points, and per-
forms mean shift, in the full space.

As Fig. 1 shows, clusters may exist in different sub-
spaces, comprised of different combinations of features.
This is often the case with high-dimensional data. Sub-
space clustering techniques have been developed to de-
tect clusters of data, as well as the subspaces where the
clusters exist [19, 20, 24]. In this work we leverage ideas
from the subspace clustering literature to address the
aforementioned limitations of the mean shift procedure.
In particular, we develop a technique to estimate the
relevant subspace for each point, and then embed such
information within the mean shift search process. This
results in a methodology that effectively handles high
dimensional data and noisy features, while preserving a
nonparametric nature. Our approach can also be com-
bined with random sampling to speedup the clustering
process with large scale data, without sacrificing accu-
racy. The main contributions of this paper are summa-
rized as follows:

• To the best of our knowledge, this is the first

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(a) Full view

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x

y

Class 1

(b) xoy plane

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

y

z

Class 2

(c) yoz plane

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

x

z

Class 3

(d) xoz plane

Figure 1: Toy1

time that subspace clustering is embedded in the
mean shift technique. The proposed method has
the ability to deal with high-dimensional and large
scale data.

• We provide the necessary theoretical analysis.

• Extensive experiments on both simulated and real-
world data demonstrate the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In
Section 2, we review related work on adaptive mean
shift and subspace clustering. In Section 3, we introduce
our methodology. Section 4 presents the empirical
evaluation and analysis. Conclusions and future work
are provided in Section 5.

2 Related Work.

Traditional mean shift methods [7, 8, 13, 15] estimate
the density of the data and compute the mean shift
vector in the full feature space. As a consequence,
high-dimensional spaces present a challenge to the mean
shift procedure due to the curse of dimensionality. In
general, the presence of noisy features can hinder the
density estimation process.

To address the issue posed by high-dimensional
data, and by the presence of noisy features in general,
subspace clustering techniques have been widely stud-
ied [19, 20, 24]. Subspace clustering methods assume
that each cluster is embedded in a subspace. Two ma-
jor search strategies have been developed to explore such
subspaces: top-down and bottom-up [24].

Top-down algorithms first find an initial clustering
in the full feature space, and then iteratively improve
the clustering results by evaluating the subspaces of
each cluster [24]. Representative methods are PRO-
CLUS [1], ORCLUS [2], FINDIT [27], and δ-Clusters
[28]. Bottom-up approaches initially find dense regions
in a low dimensional feature space. Such regions are
then combined to form clusters in spaces with higher
dimensionality. Examples of methods that belong to
this category are CLIQUE [3], ENCLUS [6], MAFIA
[16], CBF [5], CLTree [22], and DOC [25].

Typically, in subspace clustering a subspace is de-
fined as a collection of features, and each feature of a
subspace participates with equal strength. In contrast,
some approaches estimate the relevance of features, and
assign weights to features that reflect their importance.
The resulting techniques are often called soft subspace
clustering . LAC [11] and COSA [14] are two represen-
tative algorithms of this kind.

LAC is a k-means-like algorithm. It iteratively
adjusts weights assigned to features within each cluster,
and generates new clusters until convergence. Unlike
LAC, COSA specifies a weight vector for each point,
rather than for each cluster. COSA iteratively explores
the neighborhood of a point to estimate the local
relevance of each feature. Such relevance is eventually
embedded in a pairwise weighted distance measure, used
in combination with hierarchical clustering [18].

Recently, Halite [9], a fast and scalable subspace
clustering algorithm has been proposed. It has been
shown that Halite achieves accuracy values which are
competitive against state-of-the-art techniques. Halite’s
strength is its linearity or quasi-linearity in time and
space w.r.t. data size and dimensionality.

3 Methodology.

Let X = {x1,x2, . . . ,xn} denote the data set, where
n is the number of points and d is the dimensionality
of each point xi = (xi1, xi2, . . . , xid)

T , i = 1, 2, . . . , n.
A clustering C = {C1, C2, ..., Ck∗} partitions X into
k∗ disjoint clusters, i.e., Ci ∩ Cj = ∅ (∀i 6= j, i, j =
1, 2, . . . , k∗), and ∪k∗k=1Ck = X . In the following, we
first give a brief review of Adaptive Mean Shift [8].

3.1 Adaptive Mean Shift (AMS). To perform
kernel density estimation, AMS sets a different band-
width hi = h(xi)

1 for each data point xi. The density
estimator for x is then defined as

(3.1) f̂K(x) =
1

n

n∑
i=1

1

hd
i

K

(
x− xi

hi

)

1hi can be set to the distance between xi and its k-th nearest
neighbor [12].

where K is a spherically symmetric kernel. In this
paper, we use a Gaussian kernel. The profile of a kernel
K is defined as a function κ : [0,+∞) → R such that
K(x) = κ(‖x‖2). Then, the sample point estimator
(3.1) becomes

(3.2) f̂K(x) =
1

n

n∑
i=1

1

hd
i

κ

(∥∥∥∥x− xi

hi

∥∥∥∥2
)

By taking the gradient of f̂K(x) we obtain

∇f̂K(x) =
2

n

[
n∑

i=1

1

hd+2
i

g

(∥∥∥∥x− xi

hi

∥∥∥∥2
)]
×∑n

i=1
xi

hd+2
i

g(‖x−xi
hi
‖2)∑n

i=1
1

hd+2
i

g(‖x−xi
hi
‖2)
− x


︸ ︷︷ ︸

mean shift vector

(3.3)

where g(x) = −κ′(x), provided that the derivative of κ
exists. The first part of Eq. (3.3) is a constant, and the
factor in bracket is the mean shift vector, which always
points towards the direction of the greatest increase in
density. Using the mean shift vector, a sequence of
estimation points {yt}t=1,2,... is computed

(3.4) yt+1 =

∑n
i=1

xi

hd+2
i

g(‖yt−xi
hi
‖2)∑n

i=1
1

hd+2
i

g(‖yt−xi
hi
‖2)

y1 is chosen as one of the points xi. The point that
{yt}t=1,2,... converges to is considered as the mode of
y1. Points with the same mode are grouped in the same
cluster.

3.2 Weighted Bandwidths. Eq. (3.4) shows that
yt+1 is computed using the Euclidean distance between
yt and each point in X , provided that g(x) and all his
are fixed. Points close to yt have a large influence in
the computation of yt+1, while points far from yt play
a smaller role. But in real data, the Euclidean distance
is strongly affected by noisy or irrelevant features, and
it may become meaningless in high-dimensional spaces
due to the curse of dimensionality.

To address this issue, we first estimate the relevance
of features for each xi, and then compute the distance of
xi to yt in the resulting subspace of relevant features.
Specifically, we represent the relevance of features for
a point xi ∈ X as a nonnegative weight vector wi =
(wi1, wi2, . . . , wid)

T , where
∑d
l=1 wil = 1. The entry

wil denotes the relevance of the l-th feature for xi.
The larger the value wil is, the more relevant the l-
th feature is for point xi. Hence, wi defines a soft
subspace to which point xi belongs. Using wi, each
feature participates with the corresponding relevance in
the computation of the distance of xi to a point x ∈ Rd:

(3.5) Dwi(xi,x) =

d∑
l=1

wil|xil − xl|/sl

where sl is the average l-th attribute distance of all pairs
of points in X ; it is a measurement of the “closeness”
on this attribute2:

(3.6) sl =
1(
n
2

) ∑
i<j

|xil − xjl|

Note that, given two points xi,xj ∈ X , the two
distances Dij = Dwi

(xi,xj) and Dji = Dwj
(xj ,xi) are

different, since in general wi 6= wj . Dij represents the
distance of xi to xj , within the subspace of xi, whereas
Dji is the distance of xj to xi, within the subspace of
xj . Given wi, the k-neighborhood of xi is defined as

(3.7) Si = {xj ∈ X |Dij ≤ Di(k), j 6= i}
where Di(k) is the k-th smallest value of the weighted
distances {Dij}nj=1. The optimal weight vector wi is
the one that minimizes the following error function:

E1(wi) =
1

k

∑
xj∈Si

Dij =
1

k

∑
xj∈Si

d∑
l=1

wil|xil − xjl|/sl

=

d∑
l=1

wil(
1

k

∑
xj∈Si

|xil − xjl|/sl) =

d∑
l=1

wilGl

(3.8)

subject to
∑d
l=1 wil = 1, where Gl = 1

k

∑
xj∈Si

|xil −
xjl|/sl. E1(wi) measures the dispersion of the k-
neighborhood of xi. We seek to find a suitable wi that
minimizes such dispersion.

By minimizing E1, the optimal wi vector will assign
weight one to the attribute with the smallest Gl value,
and weight zero to all the other attributes. To avoid
this trivial solution, we add the negative entropy of the
weight distribution for xi in Eq. (3.8), and minimize

E2(wi) = E1(wi) + α

d∑
l=1

(wil logwil)

=

d∑
l=1

(wilGl + αwil logwil)

(3.9)

subject to
∑d
l=1 wil = 1. α ≥ 0 is a parameter of the

procedure. We can solve this constrained optimization
problem by introducing the Lagrange multiplier λ and
minimizing the resulting error function:

(3.10) E(wi, λ) =
d∑

l=1

(wilGl +αwil logwil)+λ(1−
d∑

l=1

wil)

By setting the partial derivatives of E(wi, λ) w.r.t.
wil (l = 1, 2, . . . , d) and λ to zero, we obtain

2sl = 0 if and only if the values of all data points on
the l-th attribute are the same. In this case, this attribute
provides no discriminative information and should be deleted in

a preprocessing step. Then, sl > 0 holds and Eq. (3.5) is always
meaningful. In addition, sl is a fixed value for each data set X .

(3.11)
∂E

∂λ
= 1−

d∑
l′=1

wil′ = 0

(3.12)
∂E

∂wil
= Gl + α logwil + α− λ = 0

From Eq. (3.12):

(3.13) wil = exp (
−Gl + λ− α

α
) =

exp (−Gl

α)

exp(1− λ
α)

Combing Eqs. (3.11) and (3.13):

(3.14) 1− 1

exp(1− λ
α)

d∑
l′=1

exp (−Gl
′

α
) = 0

It follows:

(3.15) exp(1− λ

α
) =

d∑
l′=1

exp (−Gl
′

α
)

Substituting this expression in Eq. (3.13), we obtain

(3.16) wil =
exp(−Gl

α)∑d
l′=1 exp(−Gl′

α)

Eq. (3.16) computes the optimal wi for a fixed Si.
Intuitively, larger weights are assigned to features with
a smaller Gl value, which signifies a smaller dispersion
along the l-th attribute within the k-neighborhood of
xi. Once wi is updated, a new Si can be obtained
using Eq. (3.7). As such, we can progressively improve
the feature weight distribution and the neighborhood
for each point. At convergence (proved below), we have
the optimal wi and Si for each xi. We then set the
bandwidth hi for xi to be equal to Di(k). The algorithm
is summarized in Algorithm 1.

Algorithm 1 Weighted Bandwidth Algorithm

Input: X , k, α, max iter.
Output: hi and wi, i = 1, 2, . . . , n.
1: for i : 1→ n do
2: t← 0
3: wi ← (1

d
, 1
d
, . . . , 1

d
)

4: repeat
5: Compute Di(k) and Si using Eq. (3.7)
6: Update wi using Eq. (3.16)
7: t← t+ 1
8: until convergence or t = max iter
9: hi ← Di(k)

10: end for
11: return hi and wi, i = 1, 2, . . . , n.

Theorem 3.1. Algorithm 1 converges.

Proof. Suppose w
(t)
i is the weight vector for xi at the

t-th iteration. The corresponding S
(t)
i is obtained using

Eq. (3.7). Let E2(w
(t)
i , S

(t)
i) denote E2(w

(t)
i), for a

given S
(t)
i . Then the following inequality holds:

(3.17) E2(w
(t+1)
i , S

(t)
i) ≤ E2(w

(t)
i , S

(t)
i)

because w
(t+1)
i is the optimal solution to problem (3.9)

when S
(t)
i is fixed. Once we have w

(t+1)
i , S

(t+1)
i can be

obtained using Eq. (3.7). It is easy to see from Eq.
(3.8) that

(3.18) E1(w
(t+1)
i , S

(t+1)
i) ≤ E1(w

(t+1)
i , S

(t)
i)

because S
(t+1)
i consists of the k closest nearest neigh-

bors of xi according to w
(t+1)
i . Since E2(wi, Si) =

E1(wi, Si) +
∑d
l=1(αwil logwil), and the latter term is

a constant when wi is fixed, it follows from Eq. (3.18)

(3.19) E2(w
(t+1)
i , S

(t+1)
i) ≤ E2(w

(t+1)
i , S

(t)
i)

From (3.17) and (3.19), we obtain

(3.20) E2(w
(t+1)
i , S

(t+1)
i) ≤ E2(w

(t)
i , S

(t)
i)

That is, E2(w
(t+1)
i) ≤ E2(w

(t)
i). In addition, E1(wi) ≥

0 and
∑d
l=1(wil logwil) achieves the minimum when

equal weights are assigned to all features. Thus, E2(wi)
is lower bounded. As a consequence, the sequence
of E2(wi) values is monotonically decreasing and con-
verges to a local minimum. �

3.3 Weighted Adaptive Mean Shift (WAMS).
Algorithm 1 provides the bandwidth hi and the weight
vector wi for each point xi. Using wi, we can compute
the weighted distance Dwi

(xi,yt) between xi and yt,
which replaces the Euclidean distance in Eq. (3.4).
This gives the following sequence of estimation points
{yt}t=1,2,...

(3.21) yt+1 =

∑n
i=1

xi

hd+2
i

g((
Dwi

(xi,yt)

hi
)2)∑n

i=1
1

hd+2
i

g((
Dwi

(xi,yt)

hi
)2)

The corresponding mean shift vector is

(3.22) m(yt) =

∑n
i=1

xi

hd+2
i

g((
Dwi

(xi,yt)

hi
)2)∑n

i=1
1

hd+2
i

g((
Dwi

(xi,yt)

hi
)2)
− yt

We call m(yt) the weighted mean shift vector . If an
estimation point yt is located in a sparse area of the full
feature space, the density around yt is low, especially
in high-dimensional data. This will compromise the
finding of the proper mode for yt, when Eq. (3.4) is
used. However, there may be points from the same
cluster in a certain subspace surrounding yt. Hence,
in this subspace, the area around yt is denser. Thus yt
can converge to a mode in the corresponding subspace,
and the negative influence of irrelevant or noisy features
is reduced. The weighted distance in Eq. (3.21)
serves this goal. We compute m(yt) using the weighted
distances to the points xi, each according to a given
subspace. Thus, m(yt) points towards the denser area
in a certain subspace. The points that converge to the

same mode are grouped in the same cluster. Algorithm
2 summarizes the WAMS algorithm. It has three
phases: Phase A is the mean shift process and provides
a mode for each point. Phase B groups together points
with the same mode, and gives the clustering result
C = {C1, C2, . . . , Ck∗}, where k∗ is the number of
detected clusters. Phase C computes the average of
the weight vectors of points in the same cluster. This
average vector represents the soft subspace where each
cluster exists.

Algorithm 2 WAMS

Input: X , hi, wi (i = 1, 2, . . . , n), max iter.
Output: clustering C, modes M , cluster weights W .

Phase A. Mean shift process
1: for i : 1→ n do
2: t← 0
3: y0 ← xi

4: repeat

5: yt+1 ←
∑n

i=1
xi

h
d+2
i

g((
Dwi

(xi,yt)

hi
)2)

∑n
i=1

1

h
d+2
i

g((
Dwi

(xi,yt)

hi
)2)

6: t← t+ 1
7: until convergence or t = max iter
8: mode(i)← yt //The mode of xi

9: end for
Phase B. Clustering

10: C ← ∅ //Clustering result
11: k∗ ← 0 //Number of clusters
12: for i : 1→ n do
13: exist← False
14: for j : 1→ k∗ do
15: if (mode(i) == M(j)) then
16: exist← True //mode(i) already exists
17: Cj = Cj ∪ xi

18: break
19: end if
20: end for
21: if (exist == False) then
22: k∗ ← k∗ + 1 //A new cluster
23: Ck∗ ← {xi}
24: M(k∗)←mode(i)
25: end if
26: end for

Phase C. Subspace exploration
27: for j : 1→ k∗ do

28: W (j)←
∑

xi∈Cj
wi

|Cj |
//Cluster j weight vector

29: end for
30: return C, M, W .

3.4 Fast WAMS. The computational complexity of
both Algorithms 1 and 2 is quadratic in the number of
points n. It is time consuming to perform the mean
shift on every point when dealing with large scale data.
To speedup the computation we apply a similar idea
as in [13]. When n is large, we can randomly select a
subset X ′ = {x′1,x′2, . . . ,x′m} from X , with m � n.
Algorithms 1 and 2 are applied to X ′, and provide
s′l (l = 1, . . . , d), the clustering C ′ = (C ′1, C

′
2, . . . , C

′
k∗)

and corresponding weight vectors w′1,w
′
2, . . . ,w

′
m for

the data points. Then, for each point x ∈ X \ X ′, we

select the point x′i ∈ X ′ which minimizes the following
weighted distance

(3.23) Dw′i
(x′i,x) =

d∑
l=1

w′il|x′il − xl|/s′l

That is, we find the closest x′i to x in a certain subspace,
thus avoiding computing distances in the full space. We
add x to the cluster which x′i belongs to.

4 Empirical Evaluation.

4.1 Data. We conducted experiments on three sim-
ulated data sets and ten real data sets to evaluate the
performance of the proposed methods. The details of
the data used are shown in Table 1.

Table 1: Data used in our experiments
Data #points #features #classes

Toy1 450 3 3
Toy2 300 10 2
Toy3 300 50 2
Iris 150 4 3

COIL 360 1024 5
Yeast 1136 8 3
Steel 1941 27 7
USPS 2007 256 10
CTG 2126 21 10
Letter 2263 16 3
Image 2310 19 7
Pen 3165 16 3

Wave 5000 21 3

Toy example 1 (Toy1) is shown in Fig. 1. All
three classes were generated according to multivariate
Gaussian distributions. Each class consists of 150
points. Class 1 (red) was generated on the xoy plane,
with mean vector and the covariance matrix equal to
(0, 0) and [0.5 0; 0 5], respectively. The values on the
z-axis are random values in the range [0, 80]. Class 2
(blue) was generated on the yoz plane. The mean vector
and the covariance matrix are (18, 25) and [0.5 0; 0 5],
respectively. The x-axis values are random values in
the range [−15, 65]. Class 3 (green) was generated
on the xoz plane. The corresponding mean vector
and the covariance matrix are (13, 10) and [0.5 0; 0 5],
respectively. The y-axis values are random values in the
range [−10, 70].

Both toy examples 2 and 3 (Toy2 and Toy3) consist
of 2 classes, each made of 150 points. The dimensional-
ities of Toy2 and Toy3 are 10 and 50, respectively. We
first generated two classes using Gaussian distributions
on the xoy plane (see Fig. 2). The mean vector and
the covariance matrix of class 1 (red) are (5, 10) and
[0.5 0; 0 10], while those of class 2 (blue) are (25, 10)
and [10 0; 0 0.5]. For Toy2, the remaining 8 features
are random values in the range [0,1]. The remaining 48
features of Toy3 are random values in the range [0,1].

COIL contains 100 classes and we selected the
first 5 classes, each containing 72 images. USPS is a
handwritten digit database and the 2007 test images

Table 2: Comparison against AMS on simulated data
RI ARI NMI

Data k = 30 50 70 90 30 50 70 90 30 50 70 90

Toy1
WAMS 0.9469 1.0000 1.0000 1.0000 0.8751 1.0000 1.0000 1.0000 0.9116 1.0000 1.0000 1.0000
AMS 0.7590 0.5990 0.3318 0.3318 0.3622 0.2439 0.0000 0.0000 0.6041 0.4251 0.0000 0.0000

Toy2
WAMS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
AMS 0.4983 0.4983 0.4983 0.4983 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Toy3
WAMS 0.9933 0.9671 1.0000 0.9671 0.9867 0.9342 1.0000 0.9342 0.9711 0.8941 1.0000 0.8941
AMS 0.4983 0.4983 0.4983 0.4983 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x

y

Class 1
Class 2

Figure 2: The xoy plane of Toy2 and Toy3

were chosen for our experiments3. The other eight data
sets are from the UCI repository4. Iris, Steel (Steel
Plates Faults), CTG (Cardiotocography), Image (Image
Segmentation), and Wave (Waveform version 1) are all
in the original form. The three largest classes of Yeast
were selected and letters ’I’, ’J’ and ’L’ were chosen from
the Letter database. Pen contains 10,992 samples from
10 classes (digits 0-9) and we selected 3 classes (digits
3, 8, 9). For each data set, features were normalized to
have zero mean value and unit variance.

4.2 Evaluation Measures. Various metrics to as-
sess clustering results exist [4, 21]. We use Rand Index
(RI) [17], Adjusted Rand Index (ARI) [17], and Nor-
malized Mutual Information (NMI) [26] as clustering
validity indices since the labels of data are known. The
label information is only used to evaluate the clustering
results, and is not utilized during the clustering pro-
cess. Both RI and NMI range from 0 to 1, while ARI
yields a value between -1 and +1. A larger value of
RI/ARI/NMI indicates a better clustering result.

4.3 Experimental settings. The maximum num-
ber of iterations max iter is set to 200 for both Al-
gorithms 1 and 2. We need to specify two additional
parameters for Algorithm 1: the number of neighbors
k and the parameter α > 0. α can affect the weight
distribution. When α → 0, Eq. (3.16) tends to assign
weight 1 to the feature with the smallest Gl, and weight

3COIL and USPS can be downloaded at www.cad.zju.edu.cn/
home/dengcai

4http://archive.ics.uci.edu/ml/index.html

0 to all other features. When α→ +∞, all features are
assigned equal weights. In all our experiments α = 0.2.

We compared WAMS with AMS [8]. AMS sets the
bandwidth for a given point equal to the Euclidean dis-
tance of that point to its k-th neareast neighbor. In the
experiments, we use the same value of k for both WAMS
and AMS. We also performed comparisons against sev-
eral other clustering algorithms, including three clas-
sic algorithms, i.e. k-means [23], EM (with a Gaussian
mixture) [10], and Sing-l (single-linkage clustering) [18],
and three subspace clustering algorithms, i.e. LAC [11],
COSA [14], and the most recent Halite [9]. LAC has
a parameter h (see [11] for details), similar to the α
of WAMS. We set both to 0.2. COSA first outputs a
weighted distance matrix, which is then used for single-
linkage clustering. Halite has two versions, one for soft
clustering and one for hard clustering. We used the ver-
sion for hard clustering made available by the authors.
k-means, EM, and LAC have a random component. The
reported results for these techniques are the average of
100 independent runs. One-sample t-test and paired-
samples t-test are used in our experiments to assess the
statistical significance of the results. The significance
level is 0.05. Note that for WAMS, AMS, and Halite
we do not need to specify the number of clusters in ad-
vance; for all the other algorithms we set the number of
clusters equal to the number of classes.

4.4 Results and Analysis.

4.4.1 Results on Simulated Data. To illustrate
the effectiveness of WAMS, we first compared it against
AMS [8] on the three toy data sets. We set k =
30, 50, 70, 90. Figs. 3 and 4 show the results. As
expected, when k increases, fewer modes are found by
AMS. When k ≥ 70, all points converge to the same
mode and are grouped in one cluster. This shows the
sensitivity of AMS to the choice of k (i.e. bandwidth).
A small bandwidth might cause the finding of too many
modes (or clusters), while a large one might cause the
merging of distinct clusters. AMS finds four modes at
k = 50. However, the result is still poor because of
the noisy features. In contrast, WAMS is robust with
respect to k. WAMS found four clusters when k = 30,

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(a) k=30, 9 modes

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(b) k=50, 4 modes

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(c) k=70, 1 mode

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(d) k=90, 1 mode

Figure 3: Clustering results of AMS on Toy1

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(a) k=30, 4 modes

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(b) k=50, 3 modes

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z
(c) k=70, 3 modes

−2

0

2

4

−2

0

2

4
−2

−1

0

1

2

3

4

xy

z

(d) k=90, 3 modes

Figure 4: Clustering results of WAMS on Toy1

and achieved perfect clustering for k ≥ 50. This may
be due to the fact that WAMS operates in subspaces
associated to the points. The k nearest neighbors of a
point are used to explore its subspace. The resulting
weight vector is resilient to a wide range of k values.

Additional results are shown in Table 2, w.r.t. three
clustering evaluations—RI, ARI and NMI. The larger
value obtained in each case is highlighted in boldface.
We can see that WAMS outperforms AMS by a large
margin in each case. In particular, the performance of
AMS on Toy2 and Toy3 is extremely poor, due to the
noisy features. Note that the zero values of ARI or
NMI indicate that all points are grouped in only one
cluster. This happens because the data sparsity causes
larger distances, and therefore larger bandwidth values.
In contrast, WAMS achieves a very good performance
on Toy2 and Toy3, despite the large number of noisy
features injected in the data.

To compare WAMS against other clustering algo-
rithms, we average the results of WAMS under the four
values of k being tested. The results are given in Table
3. In each row, the significantly best value is highlighted
in boldface. In general, a better RI value corresponds
also to better ARI and NMI values. Hence, hereinafter,
only RI values are reported due to space limit. COSA
achieves a perfect score on Toy1, but it fails on Toy2
and Toy3, due to the noisy features. Additional experi-
ments in Section 4.4.3 show that WAMS on Toy1 gives
a perfect score for a wide range of k values. On Toy2
and Toy3, WAMS significantly outperforms all the com-
petitive methods.

Table 3: Comparison against clustering algorithms on
simulated data (RI)

Data WAMS
Subspace clustering

k-means EM Sing-l
LAC COSA Halite

Toy1 0.9867 0.6486 1.0000 0.3318 0.6467 0.9604 0.5729
Toy2 1.0000 0.6416 0.4984 0.4983 0.6626 0.9407 0.4984
Toy3 0.9819 0.5055 0.4984 0.4983 0.5039 0.5049 0.4984

4.4.2 Results on Real Data. For each data set, we
test the following values of k: k1 = 0.6 ×

√
n, k2 =√

n, k3 = 2 ×
√
n, and k4 = 3 ×

√
n, where n is the

number of points. Table 4 shows the results comparing
WAMS and AMS. On Image and Pen, AMS gives the
best result when k = k1, but its performance quickly
deteriorates as k increases. A similar trend is observed
for Steel, CTG, Letter, and Wave data sets. This
shows again the sensitivity of AMS on the value of k.
In particular, on COIL, Yeast and USPS, AMS fails
to output a reasonable clustering result for all the k
values. In contrast, WAMS has a stable behavior and
outperforms AMS in most cases.

Table 5 shows the results against the other clus-
tering methods. For WAMS, we report the average RI
of the results obtained with the four values of k being
tested. In each row, we highlight the statistically signif-
icant best results. It is interesting to see that WAMS
always achieves the best performance, except on Iris
and COIL. It turns out that when k = k1 and k = k2,
WAMS still performs very well on both Iris and COIL.
For Iris, k3 = 24 and k4 = 37, and each of the three
classes contains only 50 points. For COIL, k3 = 38 and

Table 4: Comparison against AMS on real data (RI)
Data k = k1 k2 k3 k4

Iris
WAMS 0.8440 0.8275 0.7763 0.7763
AMS 0.8030 0.7247 0.7763 0.7763

COIL
WAMS 0.7997 0.7760 0.6629 0.6777
AMS 0.1978 0.1978 0.1978 0.1978

Yeast
WAMS 0.6347 0.6014 0.5983 0.6050
AMS 0.3543 0.3543 0.3543 0.3543

Steel
WAMS 0.7506 0.7315 0.7499 0.7418
AMS 0.6431 0.5376 0.4821 0.2217

USPS
WAMS 0.8990 0.9030 0.9029 0.8975
AMS 0.1089 0.1089 0.1089 0.1089

CTG
WAMS 0.8114 0.8034 0.8078 0.7959
AMS 0.4894 0.4732 0.1602 0.1602

Letter
WAMS 0.6913 0.6959 0.7007 0.6753
AMS 0.6757 0.6218 0.5457 0.3331

Image
WAMS 0.8811 0.8927 0.8962 0.8580
AMS 0.8860 0.8785 0.7734 0.5914

Pen
WAMS 0.7114 0.7107 0.7384 0.7188
AMS 0.7301 0.6476 0.6457 0.4224

Wave
WAMS 0.6862 0.6440 0.6790 0.6689
AMS 0.6425 0.6105 0.3333 0.3333

Table 5: Comparison against clustering algorithms on
real data (RI)

Data WAMS
Subspace clustering

k-means EM Sing-l
LAC COSA Halite

Iris 0.8060 0.8076 0.7764 0.3535 0.8051 0.8193 0.7771
COIL 0.7291 0.7980 0.6825 0.1978 0.7979 0.7529 0.2179
Yeast 0.6098 0.5706 0.3557 0.3620 0.5624 0.3713 0.3602
Steel 0.7435 0.7413 0.2242 0.2217 0.7394 0.7168 0.2446
USPS 0.9006 0.8750 0.1162 0.1089 0.8720 0.8225 0.1274
CTG 0.8046 0.8006 0.1697 0.5307 0.7996 0.7487 0.2007
Letter 0.6908 0.6074 0.3336 0.5147 0.6029 0.6074 0.3336
Image 0.8820 0.8544 0.3676 0.1812 0.8399 0.8028 0.1531
Pen 0.7198 0.7143 0.3385 0.6020 0.7068 0.7143 0.6852

Wave 0.6695 0.6675 0.3335 0.3358 0.6674 0.6675 0.6467

k4 = 57, while each class only has 72 points. In both
cases k3 and k4 are large w.r.t. the class sizes, result-
ing in lower RI values. As shown in Table 5, LAC is
the second best performer. A drawback of LAC is that
it needs the number of clusters in input, while WAMS
does not. Halite is faster than WAMS, but we found
that its accuracy is quite poor across all data.

4.4.3 Sensitivity Analysis of Parameter k. We
tested the sensitivity of WAMS w.r.t. k on Toy1 and
Letter. The tested ranges are [5, 100] and [10, 200],
respectively. Fig. 5 gives the results. On Toy1, the
performance of both AMS and WAMS increases for
larger k values, and reaches the peak at k = 35. Then,
the performance of AMS drops sharply, and reaches
the minimum when k ≥ 60, which indicates that AMS
groups all points in one cluster. In contrast, WAMS is
stable for k > 35. Similarly, for Letter the performance
of AMS deteriorates when k > 40, while WAMS is stable
throughout. This confirms the robustness of WAMS
w.r.t. the parameter k.

510 20 30 40 50 60 70 80 90 100
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

R
I

k=35

WAMS
AMS

(a) Toy1

20 40 60 80 100 120 140 160 180 200
0.3

0.4

0.5

0.6

0.7

0.8

k

R
I

WAMS
AMS

k=40

(b) Letter

Figure 5: Sensitivity analysis of parameter k (RI)

Table 6: Evaluation of F-WAMS (RI)

Data WAMS
F-WAMS

40% 20% 10% 5%

Letter 0.6959 0.6944 0.6959 0.6852 0.6749
time(sec) 516.0 88.6 18.2 4.4 1.3

Image 0.8927 0.8932 0.8836 0.8607 0.8269
time(sec) 860.6 174.6 32.3 6.8 2.1

Pen 0.7107 0.7243 0.7223 0.7231 0.7248
time(sec) 1623.9 307.5 64.2 14.7 3.7

Wave 0.6440 0.6467 0.6454 0.6411 0.6429
time(sec) 9664.6 1190.9 259.4 65.5 18.7

4.4.4 Evaluation of F-WAMS. In this section, we
evaluate the performance of F-WAMS on the four
largest data sets: Letter, Image, Pen, and Wave. For
each data set, we selected four random samples of
sizes 40%, 20%, 10%, and 5% of the original data set
(the balance between classes was preserved). We set
k =

√
n for WAMS and k =

√
m for F-WAMS, where

m is the number of points of the corresponding sample.
For F-WAMS we report the average RI values of 20
independent runs. Table 6 shows the results. The
reported time (seconds) of F-WAMS is also the average
value of the 20 runs. Experiments were performed
in Matlab R2010a on an Intelr CoreTM i7-4700MQ
processor with 8 GB RAM using Windows 8.

The running time of F-WAMS reduces sharply as
the size of the data decreases. On Letter and Wave,
F-WAMS achieves a similar performance as WAMS. F-
WAMS performs slightly worse as the size of the sample
decreases on Image. On Pen, F-WAMS outperforms
WAMS. This is mainly because sampling can reduce the
influence of noisy data. Overall, F-WAMS reduces the
time complexity without sacrificing accuracy, showing
good potential to deal with large scale data in real-life
tasks.

5 Conclusion and Future Work.

We have introduced WAMS, a nonparametric clustering
algorithm that explores the existence of clusters in
subspaces. The effectiveness of the proposed methods
is demonstrated through extensive experiments. In
summary, we have shown that (1) WAMS reduces

the negative influence of noisy features, and can find
meaningful clusters; (2) WAMS explores the subspace
where each cluster exists; and (3) WAMS is robust to k
(the neighborhood size). Like AMS, our approach can
find clusters of irregular shapes, and does not require
the a-priori specification of the number of clusters.
Finally, F-WAMS has shown good potential to scale
nicely with large data. We also observe that the
mean shift procedure can largely benefit from a parallel
implementation, a direction we plan to pursue.

Acknowledgments

This paper is partially supported by grants from the
Natural Science Foundation of China (61101234), Fun-
damental Research Funds for the Central Universities of
China (XDJK2014C044 and XDJK2013C123), the Doc-
toral Fund of Southwest University (No. SWU113034),
and the China Scholarship Council (CSC).

References

[1] C. C. Aggarwal, J. L. Wolf, P. S. Yu, C. Procopiuc, and
J. S. Park. Fast algorithms for projected clustering. In
SIGMOD, pages 61–72, 1999.

[2] C. C. Aggarwal and P. S. Yu. Finding generalized
projected clusters in high dimensional spaces. In
SIGMOD, pages 70–81, 2000.

[3] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Ragha-
van. Automatic subspace clustering of high dimen-
sional data for data mining applications. In SIGMOD,
pages 94–105, 1998.

[4] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Prez,
and I. Perona. An extensive comparative study of
cluster validity indices. PR, 46(1):243–256, 2013.

[5] J. W. Chang and D. S. Jin. A new cell-based clustering
method for large, high-dimensional data in data mining
applications. In Proceedings of the ACM Symposium
on Applied Computing, pages 503–507, 2002.

[6] C. H. Cheng, A. W. Fu, and Y. Zhang. Entropy-
based subspace clustering for mining numerical data.
In SIGKDD, pages 84–93, 1999.

[7] D. Comaniciu and P. Meer. Mean shift: a robust
approach toward feature space analysis. TPAMI,
24(5):603–619, 2002.

[8] D. Comaniciu, V. Ramesh, and P. Meer. The variable
bandwidth mean shift and data-driven scale selection.
In ICCV, pages 438–445, 2001.

[9] R. L. Cordeiro, A. J. Traina, C. Faloutsos, and C. T.
Jr. Halite: Fast and scalable multiresolution local-
correlation clustering. TKDE, 25(2):387–401, 2013.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin.
Maximum likelihood from incomplete data via the em
algorithm. Journals of the Royal Statistical Society,
Series B, 39(1):1–38, 1977.

[11] C. Domeniconi, D. Gunopulos, S. Ma, B. Yan, M. Al-
Razgan, and D. Papadopoulos. Locally adaptive met-
rics for clustering high dimensional data. DMKD,
14(1):63–97, February 2007.

[12] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern
Classification. Wiley, second edition, 2000.

[13] D. Freedman and P. Kisilev. Fast mean shift by
compact density representation. In CVPR, pages
1818–1825, 2009.

[14] J. H. Friedman and J. J. Meulman. Clustering objects
on subsets of attributes. Journal of the Royal Statisti-
cal Society, 66:815–849, 2004.

[15] B. Georgescu, I. Shimshoni, and P. Meer. Mean
shift based clustering in high dimensions: A texture
classification example. In ICCV, pages 456–463, 2003.

[16] S. Goil, H. Nagesh, and A. Choudhary. MAFIA:
Efficient and scalable subspace clustering for very
large data sets. Technical report CPDC-TR-9906-
010, Northwestern University, 2145 Sheridan Road,
Evanston IL-60208, June 1999.

[17] L. Hubert and P. Arabie. Comparing partitions.
Journal of Classification, 2(1):193–218, 1985.

[18] A. K. Jain, M. N. Murty, and P. J. Flynn. Data cluster-
ing: A review. ACM Computing Surveys, 31(3):264–
323, September 1999.

[19] H. P. Kriegel, P. Kröger, and A. Zimek. Clustering
high-dimensional data: A survey on subspace cluster-
ing, pattern-based clustering, and correlation cluster-
ing. ACM TKDD, 3(1):1:1–1:58, 2009.

[20] H. P. Kriegel, P. Kröger, and A. Zimek. Subspace
clustering. WIREs DMKD, 2(4):351–364, 2012.

[21] C. Legny, S. Juhsz, and A. Babos. Cluster validity
measurement techniques. In Proceedings of the 5th
WSEAS International Conference on Artificial Intelli-
gence, Knowledge Engineering and Data Bases, pages
388–393, 2006.

[22] B. Liu, Y. Xia, and P. S. Yu. Clustering through de-
cision tree construction. In Proceedings of the interna-
tional conference on Information and Knowledge Man-
agement, pages 20–29, 2000.

[23] J. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297. University of California
Press, 1967.

[24] L. Parsons, E. Haque, and H. Liu. Subspace clustering
for high dimensional data: a review. ACM SIGKDD
Explorations Newsletter, 6(1):90–105, 2004.

[25] C. M. Procopiuc, M. Jones, P. K. Agarwal, and T. M.
Murali. A monte carlo algorithm for fast projective
clustering. In SIGMOD, pages 418–427, 2002.

[26] A. Strehl and J. Ghosh. Cluster ensembles - a knowl-
edge reuse framework for combining multiple parti-
tions. JMLR, 3:583–617, 2002.

[27] K. G. Woo, J. H. Lee, M. H. Kim, and Y. J. Lee.
FINDIT: a fast and intelligent subspace clustering
algorithm using dimension voting. Information and
Software Technology, 46(4):255–271, 2004.

[28] J. Yang, W. Wang, H. Wang, and P. S. Yu. δ-clusters:
Capturing subspace correlation in a large data set. In
ICDE, pages 517–528, 2002.

