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Abstract

A function f is d-resilient if all its Fourier coefficients of degree at mdsire zero, i.ef is uncorre-
lated with all low-degree parities. We study the notiorapproximate resiliencef Boolean functions,
where we say thaf is a-approximatelyi-resilient if f is a-close to §—1, 1]-valuedd-resilient function
in £, distance. We show that approximate resilience essentihfiyacterizes the complexity of agnos-
tic learning of a concept clagsover the uniform distribution. Roughly speaking, if all fitions in a
classC are far from beingi-resilient therC can be learned agnostically in timé& (4 and conversely,
if C contains a function close to beingresilient then agnostic learning ¢6fin the statistical query
(SQ) framework of Kearns has complexity of at leaSt®). This characterization is based on the dual-
ity between?; approximation by degreépolynomials and approximatéresilience that we establish.
In particular, it implies that; approximation by low-degree polynomials, known to be sigfit for
agnostic learning over product distributions, is in factessary.

_ Focusing on monotone Boolean functions, we exhibit thetemee of near-optimat-approximately
Q(ay/n)-resilient monotone functions for all > 0. Prior to our work, it was conceivable even that every
monotone function i§)(1)-far from anyl-resilient function. Furthermore, we construct simpleglesit
monotone functions based dnibes and CycleRun that are close to highly resilient functions. Our
constructions are based on general resilience analysiaraptification techniques we introduce. These
structural results, together with the characterizatiomply nearly optimal lower bounds for agnostic
learning of monotone juntas, a natural variant of the weltid junta learning problem. In particular
we show that no SQ algorithm can efficiently agnosticallyhemonotonek-juntas for anyk = w(1)
and any constant error less thbf®.
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1 Introduction

The agnostic learning frameworklgu92 KSS94, models learning from examples in the presence of worst-
case noise. In this framework the learning algorithm isgrendom examplege, f(x)) wherex is chosen
from some distributiorD andf is anarbitrary Boolean function. The goal of the agnostic learning altpomit

for a concept clas§ is to output a hypothesis that agrees wittf almost as well as the best functiondn
that is:

Prp[h(z) # f(@)] < min Prplc(z) # f(z)] +e,

wheree is an error parameter given to the algorithm.
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Understanding the complexity of learning in the agnosticeias central to both theory and practice in
machine learning research. Learning in this model is notrsty hard, and despite two decades of intensive
research our formal understanding of the complexity of agadearning is still very limited. Even when
D is the uniform distribution ovef—1,1}", agnostic learning has proven extremely challenging: fem+n
trivial classes are known to be learnable agnostically. piwmary technique used for agnostic learning
in this setting is the polynomial; regression algorithm introduced in the influential work ol et al
[KKMSO08]. This algorithm finds a low-degree polynomial that minieszthe/; distance to the target
function, and can be applied to agnostically learn clasdeishware well approximated by polynomials.
This approach has lead to the first agnostic learning atgarior AC° circuits (in quasi-polynomial time)
and halfspaces (in°(1/s*) time) over the uniform distributionKMS08] and was used in many other
agnostic learning results.

In this work we address the complexity of agnostic learnlgtive to the uniform and, more generally,
product distributions. In addition to running time, a ardi but often unstated parameter in lower bounds
on agnostic learning is the value 6P T¢(D, f) = min.cc Pric(x) # f(x)] to which the lower bound
applies (note tha®PT is essentially the noise rate). If a hardness result regjl@@ning functiongf for
which OPT¢(D, f) is close tol/2, then it does not apply to most practical learning appliceti (If C
does not have any useful classifiers, it does not make mude deruseC as a performance benchmark.)
Therefore it is more important to understand the complexdtggnostic learning in whic®PT is a small
constant close to 0 (or even approaches @ @sows). However essentially all known lower bounds for
agnostic learning are in the hardest regime wO&T (D, f) goes tol /2 as dimension and other problem
parameters grow (although there are some notable excspitioastricted models and the more challenging
distribution-independent settingk$10, FGRW13). In this work we aim to precisely characterize the value
of OPT for which agnostic learning becomes hard and thereforemalke this parameter explicit in our
lower bounds.

In machine learning literature it is more common to spediiy éxcess errowhich is the difference
betweenOPT¢ (D, f) and the error of the produced hypothesis that an algorithmachieve. It is easy
to see that lower bounds showing that excess erraradnnot be achieved is equivalent to stating that the
lower bound applies to a setting whe®®T = 1/2 — & (since error ofl /2 can always be achieved).

1.1 Approximate resilience and agnostic learning

In this work we explain why the polynomidl, regression algorithm is the best approach known to date
for agnostically learning over product distributions. Sfieally, we prove that the complexity of agnostic
learningC over a product distribution in the statistical query modetharacterized by how well can

be approximated in thé, norm by low-degree polynomials over the same distributidrne statistical
query (SQ) modelKea9g is a well-studied restriction of the PAC learning model imieh the learner
relies on approximate expectations of functions of an examgiher than examples themselves. With the
exception of Gaussian eliminatiball known techniques used in the theory and practice of rmadieiarning
have statistical query analogues. Polynonfiglregression is no exception, and therefore to prove our
characterization it suffices to establish a lower bound amiag by statistical query algorithms for function
classes that are not well-approximated by low-degree jpohyals.

The optimality of¢; regression for agnostic learning over product distrimgithat we prove is based
on a formal connection between agnostic learning and a kasictural property of Boolean functions. We
say that a functiory : {—1,1}" — R is d-resilient ifg(S) = 0 for all |S| < d, i.e. g is uncorrelated with
every low-degree parity. Equivalently,is d-resilient if and only ifE[g,] = E[g] for any restrictionp to
at mostd out of n variables and&[g] = 0. Functions which satisfy the first property are caltedrelation

INote that Gaussian elimination fails in the presence of evier amounts of random noise and is not applicable in thestim
framework.



immuneand are widely-studied for cryptographic applicationse tructural question we will be interested
inis:

How close can a Boolean function be to a highly resilient fiamcwith range in[—1, 1]?

More precisely, we say that : {—1,1}" — [—1,1] is a-approximatelyd-resilient if there exists a-
resilientg : {—1,1}" — [—1, 1] such thal|f — ¢||1 = E[|f(x) — g(z)|] < «, and we will be interested in
functions that arev-approximatelyd-resilient for small values of and large values af. We note that for
simplicity and convenience the definitions here are for thifoum distribution on the hypercube but can be
easily extended to general product distributions overrathdimensional domains (see Sectién

The notion of resilience is well-studied and has applicetion cryptography, pseudorandomness, in-
approximability, circuit complexity and more (for a few emples, seeCGH"85, LW95, AM09, AH11,
Shell]). However, to the best of our knowledge our notion of apprate resilience does not appear to
have been explicitly studied before.

At a high level we show that if a concept clagsontains armv-approximatelyd-resilient function then
the complexity of learning’ agnostically in the SQ model is*?). Further, learning is hard even for
OPT < «/2 (in other words when noise rate dg/2). For simplicity the complexity of an SQ algorithm
refers to a polynomial upper-bounding both the running tand the inverse of query tolerance. Naturally,
the presence of a singteapproximatelyd-resilient function would not suffice for a hardness resuits a
concept class with a single function can be easily learnadstigally. We therefore need some assumptions
under which existence of a singteapproximatelyd-resilient function will imply that there are many of
them. One such assumption that we adopt is thabHagproximatelyd-resilient functionc depends on
at mostn!/? variables (such a function is calledra/3-junta) and the concept clagsis closed under
renaming of variables. Alternatively, if we consider aneanble of concept class€§,,}°° ; parameterized
by dimensionn it would be sufficient to assume that the ensemble is close@ruaddition of irrelevant
variables. For brevity we omit the closed-ness under rengusince it is satisfied by all commonly-studied
concept classes. We now state our lower bound in terms dieres informally.

Theorem 1.1. LetC be a concept class. Fikand leta(d) be such that, there existscgd)-approximately
d-resilientn!/3-juntac € C. Then any SQ algorithm for agnostically learniGgvith excess error of at most
1ald) _ p—o(d) has complexity of at least(@),

Alternatively, this result can be stated as saying thatrifefeery functionf satisfyingOPT¢(D, f) <
a(d)/2 the algorithm outputd such thatPrp[h(z) # f(z)] < 1/2 — n=°@ then its SQ complexity is
nf%@_ An immediate implication of this theorem is that a concdpss containing an(1)-approximately
d-resilient function cannot be learned with noise rate latgano(1) in time n(4).

The proof of this theorem is based on the simple observatatetgnostic learning @f is at least as hard
as weak learning of a class @fresilient functions which are close to functionsdn From there we rely
on hardness of SQ learning of pairwise nearly orthogonattfans to obtain the claim. This result relies
crucially on the distribution being a product distributiand it is was recently demonstrated that is does not
hold for some non-product distributionsK14].

The lower bounds obtained from this technique are closespirit to lower bounds based on cryp-
tographic assumptions and those based on hardness ofhlgaparse parities with noise. Cryptographic
hardness relies on a certain problem being hard for all kntattacks”. As pointed out above, SQ algo-
rithms capture all known agnostic learning algorithms agatriing techniques in general. Therefore the
lower bounds hold against all known learning algorithmsrtiier, as in our lower bounds, degree of re-
silience of a predicate is the primary hardness parameteaity cryptographic constructionsf([OW14]).

This simple technique might appear to be a relatively lich#pproach to obtaining lower bounds. Yet,
it turns out that the lower bounds it achieves are essentallimal. This follows from the duality between



approximate resilience arfd approximation by low-degree polynomials that we establidbre formally,
let P, be the class of degree at masteal-valued polynomials. For a Boolean functignlet Ap, (f) =

minyep, E[|f — p|].

Theorem 1.2.For f: {—1,1}" — {—1,1} and0 < d < nanda > 0, f is a-approximatelyd-resilient if
and only ifAp,(f) > 1 — a.

The proof of this result is a fairly simple application of assical result on duality of norms by loffe
and Tikhomirov [T68].

Now for a concept class, let Ap,(C) = maxsec Ap,(f). To see how this quantity characterizes ag-
nostic learning in the statistical query model, we statestiner and running time achieved by the polynomial
£y regression algorithm of Kalai et al. for agnostic learniKg{MS08]. This algorithm is easy to implement
in the SQ model.

Theorem 1.3([KKMSO08]). LetC be a concept class ovér1,1}" and fixd. There exists a SQ algorithm
which for anys > 0 agnostically learn€ with excess erroi\p, (C) /2-+¢ and has complexityoly(n?, 1/¢).

On the other hand, we may apply Theorehidandl.1to show that this is the best any SQ algorithm can
do; by Theoremni.2there exists am(d)-approximatelyd-resilient function inC with 1 — a(d) = Ap,(C).
Therefore Theorer.1essentially matches the upper bound of Theoiedin excess error and complexity,
implying the optimality of/; -regression based algorithms for agnostic learning oweuttiform distribution.
The extension to other product distributions is fairly ifhidforward and we discuss it in Sek.

1.2 Learning monotone juntas

With this characterization in hand, we would like to bettederstand what classes of functions we can
hope to agnostically learn on the uniform distribution. fdnn distribution learning is challenging even in
the noiseless setting, with efficient algorithms out of hefior natural classes such as polynomial size DNF
formulas and decision trees. However, learning monotonetiions and their corresponding subclasses
seems significantly easier; for example, monotone decisees PDS07 and monotone DNFs with few
terms Ber0] are efficiently learnable in the SQ model (for other exaragee DW13 BBL98, BT96)).

This difference is demonstrated most dramatically in tmeguearning problem, which is considered by
many to be the single most important open problem in unifoistridution learning. In this problem, the
target function is an unknowkrjunta, a Boolean function which depends on at miost n variables. The
junta problem also lies at the heart of the notorious DNF adsibn tree learning problems: Singéerm
DNFs ands-leaf decision trees can compute arbitréky s)-juntas, learning either of these classes requires
that we first be able to efficiently leawn(1)-juntas. Progress has remained slow in the 20 years sinee Blu
posed the junta problem, with the current fastest algorithnming in timern 5% [Val12], improving on the
first non-trivial algorithm which runs in time-"%4* [MOSO04 (the trivial algorithm exhaustively checks all
k-subsets ofr] and runs in timeD(n*)). In contrast, monotone juntas are easy to learn using aeragty
simple algorithm: the relevant variables can be identifigdetimating their correlations with the target
function E[f(x)x;] = f({i}), and thus monotoné-juntas can be learned in tim@(n + 2*). Does the
advantage of monotonicity hold in the agnostic setting ab?w#Ve first consider the simplest problem
of agnostic learning monotone juntas. While it appears ta bard problem, known hardness results for
specific monotone functions do not rule out polynomial tingoethms for any constant. Specifically, the
best known lower bound ig(1/<*) for majority functions KKMSO08] and is based on the assumption that

%To the best of our knowledge this is not proved anywhere eilglibut is fairly well-known and used in some other worké [
It follows from the fact that LPs can optimized approximgtesing approximate evaluations of the optimized functiaro(r case
expected; error) for example via the Ellipsoid algorithrhgv87]. See FPV13 for more details on this general technique.



learning sparse noisy parities is hard. Further, this fessimesult only applies whé@PT > 1/2 — ¢ which
leaves open the possibility that the problem is solvableiefitly when the noise rate is a constant smaller
than1/2.

As we saw in Theorer.1, the complexity of agnostic learning 6fis characterized by the approximate
resilience of functions i€. Therefore we consider the structural question of how aleeaotone functions
are to bounded resilient functions. The structure of mametfunctions over the Boolean hypercube has
been investigated in many influential works (sB8[L98, BT96, MO02, O’'D03, OW13). While to the best
of our knowledge our notion has not been studied before raewmrks have examined the total spectral
weight that monotone functions have on low-degree coefflisi@T96, MOO02]. Spectral weight indicates
the distance to the closest (not necessarily boundedjemsflinction in/, norm. Both differences of
bounded/unbounded arg/ ¢, are significant, but we show how bounds on low-degree speetight can
serve as a basis for bounds on our notion of distance toenesdi (see ThnB.2).

It is easy to see that monotone functions cannat-besilient, and prior to our work, it was possible that
every monotone function w&3(1)-far from 1-resilient. Our first structural result rules out this pbggy
in a very strong way:

Theorem 1.4. For everya > 0 there exists am-approximatelyd-resilient monotone Boolean function
whered = Q(ay/n/logn).

Our proof of this result is indirect and relies crucially dretduality of approximate resilience afg
approximation of monotone functions by polynomials. Weait@mver bound for PAC learning of monotone
functions by Blum et al.BBL98] to obtain strong lower bounds di-approximation of monotone functions
by polynomials. We can then use Theoré&rfito obtain bounds on distance to resilience.

This degree of resilience is essentially optimal: comhlgrisasic facts from discrete Fourier analysis, it
is straightforward to see that every monotone Boolean fongs a-far from anyQ(«./n)-resilient func-
tion [BT96]. Applying our connection between approximate resilieand agnostic learning, we get as a
corollary our main application:

Corollary 1.5. Any SQ algorithm for agnostically learning the class of nmtonek-juntas with excess error
of 1/2 — a has complexity op2(@Vk/logk),

Qualitatively, Corollaryl.5gives the first super-polynomial lower bound on the compyesd SQ algo-
rithms for agnostically learning monotokeguntas with constant (and even sub-constant) noise.dtrales
out the possibility of efficient SQ algorithms for agnos&atning monotone decision trees and monotone
DNFs with few terms (which, as previously mentioned, do hefficient SQ algorithms in the noiseless
setting). Quantitatively, our lower bound essentially chats the upper bound aP(Vk/2) that follows as
a corollary of the low-degree concentration bound BT 96] and the polynomial; regression algorithm
[KKMSO08]. Note that lower bounds on PAC learning of monotone fumsifB8BL98] cannot be translated
directly to lower bounds in the junta learning setting sitieese lower bounds are subexponentiat imhile
junta learning algorithms are allowed to run in time polyrainm 2~

While Theoreml.4 yields a near-optimal lower bound on the complexity of agieally learning gen-
eral monotone juntas, the construction is not explicits hased on a randomized DNF construction (similar
to Talagrand’s randomized DNF constructidralo€]), and contains functions of high complexity. Further-
more, for more general classes such as monotone DNFs, ttiedsarresults implied are not optimal. We
first show that even the simpleibes function, a read-once DNF, is close to a resilient functiwhi¢h gives
a stronger hardness result for learning small monotone DPNFs

Theorem 1.6. Tribes is a-approximatelyd-resilient, wherey = O(n~'/3) andd = Q(log n/ log log n).

Our proof of Theorenil.6 is based on a general technique for obtaining bounds on sippate re-
silience from bounds on spectral weight on low-degree adeffts. Roughly, our result states that for
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a sufficiently smally, if the total spectral weight on degree d coefficients off is at mosty, then f

is ~ ﬂed-approximatelyd-resilient (see Thm3.2). The proof relies on a concentration inequality for
low-degree polynomials over independent Rademacher nmndwiables that follows from the hypercon-
tractivity inequalities of Bonami and Beckndddn7Q Bec73.

We then describe a general technique for amplifying theakegf approximate resilience of functions
via iterative composition and apply it foribes to obtain an explicit function that is(1)-approximately
22(V1gn) _resilient (see Sectiof.4 for details).

Both Theoremsl.4 and 1.6 give monotone Boolean functions which are close to regilfenctions,
however the resilient functions are not necessarily Bavledued. In most cryptographic applications
resilience is studied specifically for Boolean functioesy(,[Sie84 MOS04 OW14), and therefore it is
natural to ask if there are such functions that are close twotome Boolean functions. Using a new function
calledCycleRun [Wie], we show that this is indeed possible, and furthermore vaglypenatch the resilience
of the iteratedTribes construction:

Theorem 1.7. There is an explicitv-approximatelyd-resilient monotone Boolean functighwherea =
o,(1) andd = 29Vlogn/loglogn) Eyrthermore,f is a-close to a Boolead-resilient function.

We prove Theorerii.7by first showing tha€ycleRun is O(4/log n/n)-approximatelyl -resilient, where
our witness to this approximate resilience is a Booleantfanc Our argument crucially relies on four key
properties ofCycleRun: monotonicity, low influence, oddness, and invariance uglelic shifts; as far as
we know,CycleRun is the only explicit Boolean function known to have all fouoperties. These properties
allow us to use a structured combinatorial argument, urdikeargument foffribes that relies on properties
of polynomials and produces a witness that is a boundediaméand applying this style of argument to
Tribes quickly gets unruly). Having establishé&d(/log n/n)-approximatel-resilience, we then apply the

aforementioned general amplification technique to in&¢as degree of resilience #9(viosn),

We remark that while the degrees of resilience obtained gofémsl.7 and1.6are not as strong as that
of Theoreml.4, both are sufficient to rule out the existence of efficient 8@rithms for learning monotone
k-juntas for anyk = w,, (1) and subconstant error-rate.

1.3 Related work

Lower bounds for statistical query algorithms were firstvehdy Kearns Kea9g9 who proved that parities
cannot be learned by SQ algorithms. Soon after this Blum.gB&J"94] characterized the weak PAC
learnability of every function clas§ in the SQ model in terms of thstatistical query dimensioof C;
roughly speaking, this is the largest number of functionsf€ that are pairwise nearly orthogonal to each
other (we give a precise definition in Secti®n These lower bound techniques were extended to strong PAC
learning and agnostic learning in more recent w&@kij07, Fel12 Sz609. Lower bounds for SQ algorithms
were proved for many learning problems including, for exmnpPAC learning of juntasgFJ"94], weak-
learning of intersections of halfspacd&€J07] and learning of monotone depth-3 formul&.511. These
lower bounds are information-theoretic but capture remaiskwell the computational hardness of learning
problems. In some cases, such as learning juntas over tfoerardistribution, this is the only known formal
evidence of the hardness of the problem.

Given the lack of general lower bounds for several basiclprob in agnostic learning, many works
concentrate on lower bounds against specific popular #hgosi such ag,-regressionKS1q and margin-
based linear methods$11, BDLSS12 DLSS14. These techniques are captured by SQ algorithms and
therefore our lower bounds are substantially more general.

Several previously known lower bounds for agnostic leayrane based on the reduction to learning
of k-sparse noisy parities. This is a notoriously hard problemwhich the only non-trivial algorithm is
the recent breakthrough result of Valiant that gives anritlym running in timen®-8F [Val12]. Assuming
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that this problem requires(*) time we get that agnostic learning of majorities on the umifalistribution
requiresn¥(/=*) time [KKMS08] and conjunctions require21°s(1/¢)) time [Fel1d. Learning k-sparse
parities in the SQ model has complexity @f(*) and therefore these results also give unconditional SQ
lower bounds. These lower bounds can be interpreted asa$pesies of our approach. They are based on
showing that a parity of high-degree has a significant catig with a function inC. Clearly ak-sparse
parity function is(k — 1)-resilient and correlation implies that distance to thattpas slightly better than
the trivial 1. The main limitation of this approach is thatmmost cases it can only lead to hardness results
when the noise rate is close 1@2. In particular this approach cannot lead to the strong reslnesults we
prove here for monotone juntas.

In a recent work Feldman and KothaFK14] show that the equivalence betwegnapproximation by
polynomials and agnostic learning does not extend to nodtmt distributions. They exhibit a distribution
D for which any polynomial that i$/3-close to the disjunction of all the variablesdn(measured relative
to D) must have degre®(,/n). At the same time disjunctions are SQ learnable in tifld°e(1/<) over
that distribution.

Our approach to proving lower bounds is closest in spiritgtmates technical elements with the influen-
tial pattern matrix method of Shersto8liel]. His method shows that lower bounds on the approximation
by polynomials irn¢,, norm of a functionf can be translated into lower bounds on randomized communica
tion complexity of a certain communication problem corsging to evaluation of on different subsets
of variables (which were previously thought as strongen tbaver bounds on approximation fg, by poly-
nomials). A crucial step in his result is an application oalily that is in some sense symmetric to ours
and shows the existence of an unbounded resilient fungtihit is correlated withf. Suchg then serves
to upper bound discrepancy for the communication probleom(fwhich a lower bound on randomized
communication complexity follows).

1.4 Preliminaries

All probabilities and expectations are with respect to thiéanm distribution unless otherwise stated, and we

will use boldface (e.gr andy) to denote random variables. Givgng : {—1,1}" — R, we say thatf and

g aree-close if|| f — g|l1 = E[|f(x) — g(x)|] < e. We say thay is bounded if it takes values in the interval

[—1,1]. Note that if f is Boolean valued angd is bounded, thef{f — g|; = 1 — E[fg]. Every function

g : {~1,1}" — R can be uniquely written as a multilinear polynomial suctt gt@) = > 5(S) [ ]
SC[n] sh

for all z € {—1,1}"; the coefficientsj(S) are called the Fourier coefficients @f The total influence of

a Boolean functionf : {—1,1}" — {-1,1}, denotedInf[f], is > "I, Pr[f(x) # f(=®)], wherexz®

denotesr with its ¢-th coordinate flipped.

Definition 1.8. A functiong : {—1,1}" — R is d-resilient if g(S) = 0 for all |S| < d. We say that
a Boolean functionf : {—1,1}" — {—1,1} is a-approximatelyd-resilient if there exists al-resilient
bounded functiory such that| f — g||; < a.

Learning background In the agnostic learning framework, the learning algoritisrgiven labeled exam-
ples(x,y) wherex € {—1,1}" andy € {—1, 1} are drawn from a distributio® over{—1,1}" x {—1, 1}.
As usual we describe such distributions by a pait g), whereD is the marginal distribution of—1,1}"
andg : {—1,1}" — [-1,1], whereg(x) = E(, )~p[y | T = =] is expectation of the label for each input.
Note that for every Boolean functiofi, if U denotes the uniform distribution théy, .\, [f(x) #

yl = IIf —gllh/2.

Definition 1.9. LetC be a class of Boolean functions ¢r-1,1}". An algorithm A agnostically learns
C over distributionD on {—1,1}" if forany g : {—1,1}" — [-1,1] ande > 0, given examples from



distribution D = (D, g) ande, it outputs with probability at leas?/3 hypothesis: : {—1,1}" — {—1,1}
such that:
Pr(i(zx) # y] < OPTe(D, g) +e¢,

whereOPT = min.cc Pr ) (p,g)lc(x) # y]. The algorithm is said to learn witexcess error if &
instead satisfies
Prih(z) £ y] < OPTe(D, g) + k.

Definition 1.10. A statistical query is defined by a bounded function of an @am : {-1,1}" x
{-1,1} — [-1,1] and positive tolerance.. A valid reply to such a query relative to a distributidn
over examples is a valuethat satisfies:

E (g y)~plo(x,y)] —v| < 7.

A statistical query learning algorithm is an algorithm whielies solely on statistical queries and does
not have access to actual examples. We say that an SQ afgdrébstatistical query complexity T if it
makes at mosj statistical queries of tolerance at leasind7’ > max{q, 1/7}.

2 Characterization of Agnostic Learning

In this section we show that approximate resilience imgigsiness of agnostic learning for statistical query
algorithms (Lemma.1). We then show that the implication works in the reversediioa as well: if a class
does not contain approximately resilient functions, theamn be agnostically learned by SQ algorithms. We
prove this equivalence using the duality between apprad@mesilience and approximation by low-degree
polynomials stated in Theorein2. This simple observation turns out to be surprisingly uséfading both
to a characterization of agnostic learning and to a proofuoffiost structural result for monotone functions
(Theoremdl.4).

To connect our notion of approximate resilience to the hesdrof agnostic learning we will use the
following standard notion of designs of sets with small ésmer A (n, k, d)-design of sizen is a collection
of setsSy,..., S, C [n] such thalS;| = k and|S; N S;| < dforalli # j. Let M(n, k, d) denote the size
of the larges{n, k, d)-design. Standard probabilistic/greedy argument imglias

LW (Y
Mkt 2 gy = 2 () - ?

For a functionf : {—1,1}* — {—1,1} and setS C [n] of sizek we usefs : {—1,1}* — {~1,1} to
denotef (z|5) wherez s refers to the restriction of to coordinates with indices ifi (in the usual order).

Lemma2.1. Letf: {—1,1}* — {—1,1} be ana-approximatelyd-resilient function. Le®Sy, ..., S,, be a
(n, k, d)-design. If{ fs,}1, C C, then any SQ algorithm for agnostically learniggvith excess error of at
mosti52 — m~1/3 has complexity of at leash!/®.

To prove Lemm&.1, we will use the following result implicit inffel13 that is a simple generalization
of the well-known SQ-DIM bounds fronBFJ"94] and their strengthening irvhn05 Sz609.

Theorem 2.2. Let D be a distribution and lely, ..., g, be bounded real-valued functions such that
l{9i,9;)p| < 1/m for i # j, where(g;,g9;)p = Eplgi(x) - g;(x)]. Then any SQ algorithm that for
everyi, given access to statistical queries with respect to distion (D, g;) outputs a hypothesis such
that Bz, y)(p,g,) [1(x) # y] < § — —75 has complexity of at leash'/?.



We can now prove Lemma L

Proof. By our assumption, the functiofi is a-close to ad-resilient bounded functiog : {—1,1}* —
[—1,1]. We first note that each pair of functiops, gs; shares at most relevant variables. These functions
are d-resilient and therefore there is no single $esuch thatgs, (T) - gs,(T) # 0. This, by linearity of
expectation implies that for# j, E[gs, gs;] = 0.

Let A be an agnostic algorithm férwith excess error of at moéfTO‘ —m~1/3, For everyi, fs, iIsa-close
to gs,. Therefore if the input distribution id/, g;) thenOPT¢ (U, g:) < ||fs, — gs;|l1/2 = ||f — gll1/2 <
a/2. This implies thatd will output a hypothesi& with error of at mosty/2+1‘7°“—m‘1/3 = 1/2—m_1/3.
By Theorem?2.2 and orthogonality ofjs, s we get that the complexity of is at leastm!/3. O

An immediate corollary of Lemma.1is the following lower bound that generalizes Theorerm

Theorem 2.3. LetC be a concept class closed under renaming of variables anghasshatC contains an
a-approximatelyd-resilient k-junta. Then any SQ algorithm for agnostically learnifigvith excess error
of at most!52 — m~1/3 has complexity of at least!/3, wherem = M (n, k,d). In particular, for any
constanty > 0 andk = n'/2*9 we haven = n(@,

To show that Theorend.3 is essentially tight we prove the duality stated in Theore@(which we
restate here for convenience).

Theorem. [Thm. 1.2restated] Forf : {—1,1}" — {—1,1} and0 < d < n let o« denote the; distance of
f to the closest-resilient bounded function. Thelp,(f) =1 — a.

Proof. Our proof is an adaptation of the general results on duafityooms [[T68] to the case wher¢ is
Boolean and is bounded. In this case itis easy to see tifat g1 = 1—E][fg] and therefore minimization
of distance to resilience can be expressed as maximizatidn, of (z)g(x) subject to resilience constraints
ong. Viewing values ofy(x) as variables we get:

max > f(x)g(x)
subject to) ~ g(x)xs(z) =0 v|S| < d
and|gx(:£)| <1 Vo e {—1,1}"

The dual LP can be easily verified to be the following prograith wariablesps for every S C [n] of size

at mostd.
min ) " |q(=)]

subjecttog(z) = f(z) — > psxs(z)  Voe{-1,1}"
S:|S|1<d

Now the claim of the theorem follows from LP duality. By defian the maximum value of the primal is
2" E[fgl =2"(1—|f—gl1) = 2"(1 —«). This is therefore also the minimum of the dual program which
by definition, is exacthy2" - Ap,(f). O

Note that(1 — «)/2 in the excess error term in the statement of TheoPedis equal toAp,(C)/2 in
the excess error term in the statement TheoteBnTherefore combining the duality with the upper-bounds
on polynomiall; regression stated in TheorehrBwe get our claimed characterization of the complexity of
agnostic learning in terms dp, (C) or, alternatively, distance iéresilience.
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3 Monotonicity and approximate resilience

In this section we prove bounds on the approximate res#ieficnonotone functions. First, we give a bound
for general monotone functions (Theorédm) in Section3.1 In Sections3.2 and3.3we show thaflribes
andCycleRun are approximately resilient (Theorerh$andl.7). Finally, in Sectior8.4we show how these
functions can be used in an iterated construction to yigidi@kfunctions with high approximate resilience.

3.1 A monotone function with nearly-optimal approximate resilience

Our characterization suggests an approach for proving rféneb.4: since thel;-minimization algorithm
characterizes SQ agnostic learning, we seek monotonadusathere the&;-minimization algorithm will
badly fail. In other words, our first step will be to move to theal problem: Theorerh.2 tells us that we
may equivalently show the existence of a monotone funcfiamhich is far from from every low-degree
polynomialp. Strangely, to show that no dual solution exists, we will tieefact that if every monotone
function had a weak approximation by some low-degree paiyab then thel;-minimization algorithm
would learn monotone functions, contradicting known infation-theoretic lower bound8BL98]. Note
that while thef;-minimization algorithm is presented as an agnostic legrmilgorithm, we may apply it
directly to the class of monotone functions.
We now prove Theorer.4:

Theorem. For everya > 0, there is a monotone function that isapproximatelyd-resilient for d =
Q(ay/n/logn).

Proof. We show the existence of a monotone functfosuch thal&[| f (x)—p(x)|] > 1—« for every degree-
d polynomialp and then apply Theoreth2. Suppose that every monotoifiesatisfiesE[| f (x) — p(x)|] <

1 — a. Then fore = a/4, Theorem1.3 gives an algorithm for learning monotone functions whickaus
s = poly(n?/a) examples and has erroy2 — /2 + /4 = 1/2 — a/4. We now use an information-
theoretic lower bound on the number of random examples weedeeakly learn monotone functions; the
proof in [BBL98] uses a randomized construction of DNF formulas:

Theorem 3.1(|BBL98]). Let A be a any learning algorithm that usasrandom examples and outputs a
hypothesig:. Then there is some monotofie {—1,1}" — {—1, 1} such that
1

Pr(f(2) = h(a)] < 5+ 0 (10527”‘) :

Theorem3.1tells us thatv = O (W) , which completes the proof. O

The function from Theorerh.4gives us &-junta that isx-approximatelyi-resilient ford = Q(avk/ log k).
Plugging this into Theoreri.3and using eql() (assuming: < n'/2) we obtain the proof of Corollar{.5.

While the degree of resilience in Theordnd is nearly optimal, the proof is non-constructive and relies
crucially on the fact that monotone functions can have higingexity. In the following sections we show
that even simple, explicit monotone functions can exhilghtapproximate resilience.

3.2 Tribes is approximately resilient

TheTribes,, s : {—1,1}*" — {—1, 1} function is the disjunction of disjoint monotone conjunctions, each
of width w; i.e. a read-once width» DNF. For notational brevity we writé@ribes to denoteTribes,, , with
s = (In2)2% (sow ~ logn —logInn ands ~ n/(logn)).

Our construction of a highly resilient function closeTabes is based on a general result relating the
low-degree Fourier weight of a Boolean function and its agjpnate resilience.
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Theorem 3.2. There exists a universdl” > 0 such that the following holds. Lgt: {—1,1}" — {—1,1}

-~

be a Boolean function that satisfiQs:def(S)2 < ~ for somed € [n] andv € [0,1]. Then for all
7 > e, /7, we have thalf is O(r + dn2¢+2)-approximatelyd-resilient, whereS = exp ( — K (72/~)/4).

We now prove Theoren3.2, and in Sectior3.2.1we show how Theorem.6 (i.e. the approximate
resilience ofTribes) follows as a consequence of Theor8rf.

We begin our construction with the Fourier polynomial foand discard the low-degree terms. That
we may do so and hope to arrive at a bounded, resilient funciiones from hypercontractivity: since
the discarded polynomial has low-degree, it will by hightgncentrated around its mean. The following
Chernoff-type concentration inequality for low-degredypomials over independent Rademacher random
variables follows from the hypercontractivity inequadgiof Bonami and BeckneBpn7Q Bec79 (see for
example D'D13)).

Theorem 3.3(concentration of degreépolynomials) There exists a universal constafit > 0 such that
for every degreet polynomial{—1,1}" — R andt > ¢%, we have

I;Blf[|10(ﬂc)| >t-|pll2] <exp <—Kt2/d> i

We now begin the proof of Theoref2. Let

Uo) =" f(S)xs(x), and h(z)= f(z)—l(z).

|5]<d

Our final resilient, bounded functionwill be based orh, the high-degree part gf. Note that whileh is
d-resilient by definition, it may not be uniformly bounded. Wver, the degred-Chernoff bound applied
to ¢ (the low-degree part), together with our assumption on tré@awmce of? (i.e. the low-degree Fourier
weight of f), tell us that/ does not attain large values very often. Therefore, whiteay not be uniformly
bounded, we have thatis bounded on almost all inpuissinceh(z) + ¢(x) = f(x) € {—1,1}.

More formally, we set = 7/, /v in Theorem3.3 (sincer > ed\/_, we have that indeet> ¢%)

Pr(|((z)| > 7] < exp (—~ K(r2/7)"/%) =

Next, we defing; : {—1,1}" — R to be such that

Lo i@l
() {h(ac) it |0(2)] < 7.

Sinceh(z) = f(z) — ¢(z) and f is {—1, 1}-valued, the range afis [-1 — 7,1 + 7]. While ¢ is bounded, it
may now have correlations with low-degree terms .& no longer resilient liké is). However, we may
also writeq asq(z) = h(x) — h(x) - Ly~ (v), whereh is d-resilient andl,. . has very small support.
Thus, we will show that we may discard the low-degree termg afid the effect on boundedness will be
uniformly small.

Let g=a(z) = 3 5511 7(S)xs(2), 4<da = ¢ — ¢>q @ndp(z) = ”q;d(“’) Certainly, the range of is

Sdlloo”

[—1, 1]; it remains to bound the correlation pfvith f. We have that:

_wlla—g<d)
E[p'f]‘E[||q>duoo f]
1

Z .
lalloo + llg<alloo

(Elg- f1 - lla<all) 2

11



The correlation off with ¢ is large:

Efg(z) - f(x)] 2 (1-7)(1-0)=21-7 -4 ®3)

4

The above holds because the contribution to the correl&iomwheng(z) = 0, which happens on at most a
J fraction of the inputs. On the remaining inpui$z) = h(z) = f(x) — ¢(x), and we assumed(x)| < 7.
Thus the contribution on suchis

q(z) - f(z) = (f(z) = l(x)) - flz) =1—L(z) - f(x) 21— [l(z)| 21—
Thus, it only remains to bound the maximum value of the logrde part of;:

Claim 3.4.
lg<allos < 02T

Proof. We will show that|g(:S)| < én®™! holds for anyS| < d. Recalling that(z) = h(z) — 14>, - h(z),
we have:

§(S) = h(S) ~ L= - h(S)
13(S)] < [A(S)] + El| Ly - l]
<040 |hllo
< 6(|[tlloo + 1),

where the second inequality holds whef] < d becauseh is d-resilient, and the last inequality holds
becauséh(z)| < |¢(x)| + 1 for all z. As f is a Boolean function, each of the non-zero Fourier coefftsie
of £ is at most 1 in magnitude. The rough bound6f ' on the number of non-zero coefficientséogives
a bound of*! on ||¢||«; Summing over at most?*! terms of degree at mostgives the claim. O

Let x = dn2@+2, Substituting into Equation®) and @), we have that

l—-7-0—k
. Tri > 7 NS 1 _5—9r —
E)[p(a:) Tribes(x)] > I 1—6—27 -2k,

using the fact that /(1 + z) > 1 — z for > 0, and this completes the proof of Theor&m.

3.2.1 Proof of Theoreml.6

To apply Theorens.2we will need the following upper bound on the low-degree kuveight of Tribes,
whose proof is given in Appendi®, can be obtained using the explicit values of each Fouriefficgent
given in [Man9g,

Proposition 3.5. For anyd < w the Fourier weight offribes on degreel and below is at most

)2d+4

S Tribes(S)? < 27(2“”;

To derive Theoreni..6 from Theorem3.2, we setr = (2Inn)*¥n~%/%, so thatt := 7/,/7 > n'/10.
Now there exists a small constant> 0 such that ford = clogn/loglogn and large enough, we
have thatr = O(n='/3), t > e? and2/d > pl/GD) > Z(logn)? > E 1y, This implies that
§ := exp (—Kt¥?) < n=24=3 and sosn?™*? < 1/n. We conclude thafribes is a-approximatelyd-
resilient wherex = O(7 + n~!) = O(n~'/3), and this completes the proof of Theoréns.
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3.3 CycleRun is approximately resilient: Proof of Theorem 1.7

Definition 3.6. For everyn, the CycleRun Boolean functiorCycleRun : {—1,1}" — {—1,1} is defined as
follows: Call a consecutive sequencel&f a 1-run. Similarly, a consecutive sequence-dfs is a —1-run.
We allow runs to wrap around, so if a run reachgsit may continue withe;. The value ofycleRun is the
winner (1 for 1-player or—1 for —1-player) from the following procedure:

1. Check which player has the longest run.
2. In case of tie check which player has a larger number of mari-length runs.

3. In case of tie check the total length of segments betwegimmm-length runs, where a segment start-
ing from al-run clockwise is counted for thieplayer and a segment starting at-al-run clockwise
is counted for the-1-player. The player that has a larger total count is declatlkd winner.

We will need that fact thafycleRun has influenc& (log n). Since the proof of this fact has not appeared
in the literature before, we include a proof in Appendixl for completeness.

Theorem 3.7. There exist universal constants, co such that for everyr > ¢y, there exists a Boolean
functionf : {—1,1}" — {—1,1} such that:

~

1. Forall S C [n] such thatS| < 1, f(S) =0, and
2. Egz[f(x) - CycleRun(x)] > 1 — ¢14/(logn)/n.

Our proof of Theoren3.7 relies on four key properties dycleRun: monotonicity, low influence, odd-
ness, and invariance under cyclic shifts; as far as we k@gulieRun is the only explicit Boolean function
known to have all four properties. First, @gcleRun is monotone and transitive, we note that

logn

CycleRun({i}) = CydeRun({j}) = O ( :

) forall i # j € [n].
The high level intuition behind our proof is simple: we shdattby flipping the values dfycleRun from the
top of the hypercube downwards and bottom upwards simuitesig we obtain a balanced function with
no Fourier weight at the first level. This can be done withdwtrging too many points becauSgcleRun
has small influence; we are able to do it in a controlled wayabse it is additionally odd and invariant
under cyclic shifts. We defer the proof of Theor&ni to AppendixC.

It is natural to wonder how close a monotone function can laeltaesilient Boolean function. We show
in AppendixC.2that Theoren8.7is tight:

Theorem 3.8. For every monotone functiofi : {—1,1}" — {—1,1} and 1-resilientg : {-1,1}" —
{—1,1}, we havePr,[f(x) # g(z)] > ( lo;gln>

3.4 Resilience amplification

In this section we prove a general amplification lemma follieexe. Given a value € [—1, 1], we write
b(t) to denote a randont1 bit with expected value:

b(t) = 1 with probability (1 + ¢)/2
| —1 with probability (1 —¢)/2.

(In particular,b(1) is the constant andb(—1) is the constant-1). Given bounded functions : {—1,1}" —
[-1,1] andg : {—1,1}" — [-1, 1], we define their (disjoint) compositiai o g : {—1,1}""" — [-1,1] to
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be(Gog)(x!,...,2™) := E[G(b(g(z")),...,b(g(x™))]. Note that ifE[g(x)] = 0, thenE[b(g(x))] = 0
as well. Throughout this section we writést(f, g) to denote;E[| f(x) — g(z)|] for notational brevity (this
is simply the fractional Hamming distan&&[f(x) # g(x)] when f andg are{+1}-valued).

The main result in this section is the following amplificatiemma:

Theorem 3.9.Let f : {—1,1}" — {-1,1} andg : {-1,1}" — [-1,1] whereE[f(z)] = E[g(x)] = 0,
and suppose is d-resilient. Consider the recursively-defined functionerehyf, = f o fir_1 andg, =
gogr_qforall k e N,and fy = f andgy = g. Then fork > 1:

1. f; andg; are functions oven”*+! variables,
2. gris ((d + 1)k — 1)-resilient,

3. dlSt(fk>gk) < dlSt(fv g) Zf:o Inf[f]t

The first claim is straightforward to verify, and so we focus the second and third claims. For a
Boolean-valued functiod” : {—1,1}"* — {—1,1} andd € [0,1], recall that thenoise-sensitivity of’
at noise rated is defined afNSs[F| := Pry .[F(y) # F(z)], wherey is uniform in{—1,1}"" andz is
obtained fromy by independently flipping each of its coordinates with plulity 5.
Lemma 3.10. Given F, f : {—1,1}"" — {-1,1} andG,g : {—1,1}" — [—1,1] whereE[f(x)] =
E[g(x)] = 0, we have

dist(F o f,G o g) < dist(F, G) + NSs[F],

whered := dist(f, g).

Proof. We first apply the triangle inequality and note that
dist(F o f,Gog) < dist(F o f,Fog)+dist(Fog,Gog).

SinceE[g(x)] = 0, we have thatb(g(z!)),...,b(g(=™))) is uniformly distributed on{—1,1}™ when
x!,...,x™ are independently and uniformly distributed ¢n 1, 1}" and therefore the second distance
on the right hand side is exactllist(F, G). SincePr[b(f(z)) # b(g(x)) Pr(f(z) # b(g(x))] =

$1f(z) — g(z)| forall z € {—1,1}", it follows thatPr[b(f(x)) # b(g(x))] :; E[|f(x) — g(x)|] = 6 and
S0

dist(F o f,F o g) = Pr[F(y) # F(2)],

wherey is uniform in{—1, 1} andz is obtained frorry by independently flipping each of its coordinates
with probability§. This completes the proof, since the probability on thetrdgind side is precise§iSs [ F.
O

Using the union bound, we have

NS;[F] < 5ZPr &) = § - Inf[F] = dist(f, g) - Inf[F],

wherex®’ is the stringe W|th thez-th bit flipped, andy = dist(f, g) as in the previous lemma. This, along
with a straightforward recursion, yields the following othary.

Corollary 3.11. Letf : {—-1,1}" — {—1,1} andg : {—1,1}" — [-1,1] whereE[f(x)] = E[g(x)] =0,
and suppose is d-resilient. Consider the recursively-defined functionerelyf, = f o fr_1 andg, =
gogr_qforall k e N,and fy = f andgy = g. Then fork > 1:

k

dist(fr, gr) < dist(f,g) > Inf[f]’
t=0
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Lemma 3.12.If G : {—1,1}"" — [-1,1] is d;-resilient andg : {—1,1}" — [—1,1] is dy-resilient, then
G o g is (d1dy)-resilient.

Proof. By linearity of the Fourier transform it suffices to provestidlaim whenG/(z1, ..., 2y,) = [ [ier 2
and|T| > d;, the parity function oved; + 1 or more variables. We begin by noting that

11 b(g(wi))]

(Gog)(z!,...,2™) = E

€T
= J[Eb(g=))]
ieT
1 ) 1 —g(at ,
H|: +g( )_ g( ):| _ Hg(ﬂil)-
ieT ieT

We view themn coordinates of the composed functié g as the disjoint union ofi; U - - - U A,,,, where
eachA; has sizen. With this notation in hand, every subsebf themn coordinates may be viewed as the
disjoint unionS; U --- U Sy, whereA; C S; forall j € [m]. Fix S = S U---U S, of cardinality at

mostd; dz, and recall that our goal is to show tr(ﬁo\g)(S) = 0. There exists at least one sgtwhere
|S;] < dg, and we assume without loss of generality thtaf < ds. Sinceg is do-resilient (in particular,
g(S1) = 0), we see that indeed

(Gog)(S) =E|[[o@") [T IT=i| =I1atso 1] 11 El=71 =0,
=y j€[m] €S, i€T j¢T LeS;
and the proof is complete. O

Combining Corollary3.11and LemmeB.12yields Theoren3.9.

3.4.1 Amplifying Tribes and CycleRun
We now apply Theorer.9to Tribes andCycleRun.

Theorem 3.13. There is an explicit--approximatelyd-resilient monotone Boolean functidn wherea =
on(1) andd = 29(Vlogn),

Proof. We apply Theoren3.9with f beingTribes andg the bounded resilient function that results from ap-
plying Theoreml.6. Sincelnf[Tribes| = ©(logn) (see e.g.KKL88]), taking k := clog n/log log n where
¢ > 0 is a sufficiently small universal constant gives functigisgy, over N := nk = 20(log”n/loglogn)
variables, where

dist(fx, gx) = O(Inf[Tribes]F+1 . n=1/3) = n = = o5 (1),

andgy is d-resilient for
d = Q((log n/loglog n)kt1) = 2%(VIosN)

Analogous calculations fdZycleRun yield the following:

Theorem 1.7. There is an explicit--approximatelyd-resilient monotone Boolean functian wherea =
o, (1) andd = 29(Vlegn/loglogn) 'Eyrthermore,F is a-close to ad-resilient function that is Boolean-valued
as well.
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Proof. We apply TheorenB.9 with f being CycleRun and g the Boolean-valued resilient function that
results from applying Theore.7. Sincelnf|[CycleRun] = O(logn) (TheoremC.6), we again také: =
clogn/loglogn wherec > 0 is a sufficiently small universal constant to get Boolealued functions
e, g OVEr N = 20(0g” n/loglogn) yiariables, wher®r[fy () # gi ()] = dist(fr, gi) = n~ 2D = on (1),
andg; is d-resilient ford = n®(1/loglogn) — 90(VIog N/loglog N) O

4 Conclusions

We have demonstrated that complexity of agnostic learnisg product distributions has a natural charac-
terization via either of two dual notiong;-approximation by polynomials and approximate resiliendee
notion of distance to resilience that we introduce appeatsetinteresting its own right. It is also better
suited for proving lower bounds since a single close retilfeanction withesses the hardness of agnostic
learning. Our proof of this result is relatively simple amdamrarkably, up to the choice of norms, is identical
to Sherstov’s powerful pattern matrix method in commumacatomplexity Shell.

An application of our characterization and our second dmution is new and detailed picture of the
hardness of agnostic learning of monotone functions oweruttiform distribution. Some evidence that
agnostic learning of several monotone classes is hardeadrknown and relies on cryptographic assump-
tions [KKMS08, FGKP09 KS09. Yet the existing evidence is restricted to the very hagime whenOPT
is nearl/2 and does exclude learning with excess error of jistthat would suffice for most practical
applications. We give the first general lower bounds for ntane functions that establish hardness in the
low-error regime. We also describe simple and explicit ntone functions that are very close to being
resilient.

Finally, we give general tools for analysis of approximatsilience. Such tools might find use for
proving new agnostic learning lower bounds.
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A Extension to Product Distributions

We now outline the extension of our characterization of tec®mplexity of agnostic learning to more
general product distributions. Léf be the domain of each individual variable, that is our legrmiroblem
is defined overX™. We will start with symmetric product distributions and Iétbe a distribution over
X. LetB = {By(z), Bi(z), ...} be the basis obtained via Gram-Schmidt orthonormalizatiothe basis
1,x,22, ... with respect to the inner producf, g\ = En[f(x)g(x)]. By definition we obtain that the
polynomial degree of3; is i (for i < |X| — 1). As special cases this process giyés \1/?‘_';} basis if
X = {-1,1} andu = Eq[x]; Legendre polynomials wheX = [—1,1] andII is uniform; and Hermite
polynomials whenX = R andII is the GaussiatV (1, 0) distribution.

ForS C [n] and a functiort : S — Nlet ®g(z) = Hiegxf(i) andWs () = Mies By (xi). Fora
finite X we restrict the range of sugts to [| X | — 1]. Clearly, s are orthonormal functions relative to the
inner product(f, g)ni» = En[f(z)g(z)].

We now say that a function is d-resilient relative td1” if for every S C [n] of size at most/ and any
functiont : S — N, (g, ¥5:)» = 0. Note that equivalently this can be defined(as®gs )i~ = 0 for all
S C [n] of size at mostl andt : S — N.

We say that a Boolealfi is a-approximatelyd-resilient relative tall” if there exists ad-resilientg :
X" — [-1,1] such thatEp- || f(x) — g(x)|] < a. In the following discussion functions are ov&f* and
all norms and inner products relativeliy.

We now describe generalizations of Theoreints 1.2and2.3. Let P, , denote the class of polynomials
where each monomial has at maestlifferent variables each of degree at méstet P; = P; .. Note
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that by definition this is the span éfg;} 5 <a+.5-[q but is also equal to the span §¥s }51<q 1.5 [-
For a functionf, let Ap, ,(f) = minyep, , Enn || f(z) — p()|] and for a concept clagg let Ap,,(C) =
maxec Ap,, (f)-

The polynomial¢; regression algorithm of Kalai et al. for agnostic learnifdgKMS08] applies to this
general setting and gives the following bound.

Theorem A.1([KKMSO08]). LetC be a concept class oveé™ and fixd and{. There exists a SQ algorithm
which for anye > 0 agnostically learng” over II" with excess erroiAp, ,(C)/2 + ¢ and has complexity

poly((nf)?,1/e).
Our SQ lower bound can be easily seen to generalize to trenioll) statement.

Theorem A.2. Let C be a concept class oveX™ closed under renaming of variables and assume ¢hat
contains ak-junta which isa-approximatelyd-resilient overlI™. Then any SQ algorithm for agnostically
learning C over IT" with excess error of at mosg® — m~1/% has complexity of at least!/3, where
m = M(n, k,d). In particular, for any constani > 0 andk = n'/?>*, we haven = n(9,

Finally, the duality is also easy to verify in this case.

Theorem A.3. For f : X™ — {—1,1} and0 < d < n let o denote the/; distance off to the closest
d-resilient bounded function. Thep,(f) =1 — a.

Now the upper bound i§:¢)°(9) with excess erroip, ,(C)/2 and the lower bound is®(@ with ex-
cess error ofAp, (C)/2 (if k is not too large). Therefore tig’htness depends on howXast, (C) approaches
Ap,(C) ast grows. Note that i contains only functions that depend on at mosiariables then conver-
gence ofAp, ,(C) to Ap,(C) depends only oft (and not om) and also as long as= n?!) the bounds
are still within a polynomial factor.

Non-symmetric product distributions. Now let the domain b&(; x X5 x - - - x X, and the product distri-
bution bell = II; x Il x - - - x IT,,. We first note that the upper bound in Thin1 and the duality hold even
if the distribution is not symmetric (that is different valbies might have different marginal distributions).
Therefore we only need to adapt Thi2 to this setting.

Our lower-bound construction requires closed-ness wipeet to renaming of variables. That would
not suffice if different variables have different marginatdbutions. For examplé, distance to polynomi-
als clearly depends on the marginal distributions of véemland therefore we can no longer claim that the
analogue of| fs, — gs;|l1 = ||.f — g|l1 holds in this setting (as we did in the proof of Lem&h&). Therefore
we will need an additional assumption. Lgebe the set of variables of the optimal (in terms of distance to
d-resilience)k-junta. We will assume that for every variabile S, there are many other variables that have
the same marginal distribution as variabl&pecifically, there exists a stC [n], such that foyj;, jo € I,

I1;, = 11, and the size of; is at leasts. In addition, we need to be closed under renaming of variables,
where a variable that is ify is renamed to another variable in

Now we can construct a family of ordered s#ts. . ., S, (each of size:) such that the intersection of
any two sets is at mogt and thei’th element of each sef; (recall that we think of5; as an ordered set) is
from I;. This means thaX andII restricted to variables i§; (ordered in the same way as they areSiy)
are exactly the same as andII restricted to variables i§. This means that the proof of the lower bound
in Lemmaz2.1applies to this setting, as before essentially verbatime dadmplexity is now determined by
the size of the largest family of sets with the property wecdbed. By the same argument as in &jjthere

exists a family of size:
sk sd\?
—— =0 | = .
s ()

This family has size:™? for s = n*(V) and a large range of parametérandd (e.g. d = k'~%M).
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B Bound on the low-degree Fourier weight ofTribes

TheTribes,, s : {—1,1}** — {—1, 1} function is the disjunction of disjoint conjunctions, each of width

w. Forasetl’ C [n] let T; denote the intersection @f with the variables in theé-th conjunction. We use
the following expressions proved iMpn99:

— 2(1—27")» -1 T=10

Tribes,, (1) = 4

) ( ) {2(_1)k+|T2—kw(1 _2—w)s—k k (4)

#{i:T; #0} >0

Recall that we writ€Tribes to denoteTribes,, s with s = (In2)2"; thusw ~ logn — lognlnn and
s~n/(logn).

Proposition B.1. For anyd < w the Fourier weight offribes on degreal and below is at most

21n ’I’L)2d+4

" Tribes(5)? < 20

n

Proof. The proof follows Ryan O’Donnell’s thesis, pagés— 67 [O’D03]. Using the calculations above,
we have that for an§’ C [n] with k = #{i : T; # 0} :

21nn\ 2
p .

Tribes(T)? < (

For anyk, the number of coefficients that have degree at mi@std interseck conjunctions is at most

Zd: <Z> (kw> < (d+1)s"(kw +1)7 < nfo2,

j=0 J
The last inequality holds because< n andk < d (and we assume thdt< w). Summing ovell < k < d,
we obtain:

d

Z Tr|bes Z w22 <21ﬂ> "

IT1<d k=1

(2lnn) k
w2d+2 Z ( )

< 9242 (2 Inn)?
o n

2d+4
<9 (2lnn)

= &7

n

where we usea < 21nn in the last step. O

C Proofs concerningCycleRun
To aid us in proving properties @ycleRun, we will require several bounds involving Gaussian appr«i

tions. Specifically, we will make use of the functiofis: {—1,1}" — {—1,0, 1} that appear inQW13,.
We definglz| = 1" | z; for a stringz € {—1,1}". These functiong; are defined so that
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1 if|z] > ty/n
filz) =<0 if —ty/n<|z| <ty/n
-1 if |z| < —ty/n
We use three properties (implicitly) appearing @13 that follow from error estimates for the Central
Limit Theorem [Fel6g: for large enoughm and+/Tog /100 < t < n'/1°, we have

o(t)vn/3 < Inf(fy) < 3¢(t)Vn (5)
¢(t)/(3t) < Pry[fi(z) # 0] < 3¢(t)/t (6)
Pr{lz| = t] < 4¢(t)/v/n. )

= o exp(—u®/2);
Z m) 9({i}) for

whereg is the probability density function of the standard Gaussliatribution: ¢ (u)

andInf(f;) = Eq[fi(x) - [2[] = Yy fo({i}). We note thatnf(g) = Eq[g(x) - [«
a monotone Boolean functign: {—1,1}" — {—1,1}.

Definition C.1. For everyz € {—1,1}", define the sethift, to contain the following:

o 1 = ZT(14a mod n) -+ - L(n+a modn),f0r0§a§n—1.
o — %= _$(1+a modn)"'_aj(n—i—a mod n),fOTOSOz <n-—1.

Note that|Shift, | always divides2n, and if the Hamming weight of is relatively prime ton, then
|Shift,| = 2n. BecauseCycleRun is odd and invariant under cyclic shiftSycleRun is 1 on exactly half the
points ofShift,.

Theorem 3.7. There exist universal constants, co such that for everya > ¢, there exists a Boolean
functionf : {—1,1}" — {—1,1} such that:

1. Forall S C [n] such thais| < 1, f(S) = 0, and

2. Eg[f()-CycleRun(z)] > 1—-2¢;-1/ 21 which impliesPr,[f(z) # CycleRun(z)] < ¢;-/ 280,

n

Proof. Given CycleRun : {—1,1}* — {-1,1}, we construct a sef C {—1,1}" using the greedy algo-
rithm Constg(CycleRun, n) described in Figuré.

Given the sefS outputted byConstg(CycleRun, n), the functionf : {—1,1}" — {—1,1} is defined in
the following way:
CycleRun(z ifxd¢gsS
Fla) = @ s
—CycleRun(z) ifz e S.

Clearly,E;[f(x) - CycleRun(x)] > 1 — 2¢; - 4/ logrf") since the sef satisfied S| < ¢; \/% - 2m,
Additionally, 1 is clearly balanced due to the structure of thes3ft, of modified points in each iteration
of Constg and the fact tha€ycleRun is odd. Thus, it remains to show thAtS) = 0 for all S C [n] such
that|S| < 1.
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Constg(CycleRun, n)
1. Initialize’S = 0,5 = 0.

2. Initialize o = 2" - 3", CycleRun({i}).

3. While|S| < ¢ - % - 2", do the following:

3a. Find somer with maximal value ofz| such thaiCycleRun(z) = 1 and such that ¢ S.

3b. If o — 2|Shift,| - |z| < 0, then find ane* ¢ S such thaiz*| = 1 andCycleRun(x*) = 1 (if no
suchz* exists, exit loop and output “Fail.”). Then s6t:= S U Shift,, setS’ = § U Shift,-,
and set := o — 4n. If ¢ = 0, exit the loop.

3c. If o — 2|Shift,| - |#| > 0, setS := S U Shift, and setr := o — 2|Shift,| - |z|.

4. ReturnsS.

Figure 1: Algorithm for constructing a set of poirfsused to define thé-resilient functiony.

Claim C.2. Consider an execution @fonstg. At the end of theé-th iteration,1 < i < ¢; - @ - 2™ if

Constz has not terminated, 168" denote the current set of points §) let o denote the current setting of
the variables and let f* denote the following Boolean function:

; CycleRun(z if ¢ ¢S
i) = @ rers
—CycleRun(z) ifxeS.

Additionally, we defing” = 0, 0* = 2" - 3, CycleRun({i}), and f° = CycleRun.
Forevery0 <i<¢ - % - 2" the following invariants hold:
L F({1h) = fid2y) = = fi({n)).
2.0'=2" 3 i Fidsp.
3. ¢’ = 4nw > 0, for some integetw.

Proof. Proof by induction.

Base Case:The base case follows trivially from the definition 6fcleRun and the definition o, o0,

£°.

Inductive Case: Assume the invariants hold for al < j < i < ¢; - % - 2™, we show that the
invariants must also hold far+ 1.

For everyj € [n], let us consider the quanti” (fl({j}) — ﬁ“({j})). Note that by flipping

i o . DL n Shift, |-|x
the value of f* on the points in the S?hlftx, f ({]}l is reduced by exaitly/2 -4 %
for eachj € [n] and so we have that'™1({1}) = f*1({2}) = --- = Ff*({n}). Moreover,
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Pl (Eje[n] FEID = Zjem J?Z“({j})) = 2|Shift,| - || and so we have that

ot = o' — 2|Shift,]| - |z|

= 2" 3 Fi({5}) — 2IShifty| - ||

JE€n]

D ()

Jj€ln]
where the second equality holds by the induction hypothesis

Finally, sinces’* = 2" - 37, FHL({4}) and fit1 is an odd{—1, 1}-valued function, we have
thatoi*! = 4nw for some integetw > 0.

O

We proceed to show thatonst< terminates. Our goal is to show that at the termination oétgerithm,
we haves = 0.

Claim C.3. The algorithmConstg always reaches a point where the condition in ldtes true.

Proof. We use the functiong; from the beginning of this section. Take= \/logn — 2loglogn — C for
a constanCC' to be determined later. Thef(t') = £eC/2(logn)/y/n, soInf(fy) > £e“/?logn and
Pr,[fy(z) # 0] < €92/t < 3e9/2, /log n/n by Equationss and6 respectively. We choos€ so that
Inf(fy) > 3 - Inf(CycleRun), which can be done sindaf(CycleRun) = O(logn).

We claim thatConstg does not include any strings in S with 3 < |z| < ¢ (and thus none with
—t' < |z| < —3). Suppose that this claim is false. Because the algorithgnesdy, then every string
whereCycleRun(x) = 1 with ¢ < |x| < n is corrupted and irf. SinceCycleRun is odd and monotone,
at least half of the strings whete| = k are corrupted fot’ < k£ < n. The contribution to be reduc-
tion in the first-order Fourier coefficients when we flip théueaon these strings frohto —1 is at least
(1/2)Inf(f/) > (3/2)Inf(CycleRun). But this implies that the sum of first-order Fourier coeéits for
the corrupted function is at most(1/2)Inf(CycleRun) < 0. This implies thatr < 0 in the execution of
Constg, which is a contradiction since stays nonnegative during the execution of the algorithm.

It remains to show that the condition in lidds satisfied throughout the execution@nst5. Because
no strings with3 < |z| < ¢’ or¢’ < |z| < —3 are corrupted, the fraction of strings corrupted is at most

Pr.[fy(x) # 0] + Prg[|z| = £1] = O(y/logn/n). Thus at most; 1"%2" strings are inS, so the
condition in line3 holds.
U

Next, we argue that whe@onst¢ reaches the point where the condition in Isteevaluates true, there
always exists a point* ¢ S such thatCycleRun(z*) = 1 and|x*| = 1. We first prove two lemmas.

Lemma C.4. Let S be the set of € {—1,1}" such thatz| = 1 andCycleRun(z) = 1. Then|Si| > 2n.

Proof. Note that sinceCycleRun is odd, we have thap_, ., _,, CycleRun(z) = 0. Moreover, since
CycleRun is monotone, we must have thal ... _; CycleRun(z) > >~ ., —_; CycleRun(z). Therefore,
we must have that_ ., _; CycleRun(z) > 0. SinceCycleRun is {1, 1}-valued, this immediately implies
that at least half of the points where|z| = 1 are such tha€ycleRun(z) = 1. There are((n_’i)/z) > 4n?

such strings whergr| = 1, so we have thatS;| > 2n2. This concludes the proof of Lemn@a4. O

Lemma C.5. [§'| < 2n2.
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Proof. Consider the first time the condition in lii3é evaluates to true. Then there is some sarsach that
CycleRun(x) = 1 and such that — 2|Shift,|-|z| < 0. Since|z| < n, this implies that < 4n%. Moreover,
in each iteratior2n points are added tg/, ando is reduced byin. Thus, after at most iterations,o
is reduced ta). These iterations are the only iterations that contribat&’t so G’\ < n-2n = 2n?as
claimed. O

We proceed to show that the when the condition in I¥eis true, there is an™ ¢ S such that
CycleRun(z*) = 1 and|z*| = 1. By Lemmac.4, there exist at leastn? number of pointsc* such that
CycleRun(z*) = 1 and|z*| = 1. Thus, if Constg reaches a point where the condition in liBieevaluates
to true and there is no poiat* ¢ S such thaCycleRun(z*) = 1 and|z*| = 1, then it must be the case that
all suchz* are already contained . But since we have by Lemnia5that|S'| < 2n? then we must have
that some poiny such thatCycleRun(y) = 1 and|y| = 1 was added t& before the first time the condition
in line 3b evaluates to true. But the first time the condition in IBteevaluates to true, we must have that
|z| > 1, and sinceConstg always chooses to add pointsvith maximal|y| > |z| > 1 to the setS, this is
impossible.

We have now argued th&tonst< always reaches a point where the condition in Il#beis true, and
that whenever this occurs there always exists a poing S such thatCycleRun(z*) = 1 and|z*| = 1.

This immediately implies that whe@onstg completes, we have = 0 and|S| < c“/b%ﬁ. As in the
beginning of the proof, we takg to be function to be the function such that

CycleRun(z) ifzx ¢ S
flay =1 " e
—CycleRun(z) ifz € S.

Clearly, Pry[f(z) # CycleRun(z)] = |S| < 61\/10%2”, and applying the invariants of Claim.2
shows thatf is 1-resilient, concluding the proof of Theoresy. O

This analysis almost works for any balanced monotone fanatiith influenceO(log n), such adribes.
While the above could be adapted in a straightforward maitshow that there is a Boolean function close
to Tribes with very small constant and first-order Fourier coefficierghowing that all of these Fourier
coefficients can be madxactlyzero seems challenging. Since we are applying these régylistas, our
proofs can not tolerate even exponentially small Fouriaffaents. The structure dfycleRun is quite
amenable to “local’ changes while retaining structure.

C.1 Influence bound for Cycle Run

The main result of this section is the following:
Theorem C.6. Inf(CycleRun) = O(logn).

The condition onCycleRun given in Definition3.6 implies that for every influential edge:, %), at
least one of the endpoints is in the first two cases in Defmidi®, and the pivotal coordinateoccurs in a
maximum length run. Thukf(CycleRun) < 2Egy/[((x) - (ry(a) () + 1)], wherel(z) is the maximum
length run in the string;, r;(x) is the number of maximal runs of length exactiy =, andi/ is the uniform
distribution on{—1,1}". In this section, we will not consider the runs wrapping ahuand thet+1 here
takes care of the case that we “split” the cycle in a maximumgtle run to lay out the bits in a line.

We make use of a result fronfs¢h9qQ:

Theorem C.7. Ex/[¢(x)] = O(logn)
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ThusInf(CycleRun) < 2Eg~y[((x) - 7¢(z) (x)] + O(log n), so the remainder of the section is devoted to
showingEz -~y [((x) - 7¢(a)(z)] = O(logn). To aid in our analysis, we will consider different distrilans
over binary strings. Consider the following method of gatiag a stringe ~ U:

1. Initialize  to the empty string, and séto a uniform+1 random bitb.

2. (Iterative step) Assuming there are sfilt- 0 bits of x to determine, then drag ~ Geometric(1/2)
conditioned ory being at mosjyj, and set the nexj bits of x to b.

3. If not alln bits of x are set, sefi to —b and return to step 2.

4. If all bits of  are set, ther: is a uniformly random string if—1, 1}".

Further, if we want to condition on the maximum runairbeing at most some value we can replace
the conditioning in step from “being at mosg” to “being at mostmin{¢, j}".

Lemma C.8. For g ~ Geometric(1/2), and1l < g < t, we havePr[g = g|g < t] < 2Pr[g = ¢|.
Proof. Follows directly from conditional probability and the fabatPr[g < ¢] > 1/2forall ¢t > 1. O

For an integek > 0, we define the distributiog, on binary strings of varying length such that a draw
from Gy is b9 (—b)92b93 - - - b9* if k is odd andb9' (—b)92b9s - - - (—b)9* if k is even. Here, thg;’s are
independenGeometric(1/2) variables, and is a uniform=1 bit.

Lemma C.9.
E [((@) 7o) (@)|t(x) = 1] < (2! 'n + 1)

Proof. We first claim that

E [U(x) 1) (@)|l(x) = 1] <t + E [l(z) - r(z)|l(x) < 1]
x~U x~U

To see this, note that if we further condition on the first rddemgth ¢ selected, this expectation is
maximized when the first run is of length Also, the expectation can only increase if we allowrathore
bits to be set rather than— ¢. Since the first run is of length we only need the maximum length run to be
at mostt in the rest of the string.

Now we have

t+ B [i@) n(@)@) <) <t+i B @@ <d<ttt B ry)liy) <1
T~ axev y~GUn
where the second inequality comes from the fact shistgenerated by at mostruns, and not bounding
the length of the string only increases the possible numbems of lengtht, conditioned on the maximum
length run being at mogt By LemmacC.8, the probability of a single run being of lengtlis at most2' —,
so we have

t+t Eg [re()l(y) <t] <t +t(217n) =t(2 I + 1)
Y~Yn

completing the proof. O

Lemma C.10.
Pryy[l(z) <t] < (1 — 2798 + exp(—n/32)
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Proof. Forx € {—1,1}", letruns(x) be the number of runs i@. We first show that with probability at
leastl — exp(—n/32), a stringxz ~ U hasruns(x) > n/8 . To do this, we prove that with probability
1 — exp(—n/32), the firstn/8 runs ofz contain at most./2 bits. Note that we may instead bound the
number of bits iny ~ G, /s, since each run af,, ;5 can only be longer.

The expected number of bits &, s generated is/4, and this number of bits is concentrated around
its mean; the number of bits has a negative binomial digtadbu By [Bro], we have

Pry.g, s[bits(y) > 2(n/4)] < exp(—n/32)

where the second inequality holds because the humber ofdegss not increase the probability of getting
a longer run, and the distributions of the lengths of eachimun are identical to (or conditioned on being
shorter than) the lengths of the runsdp 5. We then have:

Pryy[l(x) <t] < Pryyll(x) < t,runs(x) > n/8] + exp(—n/32)
< Pry.g, s [l(y) <t] +exp(—n/32)

where the second inequality holds because the length ofreiacbf « is distributed identically (or condi-
tioned to be shorter) to each rungf and considering fewer runs only decreases the chancedanioly
a run longer thart. It is then straightforward to calcula®ry.g, .[((y) < t] = (1 —27%)"/%, since
Prig <t]=1-2""for g ~ Geometric(1/2). O

We now proceed to shoW,y[¢(x) - rya)] = O(logn), starting by applying total expectation and
applying LemmaC.S

E (@) rya)(@)] = Y Proull(@) = |Eaui[l(@) - el (z) = 1]
<Y Proll(m) = tt(2"n+ 1)
< E.wull(z)] + iPrmNu [() = 1]t2'~"n
< O(logn) + f;((l — 2708 L exp(—n/32))t2 " tn
< O(logn) + Zn:(l — 2 H)/8ypal—ty

=1

< O(logn) + Z tn2' " exp(—27"n/8)
t=1

Letting a; = tn2'~texp(—27'n/8), we see that,_1/a; < 3/4 when2 < t < logn — 10, and
ai+1/ar < 3/4 whenlogn + 10 < t < n. Also, a; < O(logn) for each term wheréogn — 10 < ¢t <
logn + 10. So the proof is completed by noting the above is at most
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logn—10 t=log n+9
O(logn) + Z Glogn-10(3/4)E" 10 1 3" gy 4 Z Glog n10(3/4)t~ (108" +10)

t=logn—9 t=log n+10
logn—10 t=log n+9
< O(logn) ( D @0ty N 1y Z (3/4)t <1°g"+10>) = O(logn).
t=2 t=logn—9 t=logn+10

C.2 Lower bound for monotonicity-resiliency distance

We give a lower bound for distance between monotonicity asiliency that matches the bound @ycleRun
up to constant factors.

Theorem C.11. For every monotone functiofi : {—1,1}" — {—1,1} and 1-resilientg : {—-1,1}" —
{~1.1}, we havePr,[f(x) # g(@)] > Q(\/ “E").

Proof. If Var[f] < 1/2, thenf(0)> > 1/2, andPr[f # g] > LE[(f — g)* > 1/8 for any balanced (hence
1-resilient) Boolean function. If f({i}) > n~%49 for somei, then is Q(n~0-49)-far from every Boolean
function g whereg({:}) = 0.

We assum@ar|[f] > 1/2 and f({i}) < n=049 for all i € [n]. Sincef is monotone]nf;(f) < n=0-49
forall i € [n], and by (Talagrand’s strengthening of) the KKL Theoréial3 KKL88], Inf(f) > K logn
for some constank’, and} ;) f({i}) = Klogn. Letg : {-1,1}" — {—1,1} be al-resilient Boolean

function; we will show thalPr,[f(x) # g(z)] = Q(,/E2).
Recall the functiong; defined earlier:

1 if |z] > ty/n
filx)=<0 if —ty/n<|z|<tyn
-1 if |z| < —ty/n
Selectt to be the largest such thatf; satisfiesPr[f:(x) # 0] > Pr[(f — g)(x) # 0] = Pr[f(x) #
g(z)]. We then haveilogn < 3, f/—\g({i}) < Die) f:({i}), where the second inequality holds
becausef; maximizes the sum of the linear coefficients for any functioth support sizéPr[f;(x) # 0],
and the support size ¢f is at least the support size ¢f— g
Again, becausg; is monotoneInf(f;) = >_,c(, fi({i}). EquationS implies that(3K logn)/v/n >
o(t) > (Klogn)/(3y/n), and it follows that < 4./log n. From Equatiors, we havePr,|[f;(x) # 0] >
(4K/3)\/@. By the choice ot, we have

Pr,[f(2) # g(@)] > Pro[fi1(a) # 0]
> Pro[fi(x) 0] — 2Pry || = ]

S g logn _24Klogn _q ( logn> ’

- 3 n n n

where the first inequality is an application of the union kihuand the second is an application of
Equation?. O
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