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Abstract

We consider polyhedral versions of Kannan and Lip-
ton’s Orbit Problem [14, 13]—determining whether a
target polyhedron V may be reached from a starting
point x under repeated applications of a linear trans-
formation A in an ambient vector space Qm. In the
context of program verification, very similar reachabil-
ity questions were also considered and left open by Lee
and Yannakakis in [15], and by Braverman in [4]. We
present what amounts to a complete characterisation of
the decidability landscape for the Polyhedron-Hitting
Problem, expressed as a function of the dimension m
of the ambient space, together with the dimension of
the polyhedral target V : more precisely, for each pair
of dimensions, we either establish decidability, or show
hardness for longstanding number-theoretic open prob-
lems.

1 Introduction

Given a linear transformation A over the vector space
Qm, together with a starting point x, the orbit of x un-
der A is the infinite sequence 〈x,Ax,A2x, . . . , Ajx, . . .〉.
A natural decision problem in discrete linear dynamical
systems is whether the orbit of x ever hits a particular
target set V .

An early instance of this problem was raised by
Harrison in 1969 [12] for the special case in which V
is simply a point in Qm. Decidability remained open
for over ten years, and was finally settled in a semi-
nal paper of Kannan and Lipton, who moreover gave a
polynomial-time decision procedure [14]. In subsequent
work [13], Kannan and Lipton noted that the Orbit
Problem becomes considerably harder when the target
V is replaced by a subspace of Qm: indeed, if V has di-
mension m− 1, the problem is equivalent to the Skolem
Problem, known to be NP-hard but whose decidability
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has remained open for over 80 years [23]. Nevertheless,
Kannan and Lipton speculated in [13] that instances of
the Orbit Problem with low-dimensional subspaces as
target might be decidable. This was finally substanti-
ated in [6], which showed decidability for vector-space
targets of dimension at most 3, with polynomial-time
complexity for one-dimensional targets, and complexity
in NPRP for two- and three-dimensional targets.

In this paper, we study a natural generalisation of
the Orbit Problem, which we call the Polyhedron-

Hitting Problem, in which the target V is allowed to
be an arbitrary (bounded or unbounded) polyhedron.1

We present what amounts to a complete characterisa-
tion of the decidability landscape for this problem, ex-
pressed as a function of the dimension m of the ambient
space Qm, together with the dimension k of the poly-
hedral target V ; more precisely, for each pair of dimen-
sions, we either establish decidability, or show hardness
for longstanding number-theoretic open problems. Our
results are summarised in Fig. 1. As our algorithms rely
on symbolic manipulation of algebraic numbers of un-
bounded degree and height, all decidable instances lie
in PSPACE.

A key motivation for studying the Polyhedron-
Hitting Problem comes from the area of program ver-
ification, and in particular the problem of determining
whether a simple while loop with linear (or affine) as-
signments and guards will terminate or not. Very simi-
lar reachability questions were considered and left open
by Lee and Yannakakis in [15] for what they termed
“real affine transition systems”. Similarly, decidability
for the special case of the Polyhedron-Hitting Problem
in which the polyhedral target consists of a single half-
space (rather than an intersection of several halfspaces)

1This problem was also considered in [24] under the appella-
tion of Chamber-Hitting Problem. However that paper focused
on connections with formal language theory rather than on estab-
lishing decidability.
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m = 1 m = 2 m = 3 m = 4 m = k m ≥ k + 1
k = 0 P P P P P P

k = 1 PSPACE PSPACE PSPACE PSPACE PSPACE PSPACE

k = 2 PSPACE PSPACE PSPACE PSPACE PSPACE

k = 3 PSPACE S5 PSPACE S5

k = 4 D D D & S5

k ≥ 5 D D & Sk+1

Figure 1: Upper and lower complexity bounds for instances of the Polyhedron-Hitting Problem in ambient
dimension m with a k-dimensional target. The row k = 0 corresponds to Kannan and Lipton’s Orbit
Problem [14, 13]. Upper complexity bounds are denoted by P and PSPACE, indicating membership in these
classes, whereas lower bounds are denoted by D (indicating reduction from certain Diophantine-approximation
problems detailed precisely in Sec. 2.2) and Sd (indicating reduction from Skolem’s Problem of order d, defined
in Sec. 2.2).

was mentioned as an open problem by Braverman in
Sec. 6 of [4].

It should be noted, however, that the problem con-
sidered in the present paper differs in one fundamental
respect from what is traditionally termed the ‘Termi-
nation Problem’ in the program verification literature
(see, e.g., [3]). The latter studies termination of while
loops for all possible initial starting points (valuations
of the variables), rather than for a fixed starting point
as we consider in this paper. This distinction drastically
transforms the nature of the problem at hand.

In [18], the traditional Termination Problem is
solved over the integers for while loops under cer-
tain restrictions (chiefly, diagonalisability of the asso-
ciated linear transformation). That paper relies on
markedly different techniques from the present one, es-
chewing Baker’s Theorem and relying instead on non-
constructive lower bounds on sums of S-units (which in
turn follow from deep results in Diophantine approxi-
mation), as well as real algebraic geometry.

The present paper vastly extends our earlier results
from [6], in which only vector-space targets were consid-
ered. Polyhedra, defined as intersections of (affine) half-
spaces, pose substantial new challenges, as evidenced
among others by the Diophantine-approximation lower
bounds that arise for polyhedral targets of dimension 4
or greater. In addition to classical tools from algebraic
and transcendental number theory such as Baker’s The-
orem, the present paper relies crucially on several tools
not invoked in [6] or [18], including techniques from Dio-
phantine approximation, convex geometry, as well as
decision procedures for the existential fragment of the
first-order theory of the reals.

In terms of future work, either establishing com-
plexity lower bounds, or improving the PSPACE mem-
bership of the decidable problem instances, stand out as
challenging open questions.

2 Polyhedron-Hitting Problem

The focus of this paper is the Polyhedron-Hitting

Problem: given a square matrix A ∈ Qm×m, a
vector x ∈ Qm and polyhedron P (represented as
the intersection of halfspaces), determine whether there
exists a natural number n such that Anx ∈ P . We
will denote by PHP(m, k) the version of the problem
in which the ambient space is Qm and the target
polyhedron has dimension k ≤ m.

We begin this section with our decidability re-
sults for low-dimensional versions of the problem. We
define two related problems to which we reduce the
Polyhedron-Hitting Problem in order to obtain our com-
plexity upper bounds: the Extended Orbit Problem and
the Simultaneous Positivity Problem. Then we proceed
to give hardness results for higher-dimensional cases by
reducing from Skolem’s Problem and from Diophantine
approximation.

2.1 Decidability results Our effectiveness result on
the Polyhedron-Hitting Problem is the following:

Theorem 2.1. If k ≤ 2 or m = k = 3, then PHP(m, k)
is in PSPACE.

The strategy for PHP(m, k) when k ≤ 2 is to reduce to
the related Extended Orbit Problem: given a linear
transformation A ∈ Qm×m, a vector x ∈ Qm, a target
Q-vector space V defined by a basis {y1, . . . , yd} ⊆ Qm

and a constraint matrix B ∈ (R ∩ A)k×d, determine
whether there exists some exponent n ∈ N such that
Anx ∈ V and the coordinates u = (u1, . . . , ud)

T of
Anx with respect to the basis {y1, . . . , yd} satisfy Bu ≥
0. This problem essentially specialises the target of
PHP to a cone and assumes a particular parametric
representation.

We focus first on PHP(m, 1). By Lemma A.2 in
Appendix A.1, a one-dimensional polyhedron is of the



form
P = {v1 + αv2 : α ∈ I}

where I is one of R, [0, 1] and [0,∞). Moreover, this
parametric representation is computable in polynomial
time from the halfspace description of P . Now suppose
we wish to find n ∈ N and u1, u2 ∈ Q such that

[

A 0
0 1

]n [
x
1

]

= u1

[

v1
1

]

+ u2

[

v2
0

]

The (m + 1)-th component forces any witness to this
problem instance to have u1 = 1. Therefore, requiring
u2 ≥ 0 and u1−u2 ≥ 0 gives an Extended Orbit instance
with a two-dimensional target space which is positive
if and only if the segment {v1 + u2v2 : u2 ∈ [0, 1]}
intersects the orbit {Anx : n ∈ N}. Requiring instead
only u2 ≥ 0 gives the half-line {v1 + u2v2 : u2 ∈
[0,∞)}, whereas setting no restriction gives the whole
line {v1 + u2v2 : u2 ∈ R}. In all cases, the resulting
Extended Orbit instance has target space of dimension
two, so by Theorem 3.1 in Section 3, PHP(m, 1) is in
PSPACE.

Now we move to PHP(m, 2). By Lemma A.1 in
Appendix A.1, any two-dimensional polyhedron can
be decomposed into a finite union of simple shapes:
P =

⋃s
i=1 Si where

Si = {vi1 + αvi2 + βvi3 : α ≥ 0 and β ≥ 0 and T (α, β)}

where the predicate T is either α + β ≤ 1, or β ≤ 1
or true. In fact, it is easy to see from the proof of

Lemma A.1 that s ∈ 2‖P‖O(1)

. For each i, the problem
of whether there exists n such that Anx ∈ Si reduces to
the Extended Orbit Problem with a three-dimensional
target. For instance, if the predicate Ti is α + β ≤ 1,
that is, Si is a triangle, then Anx ∈ Si if and only if
there exist u1, u2, u3 ∈ Q such that u2 ≥ 0, u3 ≥ 0,
u1 − u2 − u3 ≥ 0 and

[

A 0
0 1

]n [
x
1

]

=

[

vi1 vi2 vi3
1 0 0

]





u1
u2
u3





As in the reduction from PHP(m, 1), the (m + 1)-th
component forces u1 = 1 and allows us to express the
constraint u2 + u3 ≤ 1 with a homogeneous inequality.
The remaining possible choices of predicate T reduce
similarly. By Theorem 3.1 in Section 3, the Extended
Orbit Problem with target space of dimension three
is in PSPACE. Therefore, to solve PHP(m, 2) in
PSPACE, it suffices to choose nondeterministically a
simple two-dimensional target Si and proceed to solve
an Extended Orbit instance.

Finally, consider the Polyhedron-Hitting Problem
in the case when the target polyhedron P has dimension

m, matching the dimension of the ambient space Qm.
Consider the halfspace description of P :

P =

s
⋂

i=1

Hi =

s
⋂

i=1

{p ∈ Qm : vTi p ≥ ci}

Define the linear recurrence sequences Si(n) = vTi A
nx.

By the Cayley-Hamilton Theorem, the sequences Si sat-
isfy a common recurrence equation with characteristic
polynomial the minimal polynomial fA(x) of A. Define
also the sequences S ′

i(n) = Si(n)− ci. It is not difficult
to show that the latter also satisfy a common recurrence
equation, with characteristic polynomial (x − 1)fA(x).
Since fA has degree at most m, the order of the recur-
rence equation shared by the sequences S ′

i(n) is at most
m+1. Moreover Anx ∈ P iff S ′

i(n) ≥ 0 for i = 1, . . . , s.
Thus, PHP(m,m) reduces to the Simultaneous

Positivity Problem: given a family of linear recur-
rence sequences S ′

i(n), i = 1, . . . , s, which satisfy a com-
mon recurrence relation of order m+1, does there exist
an index n such that S ′

i(n) ≥ 0 for all i? This problem
is the focus of Section 4, where we place it in PSPACE

in the case of LRS over R ∩ A whose shared recurrence
relation is of order at most three, or of order four but
with 1 as a characteristic root. This immediately shows
that PHP(3, 3) is in PSPACE, completing the proof of
Theorem 2.1.2

2.2 Hardness results Now we proceed to give hard-
ness results for the Polyhedron-Hitting Problem. First,
observe that lower-dimensional versions of PHP reduce
to higher-dimensional ones:

Lemma 2.1. For all m, k such that m ≥ k, PHP(m, k)
reduces to PHP(m+ 1, k) and to PHP(m+ 1, k + 1).

Proof. Given A ∈ Qm×m, x ∈ Qm and a polyhedron
P ⊆ Qm with dim(P ) = k, we define the polyhedra
P ′ = {(t, 0) ∈ Qm+1 : t ∈ P} and P ′′ = {(t, 1) ∈ Qm+1 :
t ∈ P}. Note that dim(P ′) = k and dim(P ′′) = k + 1.
Then

Anx ∈ P ⇐⇒
[

A 0
0 1

]n [
x
0

]

∈ P ′

⇐⇒
[

A 0
0 1

]n [
x
1

]

∈ P ′′

which shows both reductions.

2In fact we can solve the problem in greater generality. One can
show a PSPACE bound in the case of a simple shared recurrence
with at most four dominant complex roots. This in turn entails
membership in PSPACE for PHP(4, 4) and PHP(5, 5) in the
case of a diagonalisable matrix. We omit this from the present
paper for lack of space.



Next, recall that Skolem’s Problem is the prob-
lem of determining, given a linear recurrence sequence
S(n) over Q, whether it has a zero, that is, an index
n ∈ N such that S(n) = 0. The decidability of Skolem’s
Problem for sequences of order 5 or greater has been
open for decades.

It is easy to show that Skolem’s Problem for LRS
of order m reduces to PHP(m,m − 1). For a linear
recurrence sequence S(n) = yTAnx, we have S(n) = 0
if and only if Anx ∈ P , where P is the polyhedron
{t ∈ Qm : yT t ≥ 0 and yT t ≤ 0}. In fact, P =
(span{y})⊥, so dim(P ) = m− 1 and this is an instance
of PHP(m,m − 1). By Lemma 2.1, it follows that
whenever m > k, decidability of PHP(m, k) would
imply decidability of Skolem’s Problem for LRS of order
k + 1.

In fact, we can show that even PHP(4, 3) is hard
for Skolem’s Problem for linear recurrence sequences of
order 5.

Lemma 2.2. Skolem’s Problem for LRS of order 5 re-
duces to PHP(4, 3).

Proof. As discussed in reference [19], the only outstand-
ing case of Skolem’s Problem of order 5 is when the
LRS has five characteristic roots: two pairs of complex
conjugates λ1, λ1, λ2, λ2 and a real root ρ, such that
|λ1| = |λ2| > |ρ| > 0. Therefore, let S1(n) be such a
sequence, given by

S1(n) = aλn1 + aλn1 + bλn2 + bλn2 + cρn

Define the order-4 sequence S2(n) by

S2(n) =
aλn1 + aλn1 + bλn2 + bλn2

ρn

Let A be the 4 × 4 companion matrix of S2, and let x
be the vector of initial terms of S2, so that

Anx =









S2(n)
S2(n+ 1)
S2(n+ 2)
S2(n+ 3)









Then S1(n) = 0 if and only if S2(n) = −c, or
equivalently, if there exist u1, u2, u3 such that

Anx =









−c
0
0
0









+ u1









0
1
0
0









+ u2









0
0
1
0









+ u3









0
0
0
1









which is an instance of PHP(4, 3).

Finally, in Section 4 we show that solving
PHP(m, k) for m ≥ k ≥ 4 is highly unlikely without

major breakthroughs in analytic number theory. For
any real number x, the homogeneous Diophantine ap-
proximation type L(x) is a measure of the extent to
which x can be well-approximated by rationals. It is
defined by:

L(x) = inf
{

c ∈ R : ∃n,m ∈ Z.
∣

∣

∣
x− n

m

∣

∣

∣
<

c

m2

}

Much effort has been devoted to the study of the pos-
sible values of the approximation type, see for instance
[8]. Nonetheless, very little is known about the approxi-
mation type of the vast majority of transcendental num-
bers. In Section 4 we prove that a decision procedure
for the Simultaneous Positivity Problem for rational re-
currences order at most 4 would entail the computabil-
ity of L(argλ/2π) for any complex number λ ∈ Q(i)
of absolute value 1.3 Therefore, a decision procedure
for PHP(4, 4) is extremely unlikely without significant
advances in Diophantine approximation. By Lemma
2.1, the same hardness result holds for PHP(m, k) with
m ≥ k ≥ 4. A similar result has been shown in [20]
concerning the Positivity Problem for single linear re-
currence sequences of order at most 6.

Our results are summarised in tabular form in the
figure presented in the Introduction.

3 Extended Orbit Problem

In this section, we give an overview of the Extended
Orbit Problem. We are given a matrix A ∈ Qm×m, an
initial point x ∈ Qm, and a target cone specified by a
set of vectors {y1, . . . , yd} ⊆ Qm and a constraint matrix
B ∈ (R ∩ A)k×d. The question is whether there exists
an exponent n ∈ N and coordinates u = (u1, . . . , ud)

T

such that Anx =
∑d

i=1 uiyi and Bu ≥ 0. We refer to
the space V spanned by y1, . . . , yd, which contains the
target cone, as the target space.

Our main decidability result concerning the Ex-
tended Orbit Problem is the following:

Theorem 3.1. The Extended Orbit Problem is in
PTIME in the case of a one-dimensional target space,
and in PSPACE in the case of a two- or three-
dimensional target space.

Notice that these complexity bounds depend only on the
dimension of the target space V , not on the dimension
of the ambient space Qm.

We now give an overview of the strategy for proving
Theorem 3.1, and consign the full proof to Appendix
C in the interest of clarity. The decision method

3Recall that a real number x is computable if there exists an
algorithm which, given any rational ε > 0 as input, computes a
rational q such that |q − x| < ε.



constructs a ‘Master System’ consisting of equations in
n and u = (u1, . . . , ud) together with the inequalities
Bu ≥ 0 given as part of the input. The solutions of the
Master System are in one-to-one correspondence with
the solutions of the problem instance.

When the Master System contains sufficiently many
equations, it was shown in reference [5] that a bound N
can be derived such that if n > N , then Anx 6∈ V .
Writing ||I|| for the size of the input, we have N ∈
||I||O(1) when dim(V ) = 1 and N ∈ 2||I||

O(1)

when
dim(V ) ≤ 3.

With a one-dimensional target, it is sufficient to
try all exponents n ≤ N to get a polynomial-time
algorithm. In the two- and three-dimensional case,
the algorithm is a guess-and-check procedure. An
exponent n ≤ N is nondeterministically chosen as
a possible witness. Then Anx ∈ V is verified by
checking whether the determinant of the matrix with
columns Anx, y1, . . . , yd equals 0. If it does, then
Anx ∈ V , and we proceed to calculate the coefficients
u1, . . . , ud witnessing this membership and to verify the
inequalities Bu ≥ 0 which they must satisfy.

In the verification procedure, all numbers are ex-
pressed as arithmetic circuits and exponentiation is per-
formed using repeated squaring. Recall that PosSLP is
the class of problems which reduce in polynomial time
to checking whether an arithmetic circuit evaluates to
a positive number. The described operations may all
be carried out using an oracle for PosSLP, so the algo-
rithm gives a complexity upper bound of NPPosSLP for
the case of a large Master System. The work of Allen-
der et al. [1] places PosSLP in the counting hierarchy,
which shows the algorithm runs in polynomial space, as
Theorem 3.1 claims.

On the other hand, when the Master System con-
tains ‘few’ equations, we do not have such a bound N
beyond which membership in V is impossible. These
cases are the main focus of Appendix C, where we show
how to solve such small Master Systems. The proce-
dure invokes a decision method for the Simultaneous
Positivity Problem, which is discussed in Section 4 and
is shown to be in PSPACE for all orders which arise
in the reduction.

4 Simultaneous Positivity

In this section, we consider the Simultaneous Pos-

itivity problem: given linear recurrence sequences
S1, . . . ,Sk over R ∩ A which satisfy a common recur-
rence equation, are they ever simultaneously positive,
that is, does there exist n such that Si(n) ≥ 0 for all
i ∈ {1, . . . , k}? Solving this problem is instrumental
in our decision procedures for both the Extended Orbit
Problem and the Polyhedron-Hitting Problem.

The asymptotic behaviour of a linear recurrence se-
quence S is closely linked to its dominant characteristic
roots, that is, the characteristic roots of greatest mag-
nitude. If λ1, . . . , λs are the dominant roots, we can
write

S(n)
|λ1|n

= P1(n)

(

λ1
|λ1|

)n

+ · · ·+ Ps(n)

(

λs
|λ1|

)n

+ r(n)

where r(n) tends to 0 exponentially quickly. We
can use the polynomial root-separation bound (A.2)
in Appendix A.2 to bound the absolute value of the
quotient λ/λ1, where λ is a non-dominant characteristic
root. Thus we can show:

Lemma 4.1. Suppose we are given an LRS S as above.
Then there exist constants ε ∈ (0, 1) and N ∈ N such

that N ∈ 2||S||O(1)

, ε−1 ∈ 2||S||O(1)

, and |r(n)| < (1−ε)n
for all n > N .

4.1 Decidability results In this section we prove
the following result:

Theorem 4.1. The Simultaneous Positivity Problem is
in PSPACE for sequences over R ∩ A whose common
recurrence equation has order at most 3, or order 4 but
with at least one real root.

We will restrict our attention to non-degenerate LRS.
As outlined in Appendix A.3, a degenerate sequence can
be partitioned into non-degenerate subsequences. Then
the Simultaneous Positivity instance is equivalent to
the disjunction of all Simultaneous Positivity instances
where each degenerate sequence has been replaced by
one of its non-degenerate subsequences. In general, this
leads to exponentially many non-degenerate problem
instances. However, this leaves Theorem 4.1 unaffected,
as a non-degenerate problem instance may simply be
guessed nondeterministically by a PSPACE algorithm.

The assumption of non-degeneracy guarantees that
there can be at most one real root among the dominant
roots of the sequences. We can assume without loss of
generality that any real root of the sequence is positive
(otherwise we separately consider the cases of even and
odd n).

The algorithm for Simultaneous Positivity is similar
to the one for Extended Orbit. We search for witnesses
up to some computable bound N ∈ 2‖I‖

O(1)

. To this
end, we will choose a witness n nondeterministically
and then verify Sj(n) = vTj M

n
j wj ≥ 0 for all j.

Recalling that the entries of Mj are algebraic numbers,
we can verify this family of inequalities by constructing
a sentence τ in the existential first-order theory of the
reals which is true if and only if vTj M

n
j wj ≥ 0 for

all j. We specify each real algebraic number with



description (fα, x0, y0, R) using the first-order formula
∃z.fα(z) = 0 ∧ (z − x0)

2 + y20 ≤ R2. To ensure that
‖τ‖ ∈ ‖I‖O(1), we use repeated squaring to calculate
Mn

j . Finally, we check the validity of τ in PSPACE,
as per Theorem A.2 in Appendix A.4.

We now consider two cases, according to the number
of dominant complex roots of the shared recurrence
equation.

No dominant complex roots. Suppose the
dominant characteristic roots do not include a pair of
complex conjugates. Then by the assumption of non-
degeneracy, there is one real dominant root ρ > 0. Then
the j-th sequence is given by

Sj(n)

ρn
= Pj(n) + rj(n)

where rj is itself a linear recurrence of lower order
which converges to 0 exponentially quickly, and Pj ∈
(R ∩ A)[x]. Each polynomial Pj(n) is either identically
zero or is ultimately positive or ultimately negative as
n tends to infinity. In the latter two cases, there is an

effective threshold Nj ∈ 2||Sj(n)||
O(1)

beyond which the
sign of Sj does not change. If some Sj is ultimately
negative, then any witness to the problem instance
must be bounded above by Nj. Since Nj is at most
exponentially large in the size of the input, we use a
guess-and-check procedure and are done. Similarly, for
each sequence Sj for which Pj is ultimately positive
we can search for witnesses up to the threshold Nj

and if none are found, we discard Sj as if it were
uniformly positive. Finally, we are left only with
sequences Sj for which Pj is identically zero. Then
the problem instance is equivalent to Simultaneous
Positivity on the sequences rj . These sequences satisfy
a common recurrence equation of lower order, so we
proceed inductively.

Two simple dominant complex roots. Suppose
now that the dominant roots of the shared recurrence
equation include exactly two complex roots λ, λ and
possibly a real dominant root ρ1 > 0. Moreover, assume
that the roots are all simple, so the j-th sequence is
given by

Sj(n) = ajλ
n + ajλ

n
+ bjρ

n
1 + cjρ

n
2

that is,

Sj(n)

|λ|n = 2|aj | cos(αj + nϕ) + bj + rj(n)

where αj = arg(aj) and ϕ = arg(λ). Moreover,
rj is a linear recurrence sequence of order at most 2
with real characteristic roots. Observe that for all j,
bj + rj(n) is either ultimately positive or ultimately

negative as n tends to infinity. Furthermore, a threshold
beyond which the sign does not change is effectively
computable and at most exponential in ||Sj ||. Following
the reasoning of the previous case, we see that we can
dismiss sequences Sj which have aj = 0.

Assume therefore that aj 6= 0 for all j. By Lemma
B.1 in Appendix B, for each sequence Sj there exists an

effective threshold Nj ∈ 2||Sj||
O(1)

such that for n > Nj,
rj(n) is too small to influence the sign of Sj(n). That
is, for all n > Nj , we have

Sj(n) ≥ 0 ⇐⇒ bj + cos(αj + nϕ) ≥ 0

Therefore, for n > N = maxj{Nj}, the problem
instance is equivalent to a conjunction of inequalities
in n:

∀j. cos(αj + nϕ) ≥ −bj
We use guess-and-check to look for witnesses n ≤ N . If
none are found, the problem instance is then decidable
in PSPACE by Lemma B.2 in Appendix B.

4.2 Hardness We now proceed to show our main
hardness result for Simultaneous Positivity and hence
for PHP(m,m). Recall that the homogeneous Diophan-
tine approximation type L(x) of a real number x, de-
fined in Section 2.2, is a measure of how well x can be
approximated by rationals. Very little progress has been
made on calculating the approximation type for the vast
majority of transcendental numbers. In this section, we
show that a decision procedure for Simultaneous Posi-
tivity for LRS with shared recurrence equation of order
4 would entail the computability of the approximation
type of all Gaussian rationals:

Theorem 4.2. Suppose that Simultaneous Positivity is
decidable for rational linear recurrence sequences. Then
for any λ ∈ Q(i) on the unit circle, L(argλ/2π) is a
computable number.

Suppose we wish to calculate L(ϕ/2π), where ϕ =
argλ for some λ of magnitude 1. Consider the following
two sequences for some fixed rational number A:

S1(n) =
1

2

(

(A− in)λn + (A+ in)λ
n
)

S2(n) =
1

2

(

(A+ in)λn + (A− in)λ
n
)

It is straightforward to verify that S1(n) and S2(n)
are both rational sequences satisfying a common order-4
recurrence with characteristic polynomial (x − λ)2(x −
λ)2. Moreover we have

S1(n) = n cos(nϕ− π/2) +A cos(nϕ)

= A cos(nϕ) + n sin(nϕ)



S2(n) = n cos(nϕ+ π/2) +A cos(nϕ)

= A cos(nϕ)− n sin(nϕ)

Let wn = n| sin(nϕ)| − A cos(nϕ). It is clear that
S1(n) ≥ 0 and S2(n) ≥ 0 if and only if wn ≤ 0. We
will show that a Simultaneous Positivity oracle may be
used on these sequences for different choices of A to
compute arbitrarily good approximations of L(ϕ/2π).
Throughout this section, write [x] to denote the distance
from x to the closest integer multiple of 2π, that is,
[x] = min{|x− 2πj| : j ∈ Z}.

Given ε ∈ (0, 1), there exists δ > 0 such that for all
x ∈ [−δ, δ], the following hold:

(4.1) (1− ε)|x| ≤ | sinx| ≤ |x|

(4.2) 1− ε ≤ cosx

Moreover, there exists N ∈ N such that A/N ≤ δ and
also,

(4.3) if | sinx| ≤ A/N , then |x| ≤ δ.

Lemma 4.2. Suppose that n ≥ N is such that wn ≤ 0.
Then n[nϕ] < A/(1− ε).

Proof.

| sin(nϕ)| ≤ A

n
cos(nϕ) ≤ A

N
[as wn ≤ 0, n ≥ N ]

⇒[nϕ] ≤ δ [by (4.3)]

But from the definition of wn, inequality (4.1) and
cosx ≤ 1, we have

wn = n| sin(nϕ)| −A cos(nϕ) ≥ n(1− ε)[nϕ]−A

Therefore, n[nϕ] ≤ A/(1− ε).

Lemma 4.3. Let n ≥ N be such that n[nϕ] ≤ A(1− ε).
Then wn ≤ 0.

Proof. Notice that

[nϕ] ≤ A(1− ε)

n
≤ A

N
≤ δ

so for wn we have

wn =n| sin(nϕ)| −A cos(nϕ) [definition of wn]

≤n[nϕ]−A(1 − ε) [by (4.1)(4.2)]

≤A(1− ε)−A(1− ε) = 0 [by premise]

Letting t = ϕ/2π, we see that

2πL(t) = inf
m∈N

m[mϕ]

Thus to show computability of L(t) it is enough to show
that infm∈Nm[mϕ] is computable. For this in turn it
suffices to provide a procedure that, given a, b ∈ Q

with a < b, computes a threshold N ∈ N and either
outputs that infm≥N m[mϕ] < b or infm≥N m[mϕ] > a.
(Clearly infm<N m[mϕ] can be computed to any desired
precision.)

Given a < b as above, compute ε and A such that

a < A(1 − ε) <
A

1− ε
< b .

Calculate also the constant N in the statement of
Lemmas 4.2 and 4.3 for this choice of ε and A. Then
run a Simultaneous Positivity oracle on the N -th tails
of the two sequences S1(n) and S2(n) to determine
whether wn ≤ 0 for some n ≥ N . If the oracle accepts,
then infm∈Nm[mϕ] ≤ A

1−ε < b by Lemma 4.2. If the
oracle rejects, then infm∈Nm[mϕ] ≥ A(1 − ε) > a by
Lemma 4.3.

A Preliminaries

A.1 Polyhedra and their representations Here
we state some basic properties of polyhedra. For more
details we refer the reader to, for example [10, 16, 26].
A halfspace in Rd is the set of points x ∈ Rd satisfying
vTx ≥ c for some fixed vector v ∈ Rd and real number c.
A polyhedron in Rd is the intersection of finitely many
halfspaces:

(A.1) P =











x ∈ Rd :

vT1 x ≥ c1
...

vTmx ≥ cm











We call the set {(v1, c1), . . . , (vm, cm)} a halfspace de-
scription of a polyhedron, or simply an H-polyhedron.
The problem of determining a minimal subset of the
inequalities (A.1) that define the same polyhedron is
called the H-redundancy removal problem and is solvable
in polynomial time by reduction to linear programming.
Thus, we may freely assume that there are no redundant
constraints in the descriptions of H-polyhedra.

The dimension of a polyhedron P , denoted dim(P ),
is the dimension of the subspace of Rd spanned by
P . The task of calculating the dimension of an H-
polyhedron, called the H-dimension problem, can be
done in polynomial time by solving polynomially many
linear programs. If dim(P ) = d, we call P full-
dimensional. The minimal halfspace representation of a
full-dimensional polyhedron is unique, up to scaling of
the inequalities in (A.1).



The convex cone of a finite set of vectors v1, . . . , vm
is defined as

cone({v1, . . . , vm}) = {λ1v1 + · · ·+ λmvm : ∀i.λi ≥ 0}

If the vectors v1, . . . , vm are linearly independent, the
cone is called simplicial. A classical result, due to
Carathéodory, states that each finitely generated cone
can be written as a finite union of simplicial cones:

Theorem A.1. (Carathéodory) Let v1, . . . , vm ∈ Rd.
If v ∈ cone(v1, . . . , vm), then v belongs to the cone gen-
erated by a linearly independent subset of {v1, . . . , vm}.

We use this to prove that any two-dimensional poly-
hedron decomposes into a finite union of simple two-
dimensional shapes:

Lemma A.1. Suppose P ⊆ Rd is a two-dimensional
polyhedron. Then P =

⋃m
i=1Ai, where m is finite and

each of Ai is of the form

Ai = {ui + αvi + βwi : Ti(α, β)}

for vectors ui, vi, wi ∈ Rd and predicates Ti(α, β) chosen
from the following:

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 (Ai is an infinite cone)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ α + β ≤ 1 (Ai is a
triangle)

• Ti(α, β) ≡ α ≥ 0 ∧ β ≥ 0 ∧ β ≤ 1 (Ai is an infinite
strip)

Furthermore, if we are given a halfspace description of
P with length ‖P‖, the size of the representation of each
vector ui, vi, wi is at most ‖P‖O(1).

Proof. Let
P = {x ∈ Rd : Ax ≥ b}

for some A ∈ Rm×d, b ∈ Rd and define the polygon

P ′ = {y ∈ Rd+1 : [ A −b ] y ≥ 0}

so that dim(P ′) = 3 and

P = {x ∈ Rd : ( x 1 )T ∈ P ′}

Notice that P ′ is specified using only homogeneous
inequalities, so there exist vectors V = {v1, . . . , vs} such
that P ′ = cone(V ). By scaling if necessary, we can
assume the (d + 1)-th component of each vi is either 0
or 1. Let H denote the hyperplane in Rd+1 where the
(d+1)-th coordinate is 1. By Carathéodory’s Theorem,
P ′ may be written as the union of finitely many cones
generated from linearly independent subsets of V . Let

ui be the projection of vi to the first d coordinates. Since
dim(P ′) = 3, no more than three elements of V can be
linearly independent, so

P ′ =
⋃

(i1,i2,i3)∈I

cone(vi1 , vi2 , vi3)

The intersection H ∩ cone(vi1 , vi2 , vi3) is non-empty if
and only if at least one of vi1 , vi2 , vi3 has 1 in the (d+1)-
th coordinate. Therefore, P is the finite union of shapes
Ai with only two degrees of freedom:

Ai = {αui1 + βui2 + γui3 : α, β, γ ≥ 0 ∧ Ti(α, β, γ)}

where each predicate Ti is α = 1, or α + β = 1, or
α+β+γ = 1. These are precisely the desired three types
of parametric shapes. The descriptions of the vectors
involved is polynomially large because each vector vi is
the intersection of d of the halfspaces in Rd+1 which
define P ′.

A simpler version of the above result gives a similar
parametric form in the case dim(P ) = 1:

Lemma A.2. Suppose P ⊆ Rd is a one-dimensional
polyhedron. Then

P = {v1 + αv2 : T (α)}

where the predicate T (α) is one of α ∈ R, α ≥
0 and α ∈ [0, 1]. Furthermore, if we are given a
halfspace description of P with length ‖P‖, the size of
the representation of v1, v2 is at most ‖P‖O(1).

A.2 Algebraic numbers In this section we briefly
review relevant notions in algebraic number theory. See,
e.g., [7] for more details.

A complex number α is algebraic if there exists a
polynomial p ∈ Q[x] such that p(α) = 0. The set of
algebraic numbers, denoted by A, is a subfield of C.
The minimal polynomial of α, denoted fα(x), is the
unique monic polynomial with rational coefficients of
least degree which vanishes at α. The degree of α ∈ A

is defined as the degree of its minimal polynomial and
is denoted by nα. The height of α is defined as the
maximum absolute value of a numerator or denominator
of a coefficient of the minimal polynomial of α, and is
denoted by Hα. The roots of fα(x) (including α) are
called the Galois conjugates of α. An algebraic integer
is an algebraic number α such that fα ∈ Z[x]. The set
of algebraic integers, denoted OA, is a ring under the
usual addition and multiplication.

The canonical representation of an algebraic num-
ber α is its minimal polynomial fα(x), along with a nu-
merical approximation of Re(α) and Im(α) of sufficient



precision to distinguish α from its Galois conjugates.
More precisely, we represent α by the tuple

(fα, x, y, R) ∈ Q[x]×Q3

meaning that α is the unique root of fα inside the circle
centred at (x, y) in the complex plane with radius R. A
bound due to Mignotte [17] states that for roots αi 6= αj

of a polynomial p(x),

(A.2) |αi − αj | >
√
6

n(n+1)/2Hn−1

where n and H are the degree and height of p, respec-
tively. Thus, if R is restricted to be less than a quarter
of the root separation bound, the representation is well-
defined and allows for equality checking. Observe that
given fα, the remaining data necessary to describe α is
polynomial in the length of the input. It is known how
to obtain polynomially many bits of the roots of any
p ∈ Q[x] in polynomial time [21].

When we say an algebraic number α is given, we
assume we have a canonical description of α. We will
denote by ‖α‖ the length of this description, assuming
that integers are expressed in binary and rationals are
expressed as pairs of integers. Observe that |α| is
an exponentially large quantity in ‖α‖ whereas ln |α|
is polynomially large. Notice also that 1/ ln |α| is at
most exponentially large in ‖α‖. For a rational a, ‖a‖
is just the sum of the lengths of its numerator and
denominator written in binary. For a polynomial p ∈
Q[x], ‖p‖ will denote

∑n
i=0 ‖pi‖ where n is the degree

of the polynomial and pi are its coefficients. Using
the resultant method, operations may be performed
efficiently on algebraic numbers. Specifically, techniques
from algebraic number theory [7] yield the following
lemma:

Lemma A.3. Given canonical representations of α, β ∈
A and a polynomial p ∈ Q[x], it is possible to compute
canonical descriptions of α±β, αβ±1,

√
α and p(α), to

check the equality α = β and α’s membership in N,Z,Q,
and finally to determine whether α is a root of unity,
and if so, to calculate its order and argument. All of
these procedures have polynomial running time.

A.3 Linear recurrence sequences We now recall
some basic properties of linear recurrence sequences.
For more details, we refer the reader to [9, 11]. A real
linear recurrence sequence (LRS) is an infinite sequence
S = 〈S(0),S(1),S(2), . . . 〉 over R such that there exists
a natural number k and real numbers a1, . . . , ak such
that ak 6= 0 and S satisfies the linear recurrence
equation
(A.3)
S(n+k) = a1S(n+k−1)+a2S(n+k−2)+ · · ·+akS(n)

The recurrence (A.3) is said to have order k. Note that
the same sequence can satisfy different recurrence rela-
tions, but it satisfies a unique recurrence of minimum
order.

The characteristic polynomial of S is

p(x) = xk − a1x
k−1 − a2x

k−2 − · · · − ak

and its roots are called the characteristic roots of the
sequence. For real LRS, the set of characteristic roots
is closed under complex conjugation. If ρ1, . . . , ρl ∈ R

are the real roots of p(x) and γ1, γ1, . . . , γm, γm ∈ C are
the complex ones, the sequence is given by

S(n) =
l

∑

i=1

Ai(n)ρ
n
i +

m
∑

j=1

(

Cj(n)γ
n
j + Cj(n)γj

n
)

for all n ≥ 0, where Ai ∈ R[x] and Cj ∈ C[x] are
univariate polynomials whose degrees are at most the
multiplicity of the corresponding roots of p(x). The
coefficients of Ai, Ci are effectively computable algebraic
numbers.

If M ∈ Rk×k is a real square matrix and v, w ∈
Rk are real column vectors, then it can be shown
using the Cayley-Hamilton Theorem that the sequence
S(n) = vTMnw satisfies a linear recurrence of order k.
Conversely, any LRS may be expressed in this way: it
is sufficient to take M to be the transposed companion
matrix of the characteristic polynomial of S, v to be
the vector (S(k − 1), . . . ,S(0))T of initial terms of S in
reverse order, and w to be the unit vector (0, . . . , 0, 1)T .
The characteristic roots of the LRS are precisely the
eigenvalues of M .

A linear recurrence sequence is called degenerate
if for some pair of distinct characteristic roots λ1, λ2
of its minimum-order recurrence, the ratio λ1/λ2 is a
root of unity, otherwise the sequence is non-degenerate.
As pointed out in [9], the study of arbitrary LRS
can effectively be reduced to that of non-degenerate
LRS by partitioning the original LRS into finitely
many non-degenerate subsequences. Specifically, for
a given degenerate linear recurrence sequence S with
characteristic roots λi, let L be the least common
multiple of the orders of all ratios λi/λj which are roots
of unity. Then consider the sequences

S(j)(n) = uTAnL+jv = uT (AL)n(Ajv)

where j ∈ {0, . . . , L − 1}. Each of these sequences has
characteristic roots λLi and is therefore non-degenerate,
because (λ1/λ2)

Lk = 1 implies λL1 = λL2 . From the
crude lower bound ϕ(r) ≥

√

r/2 on Euler’s totient
function, it follows that if α has degree d and is a
primitive r-th root of unity, then r ≤ 2d2. Thus,



L ∈ 2||A||O(1)

, so non-degeneracy can be ensured by
considering at most exponentially many subsequences
of the original LRS.

A.4 First-order theory of the reals Let
x1, . . . , xm be first-order variables ranging over R,
and suppose σ(x1, . . . , xm) is a Boolean combination
of predicates of the form g(x1, . . . , xm) ∼ 0, where
g ∈ Z[x1, . . . , xm] is a polynomial and ∼ is > or =.
A sentence of the first-order theory of the reals is a
formula τ of the form

Q1x1 . . .Qmxmσ(x1, . . . , xm)

where each Qi is one of the quantifiers ∃ and ∀. If all
the quantifiers are ∃, then τ is said to be a sentence of
the existential first-order theory of the reals.

The decidability of the first-order theory of the
reals was originally established by Tarski [25]. Many
refinements followed over the years, culminating in the
analysis of Renegar [22]. We make use of the following
result:

Theorem A.2. Suppose we are given a sentence τ of
the form above using only existential quantifiers. The
problem of deciding whether τ holds over the reals is in
PSPACE. Furthermore, if M ∈ N is a fixed constant
and we restrict the problem to formulae τ where the
number of variables is bounded above by M , then the
problem is in PTIME.

B Technical lemmas

Theorem B.1. (Baker and Wüstholz [2]) Let
α1, . . . , αm be algebraic numbers other than 0 or
1, and let b1, . . . , bm be rational integers. Write

Λ = b1 logα1 + · · ·+ bm logαm

Let A1, . . . , Am, B ≥ e be real numbers such that, for
each j ∈ {1, . . . ,m}, Aj is an upper bound for the height
of αj, and B is an upper bound for |bj|. Let d be the
degree of the extension field Q(α1, . . . , αm) over Q. If
Λ 6= 0, then

log |Λ| > −(16md)2(m+2) log(A1) . . . log(Am) log(B)

Theorem B.2. Suppose α, β, γ, A,B,C ∈ A and the
ratios of α, β, γ (where they exist) are not roots of unity.
Let ‖I‖ = ‖α‖+‖β‖+‖γ‖+‖A‖+‖B‖+‖C‖. Then there

exist effective bounds N1 ∈ ‖I‖O(1) and N2 ∈ 2‖I‖
O(1)

such that if Aαn + Bβn = 0 then n ≤ N1, and if
Aαn + Bβn + Cγn = 0 or Aαn + Bnβn−1 + Cβn = 0
then n ≤ N2.

Lemma B.1. Let a, λ ∈ A and C, χ ∈ A ∩ R be given
where λ is not a root of unity and |χ| < |λ| = 1. Let
α = arg(a) and ϕ = arg(λ). Then there exists an
effectively computable N ∈ N such that for all n > N ,

|C+cos(α+nϕ)| > |χ|n. Moreover, N ∈ 2||I||
O(1)

where
||I|| = ||λ||+ ||χ||+ ||a||+ ||C||.
Proof. Suppose that |C| ≤ 1 and let b = C+i

√
1− C2 =

eiβ , so that C = cos(β). Then b is algebraic with

deg(b) ∈ ||I||O(1), Hb ∈ 2||I||
O(1)

. It is clear that

C + cos(α+ nϕ) = 2 cos
α+ β + nϕ

2
cos

α− β + nϕ

2

Since λ is not a root of unity, by Lemma B.2, there
exists an effective constant N1 ∈ ||I||O(1) such that if
ab±1λn = −1 then n ≤ N1. Therefore, for n > N1, we
have cos(α± β+nϕ) 6= 0. Let kn be the unique integer
such that knπ+(α+β+nϕ+π)/2 ∈ [−π/2, π/2). Notice
that |kn| < 2n. Then
∣

∣

∣

∣

cos
α+ β + nϕ

2

∣

∣

∣

∣

=

∣

∣

∣

∣

sin
α+ β + nϕ+ (2kn + 1)π

2

∣

∣

∣

∣

≥ |α+ β + nϕ+ (2kn + 1)π|
2π

by the inequality | sin(x)| ≥ |x|/π for x ∈ [−π/2, π/2].
Note that α, β, ϕ and π are logarithms of algebraic
numbers with degree polynomial in ||I|| and height
exponential in ||I||. Then by from Baker’s Theorem,
there exist effective positive constants p1, p2 ∈ ||I||O(1)

such that

n > N1 ⇒
∣

∣

∣

∣

cos
α+ β + nϕ

2

∣

∣

∣

∣

> (p1n)
−p2

By the same argument with β replaced by −β, there
exist effective positive constants N2, p3, p4 ∈ ||I||O(1)

such that

n > N2 ⇒
∣

∣

∣

∣

cos
α− β + nϕ

2

∣

∣

∣

∣

> (p2n)
−p4

However, since χn shrinks exponentially with n and

|χ−1| ∈ 2||I||
O(1)

, it follows that there exists an effective

constant N3 ∈ 2||I||
O(1)

such that for all n > N3,

(p1n)
−p2(p3n)

−p4 > |χn|
Then for all n > max{N1, N2, N3}, we have

|C + cos(α+ nϕ)| > p1p3n
−(p2+p4) > |χn|

as desired.
The remaining case |C| > 1 is easy. If C > 1, we

have

C+cos(α+nϕ) > 1+cos(α+nϕ) = cos(0)+cos(α+nϕ)

and the lemma follows by the above argument with
β = 0. Similarly when C < −1.



Lemma B.2. Suppose a1, . . . , am and λ are all algebraic
numbers on the unit circle and λ is not a root of unity.
Suppose also c1, . . . , cm ∈ R ∩ A. Let αj = arg(aj) and
ϕ = arg(λ). Then it is decidable whether there exists an
integer n such that

cos(αj + nϕ) ≥ cj for all j = 1, . . . ,m

Moreover, the decision procedure’s running time is
||I||O(1) where

||I|| =
m
∑

j=1

(||aj ||+ ||cj ||) + ||λ||

Proof. Inequalities where cj ≤ −1 may be discarded,
as they are satisfied for all n, whereas the presence of
inequalities with cj > 1 immediately makes the problem
instance negative. Now assuming cj ∈ (−1, 1], each
inequality

(B.4) cos(αj + nϕ1) ≥ cj

defines an arc on the unit circle which λn must lie
within. Specifically, (B.4) holds if and only if λn lies
on the arc Aj defined by

Aj = {z ∈ C : |z| = 1 and h(w1, w2, z) ≤ 0}

where w1 = aj

(

cj − i
√

1− c2j

)

and w2 =

aj

(

cj + i
√

1− c2j

)

are the endpoints of the arc,

and

h(x, y, z) =

∣

∣

∣

∣

∣

∣

Re(x) Im(x) 1
Re(y) Im(y) 1
Re(z) Im(z) 1

∣

∣

∣

∣

∣

∣

is the orientation function.4

The endpoints of Aj are clearly algebraic and may
be computed explicitly in polynomial time in ||I||. Then
the intersection A =

⋂

j Aj is also computable in
polynomial time. Since λ is not a root of unity, the
set {λn : n ∈ N} is dense on the unit circle. If A is
empty, then the problem instance is negative. If A is
a nontrivial arc on the unit circle, then by density, the
problem instance is positive. Finally, A could be a set
of at most two points z1, z2 on the unit circle. Then the
problem instance is positive if and only if there exists
an exponent n ∈ N such that λn = zi for some i. A
polynomial bound on n then follows from Theorem B.2.

4Recall that h(x, y, z) is positive if the points x, y, z (in that
order) are arranged counter-clockwise on the complex plane,
negative if they are arranged clockwise, and zero if they are
collinear.

C Extended Orbit Problem

We now give the details of our decision procedure for
the Extended Orbit Problem, as promised in Section 3.

C.1 A Master System In [5], we show how to
reduce the Orbit Problem (determining whether there
exists n ∈ N such that Anx lies in a vector space
V ) to the matrix power problem: determining whether
there exists n ∈ N such that An lies in the span
of p1(A), . . . , pd(A) for given polynomials p1, . . . , pd ∈
Q[x]. The reduction takes polynomial time, relies on
standard linear algebra and is straightforward to extend,
mutatis mutandis, in order to include linear inequalities
on the coefficients which witness membership of Anx in
the target vector space. Thus, we shall assume that
a problem instance of the Extended Orbit Problem
is specified by matrices A ∈ Qm×m, B ∈ (R ∩
A)k×d and polynomials p1, . . . , pd ∈ Q[x] such that
p1(A), . . . , pd(A) are linearly independent, and we have
to determine whether there exist n ∈ N and u =
(u1, . . . , ud) ∈ Qd such that

(C.5) An = u1p1(A) + · · ·+ udpd(A) and Bu ≥ 0

We now proceed to show a Master System of
equations, which is equivalent to (C.5). Let fA(x) be
the minimal polynomial of A over Q and let α1, . . . , αt

be its roots, that is, the eigenvalues of A. These can be
calculated in polynomial time. Throughout this paper,
for an eigenvalue αi we will denote by mul(αi) the
multiplicity of αi as a root of the minimal polynomial
of the matrix.

Fix an exponent n and coefficients u1, . . . , ud and
define the polynomials P (x) =

∑d
i=1 uipi(x) and

Q(x) = xn. It is easy to see that (C.5) is satisfied if
and only if

(C.6) Bu ≥ 0 ∧ P (j)(αi) = Q(j)(αi)

for all i ∈ {1, . . . , t}, j ∈ {0, . . . ,mul(αi) − 1}. Indeed,
P − Q is zero at A if and only if fA(x) divides P −Q,
that is, each αi is a root of P − Q with multiplicity at
least mul(αi). This is equivalent to saying that each αi

is a root of P −Q and its first mul(αi)− 1 derivatives.
Thus, in order to decide whether the problem

instance is positive, it is sufficient to solve the system
of equations and inequalities (C.6) in the unknowns n
and u1, . . . , ud. Each eigenvalue αi contributes mul(αi)
equations which specify that P (x) − Q(x) and its first
mul(αi)− 1 derivatives all vanish at αi.

For example, if fA(x) has roots α1, α2, α3 with
multiplicities mul(αi) = i and the target space is
span {p1(A), p2(A)} then the system contains six equa-



tions, in addition to the inequalities Bu ≥ 0:

αn
1 = u1p1(α1) + u2p2(α1)

αn
2 = u1p1(α2) + u2p2(α2)

nαn−1
2 = u1p

′
1(α2) + u2p

′
2(α2)

αn
3 = u1p1(α3) + u2p2(α3)

nαn−1
3 = u1p

′
1(α3) + u2p

′
2(α3)

n(n− 1)αn−2
3 = u1p

′′
1(α3) + u2p

′′
2 (α3)

Notice also that we may assume without loss of general-
ity that 0 is not an eigenvalue. Otherwise, its equations

in the Master System 0 = u1p
(j)
1 (0) + · · · + udp

(j)
d (0)

either yield a linear dependence on u1, . . . , ud, allowing
us to eliminate some ui and proceed inductively by solv-
ing a lower-dimensional Master System, or are trivially
satisfied by all u1, . . . , ud and may be dismissed.

C.2 Equivalence classes of ∼ Next, we focus on
the equivalence relation ∼ on the eigenvalues of the
input matrix defined by

α ∼ β ⇐⇒ α/β is a root of unity

The image of an equivalence class of ∼ under complex
conjugation is also an equivalence class of ∼. If a
class is its own image under complex conjugation,
then it is called self-conjugate. Classes which are
not self-conjugate are grouped into pairs of conjugate
classes which are each other’s image under complex
conjugation.

If a class C is self-conjugate, then we can write it as

C = {αω1, αω2, . . . , αωs}

where α is real algebraic and ω1, . . . , ωs are roots of
unity. This representation is easily computable in
polynomial time. Similarly, if two classes C1, C2 are each
other’s image under complex conjugation, they can be
written as

C1 = {αω1, αω2, . . . , αωs}

C2 = {αω1, αω2, . . . , αωs}

where α is algebraic and arg(α) is not a rational multiple
of 2π. For an equivalence class C of ∼, write Eq(C, j)
for the set of j-th derivative equations contributed to
the Master System by eigenvalues in C. Define also the
multiplicity of C to be the maximum multiplicity of an
eigenvalue in C.

In our work on the Orbit Problem [5], we analysed
the equivalence classes of ∼ in order to derive a bound
on the exponent n. We were able to show that if A has
‘sufficiently many’ eigenvalues unrelated by ∼ then just

the condition An ∈ span{p1(A), . . . , pd(A)} on its own is
strong enough to bound the exponent, regardless of the
linear inequalities Bu ≥ 0 which the Extended Problem
imposes on the coefficients u1, . . . , ud. The following
theorem will allow us to focus only on the cases in which
∼ has ‘few’ equivalence classes.

Theorem C.1. Suppose we are given a problem in-
stance (A,B, p1, . . . , pd) with d ≤ 3 and let ∼ be the
relation on the eigenvalues of A defined as above. Write
‖I‖ = ‖A‖ + ‖p1‖ + · · · + ‖pd‖. Let R be the sum
of the multiplicities of the equivalence classes of ∼.
Then if R ≥ d + 1, then there exists an effectively

computable bound N ∈ 2‖I‖
O(1)

such that if An ∈
span({p1(A), . . . , pd(A)}), then n ≤ N . Moreover, if
d = 1, then N ∈ ‖I‖O(1).

C.3 Case analysis on the residue of n Let L
be the least common multiple of all the orders of the
ratios of eigenvalues of A which are roots of unity.

Notice that L ∈ 2‖I‖
O(1)

. In the two- and three-
dimensional Extended Orbit Problem, we will perform a
case analysis on the residue of nmodulo L. We will show
that for each fixed residue of n, we can either solve the
problem instance directly or derive an effective bound
N such that any witness n to the problem instance
must be bounded above by N . Since L is at most
exponentially large, it may be expressed using at most
polynomially many bits. Thus, when the relation ∼ has
too few equivalence classes for Theorem C.1 to apply,
our polynomial-space algorithm can guess the residue of
n modulo L. This greatly simplifies the Master System
and either allows us to solve it outright or to reduce it
to an instance of the Simultaneous Positivity Problem.

We now consider what happens to the equations
in Eq(C, j) for a fixed residue of n modulo L. Let
C = {αω1, . . . , αωs} and for simplicity consider Eq(C, 0):

(αω1)
n =

d
∑

i=1

uipi(αω1)

. . .

(αωs)
n =

d
∑

i=1

uipi(αωs)

This set of equations is equivalent to

(C.7) αn =

d
∑

i=1

ui
pi(αω1)

ωn
1

= · · · =
d

∑

i=1

ui
pi(αωs)

ωn
s

For a fixed residue of n modulo L, we see ωn
1 , . . . , ω

n
s

are also fixed, so each pi(αωj)/ω
n
j is easily computable.



Observe that (C.7) is equivalent to the conjunction of
an equation with a linear system:

(C.8) αn =

d
∑

i=1

ui
pi(αωs)

ωn
s

and B′u = 0

where B′ is an (s− 1)× k matrix over A defined by

B′
j,i =

pi(αωj)

ωn
j

− pi(αωj+1)

ωn
j+1

Writing ϕi for pi(αωs)/ω
n
s and considering separately

the real and imaginary parts of B′u = 0, we see that
(C.8) is equivalent to

αn = ϕ1u1 + · · ·+ ϕdud and B′′u = 0

where

B′′ =

[

Re(B′)
Im(B′)

]

is a 2(s − 1) × k matrix over R ∩ A. However, u lies
in the nullspace of B′′ if and only if u is orthogonal
to the column space of B′′. Thus, if B′′ has non-
zero column rank, then u1, . . . , ud must have a non-
trivial linear dependence ψ1u1 + · · · + ψdud = 0 for
effectively computable ψ1, . . . , ψd ∈ R ∩ A. Therefore,
we can eliminate some coefficient ui, replacing all of its
occurrences in the Master System (C.6), and proceed
inductively to solve a Master System with dimension
d− 1. Therefore, we can assume that the column rank
of B′′ is zero, so the constraint B′′u = 0 is satisfied by
all vectors u.

Thus, for this particular residue of n modulo L, the
equations Eq(C, 0) are equivalent to the single equation
αn = ϕ1u1 + · · · + ϕdud. Further, if the equivalence
class C is self-conjugate, then α ∈ R ∩ A, so we may
replace each ϕi with its real part and assume ϕi ∈ R∩A.
Similarly, for j > 0 and a fixed residue of n modulo L,
the equations Eq(C, j) reduce to the equivalent single
equation

n(n− 1) . . . (n− j + 1)αn−j =

d
∑

i=1

ui
p
(j)
i (αωs)

ωn−j
s

C.4 One-dimensional case of Extended Orbit

In the one-dimensional Extended Orbit Problem, we
have to decide whether there exists some n ∈ N such
that An is a non-negative multiple of p1(A). We show
this problem is in PTIME.

Begin by observing that if 0 is an eigenvalue of
A, then its equations in the Master System are either
satisfied for all values of n, or for no values of n. In the
former case, they can be discarded, whereas in the latter

case, the problem instance is immediately negative. We
will now perform a case analysis on the number of
equivalence classes of ∼.

Two or more equivalence classes. When the
relation ∼ has at least two equivalence classes, by
Theorem C.1, there exists a computable bound N ∈
||I||O(1) on the exponent n. It suffices to try all n ≤ N ,
which can be done in polynomial time.

One equivalence class, all roots simple. The
second case is when ∼ has only one equivalence class
and the eigenvalues α1, . . . , αs of A are all simple in the
minimal polynomial of A. The Master System is then
equivalent to

u1 =
αn
1

p1(α1)
≥ 0

(

αi

αj

)n

=
p1(αi)

p1(αj)
for all i, j

Since all ratios αi/αj are roots of unity, each equa-
tion (αi/αj)

n = p1(αi)/p1(αj) is either unsatisfiable,
making the problem instance immediately negative, or
equivalent to some congruence in n. If all equations are
satisfiable, then An ∈ span{p1(A)} holds if and only if
n ≡ t1 mod t2, where t1, t2 are effectively computable
natural numbers. Moreover, since ∼ has only one equiv-
alence class, it must necessarily be self-conjugate, so
α1 = |α1|ω for some root of unity ω which can be cal-
culated easily. Since u1 = Re(αn

1 )/Re(p1(α1)), we can
compute what the sign of Re(αn

1 ) should be to ensure
u1 ≥ 0, that is, whether ωn must be 1 or −1 for n to be
a witness. This leads to another congruence in n which
we put in conjunction with n ≡ t1 mod t2. The prob-
lem instance is positive iff the two congruences have a
common solution.

One equivalence class, some repeated roots.

As in the previous case, we take the ratios of all pairs
of equations αn

i = u1p1(αi) and α
n
j = u1p1(αj), giving

(C.9)

(

αi

αj

)n

=
p1(αi)

p1(αj)
for all i, j

Additionally, for each repeated root αi, we take the
ratios of its first and second equation, of its second and
third equation, and so on, obtaining
(C.10)

αi

n− j
=

p
(j)
1 (αi)

p
(j+1)
1 (αi)

for all j ∈ {0, . . . ,mul(αi)− 1}

If the equations (C.10) point to different values of
n, then the problem instance is negative. If they
point to the same value of n, but n does not satisfy



the congruence resulting from (C.9), then the problem
instance is negative. Otherwise, the problem instance is
positive if and only if u1 = αn

1 /p1(α1) is positive. The
relation ∼ has only one equivalence class, so it must be
self-conjugate, so α1 = |α1|ω for some computable root
of unity ω. It is easy to check the sign of ωn, so the
decision method is complete.

C.5 Two-dimensional case of Extended Orbit

Now suppose we have a problem instance (A,B, p1, p2)
and we have to determine whether there exist an
exponent n ∈ N and coefficients u = (u1, u2) ∈ Q2 such
that

An = u1p1(A) + u2p2(A) and Bu ≥ 0

We will perform a case analysis on the equivalence
classes of ∼. By Theorem C.1, if the sum of the
multiplicities of the equivalence classes of ∼ is at least

3, then there exists an effective bound N ∈ 2‖I‖
O(1)

on n such that for n > N , mere membership of An

in span({p1(A), p2(A)} is impossible, regardless of the
constraints on the coefficients u1, u2. Then an exponent
n ≤ N can be chosen nondeterministically and verified
using a PosSLP oracle. We consider the remaining
cases.

One simple equivalence class. Suppose ∼ has
only one equivalence class and its eigenvalues are all
simple in the minimal polynomial of the matrix. We
proceed by case analysis on the residue of n, as in
Section C.3. For a fixed residue, the Master System
reduces to

(C.11) αn = u1ϕ1 + u2ϕ2 and Bu ≥ 0

where ϕ1, ϕ2 ∈ R∩A. Fix the parity of n and therefore
assume α > 0 by including its sign into ϕ1, ϕ2. Now
observe that either all values of n satisfy (C.11), or no
value of n does. Indeed, if n is a witness with coefficients
(u1, u2), then n + 1 and n − 1 are also witnesses, with
coefficients (u1α, u2α) and (u1/α, u2/α), respectively.
Therefore, it suffices to try n = 0. This leads to a
conjunction of the equation 1 = u1ϕ1 + u2ϕ2 with
inequalities in u1, u2, which is easy to solve.

Two simple equivalence classes. Suppose that
∼ has two equivalence classes and all eigenvalues are
simple in the minimal polynomial of the matrix. Pro-
ceed by case analysis on the residue of n as before and
reduce the Master System to

(C.12)

[

αn

βn

]

=

[

ϕ1 ϕ2

ϕ3 ϕ4

] [

u1
u2

]

and Bu ≥ 0

If the equivalence classes are both self-conjugate, then
ϕ1, . . . , ϕ4, α, β are all real algebraic, otherwise ϕ3 = ϕ1,

ϕ4 = ϕ2 and α = β. If the 2 × 2 matrix in (C.12) is
invertible, then premultiplying by its inverse yields

[

u1
u2

]

=

[

ψ1 ψ2

ψ3 ψ4

] [

αn

βn

]

and Bu ≥ 0

where either ψ1, . . . , ψ4 are real, or ψ2 = ψ1 and ψ4 =
ψ3. Now observe that u1, u2 satisfy a linear recurrence
formula with characteristic equation (x−α)(x−β) = 0.
Then Bu is a vector of linear recurrence sequences over
R ∩ A. Each sequence Si(n) has order at most 2 and is
given by

Si(n) = aiα
n + biβ

n

so they all satisfy the same shared recurrence for-
mula. Further, observe that these sequences are non-
degenerate, since α/β is not a root of unity. Therefore,
for this particular residue of n, the problem instance
reduces to Simultaneous Positivity for sequences of or-
der at most 2. Finally, if the 2 × 2 matrix in (C.12) is
singular, then there is a non-trivial linear combination
of the rows which equates to zero. Then the same non-
trivial combination of αn, βn equals zero. A bound on
n follows from Theorem B.2.

One repeated equivalence class. The last
remaining case is when there is only one equivalence
class of ∼ and it contains at least one eigenvalue
repeated in the minimal polynomial of A. This reduces
to Simultaneous Positivity in the same way as the
previous case, but the resulting recurrence sequences
have characteristic equation (x− α)2 = 0 and are given
by Si(n) = (ai + bin)α

n.

C.6 Three-dimensional case of Extended Orbit

Now we consider an instance of the Extended Orbit
Problem with a three-dimensional target space. For
given (A,B, p1, p2, p3), we need to determine whether
there exist n ∈ N and u = (u1, u2, u3) ∈ Q3 such that

An = u1p1(A) + u2p2(A) + u3p3(A) and Bu ≥ 0

The strategy is again to show an effective bound N such
that if there is a witness (n, u1, u2, u3) to the problem
instance, then n < N . By Theorem C.1, we need only
bound n in the cases when the multiplicities of the
equivalence classes sum to at most 3.

Three simple equivalence classes. If there are
exactly three classes, each of multiplicity 1, one must
necessarily be self-conjugate whereas the other two can
be either self-conjugate or each other’s conjugates. Ei-
ther way, this case is analogous to the case of two simple
equivalence classes in the two-dimensional version. Af-
ter performing a case analysis on the residue of n, we



obtain

(C.13)





αn

βn

γn



 = Tu and Bu ≥ 0

where T is a 3× 3 matrix over R∩A. If T is invertible,
then we multiply both sides of (C.13) by T−1 and
see that u1, u2, u3 are linear recurrence sequences over
R ∩ A with characteristic roots α, β, γ. Then the left-
hand side of each linear inequality Bu ≥ 0 is also an
LRS over R ∩ A and has order 3. Thus the problem
instance reduces to Simultaneous Positivity for order-3
sequences. On the other hand, if T is singular, then a
linear combination of its rows is zero, so the same linear
combination of αn, βn, γn is also zero. Noting that no
two of α, β, γ are related by ∼, we obtain a bound on n
from Theorem B.2.

Two classes, one simple and one repeated.

Next, suppose ∼ has two equivalence classes, one of
multiplicity 1 and the other of multiplicity 2. This is
analogous to the previous case. For a fixed residue of n
modulo L, the Master System is equivalent to

(C.14)





αn

nαn−1

βn



 = Tu and Bu ≥ 0

where T is a 3 × 3 matrix over R ∩ A. Now if T is
invertible, then we multiply both sides of (C.14) by
T−1 and see that each of u1, u2, u3 is a linear recurrence
sequence over R ∩ A with characteristic equation (x −
α)2(x − β) = 0. Substituting into the homogeneous
linear inequalities Bu ≥ 0, we now have an instance of
the Simultaneous Positivity Problem for LRS of order
3 with a repeated characteristic root. If T is singular,
then a linear combination of αn, nαn−1 and βn must
equal zero, so a bound on n follows from Theorem B.2,
because the ratio of α and β is not a root of unity.

One simple equivalence class. Suppose now
that ∼ has only one equivalence class and it has
multiplicity 1. The situation is analogous to the same
case in the two-dimensional version. We have to find
n, u1, u2, u3 such that

(C.15) αn = u1ϕ1 + u2ϕ2 + u3ϕ3 and Bu ≥ 0

Since everything is real, we observe that either all n are
witnesses to the problem instance, or none are, so it
suffices to consider n = 0, reducing the problem to a
conjunction of the linear inequalities Bu ≥ 0 with the
equation 1 = u1ϕ1 + u2ϕ2 + u3ϕ3.

Two equivalence classes, both simple. Let ∼
have two equivalence classes, both of multiplicity 1. For
a fixed residue of n modulo L, the Master System is

equivalent to

[

αn

βn

]

= Tu and Bu ≥ 0

where T is a 2× 3 matrix. All the numbers involved are
algebraic. There are two possibilities: either α, β and
T are in R∩A, or α = β and the second row of T is the
complex conjugate of the first row.

The dimension of the column space of T is 0, 1 or
2. If the dimension of the column space is 0, then the
Master System is unsatisfiable, since T maps everything
to zero, whereas αn and βn cannot be zero. If the
dimension of the column space of T is 1, then it is
spanned by a single vector (t1, t2). If at least one of
t1, t2 is zero, then the System is unsatisfiable, because
α, β 6= 0. Otherwise, we can conclude that (α/β)n =
t1/t2. Since α/β is not a root of unity, a bound on n
which is polynomial in ‖I‖ follows by Theorem B.2.

Assume therefore that the dimension of the column
space of T is 2. We consider the real and the complex
cases separately. First, suppose T, α, β are real. Each
of the inequalities Bu ≥ 0 specifies that (u1, u2, u3) lies
in a halfspace Hi of R3. The image of each Hi under
T can be the entire plane R2, a half-plane, a line, or
a half-line. Each of these images is easy to calculate
in polynomial time. If for some i, the image THi is a
line or a half-line, with defining vector (t1, t2), then by
the same reasoning as above, we see (α/β)n = t1/t2
and hence obtain a bound on n from Theorem B.2.
Otherwise, we can assume that for all i, THi is a
halfplane {(x, y) : Aix + Biy ≥ 0} with effectively
computable Ai, Bi ∈ R ∩ A. We have to determine
whether there exists n ∈ N such that (αn, βn) lies
in the intersection of these halfplanes. Noting that
Aiα

n + Biβ
n as a function of n is a linear recurrence

sequence over R ∩ A which has order 2, we see that
this is now an instance of the Simultaneous Positivity
Problem, so we are done by Theorem 4.1.

Suppose now that α and β are complex conjugates,
and the second row of T is the complex conjugate of the
first. We may freely assume that |α| = |β| = 1, since if
the inequalities are satisfied by (u1, u2, u3), then they
are also satisfied by (u1/|α|n, u2/|α|n, u3/|α|n). The
image under T of each halfspace Hi is a homogeneous
cone in the complex plane. The same is true of the
intersection G = ∩iTHi of these cones, which may
in fact be computed explicitly. We need to determine
whether there exists n ∈ N such that αn ∈ G. Notice
that {αn : n ∈ N} is dense on the unit circle. The
intersection of the unit circle with G could be a single
point, or an arc.

Representing real and imaginary parts with vari-
ables over R, we construct a sentence τ in the first-order



theory of the reals which states that the intersection of
G with the unit circle is a single point. We check the
validity of τ , this can be done in polynomial time by
Theorem A.2. If τ is false, then G intersects the unit
circle in an arc, so by the density of αn on the unit circle,
the Master System is satisfiable. Otherwise, the inter-
section is a single point z ∈ C. Moreover, this point is
effectively computable – Renegar’s algorithm hinges on
quantifier elimination, and will produce a quantifier free
formula containing exactly the minimal polynomials of
Re(z) and Im(z). The procedure is polynomial-time, so
‖z‖ ∈ ‖I‖O(1). Now the Master System is satisfiable if
and only if there exists n ∈ N such that αn = z. As
α and z both have descriptions polynomial in the input
size and α is not a root of unity, we see there exists a
polynomial bound on n from Theorem B.2.

One repeated equivalence class. Finally, sup-
pose ∼ has a single equivalence class and its multiplicity
is 2. Then for a fixed residue of n modulo L, the Master
System is equivalent to

[

αn

nαn−1

]

= Tu and Bu ≥ 0

where α and T are both real algebraic. This is now
handled analogously to the previous case for a real T
and reduces to Simultaneous Positivity for LRS with
characteristic equation (x − α)2 = 0.
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[5] Ventsislav Chonev, Joël Ouaknine, and James Worrell.
On the complexity of the orbit problem. CoRR,
abs/1303.2981, 2013.
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Skolem’s problem – on the border between decidability
and undecidability. TUCS Technical Report, (683),
2005.

[12] M. Harrison. Lectures on sequential machines. Aca-
demic Press, Orlando, 1969.

[13] R. Kannan and R. Lipton. Polynomial-time algorithm
for the orbit problem. Journal of the ACM, 33(4):808–
821, 1986.

[14] Ravindran Kannan and Richard J. Lipton. The orbit
problem is decidable. In Proceedings of the twelfth an-
nual ACM symposium on Theory of computing, STOC,
pages 252–261. ACM, 1980.

[15] D. Lee and M. Yannakakis. Online minimization of
transition systems (extended abstract). In Proceedings
of the 24th annual ACM symposium on Theory of
Computing, STOC, pages 264–274. ACM, 1992.

[16] Peter McMullen and Geoffrey Colin Shephard. Convex
polytopes and the upper bound conjecture, volume 3.
CUP Archive, 1971.

[17] M. Mignotte. Some useful bounds. Computer Algebra,
pages 259–263, 1982.

[18] J. Ouaknine, J. S. Pinto, and J. Worrell. On termina-
tion of integer linear loops. In Proceedings of SODA.
ACM-SIAM, 2015.
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