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Abstract

A functionf is d-resilient if all its Fourier coefficients of degree at mostd are zero, i.e.f is uncorre-
lated with all low-degree parities. We study the notion ofapproximate resilienceof Boolean functions,
where we say thatf isα-approximatelyd-resilient iff isα-close to a[−1, 1]-valuedd-resilient function
in ℓ1 distance. We show that approximate resilience essentiallycharacterizes the complexity of agnos-
tic learning of a concept classC over the uniform distribution. Roughly speaking, if all functions in a
classC are far from beingd-resilient thenC can be learned agnostically in timenO(d) and conversely,
if C contains a function close to beingd-resilient then agnostic learning ofC in the statistical query
(SQ) framework of Kearns has complexity of at leastnΩ(d). This characterization is based on the dual-
ity betweenℓ1 approximation by degree-d polynomials and approximated-resilience that we establish.
In particular, it implies thatℓ1 approximation by low-degree polynomials, known to be sufficient for
agnostic learning over product distributions, is in fact necessary.

Focusing on monotone Boolean functions, we exhibit the existence of near-optimalα-approximately
Ω̃(α

√
n)-resilient monotone functions for allα > 0. Prior to our work, it was conceivable even that every

monotone function isΩ(1)-far from any1-resilient function. Furthermore, we construct simple, explicit
monotone functions based onTribes andCycleRun that are close to highly resilient functions. Our
constructions are based on general resilience analysis andamplification techniques we introduce. These
structural results, together with the characterization, imply nearly optimal lower bounds for agnostic
learning of monotone juntas, a natural variant of the well-studied junta learning problem. In particular
we show that no SQ algorithm can efficiently agnostically learn monotonek-juntas for anyk = ω(1)
and any constant error less than1/2.

1 Introduction

The agnostic learning framework [Hau92, KSS94], models learning from examples in the presence of worst-
case noise. In this framework the learning algorithm is given random examples(x, f(x)) wherex is chosen
from some distributionD andf is anarbitrary Boolean function. The goal of the agnostic learning algorithm
for a concept classC is to output a hypothesish that agrees withf almost as well as the best function inC;
that is:

PrD[h(x) 6= f(x)] ≤ min
c∈C

PrD[c(x) 6= f(x)] + ε,

whereε is an error parameter given to the algorithm.
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Understanding the complexity of learning in the agnostic model is central to both theory and practice in
machine learning research. Learning in this model is notoriously hard, and despite two decades of intensive
research our formal understanding of the complexity of agnostic learning is still very limited. Even when
D is the uniform distribution over{−1, 1}n, agnostic learning has proven extremely challenging: few non-
trivial classes are known to be learnable agnostically. Theprimary technique used for agnostic learning
in this setting is the polynomialℓ1 regression algorithm introduced in the influential work of Kalai et al
[KKMS08]. This algorithm finds a low-degree polynomial that minimizes theℓ1 distance to the target
function, and can be applied to agnostically learn classes which are well approximated by polynomials.
This approach has lead to the first agnostic learning algorithm forAC0 circuits (in quasi-polynomial time)
and halfspaces (innO(1/ε2) time) over the uniform distribution [KKMS08] and was used in many other
agnostic learning results.

In this work we address the complexity of agnostic learning relative to the uniform and, more generally,
product distributions. In addition to running time, a critical but often unstated parameter in lower bounds
on agnostic learning is the value ofOPTC(D, f) = minc∈C Pr[c(x) 6= f(x)] to which the lower bound
applies (note thatOPT is essentially the noise rate). If a hardness result requires learning functionsf for
which OPTC(D, f) is close to1/2, then it does not apply to most practical learning applications. (If C
does not have any useful classifiers, it does not make much sense to useC as a performance benchmark.)
Therefore it is more important to understand the complexityof agnostic learning in whichOPT is a small
constant close to 0 (or even approaches 0 asn grows). However essentially all known lower bounds for
agnostic learning are in the hardest regime whenOPTC(D, f) goes to1/2 as dimension and other problem
parameters grow (although there are some notable exceptions in restricted models and the more challenging
distribution-independent setting [KS10, FGRW12]). In this work we aim to precisely characterize the value
of OPT for which agnostic learning becomes hard and therefore willmake this parameter explicit in our
lower bounds.

In machine learning literature it is more common to specify the excess errorwhich is the difference
betweenOPTC(D, f) and the error of the produced hypothesis that an algorithm can achieve. It is easy
to see that lower bounds showing that excess error ofκ cannot be achieved is equivalent to stating that the
lower bound applies to a setting whereOPT = 1/2 − κ (since error of1/2 can always be achieved).

1.1 Approximate resilience and agnostic learning

In this work we explain why the polynomialℓ1 regression algorithm is the best approach known to date
for agnostically learning over product distributions. Specifically, we prove that the complexity of agnostic
learningC over a product distribution in the statistical query model is characterized by how wellC can
be approximated in theℓ1 norm by low-degree polynomials over the same distribution.The statistical
query (SQ) model [Kea98] is a well-studied restriction of the PAC learning model in which the learner
relies on approximate expectations of functions of an example rather than examples themselves. With the
exception of Gaussian elimination1 all known techniques used in the theory and practice of machine learning
have statistical query analogues. Polynomialℓ1 regression is no exception, and therefore to prove our
characterization it suffices to establish a lower bound on learning by statistical query algorithms for function
classes that are not well-approximated by low-degree polynomials.

The optimality ofℓ1 regression for agnostic learning over product distributions that we prove is based
on a formal connection between agnostic learning and a basicstructural property of Boolean functions. We
say that a functiong : {−1, 1}n → R is d-resilient if ĝ(S) = 0 for all |S| ≤ d, i.e. g is uncorrelated with
every low-degree parity. Equivalently,g is d-resilient if and only ifE[gρ] = E[g] for any restrictionρ to
at mostd out ofn variables andE[g] = 0. Functions which satisfy the first property are calledcorrelation

1Note that Gaussian elimination fails in the presence of evenminor amounts of random noise and is not applicable in the agnostic
framework.
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immuneand are widely-studied for cryptographic applications. The structural question we will be interested
in is:

How close can a Boolean function be to a highly resilient function with range in[−1, 1]?

More precisely, we say thatf : {−1, 1}n → [−1, 1] is α-approximatelyd-resilient if there exists ad-
resilientg : {−1, 1}n → [−1, 1] such that‖f − g‖1 = E[|f(x)− g(x)|] ≤ α, and we will be interested in
functions that areα-approximatelyd-resilient for small values ofα and large values ofd. We note that for
simplicity and convenience the definitions here are for the uniform distribution on the hypercube but can be
easily extended to general product distributions over other n-dimensional domains (see SectionA).

The notion of resilience is well-studied and has applications in cryptography, pseudorandomness, in-
approximability, circuit complexity and more (for a few examples, see [CGH+85, LW95, AM09, AH11,
She11]). However, to the best of our knowledge our notion of approximate resilience does not appear to
have been explicitly studied before.

At a high level we show that if a concept classC contains anα-approximatelyd-resilient function then
the complexity of learningC agnostically in the SQ model isnΩ(d). Further, learning is hard even for
OPT ≤ α/2 (in other words when noise rate isα/2). For simplicity the complexity of an SQ algorithm
refers to a polynomial upper-bounding both the running timeand the inverse of query tolerance. Naturally,
the presence of a singleα-approximatelyd-resilient function would not suffice for a hardness result since a
concept class with a single function can be easily learned agnostically. We therefore need some assumptions
under which existence of a singleα-approximatelyd-resilient function will imply that there are many of
them. One such assumption that we adopt is that theα-approximatelyd-resilient functionc depends on
at mostn1/3 variables (such a function is called an1/3-junta) and the concept classC is closed under
renaming of variables. Alternatively, if we consider an ensemble of concept classes{Cn}∞n=1 parameterized
by dimensionn it would be sufficient to assume that the ensemble is closed under addition of irrelevant
variables. For brevity we omit the closed-ness under renaming since it is satisfied by all commonly-studied
concept classes. We now state our lower bound in terms of resilience informally.

Theorem 1.1. LetC be a concept class. Fixd and letα(d) be such that, there exists aα(d)-approximately
d-resilientn1/3-junta c ∈ C. Then any SQ algorithm for agnostically learningC with excess error of at most
1−α(d)

2 − n−o(d) has complexity of at leastnΩ(d).

Alternatively, this result can be stated as saying that if for every functionf satisfyingOPTC(D, f) ≤
α(d)/2 the algorithm outputsh such thatPrD[h(x) 6= f(x)] ≤ 1/2 − n−o(d) then its SQ complexity is
nΩ(d). An immediate implication of this theorem is that a concept class containing ano(1)-approximately
d-resilient function cannot be learned with noise rate larger thano(1) in timenΩ(d).

The proof of this theorem is based on the simple observation that agnostic learning ofC is at least as hard
as weak learning of a class ofd-resilient functions which are close to functions inC. From there we rely
on hardness of SQ learning of pairwise nearly orthogonal functions to obtain the claim. This result relies
crucially on the distribution being a product distributionand it is was recently demonstrated that is does not
hold for some non-product distributions [FK14].

The lower bounds obtained from this technique are closest inspirit to lower bounds based on cryp-
tographic assumptions and those based on hardness of learning sparse parities with noise. Cryptographic
hardness relies on a certain problem being hard for all known“attacks”. As pointed out above, SQ algo-
rithms capture all known agnostic learning algorithms and learning techniques in general. Therefore the
lower bounds hold against all known learning algorithms. Further, as in our lower bounds, degree of re-
silience of a predicate is the primary hardness parameter inmany cryptographic constructions (cf. [OW14]).

This simple technique might appear to be a relatively limited approach to obtaining lower bounds. Yet,
it turns out that the lower bounds it achieves are essentially optimal. This follows from the duality between
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approximate resilience andℓ1 approximation by low-degree polynomials that we establish. More formally,
let Pd be the class of degree at mostd real-valued polynomials. For a Boolean functionf , let ∆Pd

(f) =
minp∈Pd

E[|f − p|].

Theorem 1.2. For f : {−1, 1}n → {−1, 1} and0 ≤ d ≤ n andα ≥ 0, f is α-approximatelyd-resilient if
and only if∆Pd

(f) ≥ 1− α.

The proof of this result is a fairly simple application of a classical result on duality of norms by Ioffe
and Tikhomirov [IT68].

Now for a concept classC, let ∆Pd
(C) = maxf∈C ∆Pd

(f). To see how this quantity characterizes ag-
nostic learning in the statistical query model, we state theerror and running time achieved by the polynomial
ℓ1 regression algorithm of Kalai et al. for agnostic learning [KKMS08]. This algorithm is easy to implement
in the SQ model2.

Theorem 1.3([KKMS08]). LetC be a concept class over{−1, 1}n and fixd. There exists a SQ algorithm
which for anyε > 0 agnostically learnsC with excess error∆Pd

(C)/2+ε and has complexitypoly(nd, 1/ε).

On the other hand, we may apply Theorems1.2and1.1to show that this is the best any SQ algorithm can
do; by Theorem1.2 there exists anα(d)-approximatelyd-resilient function inC with 1− α(d) = ∆Pd

(C).
Therefore Theorem1.1essentially matches the upper bound of Theorem1.3in excess error and complexity,
implying the optimality ofℓ1-regression based algorithms for agnostic learning over the uniform distribution.
The extension to other product distributions is fairly straightforward and we discuss it in Sec.A.

1.2 Learning monotone juntas

With this characterization in hand, we would like to better understand what classes of functions we can
hope to agnostically learn on the uniform distribution. Uniform distribution learning is challenging even in
the noiseless setting, with efficient algorithms out of reach for natural classes such as polynomial size DNF
formulas and decision trees. However, learning monotone functions and their corresponding subclasses
seems significantly easier; for example, monotone decisiontrees [OS07] and monotone DNFs with few
terms [Ser01] are efficiently learnable in the SQ model (for other examples see [OW13, BBL98, BT96]).

This difference is demonstrated most dramatically in the junta learning problem, which is considered by
many to be the single most important open problem in uniform distribution learning. In this problem, the
target function is an unknownk-junta, a Boolean function which depends on at mostk ≪ n variables. The
junta problem also lies at the heart of the notorious DNF and decision tree learning problems: Sinces-term
DNFs ands-leaf decision trees can compute arbitrary(log s)-juntas, learning either of these classes requires
that we first be able to efficiently learnω(1)-juntas. Progress has remained slow in the 20 years since Blum
posed the junta problem, with the current fastest algorithmrunning in timen.60k [Val12], improving on the
first non-trivial algorithm which runs in timen.704k [MOS04] (the trivial algorithm exhaustively checks all
k-subsets of[n] and runs in timeO(nk)). In contrast, monotone juntas are easy to learn using an extremely
simple algorithm: the relevant variables can be identified by estimating their correlations with the target
functionE[f(x)xi] = f̂({i}), and thus monotonek-juntas can be learned in timeO(n + 2k). Does the
advantage of monotonicity hold in the agnostic setting as well? We first consider the simplest problem
of agnostic learning monotone juntas. While it appears to bea hard problem, known hardness results for
specific monotone functions do not rule out polynomial time algorithms for any constantε. Specifically, the
best known lower bound isnΩ(1/ε2) for majority functions [KKMS08] and is based on the assumption that

2To the best of our knowledge this is not proved anywhere explicitly but is fairly well-known and used in some other works [?].
It follows from the fact that LPs can optimized approximately using approximate evaluations of the optimized function (in our case
expectedℓ1 error) for example via the Ellipsoid algorithm [Lov87]. See [FPV13] for more details on this general technique.
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learning sparse noisy parities is hard. Further, this hardness result only applies whenOPT ≥ 1/2− ε which
leaves open the possibility that the problem is solvable efficiently when the noise rate is a constant smaller
than1/2.

As we saw in Theorem1.1, the complexity of agnostic learning ofC is characterized by the approximate
resilience of functions inC. Therefore we consider the structural question of how closemonotone functions
are to bounded resilient functions. The structure of monotone functions over the Boolean hypercube has
been investigated in many influential works (see [BBL98, BT96, MO02, O’D03, OW13]). While to the best
of our knowledge our notion has not been studied before, several works have examined the total spectral
weight that monotone functions have on low-degree coefficients [BT96, MO02]. Spectral weight indicates
the distance to the closest (not necessarily bounded) resilient function inℓ2 norm. Both differences of
bounded/unbounded andℓ1/ℓ2 are significant, but we show how bounds on low-degree spectral weight can
serve as a basis for bounds on our notion of distance to resilience (see Thm.3.2).

It is easy to see that monotone functions cannot be1-resilient, and prior to our work, it was possible that
every monotone function wasΩ(1)-far from 1-resilient. Our first structural result rules out this possibility
in a very strong way:

Theorem 1.4. For everyα > 0 there exists anα-approximatelyd-resilient monotone Boolean function
whered = Ω(α

√
n/ log n).

Our proof of this result is indirect and relies crucially on the duality of approximate resilience andℓ1-
approximation of monotone functions by polynomials. We usea lower bound for PAC learning of monotone
functions by Blum et al. [BBL98] to obtain strong lower bounds onℓ1-approximation of monotone functions
by polynomials. We can then use Theorem1.2to obtain bounds on distance to resilience.

This degree of resilience is essentially optimal: combining basic facts from discrete Fourier analysis, it
is straightforward to see that every monotone Boolean function is α-far from anyΩ(α

√
n)-resilient func-

tion [BT96]. Applying our connection between approximate resilienceand agnostic learning, we get as a
corollary our main application:

Corollary 1.5. Any SQ algorithm for agnostically learning the class of monotonek-juntas with excess error
of 1/2 − α has complexity ofnΩ(α

√
k/ log k).

Qualitatively, Corollary1.5gives the first super-polynomial lower bound on the complexity of SQ algo-
rithms for agnostically learning monotonek-juntas with constant (and even sub-constant) noise. It also rules
out the possibility of efficient SQ algorithms for agnostic learning monotone decision trees and monotone
DNFs with few terms (which, as previously mentioned, do haveefficient SQ algorithms in the noiseless
setting). Quantitatively, our lower bound essentially matches the upper bound ofnO(

√
k/ε) that follows as

a corollary of the low-degree concentration bound of [BT96] and the polynomialℓ1 regression algorithm
[KKMS08]. Note that lower bounds on PAC learning of monotone functions [BBL98] cannot be translated
directly to lower bounds in the junta learning setting sincethese lower bounds are subexponential ink while
junta learning algorithms are allowed to run in time polynomial in 2k.

While Theorem1.4 yields a near-optimal lower bound on the complexity of agnostically learning gen-
eral monotone juntas, the construction is not explicit: it is based on a randomized DNF construction (similar
to Talagrand’s randomized DNF construction [Tal96]), and contains functions of high complexity. Further-
more, for more general classes such as monotone DNFs, the hardness results implied are not optimal. We
first show that even the simpleTribes function, a read-once DNF, is close to a resilient function (which gives
a stronger hardness result for learning small monotone DNFs).

Theorem 1.6.Tribes is α-approximatelyd-resilient, whereα = O(n−1/3) andd = Ω(log n/ log log n).

Our proof of Theorem1.6 is based on a general technique for obtaining bounds on approximate re-
silience from bounds on spectral weight on low-degree coefficients. Roughly, our result states that for
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a sufficiently smallγ, if the total spectral weight on degree≤ d coefficients off is at mostγ, thenf
is ≈ √

γed-approximatelyd-resilient (see Thm.3.2). The proof relies on a concentration inequality for
low-degree polynomials over independent Rademacher random variables that follows from the hypercon-
tractivity inequalities of Bonami and Beckner [Bon70, Bec75].

We then describe a general technique for amplifying the degree of approximate resilience of functions
via iterative composition and apply it toTribes to obtain an explicit function that iso(1)-approximately
2Ω(

√
logn)-resilient (see Section3.4 for details).

Both Theorems1.4 and 1.6 give monotone Boolean functions which are close to resilient functions,
however the resilient functions are not necessarily Boolean-valued. In most cryptographic applications
resilience is studied specifically for Boolean functions (e.g., [Sie84, MOS04, OW14]), and therefore it is
natural to ask if there are such functions that are close to monotone Boolean functions. Using a new function
calledCycleRun [Wie], we show that this is indeed possible, and furthermore we nearly match the resilience
of the iteratedTribes construction:

Theorem 1.7. There is an explicitα-approximatelyd-resilient monotone Boolean functionf whereα =
on(1) andd = 2Ω(

√
logn/ log logn). Furthermore,f is α-close to a Booleand-resilient function.

We prove Theorem1.7by first showing thatCycleRun isO(
√

log n/n)-approximately1-resilient, where
our witness to this approximate resilience is a Boolean function. Our argument crucially relies on four key
properties ofCycleRun: monotonicity, low influence, oddness, and invariance under cyclic shifts; as far as
we know,CycleRun is the only explicit Boolean function known to have all four properties. These properties
allow us to use a structured combinatorial argument, unlikeour argument forTribes that relies on properties
of polynomials and produces a witness that is a bounded function (and applying this style of argument to
Tribes quickly gets unruly). Having establishedO(

√
log n/n)-approximate1-resilience, we then apply the

aforementioned general amplification technique to increase the degree of resilience to2Ω̃(
√
logn).

We remark that while the degrees of resilience obtained in Theorems1.7and1.6are not as strong as that
of Theorem1.4, both are sufficient to rule out the existence of efficient SQ algorithms for learning monotone
k-juntas for anyk = ωn(1) and subconstant error-rate.

1.3 Related work

Lower bounds for statistical query algorithms were first shown by Kearns [Kea98] who proved that parities
cannot be learned by SQ algorithms. Soon after this Blum et al. [BFJ+94] characterized the weak PAC
learnability of every function classC in the SQ model in terms of thestatistical query dimensionof C;
roughly speaking, this is the largest number of functions fromC that are pairwise nearly orthogonal to each
other (we give a precise definition in Section2). These lower bound techniques were extended to strong PAC
learning and agnostic learning in more recent work [Sim07, Fel12, Szö09]. Lower bounds for SQ algorithms
were proved for many learning problems including, for example, PAC learning of juntas [BFJ+94], weak-
learning of intersections of halfspaces [KS07] and learning of monotone depth-3 formulas [FLS11]. These
lower bounds are information-theoretic but capture remarkably well the computational hardness of learning
problems. In some cases, such as learning juntas over the uniform distribution, this is the only known formal
evidence of the hardness of the problem.

Given the lack of general lower bounds for several basic problems in agnostic learning, many works
concentrate on lower bounds against specific popular algorithms such asℓ1-regression [KS10] and margin-
based linear methods [LS11, BDLSS12, DLSS14]. These techniques are captured by SQ algorithms and
therefore our lower bounds are substantially more general.

Several previously known lower bounds for agnostic learning are based on the reduction to learning
of k-sparse noisy parities. This is a notoriously hard problem for which the only non-trivial algorithm is
the recent breakthrough result of Valiant that gives an algorithm running in timen0.8k [Val12]. Assuming
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that this problem requiresnΩ(k) time we get that agnostic learning of majorities on the uniform distribution
requiresnΩ(1/ε2) time [KKMS08] and conjunctions requirenΩ(log(1/ε)) time [Fel12]. Learningk-sparse
parities in the SQ model has complexity ofnΩ(k) and therefore these results also give unconditional SQ
lower bounds. These lower bounds can be interpreted as special cases of our approach. They are based on
showing that a parity of high-degree has a significant correlation with a function inC. Clearly ak-sparse
parity function is(k − 1)-resilient and correlation implies that distance to that parity is slightly better than
the trivial 1. The main limitation of this approach is that inmost cases it can only lead to hardness results
when the noise rate is close to1/2. In particular this approach cannot lead to the strong hardness results we
prove here for monotone juntas.

In a recent work Feldman and Kothari [FK14] show that the equivalence betweenℓ1 approximation by
polynomials and agnostic learning does not extend to non-product distributions. They exhibit a distribution
D for which any polynomial that is1/3-close to the disjunction of all the variables inℓ1 (measured relative
to D) must have degreeΩ(

√
n). At the same time disjunctions are SQ learnable in timenO(log(1/ε)) over

that distribution.
Our approach to proving lower bounds is closest in spirit andshares technical elements with the influen-

tial pattern matrix method of Sherstov [She11]. His method shows that lower bounds on the approximation
by polynomials inℓ∞ norm of a functionf can be translated into lower bounds on randomized communica-
tion complexity of a certain communication problem corresponding to evaluation off on different subsets
of variables (which were previously thought as stronger than lower bounds on approximation inℓ∞ by poly-
nomials). A crucial step in his result is an application of duality that is in some sense symmetric to ours
and shows the existence of an unbounded resilient functiong that is correlated withf . Suchg then serves
to upper bound discrepancy for the communication problem (from which a lower bound on randomized
communication complexity follows).

1.4 Preliminaries

All probabilities and expectations are with respect to the uniform distribution unless otherwise stated, and we
will use boldface (e.g.x andy) to denote random variables. Givenf, g : {−1, 1}n → R, we say thatf and
g areε-close if‖f − g‖1 = E[|f(x)− g(x)|] ≤ ε. We say thatg is bounded if it takes values in the interval
[−1, 1]. Note that iff is Boolean valued andg is bounded, then‖f − g‖1 = 1 − E[fg]. Every function
g : {−1, 1}n → R can be uniquely written as a multilinear polynomial such that g(x) =

∑

S⊆[n]

ĝ(S)
∏

i∈S
xi

for all x ∈ {−1, 1}n; the coefficientŝg(S) are called the Fourier coefficients ofg. The total influence of
a Boolean functionf : {−1, 1}n → {−1, 1}, denotedInf[f ], is

∑n
i=1Pr[f(x) 6= f(x⊕i)], wherex⊕i

denotesx with its i-th coordinate flipped.

Definition 1.8. A functiong : {−1, 1}n → R is d-resilient if ĝ(S) = 0 for all |S| ≤ d. We say that
a Boolean functionf : {−1, 1}n → {−1, 1} is α-approximatelyd-resilient if there exists ad-resilient
bounded functiong such that‖f − g‖1 ≤ α.

Learning background In the agnostic learning framework, the learning algorithmis given labeled exam-
ples(x,y) wherex ∈ {−1, 1}n andy ∈ {−1, 1} are drawn from a distributionD over{−1, 1}n×{−1, 1}.
As usual we describe such distributions by a pair(D, g), whereD is the marginal distribution on{−1, 1}n
andg : {−1, 1}n → [−1, 1], whereg(x) = E(x,y)∼D[y | x = x ] is expectation of the label for each input.
Note that for every Boolean functionf , if U denotes the uniform distribution thenE(x,y)∼(U,g)[f(x) 6=
y] = ‖f − g‖1/2.

Definition 1.9. Let C be a class of Boolean functions on{−1, 1}n. An algorithmA agnostically learns
C over distributionD on {−1, 1}n if for any g : {−1, 1}n → [−1, 1] and ε > 0, given examples from
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distributionD = (D, g) andε, it outputs with probability at least2/3 hypothesish : {−1, 1}n → {−1, 1}
such that:

Pr[h(x) 6= y] ≤ OPTC(D, g) + ε,

whereOPT = minc∈C Pr(x,y)∼(D,g)[c(x) 6= y]. The algorithm is said to learn withexcess errorκ if h
instead satisfies

Pr[h(x) 6= y] ≤ OPTC(D, g) + κ.

Definition 1.10. A statistical query is defined by a bounded function of an example φ : {−1, 1}n ×
{−1, 1} → [−1, 1] and positive toleranceτ . A valid reply to such a query relative to a distributionD
over examples is a valuev that satisfies:

|E(x,y)∼D[φ(x,y)] − v| ≤ τ.

A statistical query learning algorithm is an algorithm which relies solely on statistical queries and does
not have access to actual examples. We say that an SQ algorithm hasstatistical query complexity T if it
makes at mostq statistical queries of tolerance at leastτ andT ≥ max{q, 1/τ}.

2 Characterization of Agnostic Learning

In this section we show that approximate resilience implieshardness of agnostic learning for statistical query
algorithms (Lemma2.1). We then show that the implication works in the reverse direction as well: if a class
does not contain approximately resilient functions, then it can be agnostically learned by SQ algorithms. We
prove this equivalence using the duality between approximate resilience and approximation by low-degree
polynomials stated in Theorem1.2. This simple observation turns out to be surprisingly useful, leading both
to a characterization of agnostic learning and to a proof of our first structural result for monotone functions
(Theorem1.4).

To connect our notion of approximate resilience to the hardness of agnostic learning we will use the
following standard notion of designs of sets with small overlap. A (n, k, d)-design of sizem is a collection
of setsS1, . . . , Sm ⊆ [n] such that|Si| = k and|Si ∩ Sj| ≤ d for all i 6= j. LetM(n, k, d) denote the size
of the largest(n, k, d)-design. Standard probabilistic/greedy argument impliesthat

M(n, k, d) ≥
(
n
k

)
(k
d

)(n−d
k−d

) =

(
n
d

)
(k
d

)2 ≥
(

nd

e2k2

)d

. (1)

For a functionf : {−1, 1}k → {−1, 1} and setS ⊆ [n] of sizek we usefS : {−1, 1}n → {−1, 1} to
denotef(x|S) wherex|S refers to the restriction ofx to coordinates with indices inS (in the usual order).

Lemma 2.1. Letf : {−1, 1}k → {−1, 1} be anα-approximatelyd-resilient function. LetS1, . . . , Sm be a
(n, k, d)-design. If{fSi}mi=1 ⊆ C, then any SQ algorithm for agnostically learningC with excess error of at
most1−α

2 −m−1/3 has complexity of at leastm1/3.

To prove Lemma2.1, we will use the following result implicit in [Fel12] that is a simple generalization
of the well-known SQ-DIM bounds from [BFJ+94] and their strengthening in [Yan05, Szö09].

Theorem 2.2. Let D be a distribution and letg1, . . . , gm be bounded real-valued functions such that
|〈gi, gj〉D| ≤ 1/m for i 6= j, where〈gi, gj〉D = ED[gi(x) · gj(x)]. Then any SQ algorithm that for
everyi, given access to statistical queries with respect to distribution (D, gi) outputs a hypothesish such
thatE(x,y)∼(D,gi)[h(x) 6= y] ≤ 1

2 − 1
m1/3 has complexity of at leastm1/3.
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We can now prove Lemma2.1.

Proof. By our assumption, the functionf is α-close to ad-resilient bounded functiong : {−1, 1}k →
[−1, 1]. We first note that each pair of functionsgSi gSj shares at mostd relevant variables. These functions
ared-resilient and therefore there is no single setT such thatĝSi(T ) · ĝSj (T ) 6= 0. This, by linearity of
expectation implies that fori 6= j, E[gSigSj ] = 0.

LetA be an agnostic algorithm forC with excess error of at most1−α
2 −m−1/3. For everyi, fSi isα-close

to gSi . Therefore if the input distribution is(U, gi) thenOPTC(U, gi) ≤ ‖fSi − gSi‖1/2 = ‖f − g‖1/2 ≤
α/2. This implies thatA will output a hypothesishwith error of at mostα/2+ 1−α

2 −m−1/3 = 1/2−m−1/3.
By Theorem2.2and orthogonality ofgSis we get that the complexity ofA is at leastm1/3.

An immediate corollary of Lemma2.1 is the following lower bound that generalizes Theorem1.1.

Theorem 2.3. Let C be a concept class closed under renaming of variables and assume thatC contains an
α-approximatelyd-resilient k-junta. Then any SQ algorithm for agnostically learningC with excess error
of at most1−α

2 − m−1/3 has complexity of at leastm1/3, wherem = M(n, k, d). In particular, for any
constantδ > 0 andk = n1/2+δ, we havem = nΩ(d).

To show that Theorem2.3 is essentially tight we prove the duality stated in Theorem1.2 (which we
restate here for convenience).

Theorem. [Thm.1.2restated] Forf : {−1, 1}n → {−1, 1} and0 ≤ d ≤ n let α denote theℓ1 distance of
f to the closestd-resilient bounded function. Then∆Pd

(f) = 1− α.

Proof. Our proof is an adaptation of the general results on duality of norms [IT68] to the case wheref is
Boolean andg is bounded. In this case it is easy to see that‖f−g‖1 = 1−E[fg] and therefore minimization
of distance to resilience can be expressed as maximization of

∑
x f(x)g(x) subject to resilience constraints

on g. Viewing values ofg(x) as variables we get:

max
∑

x

f(x)g(x)

subject to
∑

x

g(x)χS(x) = 0 ∀|S| ≤ d

and|g(x)| ≤ 1 ∀x ∈ {−1, 1}n

The dual LP can be easily verified to be the following program with variablespS for everyS ⊆ [n] of size
at mostd.

min
∑

x

|q(x)|

subject toq(x) = f(x)−
∑

S:|S|≤d

pSχS(x) ∀x ∈ {−1, 1}n

Now the claim of the theorem follows from LP duality. By definition the maximum value of the primal is
2n ·E[fg] = 2n(1−‖f −g‖1) = 2n(1−α). This is therefore also the minimum of the dual program which,
by definition, is exactly2n ·∆Pd

(f).

Note that(1 − α)/2 in the excess error term in the statement of Theorem2.3 is equal to∆Pd
(C)/2 in

the excess error term in the statement Theorem1.3. Therefore combining the duality with the upper-bounds
on polynomialℓ1 regression stated in Theorem1.3we get our claimed characterization of the complexity of
agnostic learning in terms of∆Pd

(C) or, alternatively, distance tod-resilience.
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3 Monotonicity and approximate resilience

In this section we prove bounds on the approximate resilience of monotone functions. First, we give a bound
for general monotone functions (Theorem1.4) in Section3.1. In Sections3.2 and3.3 we show thatTribes
andCycleRun are approximately resilient (Theorems1.6and1.7). Finally, in Section3.4we show how these
functions can be used in an iterated construction to yield explicit functions with high approximate resilience.

3.1 A monotone function with nearly-optimal approximate resilience

Our characterization suggests an approach for proving Theorem 1.4: since theℓ1-minimization algorithm
characterizes SQ agnostic learning, we seek monotone functions where theℓ1-minimization algorithm will
badly fail. In other words, our first step will be to move to thedual problem: Theorem1.2 tells us that we
may equivalently show the existence of a monotone functionf which is far from from every low-degree
polynomialp. Strangely, to show that no dual solution exists, we will usethe fact that if every monotone
function had a weak approximation by some low-degree polynomial, then theℓ1-minimization algorithm
would learn monotone functions, contradicting known information-theoretic lower bounds [BBL98]. Note
that while theℓ1-minimization algorithm is presented as an agnostic learning algorithm, we may apply it
directly to the class of monotone functions.

We now prove Theorem1.4:

Theorem. For everyα > 0, there is a monotone function that isα-approximatelyd-resilient for d =
Ω(α

√
n/ log n).

Proof. We show the existence of a monotone functionf such thatE[|f(x)−p(x)|] > 1−α for every degree-
d polynomialp and then apply Theorem1.2. Suppose that every monotonef satisfiesE[|f(x)− p(x)|] ≤
1 − α. Then forε = α/4, Theorem1.3 gives an algorithm for learning monotone functions which uses
s = poly(nd/α) examples and has error1/2 − α/2 + α/4 = 1/2 − α/4. We now use an information-
theoretic lower bound on the number of random examples needed to weakly learn monotone functions; the
proof in [BBL98] uses a randomized construction of DNF formulas:

Theorem 3.1([BBL98]). Let A be a any learning algorithm that usess random examples and outputs a
hypothesish. Then there is some monotonef : {−1, 1}n → {−1, 1} such that

Pr[f(x) = h(x)] ≤ 1

2
+O

(
log sn√

n

)
.

Theorem3.1tells us thatα = O
(
d logn+log 1/α√

n

)
, which completes the proof.

The function from Theorem1.4gives us ak-junta that isα-approximatelyd-resilient ford = Ω(α
√
k/ log k).

Plugging this into Theorem2.3and using eq.(1) (assumingk ≤ n1/2) we obtain the proof of Corollary1.5.
While the degree of resilience in Theorem1.4is nearly optimal, the proof is non-constructive and relies

crucially on the fact that monotone functions can have high complexity. In the following sections we show
that even simple, explicit monotone functions can exhibit high approximate resilience.

3.2 Tribes is approximately resilient

TheTribesw,s : {−1, 1}sw → {−1, 1} function is the disjunction ofs disjoint monotone conjunctions, each
of width w; i.e. a read-once width-w DNF. For notational brevity we writeTribes to denoteTribesw,s with
s = (ln 2)2w (sow ≈ log n− log lnn ands ≈ n/(log n)).

Our construction of a highly resilient function close toTribes is based on a general result relating the
low-degree Fourier weight of a Boolean function and its approximate resilience.
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Theorem 3.2. There exists a universalK > 0 such that the following holds. Letf : {−1, 1}n → {−1, 1}
be a Boolean function that satisfies

∑
|S|≤d f̂(S)

2 ≤ γ for somed ∈ [n] and γ ∈ [0, 1]. Then for all

τ > ed
√
γ, we have thatf isO(τ + δn2d+2)-approximatelyd-resilient, whereδ = exp

(
−K(τ2/γ)1/d

)
.

We now prove Theorem3.2, and in Section3.2.1 we show how Theorem1.6 (i.e. the approximate
resilience ofTribes) follows as a consequence of Theorem3.2.

We begin our construction with the Fourier polynomial forf and discard the low-degree terms. That
we may do so and hope to arrive at a bounded, resilient function comes from hypercontractivity: since
the discarded polynomial has low-degree, it will by highly concentrated around its mean. The following
Chernoff-type concentration inequality for low-degree polynomials over independent Rademacher random
variables follows from the hypercontractivity inequalities of Bonami and Beckner [Bon70, Bec75] (see for
example [O’D13]).

Theorem 3.3(concentration of degree-d polynomials). There exists a universal constantK > 0 such that
for every degree-d polynomial{−1, 1}n → R andt > ed, we have

Pr
x
[|p(x)| ≥ t · ‖p‖2] ≤ exp

(
−Kt2/d

)
.

We now begin the proof of Theorem3.2. Let

ℓ(x) =
∑

|S|≤d

f̂(S)χS(x), and h(x) = f(x)− ℓ(x).

Our final resilient, bounded functionp will be based onh, the high-degree part off . Note that whileh is
d-resilient by definition, it may not be uniformly bounded. However, the degree-d Chernoff bound applied
to ℓ (the low-degree part), together with our assumption on the variance ofℓ (i.e. the low-degree Fourier
weight off ), tell us thatℓ does not attain large values very often. Therefore, whileh may not be uniformly
bounded, we have thath is bounded on almost all inputsx sinceh(x) + ℓ(x) = f(x) ∈ {−1, 1}.

More formally, we sett = τ/
√
γ in Theorem3.3(sinceτ > ed

√
γ, we have that indeedt > ed)

Pr
x

[|ℓ(x)| ≥ τ ] ≤ exp
(
−K(τ2/γ)1/d

)
:= δ.

Next, we defineq : {−1, 1}n → R to be such that

q(x) =

{
0 if |ℓ(x)| > τ

h(x) if |ℓ(x)| ≤ τ.

Sinceh(x) = f(x)− ℓ(x) andf is {−1, 1}-valued, the range ofq is [−1− τ, 1+ τ ]. While q is bounded, it
may now have correlations with low-degree terms (i.e.q is no longer resilient likeh is). However, we may
also writeq asq(x) = h(x) − h(x) · 1[ℓ>τ ](x), whereh is d-resilient and1[ℓ>τ ] has very small support.
Thus, we will show that we may discard the low-degree terms ofq and the effect on boundedness will be
uniformly small.

Let q>d(x) =
∑

|S|≥d+1 q̂(S)χS(x), q≤d = q − q>d andp(x) = q>d(x)
‖q>d‖∞ . Certainly, the range ofp is

[−1, 1]; it remains to bound the correlation ofp with f . We have that:

E[p · f ] = E

[
(q − q≤d)

‖q>d‖∞
· f
]

≥ 1

‖q‖∞ + ‖q≤d‖∞
· (E[q · f ]− ‖q≤d‖∞) (2)

11



The correlation off with q is large:

E
x

[q(x) · f(x)] ≥ (1− τ)(1− δ) ≥ 1− τ − δ. (3)

The above holds because the contribution to the correlationis 0 whenq(x) = 0, which happens on at most a
δ fraction of the inputs. On the remaining inputs,q(x) = h(x) = f(x)− ℓ(x), and we assumed|ℓ(x)| ≤ τ .
Thus the contribution on suchx is

q(x) · f(x) = (f(x)− ℓ(x)) · f(x) = 1− ℓ(x) · f(x) ≥ 1− |ℓ(x)| ≥ 1− τ.

Thus, it only remains to bound the maximum value of the low-degree part ofq:

Claim 3.4.
‖q≤d‖∞ ≤ δn2d+2

Proof. We will show that|q̂(S)| < δnd+1 holds for any|S| ≤ d. Recalling thatq(x) = h(x)−1|ℓ|>τ ·h(x),
we have:

q̂(S) = ĥ(S)− ̂1|ℓ|>τ · h(S)
|q̂(S)| ≤ |ĥ(S)|+E[|1|ℓ|>τ · h|]

≤ 0 + δ · ‖h‖∞
≤ δ(‖ℓ‖∞ + 1),

where the second inequality holds when|S| ≤ d becauseh is d-resilient, and the last inequality holds
because|h(x)| ≤ |ℓ(x)|+ 1 for all x. As f is a Boolean function, each of the non-zero Fourier coefficients
of ℓ is at most 1 in magnitude. The rough bound ofnd+1 on the number of non-zero coefficients ofℓ gives
a bound ofnd+1 on‖ℓ‖∞; summing over at mostnd+1 terms of degree at mostd gives the claim.

Let κ = δn2d+2. Substituting into Equations (2) and (3), we have that

E
x
[p(x) · Tribes(x)] ≥ 1− τ − δ − κ

1 + τ + κ
≥ 1− δ − 2τ − 2κ,

using the fact that1/(1 + x) ≥ 1− x for x ≥ 0, and this completes the proof of Theorem3.2.

3.2.1 Proof of Theorem1.6

To apply Theorem3.2we will need the following upper bound on the low-degree Fourier weight ofTribes,
whose proof is given in AppendixB, can be obtained using the explicit values of each Fourier coefficient
given in [Man95],

Proposition 3.5. For anyd ≤ w the Fourier weight ofTribes on degreed and below is at most

∑

|S|≤d

T̂ribes(S)2 ≤ 2
(2 ln n)2d+4

n
.

To derive Theorem1.6 from Theorem3.2, we setτ = (2 ln n)3dn−2/5, so thatt := τ/
√
γ ≥ n1/10.

Now there exists a small constantc > 0 such that ford = c log n/ log log n and large enoughn, we
have thatτ = O(n−1/3), t > ed and t2/d ≥ n1/(5d) ≥ 3

K (log n)2 ≥ (2d+3)
K lnn. This implies that

δ := exp
(
−Kt2/d

)
≤ n−2d−3 and soδn2d+2 ≤ 1/n. We conclude thatTribes is α-approximatelyd-

resilient whereα = O(τ + n−1) = O(n−1/3), and this completes the proof of Theorem1.6.
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3.3 CycleRun is approximately resilient: Proof of Theorem 1.7

Definition 3.6. For everyn, theCycleRun Boolean functionCycleRun : {−1, 1}n → {−1, 1} is defined as
follows: Call a consecutive sequence of1’s a 1-run. Similarly, a consecutive sequence of−1’s is a−1-run.
We allow runs to wrap around, so if a run reachesxn it may continue withx1. The value ofCycleRun is the
winner (1 for 1-player or−1 for −1-player) from the following procedure:

1. Check which player has the longest run.

2. In case of tie check which player has a larger number of maximum-length runs.

3. In case of tie check the total length of segments between maximum-length runs, where a segment start-
ing from a1-run clockwise is counted for the1-player and a segment starting at a−1-run clockwise
is counted for the−1-player. The player that has a larger total count is declaredthe winner.

We will need that fact thatCycleRun has influenceO(log n). Since the proof of this fact has not appeared
in the literature before, we include a proof in AppendixC.1for completeness.

Theorem 3.7. There exist universal constantsc1, c2 such that for everyn ≥ c2, there exists a Boolean
functionf : {−1, 1}n → {−1, 1} such that:

1. For all S ⊆ [n] such that|S| ≤ 1, f̂(S) = 0, and

2. Ex[f(x) · CycleRun(x)] ≥ 1− c1
√

(log n)/n.

Our proof of Theorem3.7relies on four key properties ofCycleRun: monotonicity, low influence, odd-
ness, and invariance under cyclic shifts; as far as we know,CycleRun is the only explicit Boolean function
known to have all four properties. First, asCycleRun is monotone and transitive, we note that

̂CycleRun({i}) = ̂CycleRun({j}) = O

(
log n

n

)
for all i 6= j ∈ [n].

The high level intuition behind our proof is simple: we show that by flipping the values ofCycleRun from the
top of the hypercube downwards and bottom upwards simultaneously, we obtain a balanced function with
no Fourier weight at the first level. This can be done without changing too many points becauseCycleRun
has small influence; we are able to do it in a controlled way because it is additionally odd and invariant
under cyclic shifts. We defer the proof of Theorem3.7to AppendixC.

It is natural to wonder how close a monotone function can be toa 1-resilient Boolean function. We show
in AppendixC.2that Theorem3.7 is tight:

Theorem 3.8. For every monotone functionf : {−1, 1}n → {−1, 1} and 1-resilient g : {−1, 1}n →
{−1, 1}, we havePrx[f(x) 6= g(x)] ≥ Ω

(√
logn
n

)
.

3.4 Resilience amplification

In this section we prove a general amplification lemma for resilience. Given a valuet ∈ [−1, 1], we write
b(t) to denote a random±1 bit with expected valuet:

b(t) =

{
1 with probability (1 + t)/2
−1 with probability (1− t)/2.

(In particular,b(1) is the constant1 andb(−1) is the constant−1). Given bounded functionsG : {−1, 1}m →
[−1, 1] andg : {−1, 1}n → [−1, 1], we define their (disjoint) compositionG ◦ g : {−1, 1}mn → [−1, 1] to
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be(G ◦ g)(x1, . . . , xm) := E[G(b(g(x1)), . . . , b(g(xm))]. Note that ifE[g(x)] = 0, thenE[b(g(x))] = 0
as well. Throughout this section we writedist(f, g) to denote12E[|f(x)− g(x)|] for notational brevity (this
is simply the fractional Hamming distancePr[f(x) 6= g(x)] whenf andg are{±1}-valued).

The main result in this section is the following amplification lemma:

Theorem 3.9. Let f : {−1, 1}n → {−1, 1} andg : {−1, 1}n → [−1, 1] whereE[f(x)] = E[g(x)] = 0,
and supposeg is d-resilient. Consider the recursively-defined functions where fk = f ◦ fk−1 and gk =
g ◦ gk−1 for all k ∈ N, andf0 = f andg0 = g. Then fork ≥ 1:

1. fk andgk are functions overnk+1 variables,

2. gk is ((d + 1)k+1 − 1)-resilient,

3. dist(fk, gk) ≤ dist(f, g)
∑k

t=0 Inf[f ]
t.

The first claim is straightforward to verify, and so we focus on the second and third claims. For a
Boolean-valued functionF : {−1, 1}m → {−1, 1} and δ ∈ [0, 1], recall that thenoise-sensitivity ofF
at noise rateδ is defined asNSδ[F ] := Pry,z[F (y) 6= F (z)], wherey is uniform in{−1, 1}m andz is
obtained fromy by independently flipping each of its coordinates with probability δ.

Lemma 3.10. GivenF, f : {−1, 1}m → {−1, 1} and G, g : {−1, 1}m → [−1, 1] whereE[f(x)] =
E[g(x)] = 0, we have

dist(F ◦ f,G ◦ g) ≤ dist(F,G) + NSδ[F ],

whereδ := dist(f, g).

Proof. We first apply the triangle inequality and note that

dist(F ◦ f,G ◦ g) ≤ dist(F ◦ f, F ◦ g) + dist(F ◦ g,G ◦ g).
SinceE[g(x)] = 0, we have that〈b(g(x1)), . . . , b(g(xm))〉 is uniformly distributed on{−1, 1}m when
x1, . . . ,xm are independently and uniformly distributed on{−1, 1}n, and therefore the second distance
on the right hand side is exactlydist(F,G). SincePr[b(f(x)) 6= b(g(x))] = Pr[f(x) 6= b(g(x))] =
1
2 |f(x)− g(x)| for all x ∈ {−1, 1}n, it follows thatPr[b(f(x)) 6= b(g(x))] = 1

2E[|f(x)− g(x)|] = δ and
so

dist(F ◦ f, F ◦ g) = Pr
y,z

[F (y) 6= F (z)],

wherey is uniform in{−1, 1}m andz is obtained fromy by independently flipping each of its coordinates
with probabilityδ. This completes the proof, since the probability on the right hand side is preciselyNSδ[F ].

Using the union bound, we have

NSδ[F ] ≤ δ

n∑

i=1

Pr
x
[F (x) 6= F (x⊕i)] = δ · Inf[F ] = dist(f, g) · Inf[F ],

wherex⊕i is the stringx with thei-th bit flipped, andδ = dist(f, g) as in the previous lemma. This, along
with a straightforward recursion, yields the following corollary.

Corollary 3.11. Let f : {−1, 1}n → {−1, 1} andg : {−1, 1}n → [−1, 1] whereE[f(x)] = E[g(x)] = 0,
and supposeg is d-resilient. Consider the recursively-defined functions where fk = f ◦ fk−1 and gk =
g ◦ gk−1 for all k ∈ N, andf0 = f andg0 = g. Then fork ≥ 1:

dist(fk, gk) ≤ dist(f, g)

k∑

t=0

Inf[f ]t.
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Lemma 3.12. If G : {−1, 1}m → [−1, 1] is d1-resilient andg : {−1, 1}n → [−1, 1] is d2-resilient, then
G ◦ g is (d1d2)-resilient.

Proof. By linearity of the Fourier transform it suffices to prove this claim whenG(x1, . . . , xm) =
∏

i∈T xi
and|T | > d1, the parity function overd1 + 1 or more variables. We begin by noting that

(G ◦ g)(x1, . . . , xm) = E

[∏

i∈T
b(g(xi))

]

=
∏

i∈T
E[b(g(xi))]

=
∏

i∈T

[
1 + g(xi)

2
− 1− g(xi)

2

]
=
∏

i∈T
g(xi).

We view themn coordinates of the composed functionG ◦ g as the disjoint union ofA1 ∪ · · · ∪Am, where
eachAi has sizen. With this notation in hand, every subsetS of themn coordinates may be viewed as the
disjoint unionS1 ∪ · · · ∪ Sm, whereAj ⊆ Sj for all j ∈ [m]. Fix S = S1 ∪ · · · ∪ Sm of cardinality at

mostd1d2, and recall that our goal is to show that̂(G ◦ g)(S) = 0. There exists at least one setSj where
|Sj | ≤ d2, and we assume without loss of generality that|S1| ≤ d2. Sinceg is d2-resilient (in particular,
ĝ(S1) = 0), we see that indeed

̂(G ◦ g)(S) = E

[∏

i∈T
g(xi)

∏

j∈[m]

∏

ℓ∈Sj

x
j
ℓ

]
=
∏

i∈T
ĝ(Si)

∏

j /∈T

∏

ℓ∈Sj

E[xj
ℓ] = 0,

and the proof is complete.

Combining Corollary3.11and Lemma3.12yields Theorem3.9.

3.4.1 Amplifying Tribes and CycleRun

We now apply Theorem3.9 toTribes andCycleRun.

Theorem 3.13. There is an explicitα-approximatelyd-resilient monotone Boolean functionF whereα =
on(1) andd = 2Ω(

√
logn).

Proof. We apply Theorem3.9with f beingTribes andg the bounded resilient function that results from ap-
plying Theorem1.6. SinceInf[Tribes] = Θ(log n) (see e.g. [KKL88]), takingk := c log n/ log log n where
c > 0 is a sufficiently small universal constant gives functionsfk, gk overN := nk = 2O(log2 n/ log logn)

variables, where
dist(fk, gk) = O(Inf[Tribes]k+1 · n−1/3) = n−Ω(1) = oN (1),

andgk is d-resilient for
d = Ω((log n/ log log n)k+1) = 2Ω(

√
logN).

Analogous calculations forCycleRun yield the following:

Theorem 1.7. There is an explicitα-approximatelyd-resilient monotone Boolean functionF whereα =
on(1) andd = 2Ω(

√
logn/ log logn). Furthermore,F isα-close to ad-resilient function that is Boolean-valued

as well.
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Proof. We apply Theorem3.9 with f beingCycleRun and g the Boolean-valued resilient function that
results from applying Theorem3.7. SinceInf[CycleRun] = O(log n) (TheoremC.6), we again takek =
c log n/ log log n wherec > 0 is a sufficiently small universal constant to get Boolean-valued functions
fk, gk overN = 2O(log2 n/ log logn) variables, wherePr[fk(x) 6= gk(x)] = dist(fk, gk) = n−Ω(1) = oN (1),

andgk is d-resilient ford = nΩ(1/ log logn) = 2O(
√
logN/ log logN).

4 Conclusions

We have demonstrated that complexity of agnostic learning over product distributions has a natural charac-
terization via either of two dual notions:ℓ1-approximation by polynomials and approximate resilience. The
notion of distance to resilience that we introduce appears to be interesting its own right. It is also better
suited for proving lower bounds since a single close resilient function witnesses the hardness of agnostic
learning. Our proof of this result is relatively simple and remarkably, up to the choice of norms, is identical
to Sherstov’s powerful pattern matrix method in communication complexity [She11].

An application of our characterization and our second contribution is new and detailed picture of the
hardness of agnostic learning of monotone functions over the uniform distribution. Some evidence that
agnostic learning of several monotone classes is hard is already known and relies on cryptographic assump-
tions [KKMS08, FGKP09, KS09]. Yet the existing evidence is restricted to the very hard regime whenOPT
is near1/2 and does exclude learning with excess error of just1% that would suffice for most practical
applications. We give the first general lower bounds for monotone functions that establish hardness in the
low-error regime. We also describe simple and explicit monotone functions that are very close to being
resilient.

Finally, we give general tools for analysis of approximate resilience. Such tools might find use for
proving new agnostic learning lower bounds.
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[AH11] Per Austrin and Johan Håstad. Randomly supported independence and resistance.SIAM Jour-
nal on Computing, 40(1):1–27, 2011.1.1

[AM09] Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise indepen-
dence.Computational Complexity, 18(2):249–271, 2009.1.1

[BBL98] A. Blum, C. Burch, and J. Langford. On learning monotone boolean functions. InProceedings
of FOCS, pages 408–415, 1998.1.2, 1.2, 1.2, 3.1, 3.1

[BDLSS12] Shai Ben-David, David Loker, Nathan Srebro, and Karthik Sridharan. Minimizing the misclas-
sification error rate using a surrogate convex loss. InICML, 2012.1.3

16



[Bec75] William Beckner. Inequalities in Fourier analysis. Ann. of Math. (2), 102(1):159–182, 1975.
1.2, 3.2

[BFJ+94] Avrim Blum, Merrick Furst, Jeffrey Jackson, Michael Kearns, Yishay Mansour, and Steven
Rudich. Weakly learning dnf and characterizing statistical query learning using fourier analy-
sis. InProceedings of the twenty-sixth annual ACM symposium on Theory of computing, pages
253–262. ACM, 1994.1.3, 2

[Bon70] Aline Bonami. Étude des coefficients de Fourier des fonctions deLp(G). Ann. Inst. Fourier
(Grenoble), 20(fasc. 2):335–402 (1971), 1970.1.2, 3.2

[Bro] Daniel G. Brown. How I wasted too long finding a concentration inequality for sums of geo-
metric variables.C.1

[BT96] N. Bshouty and C. Tamon. On the Fourier spectrum of monotone functions.Journal of the
ACM, 43(4):747–770, 1996.1.2, 1.2, 1.2

[CGH+85] Benny Chor, Oded Goldreich, Johan Hasted, Joel Freidmann, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions. InFoundations of Computer
Science, 1985., 26th Annual Symposium on, pages 396–407. IEEE, 1985.1.1

[DLSS14] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. The complexity of learning halfspaces
using generalized linear methods. InCOLT, pages 244–286, 2014.1.3

[Fel68] W. Feller.An introduction to probability theory and its applications. John Wiley & Sons, 1968.
C

[Fel12] V. Feldman. A complete characterization of statistical query learning with applications to
evolvability. Journal of Computer System Sciences, 78(5):1444–1459, 2012.1.3, 2

[FGKP09] V. Feldman, P. Gopalan, S. Khot, and A. Ponuswami. On agnostic learning of parities, mono-
mials and halfspaces.SIAM Journal on Computing, 39(2):606–645, 2009.4

[FGRW12] Vitaly Feldman, Venkatesan Guruswami, Prasad Raghavendra, and Yi Wu. Agnostic learning
of monomials by halfspaces is hard.SIAM J. Comput., 41(6):1558–1590, 2012.1

[FK14] V. Feldman and P. Kothari. Agnostic learning of disjunctions on symmetric distributions.arXiv,
CoRR, abs/1405.6791, 2014.1.1, 1.3

[FLS11] V. Feldman, H. Lee, and R. Servedio. Lower bounds andhardness amplification for learning
shallow monotone formulas. InJournal of Machine Learning Research - COLT Proceedings,
volume 19, pages 273–292, 2011.1.3

[FPV13] Vitaly Feldman, Will Perkins, and Santosh Vempala.On the complexity of random satisfiability
problems with planted solutions.CoRR, abs/1311.4821, 2013.2

[Hau92] D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other
learning applications.Information and Computation, 100(1):78–150, 1992.1

[IT68] Aleksandr Ioffe and Vladimir Tikhomirov. Duality ofconvex functions and extremum prob-
lems.Russ. Math. Surv., 23, 1968.1.1, 2

[Kea98] M. Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM,
45(6):983–1006, 1998.1.1, 1.3

17



[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions. InProceed-
ings of FOCS, pages 68–80, 1988.3.4.1, C.2

[KKMS08] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces.SIAM
Journal on Computing, 37(6):1777–1805, 2008.1, 1.1, 1.3, 1.2, 1.2, 1.3, 4, A, A.1

[KS07] Adam R Klivans and Alexander A Sherstov. Unconditional lower bounds for learning inter-
sections of halfspaces.Machine Learning, 69(2-3):97–114, 2007.1.3

[KS09] Adam R. Klivans and Alexander A. Sherstov. Cryptographic hardness for learning intersections
of halfspaces.J. Comput. Syst. Sci., 75(1):2–12, 2009.4

[KS10] Adam R. Klivans and Alexander A. Sherstov. Lower bounds for agnostic learning via approx-
imate rank.Computational Complexity, 19(4):581–604, 2010.1, 1.3

[KSS94] M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning.Machine Learning,
17(2/3):115–141, 1994.1
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A Extension to Product Distributions

We now outline the extension of our characterization of the SQ complexity of agnostic learning to more
general product distributions. LetX be the domain of each individual variable, that is our leaning problem
is defined overXn. We will start with symmetric product distributions and letΠ be a distribution over
X. Let B = {B0(x), B1(x), . . .} be the basis obtained via Gram-Schmidt orthonormalizationon the basis
1, x, x2, . . . with respect to the inner product〈f, g〉Π = EΠ[f(x)g(x)]. By definition we obtain that the
polynomial degree ofBi is i (for i ≤ |X| − 1). As special cases this process gives{1, 1−µ·x√

1−µ2
} basis if

X = {−1, 1} andµ = EΠ[x]; Legendre polynomials whenX = [−1, 1] andΠ is uniform; and Hermite
polynomials whenX = R andΠ is the GaussianN(1, 0) distribution.

For S ⊆ [n] and a functiont : S → N let ΦS,t(x) = Πi∈Sx
t(i)
i andΨS,t(x) = Πi∈SBt(i)(xi). For a

finite X we restrict the range of sucht’s to [|X| − 1]. Clearly,Ψ’s are orthonormal functions relative to the
inner product〈f, g〉Πn = EΠ[f(x)g(x)].

We now say that a functiong is d-resilient relative toΠn if for everyS ⊆ [n] of size at mostd and any
function t : S → N, 〈g,ΨS,t〉Πn = 0. Note that equivalently this can be defined as〈g,ΦS,t〉Πn = 0 for all
S ⊆ [n] of size at mostd andt : S → N.

We say that a Booleanf is α-approximatelyd-resilient relative toΠn if there exists ad-resilient g :
Xn → [−1, 1] such thatEΠn [|f(x) − g(x)|] ≤ α. In the following discussion functions are overXn and
all norms and inner products relative toΠn.

We now describe generalizations of Theorems1.3, 1.2and2.3. LetPd,ℓ denote the class of polynomials
where each monomial has at mostd different variables each of degree at mostℓ; let Pd = Pd,∞. Note
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that by definition this is the span of{ΦS,t}|S|≤d,t:S→[ℓ] but is also equal to the span of{ΨS,t}|S|≤d,t:S→[ℓ].
For a functionf , let ∆Pd,ℓ

(f) = minp∈Pd,ℓ
EΠn [|f(x) − p(x)|] and for a concept classC, let ∆Pd,ℓ

(C) =
maxf∈C ∆Pd,ℓ

(f).
The polynomialℓ1 regression algorithm of Kalai et al. for agnostic learning [KKMS08] applies to this

general setting and gives the following bound.

Theorem A.1([KKMS08]). LetC be a concept class overXn and fixd andℓ. There exists a SQ algorithm
which for anyε > 0 agnostically learnsC overΠn with excess error∆Pd,ℓ

(C)/2 + ε and has complexity
poly((nℓ)d, 1/ε).

Our SQ lower bound can be easily seen to generalize to the following statement.

Theorem A.2. Let C be a concept class overXn closed under renaming of variables and assume thatC
contains ak-junta which isα-approximatelyd-resilient overΠn. Then any SQ algorithm for agnostically
learning C over Πn with excess error of at most1−α

2 − m−1/3 has complexity of at leastm1/3, where
m = M(n, k, d). In particular, for any constantδ > 0 andk = n1/2+δ, we havem = nΩ(d).

Finally, the duality is also easy to verify in this case.

Theorem A.3. For f : Xn → {−1, 1} and 0 ≤ d ≤ n let α denote theℓ1 distance off to the closest
d-resilient bounded function. Then∆Pd

(f) = 1− α.

Now the upper bound is(nℓ)O(d) with excess error∆Pd,ℓ
(C)/2 and the lower bound isnΩ(d) with ex-

cess error of∆Pd
(C)/2 (if k is not too large). Therefore tightness depends on how fast∆Pd,ℓ

(C) approaches
∆Pd

(C) asℓ grows. Note that ifC contains only functions that depend on at mostk-variables then conver-
gence of∆Pd,ℓ

(C) to ∆Pd
(C) depends only onk (and not onn) and also as long asℓ = nO(1) the bounds

are still within a polynomial factor.

Non-symmetric product distributions. Now let the domain beX1×X2×· · ·×Xn and the product distri-
bution beΠ = Π1×Π2×· · ·×Πn. We first note that the upper bound in Thm.A.1 and the duality hold even
if the distribution is not symmetric (that is different variables might have different marginal distributions).
Therefore we only need to adapt Thm.A.2 to this setting.

Our lower-bound construction requires closed-ness with respect to renaming of variables. That would
not suffice if different variables have different marginal distributions. For exampleℓ1 distance to polynomi-
als clearly depends on the marginal distributions of variables and therefore we can no longer claim that the
analogue of‖fSi − gSi‖1 = ‖f − g‖1 holds in this setting (as we did in the proof of Lemma2.1). Therefore
we will need an additional assumption. LetS be the set of variables of the optimal (in terms of distance to
d-resilience)k-junta. We will assume that for every variablei ∈ S, there are many other variables that have
the same marginal distribution as variablei. Specifically, there exists a setIi ⊆ [n], such that forj1, j2 ∈ Ii,
Πj1 = Πj2 and the size ofIi is at leasts. In addition, we needC to be closed under renaming of variables,
where a variable that is inIi is renamed to another variable inIi.

Now we can construct a family of ordered setsS1, . . . , Sm (each of sizek) such that the intersection of
any two sets is at mostd, and thei’th element of each setSj (recall that we think ofSj as an ordered set) is
from Ii. This means thatX andΠ restricted to variables inSj (ordered in the same way as they are inSj)
are exactly the same asX andΠ restricted to variables inS. This means that the proof of the lower bound
in Lemma2.1applies to this setting, as before essentially verbatim. The complexity is now determined by
the size of the largest family of sets with the property we described. By the same argument as in eq.(1) there
exists a family of size:

sk(k
d

)
sk−d

= Ω

((
sd

k

)d
)
.

This family has sizenΩ(d) for s = nΩ(1) and a large range of parametersk andd (e.g. d = k1−Ω(1)).
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B Bound on the low-degree Fourier weight ofTribes

TheTribesw,s : {−1, 1}sw → {−1, 1} function is the disjunction ofs disjoint conjunctions, each of width
w. For a setT ⊆ [n] let Ti denote the intersection ofT with the variables in thei-th conjunction. We use
the following expressions proved in [Man95]:

̂Tribesw,s(T ) =

{
2(1− 2−w)s − 1 T = ∅
2(−1)k+|T |2−kw(1− 2−w)s−k k = #{i : Ti 6= ∅} > 0

(4)

Recall that we writeTribes to denoteTribesw,s with s = (ln 2)2w; thusw ≈ log n − log n lnn and
s ≈ n/(log n).

Proposition B.1. For anyd ≤ w the Fourier weight ofTribes on degreed and below is at most

∑

|S|≤d

T̂ribes(S)2 ≤ 2
(2 ln n)2d+4

n
.

Proof. The proof follows Ryan O’Donnell’s thesis, pages66 − 67 [O’D03]. Using the calculations above,
we have that for anyT ⊆ [n] with k = #{i : Ti 6= ∅} :

T̂ribes(T )2 ≤
(
2 ln n

n

)2k

.

For anyk, the number of coefficients that have degree at mostd and intersectk conjunctions is at most

d∑

j=0

(
s

k

)(
kw

j

)
≤ (d+ 1)sk(kw + 1)d ≤ nkw2d+2.

The last inequality holds becauses ≤ n andk ≤ d (and we assume thatd ≤ w). Summing over1 ≤ k ≤ d,
we obtain:

∑

|T |≤d

T̂ribes(T )2 ≤
d∑

k=1

nkw2d+2

(
2 lnn

n

)2k

≤ w2d+2
d∑

k=1

(
(2 lnn)2

n

)k

≤ 2w2d+2 (2 lnn)
2

n

≤ 2
(2 ln n)2d+4

n
,

where we usedw ≤ 2 lnn in the last step.

C Proofs concerningCycleRun

To aid us in proving properties ofCycleRun, we will require several bounds involving Gaussian approxima-
tions. Specifically, we will make use of the functionsft : {−1, 1}n → {−1, 0, 1} that appear in [OW13].
We define|x| =∑n

i=1 xi for a stringx ∈ {−1, 1}n. These functionsft are defined so that
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ft(x) =





1 if |x| > t
√
n

0 if − t
√
n ≤ |x| ≤ t

√
n

−1 if |x| < −t
√
n

We use three properties (implicitly) appearing in [OW13] that follow from error estimates for the Central
Limit Theorem [Fel68]: for large enoughn and

√
log n/100 < t < n1/10, we have

φ(t)
√
n/3 ≤ Inf(ft) ≤ 3φ(t)

√
n (5)

φ(t)/(3t) ≤ Prx[ft(x) 6= 0] ≤ 3φ(t)/t (6)

Pr[|x| = t] ≤ 4φ(t)/
√
n. (7)

whereφ is the probability density function of the standard Gaussian distribution:φ(u) = 1
2π exp(−u2/2);

andInf(ft) = Ex[ft(x) · |x|] =
∑

i∈[n] f̂t({i}). We note thatInf(g) = Ex[g(x) · |x|] =
∑

i∈[n] ĝ({i}) for
a monotone Boolean functiong : {−1, 1}n → {−1, 1}.

Definition C.1. For everyx ∈ {−1, 1}n, define the setShiftx to contain the following:

• xα = x(1+α mod n) . . . x(n+α mod n), for 0 ≤ α ≤ n− 1.

• −xα = −x(1+α mod n) . . .− x(n+α mod n), for 0 ≤ α ≤ n− 1.

Note that|Shiftx| always divides2n, and if the Hamming weight ofx is relatively prime ton, then
|Shiftx| = 2n. BecauseCycleRun is odd and invariant under cyclic shifts,CycleRun is 1 on exactly half the
points ofShiftx.

Theorem 3.7. There exist universal constantsc1, c2 such that for everyn ≥ c2, there exists a Boolean
functionf : {−1, 1}n → {−1, 1} such that:

1. For all S ⊆ [n] such that|S| ≤ 1, f̂(S) = 0, and

2. Ex[f(x)·CycleRun(x)] ≥ 1−2c1·
√

log(n)
n , which impliesPrx[f(x) 6= CycleRun(x)] ≤ c1·

√
log(n)

n .

Proof. GivenCycleRun : {−1, 1}n → {−1, 1}, we construct a setS ⊆ {−1, 1}n using the greedy algo-
rithm ConstS(CycleRun, n) described in Figure1.

Given the setS outputted byConstS(CycleRun, n), the functionf : {−1, 1}n → {−1, 1} is defined in
the following way:

f(x) =

{
CycleRun(x) if x /∈ S

−CycleRun(x) if x ∈ S.

Clearly,Ex[f(x) · CycleRun(x)] ≥ 1− 2c1 ·
√

log(n)
n , since the setS satisfies|S| ≤ c1 ·

√
log(n)

n · 2n.
Additionally, f is clearly balanced due to the structure of the setShiftx of modified points in each iteration
of ConstS and the fact thatCycleRun is odd. Thus, it remains to show thatf̂(S) = 0 for all S ⊆ [n] such
that |S| ≤ 1.
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ConstS(CycleRun, n)

1. InitializeS = ∅, S
′
= ∅.

2. Initializeσ = 2n ·∑i∈[n] ̂CycleRun({i}).

3. While |S| ≤ c1 ·
√

log(n)
n · 2n, do the following:

3a. Find somex with maximal value of|x| such thatCycleRun(x) = 1 and such thatx /∈ S.

3b. If σ − 2|Shiftx| · |x| < 0, then find anx∗ /∈ S such that|x∗| = 1 andCycleRun(x∗) = 1 (if no
suchx∗ exists, exit loop and output “Fail.”). Then setS := S ∪ Shiftx∗ , setS

′
= S

′ ∪ Shiftx∗ ,
and setσ := σ − 4n. If σ = 0, exit the loop.

3c. If σ − 2|Shiftx| · |x| > 0, setS := S ∪ Shiftx and setσ := σ − 2|Shiftx| · |x|.

4. ReturnS.

Figure 1: Algorithm for constructing a set of pointsS used to define the1-resilient functionf .

Claim C.2. Consider an execution ofConstS . At the end of thei-th iteration,1 ≤ i ≤ c1 ·
√

log(n)
n · 2n, if

ConstS has not terminated, letS
i

denote the current set of points inS, let σi denote the current setting of
the variableσ and letf i denote the following Boolean function:

f i(x) =

{
CycleRun(x) if x /∈ S

i

−CycleRun(x) if x ∈ S
i
.

Additionally, we defineS
0
= ∅, σ0 = 2n ·∑i∈[n] ̂CycleRun({i}), andf0 = CycleRun.

For every0 ≤ i ≤ c1 · log(n)
2n

√
n
· 2n the following invariants hold:

1. f̂ i({1}) = f̂ i({2}) = · · · = f̂ i({n}).

2. σi = 2n ·∑j∈[n] f̂
i({j}).

3. σi = 4nw ≥ 0, for some integerw.

Proof. Proof by induction.

Base Case:The base case follows trivially from the definition ofCycleRun and the definition ofS
0
, σ0,

f0.

Inductive Case: Assume the invariants hold for all0 ≤ j ≤ i < c1 ·
√

log(n)
n · 2n, we show that the

invariants must also hold fori+ 1.

For everyj ∈ [n], let us consider the quantity2n
(
f̂ i({j}) − f̂ i+1({j})

)
. Note that by flipping

the value off i on the points in the setShiftx, f̂ i({j}) is reduced by exactly1/2n · 4 · |Shiftx|·|x|
2n

for eachj ∈ [n] and so we have that̂f i+1({1}) = f̂ i+1({2}) = · · · = f̂ i+1({n}). Moreover,
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2n
(∑

j∈[n] f̂
i({j}) −∑j∈[n] f̂

i+1({j})
)
= 2|Shiftx| · |x| and so we have that

σi+1 = σi − 2|Shiftx| · |x|
= 2n ·

∑

j∈[n]
f̂ i({j}) − 2|Shiftx| · |x|

= 2n ·
∑

j∈[n]
f̂ i+1({j}),

where the second equality holds by the induction hypothesis.

Finally, sinceσi+1 = 2n ·∑j∈[n] f̂
i+1({j}) andf i+1 is an odd{−1, 1}-valued function, we have

thatσi+1 = 4nw for some integerw ≥ 0.

We proceed to show thatConstS terminates. Our goal is to show that at the termination of thealgorithm,
we haveσ = 0.

Claim C.3. The algorithmConstS always reaches a point where the condition in line3b is true.

Proof. We use the functionsft from the beginning of this section. Taket′ =
√
log n− 2 log log n− C for

a constantC to be determined later. Thenφ(t′) = 1
2πe

C/2(log n)/
√
n, so Inf(ft′) ≥ 1

6πe
C/2 log n and

Prx[ft′(x) 6= 0] ≤ 3
2π e

C/2/t′ ≤ 3
πe

C/2
√

log n/n by Equations5 and6 respectively. We chooseC so that
Inf(ft′) ≥ 3 · Inf(CycleRun), which can be done sinceInf(CycleRun) = O(log n).

We claim thatConstS does not include any stringsx in S with 3 ≤ |x| < t′ (and thus none with
−t′ < |x| ≤ −3). Suppose that this claim is false. Because the algorithm isgreedy, then every stringx
whereCycleRun(x) = 1 with t′ ≤ |x| ≤ n is corrupted and inS. SinceCycleRun is odd and monotone,
at least half of the strings where|x| = k are corrupted fort′ ≤ k ≤ n. The contribution to be reduc-
tion in the first-order Fourier coefficients when we flip the value on these strings from1 to −1 is at least
(1/2)Inf(f ′

t) ≥ (3/2)Inf(CycleRun). But this implies that the sum of first-order Fourier coefficients for
the corrupted function is at most−(1/2)Inf(CycleRun) < 0. This implies thatσ < 0 in the execution of
ConstS , which is a contradiction sinceσ stays nonnegative during the execution of the algorithm.

It remains to show that the condition in line3 is satisfied throughout the execution ofConstS . Because
no strings with3 ≤ |x| < t′ or t′ < |x| ≤ −3 are corrupted, the fraction of strings corrupted is at most

Prx[ft′(x) 6= 0] + Prx[|x| = ±1] = O(
√

log n/n). Thus at mostc1
√

logn
n 2n strings are inS, so the

condition in line3 holds.

Next, we argue that whenConstS reaches the point where the condition in line3b evaluates true, there
always exists a pointx∗ /∈ S such thatCycleRun(x∗) = 1 and|x∗| = 1. We first prove two lemmas.

Lemma C.4. LetS1
1 be the set ofx ∈ {−1, 1}n such that|x| = 1 andCycleRun(x) = 1. Then|S1

1 | ≥ 2n2.

Proof. Note that sinceCycleRun is odd, we have that
∑

x:|x|=±1 CycleRun(x) = 0. Moreover, since
CycleRun is monotone, we must have that

∑
x:|x|=1 CycleRun(x) ≥ ∑

x:|x|=−1 CycleRun(x). Therefore,
we must have that

∑
x:|x|=1 CycleRun(x) ≥ 0. SinceCycleRun is {−1, 1}-valued, this immediately implies

that at least half of the pointsx where|x| = 1 are such thatCycleRun(x) = 1. There are
( n
(n−1)/2

)
≥ 4n2

such strings where|x| = 1, so we have that|S1
1 | ≥ 2n2. This concludes the proof of LemmaC.4.

Lemma C.5. |S′| ≤ 2n2.
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Proof. Consider the first time the condition in line3b evaluates to true. Then there is some somex such that
CycleRun(x) = 1 and such thatσ−2|Shiftx| · |x| < 0. Since|x| ≤ n, this implies thatσ ≤ 4n2. Moreover,
in each iteration2n points are added toS

′
, andσ is reduced by4n. Thus, after at mostn iterations,σ

is reduced to0. These iterations are the only iterations that contribute to S
′
, so |S′| ≤ n · 2n = 2n2 as

claimed.

We proceed to show that the when the condition in line3b is true, there is anx∗ /∈ S such that
CycleRun(x∗) = 1 and |x∗| = 1. By LemmaC.4, there exist at least2n2 number of pointsx∗ such that
CycleRun(x∗) = 1 and|x∗| = 1. Thus, ifConstS reaches a point where the condition in line3b evaluates
to true and there is no pointx∗ /∈ S such thatCycleRun(x∗) = 1 and|x∗| = 1, then it must be the case that
all suchx∗ are already contained inS. But since we have by LemmaC.5that|S′| ≤ 2n2 then we must have
that some pointy such thatCycleRun(y) = 1 and|y| = 1 was added toS before the first time the condition
in line 3b evaluates to true. But the first time the condition in line3b evaluates to true, we must have that
|x| > 1, and sinceConstS always chooses to add pointsy with maximal|y| ≥ |x| > 1 to the setS, this is
impossible.

We have now argued thatConstS always reaches a point where the condition in line3b is true, and
that whenever this occurs there always exists a pointx∗ /∈ S such thatCycleRun(x∗) = 1 and |x∗| = 1.

This immediately implies that whenConstS completes, we haveσ = 0 and|S| ≤ c1

√
logn
n 2n. As in the

beginning of the proof, we takef to be function to be the function such that

f(x) =

{
CycleRun(x) if x /∈ S

−CycleRun(x) if x ∈ S.

Clearly,Prx[f(x) 6= CycleRun(x)] = |S| ≤ c1

√
logn
n 2n, and applying the invariants of ClaimC.2

shows thatf is 1-resilient, concluding the proof of Theorem3.7.

This analysis almost works for any balanced monotone function with influenceO(log n), such asTribes.
While the above could be adapted in a straightforward matterto show that there is a Boolean function close
to Tribes with very small constant and first-order Fourier coefficients, showing that all of these Fourier
coefficients can be madeexactlyzero seems challenging. Since we are applying these resultsto juntas, our
proofs can not tolerate even exponentially small Fourier coefficients. The structure ofCycleRun is quite
amenable to “local” changes while retaining structure.

C.1 Influence bound for Cycle Run

The main result of this section is the following:

Theorem C.6. Inf(CycleRun) = O(log n).

The condition onCycleRun given in Definition3.6 implies that for every influential edge(x, x⊕i), at
least one of the endpoints is in the first two cases in Definition 3.6, and the pivotal coordinatei occurs in a
maximum length run. ThusInf(CycleRun) ≤ 2Ex∼U [ℓ(x) · (rℓ(x)(x) + 1)], whereℓ(x) is the maximum
length run in the stringx, ri(x) is the number of maximal runs of length exactlyi in x, andU is the uniform
distribution on{−1, 1}n. In this section, we will not consider the runs wrapping around, and the+1 here
takes care of the case that we “split” the cycle in a maximum length run to lay out the bits in a line.

We make use of a result from [Sch90]:

Theorem C.7. Ex∼U [ℓ(x)] = O(log n)
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ThusInf(CycleRun) ≤ 2Ex∼U [ℓ(x) ·rℓ(x)(x)]+O(log n), so the remainder of the section is devoted to
showingEx∼U [ℓ(x) · rℓ(x)(x)] = O(log n). To aid in our analysis, we will consider different distributions
over binary strings. Consider the following method of generating a stringx ∼ U :

1. Initializex to the empty string, and setb to a uniform±1 random bitb.

2. (Iterative step) Assuming there are stillj > 0 bits ofx to determine, then drawg ∼ Geometric(1/2)
conditioned ong being at mostj, and set the nextg bits ofx to b.

3. If not alln bits ofx are set, setb to −b and return to step 2.

4. If all bits ofx are set, thenx is a uniformly random string in{−1, 1}n.

Further, if we want to condition on the maximum run inx being at most some valuet, we can replace
the conditioning in step2 from “being at mostj” to “being at mostmin{t, j}”.

Lemma C.8. For g ∼ Geometric(1/2), and1 ≤ g ≤ t, we havePr[g = g|g ≤ t] ≤ 2Pr[g = g].

Proof. Follows directly from conditional probability and the factthatPr[g ≤ t] ≥ 1/2 for all t ≥ 1.

For an integerk > 0, we define the distributionGk on binary strings of varying length such that a draw
from Gk is bg1(−b)g2bg3 · · · bgk if k is odd andbg1(−b)g2bg3 · · · (−b)gk if k is even. Here, thegi’s are
independentGeometric(1/2) variables, andb is a uniform±1 bit.

Lemma C.9.
E

x∼U
[ℓ(x) · rℓ(x)(x)|ℓ(x) = t] ≤ t(21−tn+ 1)

Proof. We first claim that

E
x∼U

[ℓ(x) · rℓ(x)(x)|ℓ(x) = t] ≤ t+ E
x∼U

[ℓ(x) · rt(x)|ℓ(x) ≤ t]

To see this, note that if we further condition on the first run of length t selected, this expectation is
maximized when the first run is of lengtht. Also, the expectation can only increase if we allow alln more
bits to be set rather thann− t. Since the first run is of lengtht, we only need the maximum length run to be
at mostt in the rest of the string.

Now we have

t+ E
x∼U

[ℓ(x) · rt(x)|ℓ(x) ≤ t] ≤ t+ t E
x∼U

[rt(x)|ℓ(x) ≤ t] ≤ t+ t E
y∼Gn

[rt(y)|ℓ(y) ≤ t]

where the second inequality comes from the fact thatx is generated by at mostn runs, and not bounding
the length of the string only increases the possible number of runs of lengtht, conditioned on the maximum
length run being at mostt. By LemmaC.8, the probability of a single run being of lengtht is at most21−t,
so we have

t+ t E
y∼Gn

[rt(y)|ℓ(y) ≤ t] ≤ t+ t(21−tn) = t(21−tn+ 1)

completing the proof.

Lemma C.10.
Prx∼U [ℓ(x) ≤ t] ≤ (1− 2−t)n/8 + exp(−n/32)
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Proof. Forx ∈ {−1, 1}n, let runs(x) be the number of runs inx. We first show that with probability at
least1 − exp(−n/32), a stringx ∼ U hasruns(x) ≥ n/8 . To do this, we prove that with probability
1 − exp(−n/32), the firstn/8 runs ofx contain at mostn/2 bits. Note that we may instead bound the
number of bits iny ∼ Gn/8, since each run ofGn/8 can only be longer.

The expected number of bits inGn/8 generated isn/4, and this number of bits is concentrated around
its mean; the number of bits has a negative binomial distribution. By [Bro], we have

Pry∼Gn/8
[bits(y) > 2(n/4)] ≤ exp(−n/32)

where the second inequality holds because the number of runsdoes not increase the probability of getting
a longer run, and the distributions of the lengths of each runin x are identical to (or conditioned on being
shorter than) the lengths of the runs inGn/8. We then have:

Prx∼U [ℓ(x) ≤ t] ≤ Prx∼U [ℓ(x) ≤ t, runs(x) ≥ n/8] + exp(−n/32)

≤ Pry∼Gn/8
[ℓ(y) ≤ t] + exp(−n/32)

where the second inequality holds because the length of eachrun ofx is distributed identically (or condi-
tioned to be shorter) to each run ofy, and considering fewer runs only decreases the chances of obtaining
a run longer thant. It is then straightforward to calculatePry∼Gn/8

[ℓ(y) ≤ t] = (1 − 2−t)n/8, since
Pr[g ≤ t] = 1− 2−t for g ∼ Geometric(1/2).

We now proceed to showEx∼U [ℓ(x) · rℓ(x)] = O(log n), starting by applying total expectation and
applying LemmaC.9:

E
x∼U

[ℓ(x) · rℓ(x)(x)] =
n∑

t=1

Prx∼U [ℓ(x) = t]Ex∼U [ℓ(x) · rℓ|ℓ(x) = t]

≤
n∑

t=1

Prx∼U [ℓ(x) = t]t(21−tn+ 1)

≤ Ex∼U [ℓ(x)] +

n∑

t=1

Prx∼U [ℓ(x) = t]t21−tn

≤ O(log n) +

n∑

t=1

((1− 2−t)n/8 + exp(−n/32))t21−tn

≤ O(log n) +

n∑

t=1

(1− 2−t)n/8)t21−tn

≤ O(log n) +
n∑

t=1

tn21−t exp(−2−tn/8)

Letting at = tn21−t exp(−2−tn/8), we see thatat−1/at < 3/4 when 2 ≤ t ≤ log n − 10, and
at+1/at < 3/4 when log n + 10 ≤ t ≤ n. Also, at ≤ O(log n) for each term wherelog n − 10 ≤ t ≤
log n+ 10. So the proof is completed by noting the above is at most
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O(log n) +

logn−10∑

t=2

alogn−10(3/4)
log n−10−t +

t=log n+9∑

t=log n−9

at +
n∑

t=log n+10

alogn+10(3/4)
t−(log n+10)

≤ O(log n)




logn−10∑

t=2

(3/4)log n−10−t +

t=log n+9∑

t=log n−9

1 +
n∑

t=log n+10

(3/4)t−(log n+10)


 = O(log n).

C.2 Lower bound for monotonicity-resiliency distance

We give a lower bound for distance between monotonicity and resiliency that matches the bound forCycleRun

up to constant factors.

Theorem C.11. For every monotone functionf : {−1, 1}n → {−1, 1} and 1-resilient g : {−1, 1}n →
{−1, 1}, we havePrx[f(x) 6= g(x)] ≥ Ω(

√
logn
n ).

Proof. If Var[f ] < 1/2, thenf̂(∅)2 > 1/2, andPr[f 6= g] ≥ 1
4E[(f − g)2] ≥ 1/8 for any balanced (hence

1-resilient) Boolean functiong. If f̂({i}) > n−0.49 for somei, thenf is Ω(n−0.49)-far from every Boolean
functiong whereĝ({i}) = 0.

We assumeVar[f ] ≥ 1/2 andf̂({i}) ≤ n−0.49 for all i ∈ [n]. Sincef is monotone,Infi(f) ≤ n−0.49

for all i ∈ [n], and by (Talagrand’s strengthening of) the KKL Theorem [Tal93, KKL88], Inf(f) ≥ K log n
for some constantK, and

∑
i∈[n] f̂({i}) ≥ K log n. Let g : {−1, 1}n → {−1, 1} be a1-resilient Boolean

function; we will show thatPrx[f(x) 6= g(x)] = Ω(
√

logn
n ).

Recall the functionsft defined earlier:

ft(x) =





1 if |x| > t
√
n

0 if − t
√
n ≤ |x| ≤ t

√
n

−1 if |x| < −t
√
n

Selectt to be the largestt such thatft satisfiesPr[ft(x) 6= 0] ≥ Pr[(f − g)(x) 6= 0] = Pr[f(x) 6=
g(x)]. We then haveK log n ≤ ∑

i∈[n] f̂ − g({i}) ≤ ∑
i∈[n] f̂t({i}), where the second inequality holds

becauseft maximizes the sum of the linear coefficients for any functionwith support sizePr[ft(x) 6= 0],
and the support size offt is at least the support size off − g.

Again, becauseft is monotone,Inf(ft) =
∑

i∈[n] f̂t({i}). Equation5 implies that(3K log n)/
√
n ≥

φ(t) ≥ (K log n)/(3
√
n), and it follows thatt ≤ 4

√
log n. From Equation6, we havePrx[ft(x) 6= 0] ≥

(4K/3)
√

logn
n . By the choice oft, we have

Prx[f(x) 6= g(x)] > Prx[ft+1(x) 6= 0]

≥ Prx[ft(x) 6= 0]− 2Prx[|x| = t]

≥ 4K

3

√
log n

n
− 24K

log n

n
= Ω

(√
log n

n

)
,

where the first inequality is an application of the union bound, and the second is an application of
Equation7.
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