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The Value 1 Problem Under Finite-memory Strategies for
Concurrent Mean-payoff Games

Krishnendu Chatterjee (IST Austria) Rasmus Ibsen-Jensen (IST Austria)

Abstract

We consider concurrent mean-payoff games, a very well-studied class of two-player (player 1 vs
player 2) zero-sum games on finite-state graphs where every transition is assigned a reward between 0
and 1, and the payoff function is the long-run average of the rewards. The value is the maximal expected
payoff that player 1 can guarantee against all strategies ofplayer 2. We consider the computation of
the set of states with value 1 under finite-memory strategiesfor player 1, and our main results for the
problem are as follows: (1) we present a polynomial-time algorithm; (2) we show that whenever there
is a finite-memory strategy, there is a stationary strategy that does not need memory at all; and (3) we
present an optimal bound (which is double exponential) on the patience of stationary strategies (where
patience of a distribution is the inverse of the smallest positive probability and represents a complexity
measure of a stationary strategy).
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1 Introduction

Concurrent mean-payoff games. Concurrent mean-payoff games are played on finite-state graphs by
two players (player 1 and player 2) for infinitely many rounds. In each round, the players simultaneously
choose moves (or actions), and the current state along with the two chosen moves determine a probability
distribution over the successor states. The outcome of the game (or aplay) is an infinite sequence of states
and action pairs. Every transition is associated with a reward between0 and1, and the mean-payoff (or
limit-average payoff) of a play is the limit-inferior (or limit-superior) average of the rewards of the play.
Concurrent games were introduced in a seminal work of Shapley [26], wherediscountedsum objectives (or
games that halt with probability 1) were considered. The generalization to concurrent games with mean-
payoff objectives (or games that have zero stop probabilities) was presented by Gillette in [19]. The player-1
valueval(s) of the game at a states is the supremum value of the expectation that player 1 can guarantee
for the mean-payoff objective against all strategies of player 2. The games are zero-sum where the objective
of player 2 is the opposite.

Important previous results. Many celebrated results have been established for concurrent mean-payoff
games and its sub-classes: (1) the existence of values (or determinacy or equivalence of switching of strategy
quantifiers for the players as in von-Neumann’s min-max theorem) for concurrent discounted games was
established in [26]; (2) the result of Blackwell and Ferguson established existence of values for the celebrated
game of Big-Match [2] (the celebrated Big-Match example is from [19])1; and (3) developing on the results
of [2] and of Bewley and Kohlberg on Puisuex series [1] the existence of values for concurrent mean-payoff
games was established in [25]. The decision problem of whether the value val(s) is at least a rational
constantλ can be decided in PSPACE [6, 21]; and the results of [21] present an algorithm for approximation
which is polynomial in the number of actions and double exponential in the size of the state space (hence
if the number of states is constant then the value can be approximated in polynomial time). Several special
cases of concurrent mean-payoff games have been widely studied, for example, (a) concurrent reachability
games [13] where reachability objectives are the very special case of mean-payoff objectives where reward
zero is assigned to all transitions other than a set of sink terminal states which are assigned reward 1;
(b) turn-based deterministic mean-payoff games [14, 28], where in each state at most one of the players
have the choice of more than one action and the transition function is deterministic; and (c) turn-based
(stochastic) reachability games [12]. The decision problem of whether the value val(s) is at least a rational
constantλ is square-root sumhard even for concurrent reachability games [15], and even for the special
case of turn-based stochastic reachability games [12] or turn-based deterministic mean-payoff games [28]
the existence of a polynomial-time algorithm is a major and long-standing open problem.

Value 1 problem and its potential significance. While the decision problem for value computation is
notoriously hard for concurrent mean-payoff games, an important special case of the problem is to compute
the set of states with value 1. We refer to this problem as the value-1 set computation problem. We discuss
the potential significance of the value 1 problem for mean-payoff objectives. It was shown in [10] that
reliability requirements can be specified as a mean-payoff condition, where in every step a computation
is done, and if the computation succeeds a reward 1 is assigned, and if the computation might fail, then
reward 0 is assigned. The reliability is the long-run average reward. The value 1 problem asks whether there
exists a strategy to ensure that reliability arbitrarily close to 1 can be achieved. Note that this problem cannot
naturally be modeled as a reachability objective.

Strategies.A strategy in a concurrent game, considers the past history of the game (the finite sequence of

1note that even showing existence of a value for the specific Big-Match game was open for years, which shows the hardness of
analysis of such games
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Figure 1: The gamesG1 toG4

states and actions played so far), and specifies a probability distribution over the next moves. Thus a strategy
requires memory to remember the past history of the game. A strategy isstationaryif it is independent of
the past history and only depends on the current state. The complexity of a stationary strategy is described
by itspatiencewhich is the inverse of the minimum non-zero probability assigned to a move. The notion of
patience was introduced in [16] and also studied in the context of concurrent reachability games [22, 20]. A
strategy isfinite-memoryif the memory set used by the strategy is finite. Note that for implementability of
a strategy (such as by an automata), we need a finite-memory strategy.

Examples.We now illustrate concurrent mean-payoff games with a few examples. Consider the four games
(G1, G2, G3, andG4) shown in Figure 1: the transition functions are deterministic and shown as arrows; and
transition with rewards 1 are annotated, and all other rewards are 0. Each game has four states, namely, 1, 2,
⊤ and⊥; and since⊤ and⊥ remain the same, in the figuresG1 andG2 (alsoG3 andG4) are drawn such
that they share⊤ and⊥. The state⊤ has value 1 and state⊥ has value 0. In the first gameG1, both state 1
and state 2 have value1/2 (because of symmetry). The other three example games,G2, G3 andG4, are
minor variants ofG1 (only one successor is changed).

1. InG2, the edge from state2 to ⊥ is changed to a self-loop. InG2, there exists an infinite-memory
strategy to ensure that the mean-payoff is 1, and for everyǫ > 0 there is a stationary strategy to ensure
mean-payoff1− ǫ. The witness stationary strategy is as follows: in state 1 play the action pairs with
probability (ǫ/4, 1 − ǫ/4) and in state 2 with probability(1/2, 1/2).

2. In G3, the top edge from state 1 to state 2 is changed to a self-loop.In G3, there is no strategy to
ensure that the mean-payoff is 1, but for everyǫ > 0 there is a stationary strategy to ensure mean-
payoff 1 − ǫ. The witness stationary strategy is as follows: in state 1 play the action pairs with
probability (ǫ/2, 1 − ǫ/2) and in state 2 with probability(1− ǫ2/2, ǫ2/2).

3. In G4, the bottom edge from state 1 to state 2 is changed to a self-loop. In G4, there exists no
stationary strategy that can ensure positive mean-payoff value; however, for everyǫ > 0 there exists
an infinite-memory strategy to ensure mean-payoff1− ǫ.

Details regarding the analysis of the values of the above games and in depth discussion on the strategy
constructions for them are available in [23, Section 1.6.2].
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Our contributions. Our main contributions are related to the computation of thevalue 1 problem for
concurrent mean-payoff games where player 1 is restricted to finite-memory strategies2. Our main results
are as follows: (1) We present a polynomial-time algorithm to compute the value 1 set. (2) We show that
stationary strategies are sufficient, i.e., whenever finite-memory strategies exist, then there is a stationary
strategy. (3) We establish an optimal double exponential patience bound for the witness stationary strategies
(our contribution for patience is the upper bound, and the matching lower bound follows from [20, 22] for
the special case of reachability objectives). A key and novel insight of our polynomial-time algorithm is
that we establish that we can use local operators and iteratethem to compute the value 1 set; this is perhaps
counter-intuitive for concurrent mean-payoff games as no strategy-iteration algorithm is known to exist. In
addition we also establish a robustness result, which showsthat for concurrent games, if the support of
the transition probabilities match (but the precise transition probabilities may differ), then the value 1 set
remains unchanged.

Related works. The problem of value-1 set computation has been extensivelystudied in many different
contexts; such as, concurrent games with reachability objectives [13] as well as withω-regular and prefix
independent objectives [5, 4, 8], probabilistic automata [7, 17], and probabilistic systems with counters [3].
However, the value-1 set computation was not considered forconcurrent mean-payoff games which we
consider in this work. A related problem of computing the setof states where there exists an optimal
strategy that ensures mean-payoff 1 (almost-sure winning)has been considered in [11].

2 Definitions

In this section we present the definitions of game structures, strategies, mean-payoff objectives, the value
and value 1 problem, and other basic notions.

Probability distributions. For a finite setA, aprobability distributiononA is a functionδ : A→ [0, 1] such
that

∑
a∈A δ(a) = 1. We denote the set of probability distributions onA by D(A). Given a distribution

δ ∈ D(A), we denote bySupp(δ) = {x ∈ A | δ(x) > 0} the support of the distributionδ. For a
distribution, thepatienceof the distribution is the inverse of the minimum non-zero probability assigned to
an element: formally, the patiencepat(δ) ismaxa∈A{

1
δ(a) | δ(a) > 0}.

Concurrent game structures. A (two-player)concurrent stochastic game structureG = (S,A,Γ1,Γ2, δ)
consists of the following components.

• A finite state spaceS and a finite setA of actions (or moves).

• Two move assignmentsΓ1,Γ2 : S → 2A \ ∅. For i ∈ {1, 2}, assignmentΓi associates with each
states ∈ S the non-empty setΓi(s) ⊆ A of moves available to playeri at states. For technical
convenience, we assume thatΓi(s) ∩ Γj(t) = ∅ unlessi = j and s = t, for all i, j ∈ {1, 2}
ands, t ∈ S. If this assumption is not met, then the moves can be trivially renamed to satisfy the
assumption.

• A probabilistic transition functionδ : S×A×A→ D(S), which associates with every states ∈ S and
movesa1 ∈ Γ1(s) anda2 ∈ Γ2(s) a probability distributionδ(s, a1, a2) ∈ D(S) for the successor
state.

2note that once a finite-memory strategy for player 1 is fixed, then there always exists a finite-memory optimal counter-strategy
for player 2, and thus the strategies for player 2 are not restricted
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For a setQ ⊆ S of states we will denote byQ = S \ Q the complement ofQ. We will denote byδmin

the minimum non-zero transition probability, i.e.,δmin = mins,t∈S mina1∈Γ1(s),a2∈Γ2(s){δ(s, a1, a2)(t) |
δ(s, a1, a2)(t) > 0}. We will denote byn the number of states (i.e.,n = |S|), and bym the maximal
number of actions available for a player at a state (i.e.,m = maxs∈S max{|Γ1(s)|, |Γ2(s)|}). We will
later define Markov chains as games wherem = 1. Since finding the mean-payoff of Markov chains can
be done in polynomial time, we will only consider the case where m ≥ 2. For all statess ∈ S, moves
a1 ∈ Γ1(s) anda2 ∈ Γ2(s), let Succ(s, a1, a2) = Supp(δ(s, a1, a2)) denote the set of possible successors
of s when movesa1 anda2 are selected. The size of the transition relation of a game structure is defined as
|δ| =

∑
s∈S

∑
a1∈Γ1(s)

∑
a2∈Γ2(s)

|Succ(s, a1, a2)|.

One step probabilities. Given a concurrent game structureG, a states, two distributionsξ1 ∈ D(Γ1(s))
andξ2 ∈ D(Γ2(s)), the one step probability transition for a setU of states, denoted asδ(s, ξ1, ξ2)(U) is∑

a1∈Γ1(s),a2∈Γ2(s),t∈U
δ(s, a1, a2)(t) · ξ1(a1) · ξ2(a2). Often we will consider the distribution of player 2

to be a single action, i.e.,ξ2(a2) = 1 for an actiona2, and then use the notationδ(s, ξ1, a2). We will also
write Succ(s, ξ1, ξ2) =

⋃
a1∈Supp(ξ1),a2∈Supp(ξ2)

Succ(s, a1, a2) for the set of possible successors under the
distributions.

Turn-based stochastic games, turn-based deterministic games and MDPs.A game structureG is turn-
based stochasticif at every state at most one player can choose among multiplemoves; that is, for every
states ∈ S there exists at most onei ∈ {1, 2} with |Γi(s)| > 1. A turn-based stochastic game with a
deterministic transition function is a turn-based deterministic game. A game structure is a player-2Markov
decision process (MDP)if for all s ∈ S we have|Γ1(s)| = 1, i.e., only player 2 has choice of actions in the
game, and player-1 MDPs are defined analogously.

Plays. At every states ∈ S, player 1 chooses a movea1 ∈ Γ1(s), and simultaneously and inde-
pendently player 2 chooses a movea2 ∈ Γ2(s). The game then proceeds to the successor statet
with probability δ(s, a1, a2)(t), for all t ∈ S. A path or a play of G is an infinite sequenceω =(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), (s2, a

2
1, a

2
2) . . .

)
of states and action pairs such that for allk ≥ 0 we have

(1) sk+1 ∈ Succ(sk, a
k
1 , a

k
2); and (2)ak1 ∈ Γ1(sk); and (3)ak2 ∈ Γ2(sk). We denote byΩ the set of all

paths.

Strategies. A strategyfor a player is a recipe that describes how to extend prefixes of a play. Formally, a
strategy for playeri ∈ {1, 2} is a mappingσi : (S × A × A)∗ × S → D(A) that associates with every
finite sequencex ∈ (S × A × A)∗ of state and action pairs, and the current states in S, representing the
past history of the game, a probability distributionσi(x · s) used to select the next move. The strategyσi
can prescribe only moves that are available to playeri; that is, for all sequencesx ∈ (S × A × A)∗ and
statess ∈ S, we require thatSupp(σi(x · s)) ⊆ Γi(s). We denote byΣi the set of all strategies for player
i ∈ {1, 2}. Once the starting states and the strategiesσ1 andσ2 for the two players have been chosen, the
probabilities of events are uniquely defined [27], where aneventA ⊆ Ω is a measurable set of paths. For an
eventA ⊆ Ω, we denote byPrσ1,σ2

s (A) the probability that a path belongs toA when the game starts from
s and the players use the strategiesσ1 andσ2. We denote byEσ1,σ2

s [·] the associated expectation measure.
We will consider the following special classes of strategies:

1. Stationary (memoryless) and positional strategies.A strategyσi is stationary(or memoryless) if it
is independent of the history but only depends on the currentstate, i.e., for allx, x′ ∈ (S × A ×
A)∗ and alls ∈ S, we haveσi(x · s) = σi(x

′ · s), and thus can be expressed as a functionσi :
S → D(A). For stationary strategies, the complexity of the strategyis described by thepatienceof
the strategy, which is the inverse of the minimum non-zero probability assigned to an action [16].
Formally, for a stationary strategyσi : S → D(A) for playeri, the patience ismaxs∈S pat(σi(s)),
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wherepat(σi(s)) is the patience of the distributionσi(s). A strategy ispure (deterministic)if it does
not use randomization, i.e., for any history there is alwayssome unique actiona that is played with
probability 1. A pure stationary strategyσi is also called apositionalstrategy, and represented as a
functionσi : S → A. We denote byΣS

i the set of stationary strategies for playeri.

2. Strategies with memory and finite-memory strategies.A strategyσi can be equivalently defined as
a pair of functions(σui , σ

n
i ), along with a setMem of memory states, such that (i) the next move

function σni : S × Mem → D(A) given the current state of the game and the current memory
state specifies the probability distribution over the actions; and (ii) the memory update functionσui :
S × A × A × Mem → Mem given the current state of the game, the action pairs, and thecurrent
memory state updates the memory state. Any strategy can be expressed with an infinite setMem of
memory states, and a strategy is afinite-memorystrategy if the setMem of memory states is finite,
otherwise it is aninfinite-memorystrategy. We denote byΣF

i the set of finite-memory strategies for
playeri.

Absorbing states.A states is absorbingif for all actionsa1 ∈ Γ1(s) and all actionsa2 ∈ Γ2(s) we have
Succ(s, a1, a2) = {s}. In the present paper we will also require that|Γ1(s)| = |Γ2(s)| = 1 if s is absorbing.

Objectives. A quantitative objectiveΦ : Ω → R is a measurable function. In this work we will con-
sider limit-average(or mean-payoff) objectives. We will consider concurrent games with a reward func-
tion r : S × A × A → [0, 1] that assigns a reward value r(s, a1, a2) for all s ∈ S, a1 ∈ Γ1(s) and
a2 ∈ Γ2(s). For a pathω =

(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
, the limit-inferior average (resp. limit-superior

average) is defined as follows:LimInfAvg(ω) = lim infn→∞
1
n

∑n−1
i=0 r(si, ai1, a

i
2) (resp.LimSupAvg(ω) =

lim supn→∞
1
n

∑n−1
i=0 r(si, ai1, a

i
2)). For the analysis of concurrent games with Boolean limit-average objec-

tives (with rewards 0 and 1 only) we will also needreachabilityandsafetyobjectives. Given a target set
U ⊆ S, the reachability objectiveReach(U) requires some state inU be visited at least once, i.e., defines
the set

Reach(U) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∃i ≥ 0. si ∈ U}

of paths. The dual safety objective for a setF ⊆ S of safe states requires that the setF is never left, i.e.,

Safe(F ) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∀i ≥ 0. si ∈ F}.

We also consider the eventual safety objective, namelycoBüchiobjective, that requires for a given setF that
ultimately only states inF are visited, i.e.,

coBuchi(F ) = {ω =
(
(s0, a

0
1, a

0
2), (s1, a

1
1, a

1
2), . . .

)
| ∃j ≥ 0.∀i ≥ j. si ∈ F}.

Observe that reachability objectives are a very special case of Boolean reward limit-average objectives where
states inU are absorbing and are exactly the states with reward 1, and similarly for safety objectives.

Markov chains. A game structureG is aMarkov chainif m = 1. We will in that case writeδ(s) for the
distributionδ(s, a1, a2), wherea1 is the unique action inΓ1(s) anda2 is the unique action inΓ2(s). Markov
chains defines a weighted graph(S,E,w), where(s, s′) ∈ E iff δ(s)(s′) > 0 and for all(s, s′) ∈ E we
have thatw((s, s′)) = δ(s)(s′). For an eventA ⊆ Ω, we denote byPrs(A) the probabilityPrσ1,σ2

s (A),
whereσ1 andσ2 are the unique strategies for player 1 and player 2, respectively. A states is reachable from
another states′ iff s′ is reachable froms in (S,E,w). A set of statesZ is reachable from a states iff a
state inZ is reachable froms. For any set of statesZ in a Markov chain, letRS(Z), be the set of states
from whichZ is not reachable. Clearly,RS(Z) ⊆ (S \ Z). A set of statesL is called arecurrent classif
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for each pair of statess, s′ ∈ L we have thats′ is reachable froms and for each pair of statess ∈ L and
s′′ ∈ (S \ L) we have thats′′ is not reachable froms. A recurrent classin a Markov chain is a bottom scc
(strongly connected component) in the graph of the Markov chain, where a bottom sccL is an scc with no
edges leaving the scc.

Properties of Markov chains to be explicitly used in proofs. We will use several basic properties of
Markov chains in our proof and we explicitly state them here.Let us fix a Markov chain with state spaceS.

1. Given a setZ ⊆ S, for all s ∈ S, with probability 1 eitherZ is visited infinitely often orRS(Z) is
reached.

2. GivenZ ⊆ S, for all s ∈ S, with probability 1RS(Z) orZ is reached, i.e.,Prs(Reach(RS(Z)∪Z)) =
1.

3. Given setsZ ⊆ S andZ ′ ⊆ S, such thatZ can only be left from(Z ′ ∩ Z), then for alls ∈ Z with
probability 1(RS(Z

′)∩Z) or (Z ′ ∩Z) is reached, i.e.,Prs(Reach((RS(Z
′)∩Z)∪ (Z ′ ∩Z))) = 1.

Note the similarity with the previous property, only intersection withZ is taken.

4. Given setsZ ⊆ S andZ ′ ⊆ S, such thatZ can only be left from(Z ′ ∩ Z) and from each state in
(Z ′ ∩Z) there is a positive probability to leaveZ, then for alls ∈ Z with probability 1(RS(Z

′)∩Z)
or (S \ Z) is reached, i.e.,Prs(Reach((RS(Z

′) ∩ Z) ∪ (S \ Z))) = 1.

5. From every states ∈ S, with probability 1 some recurrent classL is reached; and given a recurrent
classL is reached, with probability 1 every state inL is reached.

6. ConsiderZ ⊆ S andZ ′ ⊆ S such that for allz ∈ Z the setZ ′ is reachable. Then for alls ∈ S with
probability 1 eitherRS(Z) orZ ′ is reached, i.e.,Prs(Reach(RS(Z) ∪ Z

′)) = 1.

7. ConsiderZ ⊆ S andZ ′ ⊆ S such that for alls ∈ (S \(Z∪Z ′)), we have thatδ(s)(Z) ·ǫ ≥ δ(s)(Z ′),
for ǫ > 0. Then, for alls ∈ (S \ (Z ∪Z ′)) the probability to reachZ orRS(Z ∪Z

′) is at least1− ǫ,
i.e.,Prs(Reach(Z ∪RS(Z ∪ Z

′))) ≥ 1− ǫ.

8. ConsiderZ ⊆ S andZ ′ ⊆ S such that for alls ∈ Z the setZ ′ is reachable. Then for alls ∈ Z with
probability 1(S \ Z) orZ ′ is reached, i.e.,Prs(Reach((S \ Z) ∪ Z ′)) = 1.

We will refer to these properties as Markov property 1 to Markov property 8, respectively.

µ-calculus. Consider aµ-calculus expressionΨ = µX.ψ(X) over a finite setS, whereψ : 2S 7→ 2S

is monotonic. The least fixpointΨ = µX.ψ(X) is equal to the limitlimk→∞Xk, whereX0 = ∅, and
Xk+1 = ψ(Xk). For every states ∈ Ψ, we define thelevelk ≥ 0 of s to be the integer such thats 6∈ Xk

ands ∈ Xk+1. The greatest fixpointΨ = νX.ψ(X) is equal to the limitlimk→∞Xk, whereX0 = S, and
Xk+1 = ψ(Xk). For every states 6∈ Ψ, we define thelevelk ≥ 0 of s to be the integer such thats ∈ Xk

ands 6∈ Xk+1. Theheightof a µ-calculus expressionγX.ψ(X), whereγ ∈ {µ, ν}, is the least integerh
such thatXh = limk→∞Xk. An expression of heighth can be computed inh + 1 iterations. Aµ-calculus
formula with nestedµ andν operators is a very succinct description of a nested iterative algorithm.

Interpretation of µ-calculus formula. Consider aµ-calculus formula

νY.µX.[f(Y,X)],

wheref is pointwise monotonic. The intuitive way to read the formula is asνY.(µX.[f(Y,X)]), i.e., given a
value ofY (sayYi) we compute the inner least fixpoint with functionf(Yi,X) which has only one free vari-
ableX. Thus for everyYi, µX.[f(Yi,X)] assigns a value forYi. In other words, the functionµX.[f(Y,X)]

6



can be interpreted as a functiong(Y ) onY , and the outer fixpoint computes the greatest fixpoint ofg. The
interpretation for computation ofµY.νX.[f(Y,X)] is similar, and is extended straightforwardly to more
nestedµ-calculus formula.

The value problem. Given an objectiveΦ, and a classC of strategies for player 1, the value for
player 1 under the classC of strategies is the maximal payoff that player 1 can guarantee with a strat-
egy in classC. Formally, val(Φ, C)(s) = supσ1∈C infσ2∈Σ2 E

σ1,σ2
s [Φ]. In this work we will con-

sider the computation of thevalue 1 setunder finite-memory strategies, i.e., the computation of the set
{s ∈ S | val(LimInfAvg(r),ΣF

1 )(s) = 1}. Observe that to ensure value 1, player 1 must ensure that forall
ε > 0, the probability to visit reward 1 is at least1 − ε, and hence it follows if all rewards less than 1 are
decreased to 0 the value 1 set still remains the same, and hence for simplicity for the value 1 set computation
we will consider Boolean reward functions.

3 The Value 1 Set Computation

In this section we will present a polynomial-time algorithmto compute the value 1 set, val1(Φ,Σ
F
1 ), for

mean-payoff objectivesΦ. We start with a very basic and informal overview of the algorithm.

Basic overview of the algorithm. The algorithm will compute the value 1 setW by iteratively adding
chunks of states that are guaranteed to be in the value 1 set, and the iteration will finally converge toW .
Let U ⊆ W be the set of states that are already guaranteed to be in the value 1 set (already identified as
subset ofW in some previous iteration). Then a new chunkX of states are added such thatU ⊆ X ⊆ W ,
and the new chunk of states are also added iteratively (the algorithm is a nested iterative algorithm). For
the setX, let U ⊆ Y ⊆ X be the subset that is already added, and then a new chunkY ⊆ Z ⊆ X is
added such that player 1 can ensure that one of the following three conditions hold: (1) the probability to
reachU in one step can be made arbitrarily large as compared to the probability to leaveW in one step
(thenU can be reached with probability arbitrarily close to 1); or (2) the probability to stay inX in one
step is 1 and the probability to reachY in one step is positive (thenY can be reached with probability 1);
or (3) the probability to stay inX in one step is 1, the one step expected reward and the probability to stay
in Z in one step can be made arbitrarily close to 1. Figure 2, Figure 3, and Figure 4 illustrate the above
three conditions, respectively, pictorially. Very informally, if always one of the the last two conditions is
satisfied, then then the mean-payoff can be made arbitrarilyclose to 1; and the first condition ensures that
the already computed value 1 set can be reached with probability arbitrarily close to 1. The initialization
of the sets are as follows:U andY are initialized to the empty set, andW , X, andZ are initialized to the
set of all states. Note that the above three conditions arelocal (one-step) conditions and we will first define
an one-step predecessor operator to capture the above conditions. We will then show how to compute the
one-step predecessor operator in polynomial time, and finally show how to use the one-step predecessor
operator in a nested iterative algorithm to compute the value 1 set in polynomial time.

3.1 One-step predecessor operator

We first formally define the one-step predecessor operator that was described informally in the basic
overview of the algorithm. Given a states and two distributionsξ1 ∈ D(Γ1(s)) and ξ2 ∈ D(Γ2(s)),
the expected one-step rewardExpRew(s, ξ1, ξ2) is defined as follows:

∑
a1∈Γ1(s),a2∈Γ2(s)

ξ1(a1) · ξ2(a2) ·
r(s, a1, a2). We often use distributions for player 2 that plays a single action a2 with probability 1, and use
a2 to denote such a distribution. For setsU ⊆ Y ⊆ Z ⊆ X ⊆ W , the one-step predecessor operator for
limit-average (mean-payoff) objectives, denoted asLimAvgPre(W,U,X, Y, Z), is the set of statess such
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Y
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W
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Pr = x Pr < x · ǫ

Figure 2: Pictorial illustration of Equation 1.

x+ y = 1

U

Y
Z

X
W

W
x = Pr > 0 y = Pr < 1

Figure 3: Pictorial illustration of Equation 2.

U

Y
Z

X
W

WPr ≤ ǫ
Pr ≥ 1− ǫ

ExpRew ≥ 1− ǫ

Figure 4: Pictorial illustration of Equation 3.
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that for all0 < ǫ < 1
2 , there exists a distributionξǫ1 overΓ1(s) such that for all actionsa2 in Γ2(s), we have

that
(
ǫ · δ(s, ξǫ1, a2)(U) > δ(s, ξǫ1, a2)(W )

)
(1)

∨
(
δ(s, ξǫ1, a2)(X) = 1 ∧ δ(s, ξǫ1, a2)(Y ) > 0

)
(2)

∨
(
δ(s, ξǫ1, a2)(X) = 1 ∧ ExpRew(s, ξǫ1, a2) ≥ 1− ǫ ∧ δ(s, ξǫ1, a2)(Z) ≥ 1− ǫ

)
. (3)

We denote the above conditions as Equation 1, Equation 2, andEquation 3, respectively. Also our nested
iterative algorithm (as informally described) that uses the LimAvgPre(W,U,X, Y, Z) operator will ensure
the required inclusionU ⊆ Y ⊆ Z ⊆ X ⊆ W . Before presenting the algorithm for the computation of
theLimAvgPre set, we first discuss the special case when we only have the first condition Equation 1, then
describe some key properties of witness distributions, andfinally present an iterative algorithm to compute
LimAvgPre.

The LPre operator and witness parametrized distribution. An algorithm for the computation of the
predecessor operator (called theLPre operator) for reachability games was presented in [13] where only
Equation 1 is required to be satisfied. We extend the results of [13, 9] to obtain the following properties
(details presented in technical appendix):

• (Input and output).The algorithm takes as input a states, two setsU ⊆W of states, two sets of action
setsA1 ⊆ Γ1(s) andA2 ⊆ Γ2(s), and either rejects the input or returns the largest setA3 ⊆ A2 such
that the following conditions hold: for every0 < ǫ < 1

2 there exists a witness distributionξǫ1 ∈ D(A1),

with patience at most
(
ǫ·δmin

2

)−(|A1|−1)
, such that (i) for all actionsa2 ∈ A3 Equation 1 is satisfied;

and (ii) for all actionsa′2 ∈ (A2 \A3) we haveSucc(s, ξǫ1, a
′
2) ⊆W . The setA3 is largest in the sense

that ifA4 ⊆ A2 andA4 satisfies the above conditions, thenA4 ⊆ A3. Notice that this indicates that for
all a2 ∈ (A2 \A3) we haveSucc(s, ξǫ1, a2)∩U = ∅, because otherwisea2 would be inA3. Moreover,
the distributionξǫ1 has the largest possible support, i.e., for all actionsa1 ∈ (A1 \ Supp(ξ

ǫ
1)), there

exists an actiona2 in (A2 \ A3) such thatSucc(s, a1, a2) ∩W 6= ∅. An input would only be rejected
if for each actiona1 ∈ A1 there exists an actiona2 ∈ A2 such thatSucc(s, a1, a2) ∩W 6= ∅.

• (Parametrized distribution).Finally, the witness family of distributionsξǫ1, for 0 < ǫ < 1
2 , is presented

in a parametrized fashion as follows: the supportSupp(ξǫ1) for all 0 < ǫ < 1
2 is the same (denoted as

A∗), and the algorithm gives the support setA∗, and a ranking function that assigns a number from
0 to at most|A∗| to every action inA∗, and for any0 < ǫ < 1

2 , the witness distributionξǫ1 plays
actions with ranki with probability proportional toǫi. In other words, the support setA∗ and the
ranking number of the actions inA∗ is a polynomial witness for the parametrized family of witness
distributionsξǫ1, for all 0 < ǫ < 1

2 .

We summarize the important properties which we explicitly use later:LPre(s,W,U,A1, A2) for U ⊆ W
returns the following (see Technical Appendix for correctness proof):

1. (Reject property ofLPre). Reject and then for alla1 ∈ A1 there existsa2 ∈ A2 such that
Succ(s, a1, a2) ∩W 6= ∅

2. (Accept properties ofLPre). Accepts and returns the setA3 ⊆ A2 and a parametrized distributionξǫ1,
for 0 < ǫ < 1

2 , with supportSupp(ξǫ1) ⊆ A1, such that the following properties hold:
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• (Accept property a). For alla2 ∈ A3, the distributionξǫ1 satisfies Equation 1 fora2.

• (Accept property b). For alla2 ∈ (A2 \ A3), we haveSucc(s, ξǫ1, a2) ∩ W = ∅ and
Succ(s, ξǫ1, a2) ∩ U = ∅.

• (Accept property c). For alla1 ∈ (A1 \ Supp(ξ
ǫ
1)), there exists an actiona2 in (A2 \ A3) such

thatSucc(s, a1, a2) ∩W 6= ∅.

• (Accept property d). The setA3 is largest in the sense that for alla2 ∈ (A2 \ A3) and for
all parametrized distributionsξǫ1 overA1, the Equation 1 cannot be satisfied, while satisfying
actions inA2 using Equation 1, or Equation 2, or Equation 3, for anyX,Y,Z such thatU ⊆
Y ⊆ Z ⊆ X ⊆W .

One action with large probability property. We will now show that if a state belongs toLimAvgPre, then
there is a family of witness distributions where one actiona is played with very large probability.

Lemma 1. GivenU ⊆ Y ⊆ Z ⊆ X ⊆ W , if s ∈ LimAvgPre(W,U,X, Y, Z), then for all0 < ǫ ≤ δmin
m

there is a witness distribution to satisfy at least one of thethree conditions (Equation 1, Equation 2, or
Equation 3) ofLimAvgPre where an actiona ∈ Γ1(s) is played with probability at least1− ǫ · δmin.

Proof. Given0 < ǫ ≤ δmin
m

, let ξǫ1 be a witness distribution such that for all actions inΓ2(s) at least one of
the three conditions forLimAvgPre is satisfied. LetC1 be the set of actionsa2 in Γ2(s) such thatξǫ1 anda2
satisfy Equation 1; respectively,C2 for Equation 2, andC3 for Equation 3. Leta be some action such that
ξǫ1(a) ≥

1
m

(note that such an action must exist). Ifξǫ1(a) ≥ 1 − ǫ · δmin, then we already have the desired
actiona; and we are done. Otherwise, we consider the distributionξ′1 defined as follows:

ξ′1(a1) =

{
1− ǫ · δmin if a = a1

ǫ · δmin ·
ξǫ1(a1)
1−ξǫ1(a)

otherwise .

We now consider three cases to showξ′1 is also a witness distribution to satisfy at least one of the three
conditions ofLimAvgPre for ǫ.

1. Consider an actiona2 in C1. Sincea2 in C1 andǫ < δmin
m

, we must have thatSucc(s, a, a2)∩W 6= ∅,
because otherwise givenξǫ1 anda2 the setW is reached with probability at leastδmin

m
(asa is played

with probability at least1
m

by ξǫ1), i.e.,δ(s, ξǫ1, a2)(W ) ≥ δmin
m

> ǫ. This contradicts thata2 satisfies
Equation 1 forξǫ1 for the givenǫ < δmin

m
. Hence givena anda2, the probability to leave the setW

is 0; and since all the other actions are only scaled inξ′1 as compared toξǫ1 we have

δ(s, ξǫ1, a2)(U)

δ(s, ξǫ1, a2)(W )
≤

δ(s, ξ′1, a2)(U)

δ(s, ξ′1, a2)(W )

Hence, givenξ′1 the actiona2 must also satisfy Equation 1 forǫ.

2. Consider an actiona2 in C2. Sincea2 in C2 (i.e., satisfies Equation 2) we must haveSucc(s, ξǫ1, a2) ⊆
X (stay in X with probability 1) andSucc(s, ξǫ1, a2) ∩ Y 6= ∅ (next state inY with positive
probability). Sinceξ′1 assigns positive probability to precisely the same set of actions asξǫ1, i.e.,
Supp(ξ′1) = Supp(ξǫ1), we have thatSucc(s, ξ′1, a2) = Succ(s, ξǫ1, a2) ⊆ X (stay inX with proba-
bility 1) andSucc(s, ξ′1, a2)∩Y = Succ(s, ξǫ1, a2)∩Y 6= ∅ (next state inY with positive probability).
Hence we have thatξ′1 anda2 must also satisfy Equation 2.
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3. Finally consider an actiona2 in C3. We must have that (i)Succ(s, a, a2) ⊆ Z and (ii) r(s, a, a2) = 1;
because otherwise we would either not end up inZ or not get reward 1 with probability at leastδmin

m

whena2 is played againstξǫ1 (contradicting thata2 satisfies Equation 3). Sinceξ′1 playsa with larger
probability thanξǫ1, and all other actions are scaled with probabilities ofξǫ1, it follows that for every
a2 in C3 we must have thatξ′1 anda2 satisfy Equation 3.

The desired result follows.

The action with large probability. In Lemma 1 we showed that some action is played with large probability.
In the lemma the action was chosen depending onǫ, but since there are only finitely many actions and if an
action satisfies for some0 < ǫ < 1

2 , then it also satisfies for allǫ′ such thatǫ ≤ ǫ′ < 1
2 , and thus it follows

that there is an action that is played with large probability. We will call a parametrized distributionξǫ1, for
0 < ǫ < 1

2 , ana-largedistribution if the distribution plays actiona with probability at least1−ǫ ·δmin. Thus
the existence of witnessa-large distributions, if such distributions exist, follows from Lemma 1. The main
crux of the algorithm would be to find an actiona and a parametrized distribution that isa-large as a witness
distribution forLimAvgPre. Our algorithm will use theLPre operator iteratively. The key information we
need is encoded as a matrix as follows.

The matrix for action sets. Given a states, and the setsU ⊆ Y ⊆ Z ⊆ X ⊆ W , we define an
|Γ1(s)| × |Γ2(s)|-matrixM , such thatMa1,a2 ∈ {W,W,U,X, Y, Z0, Z1}, that corresponds to the type of
successor encountered if player 1 plays actiona1 and player 2 plays actiona2. Let

Ma1,a2 =





W if Succ(s, a1, a2) ∩W 6= ∅

U if Succ(s, a1, a2) ∩ U 6= ∅ andSucc(s, a1, a2) ∩W = ∅

W if Succ(s, a1, a2) ∩ (W \X) 6= ∅ andSucc(s, a1, a2) ∩ (W ∪ U) = ∅

Y if Succ(s, a1, a2) ∩ (Y \ U) 6= ∅ andSucc(s, a1, a2) ∩ (W ∪ U ∪ (W \X)) = ∅

X if Succ(s, a1, a2) ∩ (X \ Z) 6= ∅

andSucc(s, a1, a2) ∩ (W ∪ U ∪ (W \X) ∪ (Y \ U)) = ∅

Zℓ if Succ(s, a1, a2) ∩ (Z \ Y ) 6= ∅

andSucc(s, a1, a2) ∩ (W ∪ U ∪ (W \X) ∪ (Y \ U) ∪ (X \ Z)) = ∅

and r(s, a1, a2) = ℓ, for ℓ ∈ {0, 1} .

The matrix uses thatU ⊆ Y ⊆ Z ⊆ X ⊆ W , to ensure that the matrix is well-defined. Notice thatM
encodes all the information needed byLPre (the entries equal toW,Y,X,Z1, Z0 all ensures bothW andU
are not reached,U ensures thatU is reached with probability at leastδmin andW is not reached. The entries
W ensures thatW is reached with probability betweenδmin and1). Hence, we could alternatively giveM
as input toLPre.

Intuitive description of the algorithm. We first present an intuitive description of our algorithm and then
present it formally. The basic idea of the algorithm is to useLPre iteratively and the existence ofa-large
witness distributions. Given a candidate actiona, we rejecta or accepta using the following procedure.
First, given the actiona, if there is an actiona2 such thatW is left with positive probability givena anda2
(i.e.,Ma,a2 = W ), then we rejecta. Second, we check if playinga with probability 1 satisfies all actions
(by either of the three conditions), and if so we accept. If neither of the first two conditions hold, then we
use an iterative procedure. LetC be the set of actions which are guaranteed to be satisfied (by Equation 1)
by playing ana-large distribution (C consists of each actiona2 such thatMa,a2 = U ). We runLPre, and
start with(Γ1(s) \ {a}) asavailable actionsfor player 1 (we are only interested ina-large distributions and
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we do not considera for LPre) and(Γ2(s) \ C) as available actions for player 2. IfLPre rejects, we also
reject: this is because no matter which actiona1 6= a is played with the largest probability (and we could
not playa alone) there is an actiona2, such thatMa1,a2 = W andMa,a2 6= U , which ensures that all three
equations are violated. IfLPre accepts, then we obtain a witness distributionξ1 and a setA3 of actions of
player 2 such thatξ1 satisfies Equation 1 for all actions inA3. We then createξ′1, which isξ1 scaled so that it
plays ana-large distribution (note thatξ1 playsa with probability 0). Afterwards we check if all actions for
player 2 are satisfied byξ′1. If so, we accept. Otherwise, we check that whether for each action a2 outside
(A3 ∪ C) we can satisfy either Equation 2 or Equation 3: fora2 to be satisfied using Equation 3, we must
have thatMa,a2 = Z1; and fora2 to be satisfied using Equation 2, the distributionξ′1 must play some action
a1 with positive probability such thatMa1,a2 = Y . If for somea2 outside(A3 ∪ C), neitherMa,a2 = Z1,
norMa1,a2 = Y , for somea1 played with positive probability, we reject. Otherwise, ifwe did not reject, we
remove each actiona1 for player 1 from available actions, for which there exists an a2 ∈ (A3∪C), such that
Ma1,a2 =W . Note that ifMa1,a2 =W , then we cannot satisfya2 using either Equation 2 or Equation 3, if
we playa1 with positive probability. If the set of available actions does not containa, then we cannot play
a with positive probability in ana-large distribution, which clearly means that noa-large distribution exists
and thus we reject. If this new, smaller set of actions for player 1 containsa, we iterate on with the new set
as the set of available actions for player 1, and the available set for player 2 always remains as(Γ2(s) \ C).
Since, in every iteration, we get a smaller set of actions forplayer 1, we terminate at some point.

The algorithm ALGOPRED. We now describe the steps of the algorithm which we refer as ALGOPRED

(algorithm for predecessor computation). For a states, we consider every actiona ∈ Γ1(s) as a candidate
for the existence of ana-large witness distribution. For each actiona we execute the following steps:

1. (Reject 1).Reject the choice ofa if there existsa2 ∈ Γ2(s) such thatMa,a2 =W .

2. (Accept 1).Accepta if for all a2 ∈ Γ2(s) we haveMa,a2 ∈ {U, Y, Z
1}, and then return the distribu-

tion that playsa with probability 1, and return “Accept” for states.

3. LetC be the set of actionsa2 in Γ2(s) such thatMa,a2 6= U . InitializeB0
1 andA0

1 as(Γ1(s) \ {a}).
The remainder of the algorithm will be done in iterations.

4. (Iteration). In iterationi ≥ 1, runLPre(s,W,U, ((Ai−1
1 ∩Bi−1

1 ) \ {a}), C).
(Reject 2): ifLPre(s,W,U, ((Ai−1

1 ∩ Bi−1
1 ) \ {a}), C) rejects the input, then reject this choice ofa.

Otherwise letAi
2 be the returned set; and letξǫ,i1 be a witness parametrized distribution (parametrized

by 0 < ǫ < 1
2 which is obtained by the support ofξǫ,i1 and the ranking of the actions in the support).

We will now define some sets of actions.

(a) LetAi
1 = Supp(ξǫ,i1 ) ∪ {a}.

(b) LetBi
1 be all actionsa1 in Γ1(s) such that for alla2 ∈ (C \ Ai

2) we haveMa1,a2 6=W .

(c) LetBi
2 be all actionsa2 in (C \Ai

2) such that either (i)Ma,a2 = Z1; or (ii) there exists an action
a1 ∈ A

i
1 with Ma1,a2 = Y .

5. We reject in the following cases:

• (Reject 3). If ((Ai
1 ∩B

i
1) \ {a}) = ∅, then reject this choice ofa.

• (Reject 4). If (C \ Ai
2) 6= Bi

2, then reject this choice ofa.

• (Reject 5). If a 6∈ Bi
1, then reject this choice ofa.
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6. (Accept 2). Otherwise ifAi
1 ⊆ Bi

1, then return accepta, and return the parametrized distributionξǫ1,
for 0 < ǫ < 1

2 , that playsa with probability1− ǫ · δmin and with probabilityǫ · δmin follows ξǫ,i1 , and
also “Accept” states.

7. If the action is neither accepted nor rejected, then go to iterationi+ 1 in step 4.

If all choices of actiona ∈ Γ1(s) get rejected, then “Reject” states.
The parametrized distribution for Accept 2 is returned as the special actiona (to be played with proba-

bility 1 − ǫ · δmin, for 0 < ǫ < 1
2 ), the support set ofξǫ,i1 and the ranking function of the support as given

by theLPre operator (which gives the parametrized distribution forξǫ,i1 which is multiplied byǫ · δmin to get
the parametrizeda-large witness distributionξǫ1 anda is played with the remaining probability).

Illustrations with examples.We illustrate our algorithm on fourM -matrices shown in Figure 5. First observe
that the only feasible candidate for ana-large distribution is the first row, because each other row contains
anW entry, and thus will be rejected at the start. The first matrixshown in Figure 5a will be accepted by
the algorithm and the other three will be rejected by the algorithm.

1. Consider first the matrix in Figure 5a. Then the algorithm is run with the first row asa, it will call
LPre with the all rows but the first row for player 1 and all columns but the first column for player 2
(since given the first row, the first column satisfies Equation1). TheLPre algorithm will then return
the distributiond of playing the second row with probability1− ǫ

2 and the third row with probability
ǫ
2 . It also returns the setA3 containing the second and third column (they satisfy Equation 1). We
then get accept in that iteration, because column 4 and column 5 can be satisfied by Equation 2 and
column 6 can be satisfied by Equation 3.

2. Consider now the second matrix, the one in Figure 5b. It will get rejected at start, because in this case
each row contains anW entry.

3. The third matrix, the one in Figure 5c, will get rejected inthe second iteration. In the first iteration,
LPre will return the same distributiond as for the first matrix along with the sameA3. This time,
we cannot accept directly, becaused no longer satisfies any of the three equations, for column 5. At
that point, the algorithm considers that each columna2 ∈ {4, 5, 6} such thatMa1,a2 = Y for some
a1 ∈ {1, 2, 3} or Ma,a2 = Z1 (wherea = 1). Thus, the algorithm removes row 2, from the set of
possible rows, because column 5 is such thatM2,5 = W , and5 6∈ A3 and iterate. Then the algorithm
calls LPre and gets back reject, because each of the rows left contains at least one instance ofW .
Hence the algorithm rejects.

4. For the last matrix, the one in Figure 5d, the algorithm calls LPre and getsd andA3, but this time
the algorithm rejects at that point, because row 6 (which is not in A3) does not contain an actiona1
played with positive probability such thatMa1,6 = Y or is such thatMa,6 = Z1.

Lemma 2. GivenU ⊆ Y ⊆ Z ⊆ X ⊆ W and a states, if algorithm ALGOPRED acceptss, then
s ∈ LimAvgPre(W,U,X, Y, Z). Furthermore, for every0 < ǫ < 1

2 there exists a witness distributionξǫ1

with patience at most
(
ǫ·δmin

2

)−(|Γ1(s)|−1)
to satisfy at least one of the three required conditions (Equation 1,

Equation 2, or Equation 3) forLimAvgPre for every actiona2 ∈ Γ2(s).

Proof. We will next show that if ALGOPRED returns a parametrized distributionξǫ1, then for all0 < ǫ < 1
2

and for all actionsa2 ∈ Γ2(s), at least one of the three conditions ofLimAvgPre is satisfied. This will show
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M =




U W W X Y Z1

W U W Y X X

W W U X X X

W W W W W W




(a) This illustrates aM -matrix, which has ana-large
distribution, wherea corresponds to the first row.

M =




U W W X Y Z1

W U W Y W X

W W U X X X

W W W W W W




(b) This illustrates aM -matrix, which has noa-
large distribution. The cicled entry is the only entry
changed as compared to Figure 5a.

M =




U W W X Y Z1

W U W Y W X

W W U X X X

W W W W W W




(c) This illustrates aM -matrix, which has noa-
large distribution. The cicled entry is the only entry
changed as compared to Figure 5a.

M =




U W W X Y X

W U W Y X Z1

W W U X X X

W W W W W W




(d) This illustrates aM -matrix, which has noa-large
distribution. The circled entries are the only entries
changed as compared to Figure 5a.

Figure 5

thats ∈ LimAvgPre(W,U,X, Y, Z). The algorithm accepts states and returns a distribution at two places,
namely, (Accept 1) and (Accept 2). For the case of Accept 1: the algorithms returns a distribution that plays
some actiona with probability 1; and for the case of Accept 2 it returns a distribution that plays some subset
of actions (at least 2) with positive probability. We analyze both the cases below.

1. Case Accept 1.In the first case for all actionsa2 we have thatMa,a2 ∈ {U, Y, Z
1}. We analyze the

three sub-cases.

(a) If Ma,a2 = U , thenSucc(s, a, s2) ∩ U 6= ∅ (i.e., the next state is inU with positive probability)
andSucc(s, a, a2)∩W = ∅ (i.e., the next state is inW with probability 0) and hence Equation 1
is satisfied.

(b) If Ma,a2 = Y , then (i)Succ(s, a, a2)∩ (Y \U) 6= ∅ which implies thatSucc(s, a, a2)∩ Y 6= ∅,
since(Y \ U) ⊆ Y ; and (ii) Succ(s, a, a2) ∩ (W ∪ U ∪ (W \ X)) = ∅ which implies that
Succ(s, a, a2)∩ (X ∪U) = ∅ because asX ⊆W we have(W ∪U ∪ (W \X)) = X ∪U ; and
henceSucc(s, a, a2) ⊆ X. The first condition ensures that the next state is inY with positive
probability and the second condition ensures the next stateis inX with probability 1, and thus
Equation 2 is satisfied.

(c) If Ma,a2 = Z1, then (i)Succ(s, a, a2)∩ (Z \Y ) 6= ∅ which implies thatSucc(s, a, a2)∩Z 6= ∅;
and (ii) Succ(s, a, a2) ∩ (W ∪ U ∪ (W \ X) ∪ (Y \ U) ∪ (X \ Z)) = ∅ which implies that
Succ(s, a, a2)∩ (Z ∪U ∪Y ) = ∅, because asZ ⊆ X ⊆W we have(W ∪U ∪ (W \X)∪Y ∪
(X \Z)) = (Z∪U ∪Y ), and henceSucc(s, a, a2) ⊆ Z (i.e., next state inZ with probability 1);
and (iii) r(s, a, a2) = 1 (i.e., expected reward is 1). It follows that Equation 3 is satisfied.

2. Case Accept 2.In the second case, we consider the case when the algorithm returns a parameterized
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distributionξǫ1, for 0 < ǫ < 1
2 , in iterationi. Let the action played with probability1 − ǫ · δmin bea.

Such an action clearly exists, by construction. For anya2 ∈ Γ2(s) such thatMa,a2 = U , then the next
state is inU with probability at least(1 − ǫ · δmin) · δmin and the next state is inW with probability
at mostǫ · δmin and the ratio is at least2 · ǫ; thus the distributionξǫ1 anda2 satisfy Equation 1 for2 · ǫ.
As 0 < ǫ < 1

2 is arbitrary the result follows for alla2 such thatMa,a2 = U . We consider the setC of
remaining actions inΓ2(s), i.e., for alla2 ∈ C we haveMa,a2 6= U .

Satisfying Equation 1 inAi
2. We have thatMa,a2 6= W , for all a2 ∈ Γ2(s), because otherwise the

guess of actiona would have been rejected, in (Reject 1). We also have thatLPre(s,W,U,B′, C),
for B′ ⊆ (Γ1(s) \ {a}) must return an distributionξ′1 overB′ and a setA′ ⊆ C, such that for all
a2 ∈ A′, the actiona2 and the distributionξ′1 satisfies Equation 1 (by Accept property a ofLPre).
In the last iteration the setAi

2 is the set returned byLPre(s,W,U, ((Ai−1
1 ∩ Bi−1

1 ) \ {a}), C), and
the distributionξǫ,i1 satisfies Equation 1 for all actions inAi

2 (again by Accept property a ofLPre
sinceAi

2 is the returned subset ofC). Sinceξǫ1 only playsa with high probability and only scales the
distributionξǫ,i1 it follows (similarly to Case 1 of Lemma 1) thatξǫ1 satisfies Equation 1 for all actions
in Ai

2.

Satisfying Equation 2 or Equation 3 in(C \Ai
2). By definition ofBi

1 andAi
1 (Step 4 (a) and Step 4 (b)

of the algorithm), and thatAi
1 ⊆ Bi

1 (from Accept 2 of the algorithm), it follows that the distribution
ξǫ1 is such that for alla2 ∈ (C \ Ai

2) anda1 ∈ Supp(ξǫ1) ∪ {a} = Ai
1 we haveMa1,a2 6= W . Also

for all a2 ∈ (C \ Ai
2) and alla1 such thatξǫ1(a1) > 0, we have from Accept property b ofLPre that

Ma1,a2 6=W andMa1,a2 6= U . Notice that therefore for alla1 ∈ Supp(ξǫ1) anda2 ∈ (C\Ai
2) we have

Ma1,a2 ∈ {X,Y,Z
0, Z1}, which implies thatSucc(s, ξǫ1, a2)(X) = 1. For alla2 ∈ (C \Ai

2) we have
that either (i)Ma,a2 = Z1; or (ii) ξǫ1 assigned positive probability to somea1 such thatMa1,a2 = Y ,
because otherwise(C \ Ai

2) 6= Bi
2 and we would have rejected this choice ofa (by Reject 4 of the

algorithm). Notice thatMa,a2 = Z1 implies thatSucc(s, a, a2)(Z) = 1 and that r(s, a, a2) = 1, thus,
since the distribution the algorithm returned wasa-large, we get that we reachZ in one step with
probability at least1− ǫ · δmin and get reward 1 with probability at least1− ǫ · δmin, hence Equation 3
is satisfied. If the second case holds (i.e.,Ma1,a2 = Y ), we haveSucc(s, ξǫ1, a2) ∩ (Y \ U) 6= ∅ (i.e.,
Y is reached with positive probability in one step), thus implying that Equation 2 is satisfied.

Therefore the distributionξǫ1 is a witness distribution to satisfy the required conditions for 0 < ǫ < 1
2

for LimAvgPre. It follows thats ∈ LimAvgPre(W,U,X, Y, Z).

Patience. The distribution returned byLPre over |Γ1(s)| − 1 actions has patience at most(
ǫ·δmin

2

)−(|Γ1(s)|−2)
. Hence it is clear from the algorithm that the distribution returned by the algorithm

has patience at most
(
ǫ·δmin

2

)−(|Γ1(s)|−1)
.

Our next goal is to present a lemma that complements the previous lemma. In other words, we would
show that if ALGOPRED rejects an actiona, then there would be noa-large distributions as witnesses for
LimAvgPre. The algorithm rejects an actiona at four places, and we will show that all the rejections are
sound(i.e., if a is rejected, then there is noa-large witness distribution). We first show that the first rejection
is sound.

Soundness of Reject 1.We consider the case of Reject 1. In this case, there exists anactiona2 such that
Ma,a2 = W . Given ana-large distributionξǫ1, the one step probability to reachW (i.e.,δ(s, ξǫ1, a2)(W )) is
at leastx = (1− ǫ · δmin) · δmin > ǫ, sinceǫ < 1

2 andδmin ≤ 1, and even ifU is reached with the remaining
probability (i.e., even ifδ(s, ξǫ1, a2)(U) = 1 − x), it follows that Equation 1 is violated, for all0 < ǫ < 1

2 .
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The remaining two expressions cannot be satisfied becauseX ⊆ W and since we leaveW with positive
probability we as well leaveX with positive probability. It follows that the rejection ofactiona is sound for
Reject 1.

Rejects in iteration. The other places the algorithm can reject actiona, i.e., (Reject 2), (Reject 3), (Reject 4),
and (Reject 5), are part of the iterative procedure. To provesoundness of these rejects we will define a loop
invariant and prove the loop invariant inductively. We willalso show that with the loop invariant we can
establish soundness of the rejects in the iterative procedure as well as the termination of the algorithm.

The loop invariant. The loop invariant is as follows:

• Any a-large witness distributionξǫ1 for LimAvgPre only plays actions in(Ai
1∩B

i
1)∪{a}with positive

probabilities, for alli ≥ 0, i.e.,Supp(ξǫ1) ⊆ (Ai
1 ∩B

i
1) ∪ {a}.

We will also establish themonotonicity(strictly decreasing till a fixpoint is reached) property that (Ai
1 ∩

Bi
1) ∪ {a} ⊆ (Ai−1

1 ∩Bi−1
1 ) ∪ {a}, for all i > 0; and equality implies termination in iterationi.

Inductive proof of loop invariant. We present the basic inductive argument for the loop invariant:

• The base case,i = 0. The base case, fori = 0 is trivial, sinceA0
1 = B0

1 = (Γ1(s) \ {a}), thus
implying that(Ai

1 ∩B
i
1) ∪ {a} = Γ1(s).

• The induction case,i > 0. By inductive hypothesis, anya-large witness distributionξǫ1 only plays
actions in(Ai−1

1 ∩ Bi−1
1 ) ∪ {a} with positive probabilities, and we need to establish fori. We will

show that anya-large witness distribution can only play actions inAi
1 ∪{a} = Ai

1, (see the following
description ofAi

1 which uses the inductive hypothesis). We refer to this as required property 1 for
loop invariant. Similarly, we establish the same forBi

1 (see the following description ofBi
1 which

uses the inductive hypothesis). We refer to this as requiredproperty 2 for loop invariant. Hence any
witnessa-large distribution can only play actions in(Ai

1 ∩B
i
1) ∪ {a}.

The above proof requires to establish the key properties ofAi
1 andBi

1. Before establishing them we first
show the monotonicity property.

Monotoncity property. We will show that we have(Ai
1 ∩ B

i
1) ∪ {a} ⊆ (Ai−1

1 ∩ Bi−1
1 ) ∪ {a}, for all

i > 0, and equality implies termination of the inner loop in iteration i. Notice that this implies that for
any choice ofa the inner loop rejectsa or finds a distribution after at most|Γ1(s)| iterations. We have
thatAi

1 = Supp(ξǫ1) ∪ {a} (by Step 4 (a) of ALGOPRED), whereξǫ1 is a witness distribution returned by
LPre(s,W,U, ((Ai−1

1 ∩ Bi−1
1 ) \ {a}), C). SinceSupp(ξǫ1) ⊆ ((Ai−1

1 ∩ Bi−1
1 ) \ {a}), if LPre accepts, we

have thatAi
1 ⊆ (Ai−1

1 ∩Bi−1
1 )∪{a}. Thus we get that(Ai

1∩B
i
1)∪{a} ⊆ A

i
1∪{a} ⊆ (Ai−1

1 ∩Bi−1
1 )∪{a}.

This establish monotonicity and now we show the termination. Assume that(Ai
1 ∩ B

i
1) ∪ {a} = (Ai−1

1 ∩
Bi−1

1 ) ∪ {a}. Therefore we have thatξǫ1 can only use actions in((Ai−1
1 ∩ Bi−1

1 ) \ {a}), which is thus also
((Ai

1 ∩ B
i
1) \ {a}). But then either (i)a 6∈ Bi

1 or (ii) Supp(ξǫ1) ∪ {a} = Ai
1 ⊆ (Ai

1 ∩ B
i
1) ∪ {a}; which

implies thatAi
1 ⊆ Bi

1. But in the first case we reject (in (Reject 5)) and in the second case we accept (in
(Accept 2)). This establishes the termination property.

The properties of the sets for loop invariant.We now present the associated properties of the setsAi
1,A

i
2,

Bi
1, andBi

2 to complete the inductive proof of the loop invariant.

1. The property of the setAi
2. We first argue thatAi

2 has certain properties which will imply the key
properties forAi

2.
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(a) SinceLPre(s,W,U, ((Ai−1
1 ∩Bi−1

1 ) \{a}), C) accepts, we have thatAi
2 is a subset ofC. There

exists a witness parametrized distributionξǫ1, over((Ai−1
1 ∩Bi−1

1 )\{a}) such that for alla2 ∈ Ai
2

we have thatξǫ1 anda2 satisfies Equation 1 (by Accept property a ofLPre).

(b) Also for alla2 ∈ (C \ Ai
2) we have thatMa1,a2 6=W for all a1 ∈ Supp(ξǫ1) (Accept property b

of LPre).

(c) Notice also that for any actiona2 ∈ C, if a distribution overAi−1
1 ∩Bi−1

1 cannot satisfya2 using
Equation 1, then no distribution over(Ai−1

1 ∩ Bi−1
1 ) ∪ {a} can either, sinceMa,a2 6= U (from

the definition of the setC) and henceU cannot be reached as long as the distribution plays
a. For an distributionξ′1 to be a witness distribution, all actions inΓ2(s) must satisfy either
(i) Equation 1; or (ii) Equation 2; or (iii) Equation 3. But ifan actiona2 must satisfy either
Equation 2 or Equation 3, we must have thatξ′1 ensures thatX is reached with probability 0
(i.e., Succ(s, ξ′1, a2) ⊆ X). Hence, sinceX ⊆ W we also must have thatW is reached with
probability 0.

By Accept property d ofLPre we have that, sinceAi
2 is returned byLPre, noa-large witness distribu-

tion ξ′1 can satisfy any actiona2 in (C \Ai
2) using Equation 1, while satisfying all actions inC using

Equation 1, or Equation 2, or Equation 3. Also, for alla2 in (C \Ai
2) and alla1 ∈ Supp(ξǫ1) we have

thatMa1,a2 6= U (by Accept property b ofLPre). Furthermore, by definition ofC for all a2 ∈ C we
have thatMa,a2 6= U . Therefore we have established the following key properties forAi

2:

• Any a-large witness distributionξ′1 must satisfy all actionsa2 in (C\Ai
2) using either Equation 2

or Equation 3.

• For alla2 ∈ (C \ Ai
2) anda1 ∈ Supp(ξǫ1) ∪ {a} = Ai

1 we have thatMa1,a2 6= U .

2. The property of the setAi
1. By accept property c ofLPre and since we did not reject in Reject 1, the set

Ai
1 is the largest set, such that for alla1 ∈ Ai

1 there exists noa2 in (C\Ai
2) withMa1,a2 =W . But this

means that any distribution that satisfies for all actions in(C \ Ai
2) either Equation 2 or Equation 3,

must play only actions inAi
1. But from our description ofAi

2 we obtain that alla-large witness
distributions must ensure that all actions in(C\Ai

2) are satisfied using either Equation 2 or Equation 3.
Therefore we have established the following key property for Ai

1: All a-large witness distributions
must play only actions inAi

1 with positive probability. This proves the required property 1 of the loop
invariant.

3. The property of the setBi
2. From the first key property ofAi

2 we have that anya-large witness
distribution must ensure that all actions in(C \Ai

2) satisfy either Equation 2 or Equation 3. From the
second key property ofAi

2, for all a1 ∈ Ai
1 and alla2 ∈ (C \Ai

2), we have thatMa1,a2 6= U . The key
property ofAi

1 implies that anya-large witness distribution must play only actions inAi
1.

Hence, for ana-large witness distributionξ′1, for all a2 in (C\Ai
2) we must have that either (i)Ma,a2 =

Z1 (to satisfy Equation 3); or (ii) there is an actiona1 in Ai
1 such thatMa1,a2 = Y (to satisfy

Equation 2 — it would also be satisfied ifMa1,a2 = U but we know thatMa1,a2 6= U by Accept
property b ofLPre). But that is precisely the definition ofBi

2 (Step 4 (c) of ALGOPRED). Therefore,
we have the following key property forBi

2: Actions a2 in (C \ (Ai
2 ∪ B

i
2)) cannot be satisfied by

Equation 1 or Equation 2 or Equation 3 by anya-large witness distribution.

4. The property of the setBi
1. We know from the first key property ofAi

2 that all actions in(C \ Ai
2)

must satisfy Equation 2 or Equation 3. But to do so we must leaveX with probability0. ButBi
1 is the

17



largest set of actions such that for all actionsa1 in Bi
1 and for all actionsa2 in (C \Ai

2), we have that
Ma1,a2 6= W (Step 4 (b) of ALGOPRED). Hence we have that ana-large distribution that plays an
action in(Γ1(s) \B

i
1) with positive probability violates both Equation 2 and Equation 3 for somea2

in (C \ Ai
2). Therefore, we have the following key property forBi

1: All a-large witness distributions
only plays actions inBi

1. This also proves the required property 2 of the loop invariant.

This establishes the inductive proof of the loop invariant.

Lemma 3. For a givenU ⊆ Y ⊆ Z ⊆ X ⊆ W , if Algorithm ALGOPRED rejects states, then
s 6∈ LimAvgPre(W,U,X, Y, Z). Also, algorithmALGOPRED accepts or rejects a choice of actiona as
a candidate for the existence ofa-large witness distributions at mostmin(|Γ1(s)|, |Γ2(s)|) iterations of the
inner loop.

Proof. In the algorithm there are five places where a choice ofamight get rejected. We have already argued
the soundness of Reject 1. We prove the soundness of the otherrejects below.

1. (Reject 2).If LPre(s,W,U, ((Ai−1
1 ∩Bi−1

1 ) \ {a}), C) is rejected, then for all actionsa1 in ((Ai−1
1 ∩

Bi−1
1 ) \ {a}), there exists an actiona2 in C such thatMa1,a2 = W , by the reject property ofLPre.

But then consider any distributionξ1 over ((Ai−1
1 ∩ Bi−1

1 ) \ {a}), some actiona1 is played with
probability at least1

m
. Hence the actiona2 such thatMa1,a2 = W , cannot be satisfied using neither

(i) Equation 1; nor (ii) Equation 2; nor (iii) Equation 3. Thelatter two becauseW is entered with
positive probability in one step and henceX is left with positive probability in one step. The first is
because we reachW with probability at leastx = δmin

m
and even if we reachU with probability1−x,

we still do not satisfy Equation 1. Now consider some distribution ξ′1 over (Ai−1
1 ∩ Bi−1

1 ) ∪ {a}.
Either it playsa with probability 1 or not. If it does, then it cannot be a witness distribution, since
it otherwise would have been accepted in Accept 1. If it does not then the argument is similar to
the previous argument (in the case of Equation 1, the argument also uses thatMa,a2 6= U from the
definition ofC). Hence no witness distribution exists that only uses actions in(Ai−1

1 ∩Bi−1
1 ) ∪ {a}.

Thus Reject 2 is a sound reject, by the loop invariant.

2. (Reject 3). If a is not accepted by Accept 1, thena could not be played with probability 1. For
Reject 3, the condition((Ai

1 ∩ B
i
1) \ {a}) = ∅ is satisfied. Thus noa-large witness distribution can

play anything buta by the loop invariant. Therefore noa-large witness distribution can exist in this
case. Thus, Reject 3 is a sound reject.

3. (Reject 4).Consider ana-large witness distributionξǫ1. The key property ofBi
2 implies that any action

a2 ∈ (C \ (Ai
2 ∪B

i
2)) cannot be satisfied using either of the equations. But sinceBi

2 ⊆ (C \ Ai
2) we

must have thatBi
2 = (C \ Ai

2) for anya-large witness distribution to exists. Therefore we can reject
the choice ofa if (C \Ai

2) 6= Bi
2. Hence Reject 4 is a sound reject.

4. (Reject 5). From the key property of the setBi
1, we have that ifa 6∈ Bi

1, then noa-large witness
distribution can playa with positive probability, which implies that noa-large witness distribution
can exist. Hence Reject 5 is also a sound reject.

Termination. We have already established (in ”monotonicity and termination for loop invariant”) that
(Ai

1 ∩ B
i
1) ∪ {a} ⊆ (Ai−1

1 ∩ Bi−1
1 ) ∪ {a}, for all i > 0 and equality implies termination of the inner

loop in iterationi. Notice that this implies that for any choice ofa the inner loop rejectsa or finds a
distribution after at most|Γ1(s)| iterations. We will now show thatAi

2 ⊆ Ai−1
2 , for all i > 0 and equality
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implies termination in iterationi. Notice that this implies that for any choice ofa the inner loop rejectsa
or finds a distribution after at most|Γ2(s)| iterations. We have thatAi

2 ⊆ Ai−1
2 , becauseξǫ,i1 could also

be returned in iterationi − 1 and LPre maximizes the number ofa1’s for which ξǫ,i1 (a1) > 0 (Accept
property c). Assume thatAi

2 = Ai−1
2 . Then(C \ Ai

2) = (C \ Ai−1
2 ) and thusBi

1 = Bi−1
1 . We also have

thatAi
1 ⊆ (Ai−1

1 ∩Bi−1
1 )∪ {a}, thus implying thatAi

1 ⊆ (Ai−1
1 ∩Bi

1) ∪ {a}. ThereforeAi
1 ⊆ B

i
1, since if

Bi
1 does not containa, neither doesBi−1

1 and thus we would have rejected the choice ofa in iterationi− 1,
because of (Reject 5). The desired result follows.

Lemma 4. GivenU ⊆ Y ⊆ Z ⊆ X ⊆ W and a states, ALGOPRED terminates in timeO(|Γ1(s)|
2 ·

|Γ2(s)|
2 +

∑
a1∈Γ1(s),a2∈Γ2(s)

|Supp(s, a1, a2)|). Alternatively, ifM is given as input, the running time is

O(|Γ1(s)|
2 · |Γ2(s)|

2).

Proof. The calculation ofM can be done in time
∑

a1∈Γ1(s),a2∈Γ2(s)
|Supp(s, a1, a2)|. As mentioned in

the definition ofM , we could alternatively useM as input toLPre since it encodes all information needed.
There are|Γ1(s)| different choices for which actiona to play with high probability. Givena, there are at
mostmin(|Γ1(s)|, |Γ2(s)|) iterations of the inner loop, see Lemma 3. Each iteration of the inner loop can
be done inO(|Γ1(s)| · |Γ2(s)|) time, and is dominated by the running time ofLPre, which runs in time
O(Γ1(s)| · |Γ2(s)|) onM , see [13]. Hence, ifM is given as input we get a running time ofO(|Γ1(s)| ·
min(|Γ1(s)|, |Γ2(s)|) · |Γ1(s)| · |Γ2(s)|), which is less thanO(|Γ1(s)|

2 · |Γ2(s)|
2).

Combining Lemma 2, Lemma 3 and Lemma 4 we get the following lemma.

Lemma 5. The algorithm ALGOPRED, for a given states and setsU ⊆ Y ⊆ Z ⊆ X ⊆
W , correctly computes ifs ∈ LimAvgPre(W,U,X, Y, Z) and runs in timeO(|Γ1(s)|

2 · |Γ2(s)|
2 +∑

a1∈Γ1(s),a2∈Γ2(s)
|Supp(s, a1, a2)|).

3.2 Iterative algorithm for value 1 set computation

In this section we will present the nested iterative algorithm for the value 1 set computation. The nested
iterative algorithm is succinctly represented as the following nested fixpoint formula (µ-calculus formula)
that uses theLimAvgPre one-step predecessor operator. Let

W ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z) .

We will show thatW ∗ = val1(LimInfAvg,ΣF
1 ) (also see the appendix, Section 6, for an algorith-

mic description of computation of theµ-calculus formula). First in the next subsection we show that
W ∗ ⊆ val1(LimInfAvg,ΣS

1 ) ⊆ val1(LimInfAvg,ΣF
1 ); and in the following subsection will establish the

other inclusion.

3.2.1 First inclusion:W ∗ ⊆ val1(LimInfAvg,ΣS
1 )

LetΘi denote the random variable for the reward at thei-th step of the game. We will show that for all states
s in W ∗ for all ǫ > 0, there exists a stationary (hence finite-memory) strategyσǫ1 for player 1 such that for
all positional strategiesσ2 for player 2 we have that

lim
t→∞

∑t
i=0 E

σǫ
1,σ2

s [Θi]

t
≥ 1− ǫ .
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This will show thatW ∗ ⊆ val1(LimInfAvg,ΣS
1 ) ⊆ val1(LimInfAvg,ΣF

1 ). Notice that the statement is
trivially satisfied ifW ∗ = ∅, and hence we will assume that this is not so.

Computation of W ∗. We first analyze the computation ofW ∗. SinceW ∗ is a fixpoint, we can replaceW
by W ∗ and get rid of the outer mostν operator, and the rest of theµ-calculus formula also computesW ∗.
In other words, we have

W ∗ = µU.νX.µY.νZ.LimAvgPre(W ∗, U,X, Y, Z) ,

Thus the computation ofW ∗ is achieved as follows: U0 is the empty set; andUi =
νX.µY.νZ.LimAvgPre(W ∗, Ui−1,X, Y, Z), for i ≥ 1. Let ℓ be the least index such thatUℓ =W ∗. For any
i ≥ 0, we also have thatYi,0 is the empty set and thatYi,j = νZ.LimAvgPre(W ∗, Ui−1, Ui, Yi,j−1, Z), for
j ≥ 1. For a states ∈ W ∗, let the rank of states (denotedrk(s) = (i, j)) be the tuple of(i, j) such thati is
the least index withs ∈ Ui (i.e.,s ∈ Ui \Ui−1); andj is the least index withs ∈ Yi,j (i.e.,s ∈ Yi,j \Yi,j−1).
For1 ≤ i ≤ ℓ, let rk(i) = j be the least index when the fix point converges forUi, i.e., the leastj such that
Yi,j = Yi,j+1. By definition ofW ∗, for all statess ∈ W ∗, if rk(s) = (i, j), then we must have that for all
ǫ > 0 there is a distributionξǫ1 overΓ1(s) such that for all actionsa2 ∈ Γ2(s) for player 2 we have that

(
ǫ · δ(s, ξǫ1, a2)(Ui−1) > δ(s, ξǫ1, a2)(W

∗
)
)

(4)

∨
(
δ(s, ξǫ1, a2)(Ui) = 1 ∧ δ(s, ξǫ1, a2)(Yi,j−1) > 0

)
(5)

∨
(
δ(s, ξǫ1, a2)(Ui) = 1 ∧ ExpRew(s, ξǫ1, a2) ≥ 1− ǫ ∧ δ(s, ξǫ1, a2)(Yi,j) ≥ 1− ǫ

)
; (6)

whereW
∗
= S \W ∗ is the complement ofW ∗. We refer to the above as Equation 4, Equation 5, and

Equation 6, respectively.

The construction of stationary witness strategyσǫ1. Fix 0 < ǫ < 1
2 . The desired witness stationary

strategyσǫ1 will be constructed from a finite sequence of stationary strategies,

σǫ,1,01 , σǫ,1,11 , . . . , σ
ǫ,1,rk(1)
1 , σǫ,2,01 , . . . , σ

ǫ,2,rk(2)
1 , . . . , σǫ,ℓ,01 , . . . , σ

ǫ,ℓ,rk(ℓ)
1 .

The strategies will be constructed inductively. First we will construct it for states inU1 and(Uℓ \Uℓ−1), and
then we will present the inductive construction for(Ui \ Ui−1), for 2 ≤ i ≤ ℓ− 1.

• (Base case).We will first describe the construction of the strategyσǫ,1,01 (resp.σǫ,ℓ,01 ).

1. The stationary strategyσǫ,1,01 (resp.σǫ,ℓ,01 ) is arbitrary except for states in(Y1,rk(1) \ Y1,rk(1)−1)
(resp.(Yℓ,rk(ℓ) \ Yℓ,rk(ℓ)−1)).

2. For statess in (Y1,rk(1)\Y1,rk(1)−1) (resp.(Yℓ,rk(ℓ)\Yℓ,rk(ℓ)−1)) the strategy plays the distribution
ξη1 overΓ1(s), for η = ǫ

2 .

3. We next describe the construction of the strategyσǫ,1,j1 (resp.σǫ,ℓ,j1 ), for j ≥ 1, using induction
in j.

(a) The strategyσǫ,1,j1 (resp. σǫ,ℓ,j1 ) plays asσǫ,1,j−1
1 (resp. σǫ,ℓ,j−1

1 ) except for states in
(Y1,rk(1)−j \ Y1,rk(1)−(j+1)) (resp.(Yℓ,rk(ℓ)−j \ Yℓ,rk(ℓ)−(j+1))).

(b) For statess in (Y1,rk(1)−j \ Y1,rk(1)−(j+1)) (resp. (Yℓ,rk(ℓ)−j \ Yℓ,rk(ℓ)−(j+1))) the strategy

plays the distributionξη1 overΓ1(s), for η =
(
ǫ·δmin

4

)(2m)j

.
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• (Inductive case).We will next construct the strategy for the remaining states, in two steps, first for
σǫ,i,01 and then forσǫ,i,j1 , for 2 ≤ i ≤ ℓ− 1 andj ≥ 1. We will do so using induction backwards ini.
That is the base case isi = ℓ and we then proceed downward.

1. The strategyσǫ,i,01 plays as the strategyση,i+1,rk(i+1)
1 , for η =

(
ǫ·δmin

4

)(2m)rk(i)

, except for states

in (Yi,rk(i) \ Yi,rk(i)−1).

2. For statess in Yi,rk(i) \ Yi,rk(i)−1 the strategy playsξη1 overΓ1(s), for η = ǫ
2 .

3. We now finally constructσǫ,i,j1 , for 2 ≤ i ≤ ℓ− 1, using induction inj.

(a) The strategyσǫ,i,j1 plays asσǫ,i,j−1
1 except for states in(Yi,rk(i)−j \ Yi,rk(i)−(j+1)).

(b) For statess in (Yi,rk(i)−j \ Yi,rk(i)−(j+1)) the strategy playsξη1 over Γ1(s), for η =
(
ǫ·δmin

4

)(2m)j

.

• (The entire strategy).Let σǫ,i1 = σ
ǫ,i,rk(i)
1 for all i. Let σǫ1 play asσβ,11 in U1 andσβ,21 , for β = ǫ

2 , in
the remaining states.

Lemma 6. The patience ofσǫ,i1 (s) for statess of rank(i, rk(i)− j) is at most
(
ǫ·δmin

4

)−(
(2m)j+1

2
−1)

.

Proof. By construction, the patienceσǫ,i1 (s) of statess of rank(i, rk(i)) is
(
ǫ·δmin

4

)−(m−1)
(by Lemma 2).

Also for j ≥ 1, the patienceσǫ,i1 (s) of statess of rank(i, rk(i)− j) is at most




(
ǫ·δmin

4

)(2m)j

· δmin

2




−(m−1)

=

(
ǫ · δmin

4

)−(2m)j ·(m−1)

·

(
δmin

2

)−(m−1)

=

(
ǫ · δmin

4

)−(2m)j ·(m−1)

·

(
δmin

2

)−m

·

(
δmin

2

)

=

(
ǫ · δmin

4

)−(2m)j ·m

·

(
ǫ · δmin

4

)(2m)j

·

(
δmin

2

)−m

·

(
δmin

2

)

≤

(
ǫ · δmin

4

)−(2m)j ·m

·

(
ǫ · δmin

4

)

=

(
ǫ · δmin

4

)−( (2m)j+1

2
−1)

,

where the inequality is as follows:
(
ǫ·δmin

4

)(2m)j

·
(
δmin
2

)−m

=
(
ǫ
2

)(2m)j
·
(
δmin
2

)(2m)j

·
(
δmin
2

)−m

≤ ǫ
2

since(2m)j ≥ m ≥ 1 andǫ < 1. The desired result follows.

Lemma 7. Let 0 < ǫ < 1
2 be given. The patience of the witness stationary strategyσǫ1 is less than(

ǫ·δmin
4

)−(2m)n

.
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Proof. We first present the bound forU1 (alsoU2) and then for other states.

The patience ofσǫ,11 for states in U1 (also similar for U2). For each states in U1, the corresponding

distributionσǫ,11 (s) has patience at most
(
ǫ·δmin

4

)−( (2m)rk(1)

2
−1)

, since no states are inY1,0. Similarly for s in

U2 and the corresponding distributionσǫ,11 (s).

The η for which the strategy σǫ,21 follows ση,i1 : Inductive statement. We will argue using induction that
for each stateS ∈ (W ∗ \ Ui−1), for i ≥ 3, we have that the strategyσǫ,21 follows the strategyση,i1 , for

η ≥

(
ǫ · δmin

4

)∑i−1
k=2

∏i−1
k′=k

(2m)rk(k
′)

.

Base case.For each states ∈ (S \U2), the strategyσǫ,21 follows the strategyση,31 , for η ≥
(
ǫ·δmin

4

)(2m)rk(2)

,

by construction, which is the wanted expression.

Induction casei + 1. For i ≥ 4, for each states ∈ (S \ Ui−1), the strategyσǫ,21 follows the strategyση,i1 ,

for η ≥
(
ǫ·δmin

4

)∑i−1
k=2

∏i−1
k′=k

(2m)rk(k
′)

, by induction. In each states ∈ (S \ Ui), the strategyση,i1 follows the

strategyση
′,i+1

1 , for η′ ≥
(
η·δmin

4

)(2m)rk(i)

, by construction. Thus, the strategyσǫ,21 follows ση
′,i+1

1 for

η′ ≥

(
η · δmin

4

)(2m)rk(i)

≥




(
ǫ·δmin

4

)∑i−1
k=2

∏i−1
k′=k

(2m)rk(k
′)

· δmin

4




(2m)rk(i)

≥



(
ǫ · δmin

4

)1+
∑i−1

k=2

∏i−1
k′=k

(2m)rk(k
′)



(2m)rk(i)

=

(
ǫ · δmin

4

)∑i
k=2

∏i
k′=k

(2m)rk(k
′)

.

The first inequality comes from our preceding explanation. The second inequality uses the inductive hy-
pothesis. The third uses thatδmin

4 > ǫ·δmin
4 . The last equality is the inductive hypothesis fori+1 and follows

from

(2m)rk(i) + (2m)rk(i) ·
i−1∑

k=2

i−1∏

k′=k

(2m)rk(k
′) = (2m)rk(i) +

i−1∑

k=2

i∏

k′=k

(2m)rk(k
′)

=

i∑

k=2

i∏

k′=k

(2m)rk(k
′) .

Patience ofσǫ,21 (s) for states in Ui, for i ≥ 3. We see that fori ≥ 3 and for eachs in Ui we have that

ση,i1 (s) follows ξη
′

1 for η′ ≥
(
η·δmin

4

)(2m)rk(i)−1

(sinceYi,0 is empty), by construction. Hence, we get that
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σǫ,21 (s) = ξη
′

1 for η′ ≥
(
ǫ·δmin

4

)∑i
k=2

∏i
k′=k

(2m)rk(k
′)

2m
, using a similar argument as the one used in the inductive

case. Sincerk(i) ≥ 1 andm ≥ 1, we see that each term in the sum
∑i

k=2

∏i
k′=k(2m)rk(k

′) is at least twice
as large as the following. Thus, we have that

i∑

k=2

i∏

k′=k

(2m)rk(k
′) < 2 ·

i∏

k′=2

(2m)rk(k
′) = 2 · (2m)

∑i
k′=2

rk(k′) ≤ 2 · (2m)n−1 ≤ (2m)n .

The first inequality is becauseU1 must contain at least 1 state. The second comes fromm ≥ 1. Hence,

η′ ≥
(
ǫ·δmin

4

)(2m)n−1

. Using an argument similar to the one used to prove Lemma 6, weget that the patience

for ξη
′

1 is then at most
(
ǫ·δmin

4

)−( (2m)n

2
−1)

.

Patience ofσǫ1. We now need to consider the strategyσǫ1. It follows σβ,11 in U1 andσβ,21 elsewhere, for
β = ǫ

2 , We see that

(
β · δmin

4

)−(
(2m)n

2
−1)

=

(
ǫ · δmin

8

)−(
(2m)n

2
−1)

<

(
ǫ · δmin

4

)−(2m)n

The inequality is because42 = 16 > 8 (and the last expression more than squares the preceding). This
completes the proof.

Basic overview of the proof.We first present the basic overview of the proof. Letσ1 be a stationary strategy
that follows distributionξη1 overΓ1(s) in states ∈ W ∗ for someη > 0 and letσ2 be a positional counter-
strategy for player 2. For states in W ∗, σ1(s) andσ2(s) satisfies at least one of Equation 4, Equation 5, or
Equation 6 ins. LetCσ1,σ2

1 ⊆ W ∗ (resp.Cσ1,σ2
2 ⊆ W ∗ andCσ1,σ2

3 ⊆ W ∗) be the set of states inW ∗ that
satisfies Equation 4 (resp. Equation 5 and Equation 6). We will prove thatσǫ1 ensures value at least1− ǫ for
each statess in W ∗. We will split the proof into four parts, first we will show some properties for states in
U1, then for states inUℓ \ Uℓ−1, and finally for states inUi \ Ui−1 for 2 ≤ i ≤ ℓ− 1. In the fourth part, we
will then combine the three properties to establish the desired result. The three properties are as follows

• (Property 1). For all statess in U1 we will show thatσǫ,11 ensuresSafe(U1) with probability 1 and

mean-payoff at least1 − ǫ (i.e., for all positional strategiesσ2 we havelimt→∞

∑t
i=0 E

σ
ǫ,1
1

,σ2
s [Θi]
t

≥
1− ǫ).

• (Property 2).For all statess in (Uℓ \ Uℓ−1) we will show thatσǫ,ℓ1 ensures that against all positional
strategiesσ2 we have that

1. given the eventSafe(Uℓ \ Uℓ−1), the mean-payoff is at least1− ǫ;

2. Pr
σ
ǫ,ℓ
1 ,σ2

s (Safe(Uℓ \ Uℓ−1) ∪ Reach(Uℓ−1 ∪W
∗
)) = 1; and

3. Pr
σ
ǫ,ℓ
1 ,σ2

s (Safe(Uℓ \ Uℓ−1) ∪ Reach(Uℓ−1)) ≥ 1− ǫ.
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• (Property 3).For all statess in (Uℓ \Uℓ−(i+1)), for 1 ≤ i ≤ ℓ− 2, we will show thatσǫ,i1 ensures that
against all positional strategiesσ2 we have that

1. given the event
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)), the mean-payoff is at least1− ǫ;

2. Pr
σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(Uℓ−(i+1) ∪W
∗
)) = 1; and

3. Pr
σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(Uℓ−(i+1))) ≥ 1− ǫ.

In Lemma 8, Lemma 9, and Lemma 12 we establish Properties 1, 2,and 3, respectively. We first present the
basic intuition of the proof of Lemma 8.

The basic intuition of Lemma 8. The key idea of the proof is as follows. Once we fix the strategies for both
the players we have a Markov chain. LetC2 andC3 denote the set of states inU1 that satisfy Equation 5 and
Equation 6, respectively. SinceU0 is empty, no state inU1 can satisfy Equation 4. For statess in C2 of rank
(1, j), the fact that Equation 5 is satisfied ensures that a state of rank (1, j′), for j′ < j, is visited froms
with positive probability. Letpat(j) denote the patience of the strategyσǫ,11 for states of rank(1, rk(1)− j).
We now consider the following case analysis.

1. First we consider the set of states in(Y1,rk(1) \Y1,rk(1)−1) and show that if we stay in the set(Y1,rk(1) \
Y1,rk(1)−1), then the mean-payoff is at least1− ǫ. The argument is as follows: By Markov property 5,
we must reach a recurrent class with probability 1. A recurrent class contained in(Y1,rk(1)\Y1,rk(1)−1)
must consist of only states inC3 (since from states inC2 we reach lower rank states with positive
probability), and since Equation 6 is satisfied for states inC3 it follows that the mean-payoff value is
at least1− ǫ. Hence, if we have a recurrent class of the Markov chain contained in(U1 \Y1,rk(1)−1) =
(Y1,rk(1) \ Y1,rk(1)−1), then the mean-payoff of the recurrent class is at least1− ǫ. This completes the
argument. Also, if the set(Y1,rk(1) \Y1,rk(1)−1) is left, then we canboundthe number of visits to states
in C2 (and in the worst case each such visit gives reward 0) in expectation encountered before leaving
the set(Y1,rk(1) \ Y1,rk(1)−1). This bound on the number of visits in expectation toC2 (which we say
has not been accounted for by visits toC3) is κ(0) = (δmin)

−1 · pat(0). There is an illustration of this
base case in Figure 6.

2. Now we consider that we are at some intermediate part of thecomputation, i.e., in some state in
(Y1,rk(1)−j \ Y1,rk(1)−(j+1)), for j ≥ 1. Inductively we have an upper boundκ(j) on the number of
times that states inC2 were visited (in the worst case each such visit gives reward 0) in expectation that
has not been accounted for by visits to states inC3 till we reach the set(Y1,rk(1)−j\Y1,rk(1)−(j+1)) from
any state inY1,rk(1)−j+1. The one-step probability distributionξη1 is chosen such thatη · κ(j) ≤ ǫ.
In other words,η decreases rapidly asi increases, and the smallη ensures that if the play stays
in (U1 \ Y1,rk(1)−(j+1)), then the mean-payoff is at least1 − ǫ, i.e., if we have a recurrent classL
contained in(U1 \ Y1,rk(1)−(j+1)) and(L∩Y1,rk(1)−j) is non-empty, then all states in(L∩ Y1,rk(1)−j)
belong toC3, and the mean-payoff of the recurrent class is at least1− ǫ. Moreover, we can also upper
bound the number of visits to states inC2 in expectation that has not been accounted for by visits
to states inC3 before reaching the setY1,rk(1)−(j+1) if we leave(U1 \ Y1,rk(1)−(j+1)) by κ(j + 1) =
(κ(j) + 1) · (δmin)

−1 · pat(j), and then proceed inductively. There is an illustration of this inductive
case in Figure 7.

Lemma 8. (Property 1).Let 0 < ǫ < 1
2 . The strategyσǫ,11 ensures that for alls ∈ U1 and all positional

strategiesσ2 for player 2 we havePr
σ
ǫ,1
1 ,σ2

s (Safe(U1)) = 1 and limt→∞

∑t
i=0 E

σ
ǫ,1
1

,σ2
s [Θi]
t

≥ 1− ǫ.
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w2
Pr = δmin · ǫ

Pr = 1− δmin · ǫ

w3

Pr = 1− ǫ,r = 1

Pr = ǫ

Y1,rk(1) = U1
Y1,rk(1)−1

Figure 6: Pictorial illustration of the intuitive explanation of the base case of Lemma 8.

w2

Pr = η Pr = 1− η

w3

Pr = 1− η

r = 1

Pr = η

κ(i) × (#C2)

Y1,rk(1)−i

Y1,rk(1)−(i+1)

U1

Figure 7: Pictorial illustration of the intuitive explanation of the inductive case of Lemma 8.
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Proof. Givenσǫ,11 , let σ2 be an arbitrary positional counter-strategy for player 2. LetC
σ
ǫ,1
1 ,σ2

i ∩ U1 = Ci,
i.e., givenσǫ,11 andσ2, we have thatC1, C2, C3 are the set of states ofU1 that satisfy Equation 4, Equation 5,
Equation 6, respectively. Notice that sinceU0 is the empty set we have thatC1 is also empty. Therefore we
cannot leaveU1 if player 1 followsσǫ,11 (because both Equation 5 and Equation 6 require that we stay in
U1). This ensures thatSafe(U1) is satisfied with probability 1. We now focus on the mean-payoff.

Basic notations.Let us consider the Markov chain obtained givenσǫ,11 andσ2. For a states ∈ U1, let the
rank ofs be rk(s) = (1, j), and then we denotej by rk2(s) (the second component of the rank). Given a
playP in the Markov chain, and a numbert ∈ N, let r̃(P, t) be the expected number of times we get reward
0 in the firstt steps ofP . This implies that̃r(P, 0) = 0. For each states ∈ U1, let P j

s be (a prefix of)
a play in the Markov chain, which ends if a state inY1,j is reached after the starting points (i.e., the play
does not end ats if s ∈ Y1,j), and ifY1,j is not reached, then the walk does not end. We will also use the

following notations: for0 ≤ j ≤ rk(1) − 1, let us denote byκ(j + 1) = ǫ
2 ·

(
ǫ·δmin

4

)−(2m)j+1

; and let

pat(j) =
(
ǫ·δmin

4

)−( (2m)j+1

2
−1)

, the patience ofσǫ,11 for states inU1 of rank(1, rk(1)− j) (by Lemma 6).

Using recurrent class property.First, observe that sinceY1,0 is the empty set, the setY1,0 can never be
reached, and henceP 0

s represents the entire play from the start states, for s ∈ U1. By Markov property 5
in the Markov chain, the recurrent classes are reached in a finite number of steps with probability 1, and
given a recurrent classL is reached, every state inL is reached with probability 1 in a finite number of steps.
Given a recurrent classL in U1, and consider a states∗ in L that has the maximum rank among states in
L (i.e., rk2(s∗) = maxs′∈L rk2(s

′)). Then all states visited afters∗ has rank at most the rank ofs∗. Hence
every playP 0

s with probability 1, after finitely many steps reaches a states∗ such that all statess′ visited
afters∗ satisfy thatrk2(s′) ≥ rk2(s

∗). Since the mean-payoff is invariant under finite prefixes, weonly need

to obtain bounds for the mean-payoff ofP rk(s∗)−1
s∗ (and this play has infinite length by definition as no state

with smaller rank is reached in the Markov chain afters∗).

Inductive proof statement.We will show, inductively, that for all0 ≤ j ≤ rk(1), all t ≥ 1, and all states
s ∈ U1, if rk2(s) = rk(1)− j, then

r̃(P rk2(s)−1
s , t) ≤ t · ǫ+

κ(j + 1)

2
= t · ǫ+

ǫ

4
·

(
ǫ · δmin

4

)−(2m)j+1

This will imply the desired result, since then the mean-payoff of P rk2(s∗)−1
s∗ is at least1 − ǫ: the play

P
rk2(s∗)−1
s∗ has infinite length and therefore the expected number of reward 1’s must bet− r̃(P rk2(s∗)−1

s∗ , t)

in the firstt steps for allt, because all rewards are either 0 or 1, and hence the mean-payoff of P rk2(s∗)−1
s∗ is

inft→∞
t−r̃(P

rk2(s
∗)−1

s∗
,t)

t
≥ 1− ǫ.

Splitting the play.Consider a playP rk2(s)−1
s for s ∈ U1. We will split up the playP rk2(s)−1

s into a (possible
infinite) sequence ofrank preservingplays(P rk2(si)

si )i≥0, such thats0 = s, and fori ≥ 0, the playP rk2(si)
si

ends in statesi+1 (which is formally a random variable and must be such thatrk2(si) = rk2(si+1) by

definition ofP rk2(si)
si and since if a state of lower rank thanrk2(s) is reached, then the playP rk2(s)−1

s ends).
In other words, the next play begins where the previous play ends, and all the starting points of the play
has the same rank. Similarly, we will split up playsP j

s , for 0 ≤ j < rk2(s), into a finite sequence ofrank

decreasingplays(P rk2(si)−1
si )i≥0, such thats0 = s, and fori ≥ 0, the playP rk2(si)−1

si ends in statesi+1

(which must be such thatrk2(si) > rk2(si+1) > j). Note that since the play sequence is decreasing, the
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Y1,rk(s0)−1 Y1,rk(s0) Yℓ = U1

Steps

s0

s1

s2

Figure 8: Pictorial illustration of a playP rk(s0)−1
s0 split into a finite sequence

(
P

rk(si)
si

)
i≥0

of rank preserv-

ing plays. Straight line segments indicate that all states are shown on them, while non-straight segements
indicate that there might be states which are not shown.

sequence of plays is finite and the length of the sequence is atmostrk2(s)− j. Pictorial illustrations of rank
preserving (both when the sequence is finite and infinite) andrank decreasing plays are given in Figure 8,
Figure 9, and Figure 10, respectively.

(Base case).We first consider the base case, wherej = 0, i.e., we considers such thatrk2(s) = rk(1).

Consider the rank preserving split up of the playP rk2(s)−1
s into the sequence of plays(P rk2(si)

si )i≥0, men-

tioned above. As already mentioned, safety inU1 = Y1,rk(1) is guaranteed, and hence each playP
rk2(si)
si has

length 1. We will consider̃r(P rk2(s′)
s′ , t), for all s′ such thatrk(s′) = rk(s). We will now split the proof into

the following two cases: (1)s′ ∈ C2; and (2)s′ ∈ C3; (as already argued at the start of the proof of this
lemma, the setC1 is empty).

1. In each states′ in (C2 ∩ (Y1,rk(1) \ Y1,rk(1)−1)) we reach a states′′ of rank rk2(s′′) = rk2(s) − 1 in

the next step with probability at least
(
ǫ·δmin

4

)m−1
· δmin = 4

ǫ
·
(
ǫ·δmin

4

)m

(since
(
ǫ·δmin

4

)−(m−1)
is

an upper bound on the patience of states of rank(1, rk(1)) in σǫ,11 by Lemma 6), otherwise we reach

a state of rankrk(s). Hence the expected number of visits to states inC2 is at mostǫ4 ·
(
ǫ·δmin

4

)−m

before we reachY1,rk(1)−1. In the worst case we get a reward of0 in each such step.

2. In each step we are in states′ in (C3 ∩ (Y1,rk(1) \Y1,rk(1)−1)) we get reward 1 with probability at least
1− ǫ (by Equation 6).

For the playP rk2(s)−1
s = (P

rk2(si)
si )i≥0, the expected number of indicesi such thatsi ∈ C2 is at most

ǫ
4 ·

(
ǫ·δmin

4

)−m

(by the first item above). The remaining (in the worst case, atleastt − ǫ
4 ·

(
ǫ·δmin

4

)−m

in
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Y1,rk(s0)−1 Y1,rk(s0) Yℓ = U1

Steps

s0

s1

s2

...

Figure 9: Pictorial illustration of a playP rk(s)−1
s0 split into an infinite sequence

(
P

rk(si)
si

)
i≥0

of rank pre-

serving plays. Note that the last play could be infinite (which is not pictorially illustrated). Straight line
segments indicate that all states are shown on them, while non-straight segements indicate that there might
be states which are not shown.

Y1,ℓ−j Y1,rk(si)−2 Yrk(si)−1 Yrk(si) Yℓ = U1

Steps

s0

si

si+1

Figure 10: Pictorial illustration of a playP ℓ−j
s0 split into a (always finite) sequence

(
P

rk(si)−1
si

)
i≥0

of rank

decreasing plays. Note that the last play could be infinite (which is not pictorially illustrated). Straight line
segments indicate that all states are shown on them, while non-straight segements indicate that there might
be states which are not shown.
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expectation) indicesi′ are such thatsi′ ∈ C3, for which the expected reward is at least1− ǫ (by the second
item above). Thus we have

r̃(P rk(s)−1
s , t) ≤ t · ǫ+

ǫ

4
·

(
ǫ · δmin

4

)−m

≤ t · ǫ+
ǫ

4
·

(
ǫ · δmin

4

)−2m

= t · ǫ+
κ(1)

2
,

as desired.

(Inductive case).We now consider the inductive case forj ≥ 1, i.e., we now considers such thatrk2(s) =

rk(1) − j. Consider the rank preserving split of the playP rk2(s)−1
s as(P rk2(si)

si )i≥0 as explained before the

base case. We will consider̃r(P rk2(s′)
s′ , t), for all s′ with rk(s′) = rk(s). As in the base case, we will split

the proof into the two cases: (1)s′ ∈ C2; and (2)s′ ∈ C3; (and recallC1 is empty). Before we consider the
case analysis, we first present the use of the inductive hypothesis.

Use of inductive hypothesis.The inductive hypothesis will be used in the same way for bothcases in the
case analysis. Lett ∈ N be given. For all statess′′ ∈ U1 such thatrk2(s′′) > rk2(s) = rk(1) − j, we will

use the inductive hypothesis to upper boundr̃(P
rk(1)−j

s′′ , t). Consider the rank decreasing split ofP rk(1)−j

s′′

as (P
rk2(s′i)−1

s′i
)i≥0. There are mostj such plays in the sequence, one for each rank strictly higherthan

rk(1)− j. We only argue about the worst case, and in the worst case,s′i is such thatrk2(s′i) = rk(1)− i. Let

ti be the random variable indicating the number of steps among the firstt steps such thatP rk(1)−j

s′′ is exactly

P
rk2(s′i)−1

s′i
. We see that̃r(P rk(1)−j

s′′ , t) =
∑j−1

i=0 r̃(P
rk2(s′i)−1

s′i
, ti). By the inductive hypothesis we have that

r̃(P
rk(s′i)−1

s′i
, t′) ≤ t′ · ǫ+ κ(i+1)

2 for eacht′ ≥ 1. Thus, we get that

r̃(P
rk(1)−j

s′′ , t) =

j−1∑

i=0

r̃(P
rk(s′i)−1

s′i
, ti) ≤

j−1∑

i=0

(
ti · ǫ+

κ(i+ 1)

2

)
≤ t · ǫ+ κ(j)

The first inequality is the inductive hypothesis, and we now argue that
∑j−1

i=0
κ(i+1)

2 ≤ κ(j). We have

j−1∑

i=0

κ(i + 1)

2
=
ǫ

4
·

j−1∑

i=0

(
ǫ · δmin

4

)−(2m)i+1

≤
ǫ

2
·

(
ǫ · δmin

4

)−(2m)j

= κ(j) ,

because each term of the sum is over4 times as large as the preceding (because(2m)i+1 ≥ 1 + (2m)i, for
m ≥ 2 andi ≥ 0 and the factor of 4) and thus, the last term is over2 times larger than the sum of all the
other terms (we just use that it is larger). We now consider the case analysis.

• (States inC2). In this case we consider̃r(P rk2(s′)
s′ , t), for s′ ∈ C2, such thatrk(s′) = rk(s). We

know thatσǫ,11 , has patiencepat(j) for statess′′ ∈ U1 such thatrk2(s′′) = rk2(s) = rk(1) − j (from

Lemma 6). In expectation the playP rk2(s)−1
s is therefore in a states′′ in C2 such thatrk(s′′) = rk(s)

at mostpat(j) · (δmin)
−1 times before reaching a state with lower rank (i.e., before the play ends). If

the play does not end, whenever we have been inC2, we reach some states′′ in U1 (as safety toU1 is
guaranteed). Also, in the worst case we get a reward of 0 in theevery step we are in a state of rank
rk2(s) in C2. There are two sub-cases. Eitherrk2(s

′′) = rk2(s) or rk2(s′′) > rk2(s) (because if the

rank is lower the walk ends). In the first sub-case the playP
rk2(s′)
s′ has length 1. In the other case, we

have already given an upper bound onr̃(P rk(1)−j

s′′ , t′), for all t′ ≥ 1, using the inductive hypothesis.
We therefore have that

r̃(P
rk(s′)
s′ , t) ≤ 1+ r̃(P

rk(1)−j

s′′ , t− 1) ≤ 1+ (t− 1) · ǫ+κ(j) = t · ǫ+(1− ǫ)+κ(j) ≤ t · ǫ+2 ·κ(j)
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where we have just explained the first inequality. The secondinequality is our use of the inductive

hypothesis as previously explained. The last inequality uses thatκ(j) = ǫ
2 ·

(
ǫ·δmin

4

)−(2m)j

> 8 > 1

(since4(2m)j ≥ 16 and hence
(
ǫ·δmin

4

)−(2m)j

≥ 16
ǫ

for i,m ≥ 1) and1− ǫ < 1.

• (States inC3). In this case we consider̃r(P rk2(s′)
s′ , t), for s′ ∈ C3, such thatrk(s′) = rk(s). By

construction, the strategyσǫ,11 plays the distributionξη1 overΓ1(s
′), for η =

(
ǫ·δmin

4

)(2m)j

= ǫ
2 ·

1
κ(j) .

For the playP rk2(s′)
s′ , the next states1 after the start states′ is in U1 with probability 1; the reward

is 1 with probability at least1 − η, and as wells′ ∈ Y1,rk(1)−i with probability at least1 − η (since

Equation 6 is ensured). With the remaining probability of atmostη, the playP rk2(s′)
s′ goes to a state

s′′ in U1. As before the worst case (for the proof) is that with the remaining probability of at mostη
the states′′ is such thatrk2(s′′) > rk2(s), for which we have a upper bound by inductive hypothesis

on r̃(P rk(1)−i

s′′ , t′), for all t′ ≥ 1. Thus we have that

r̃(P
rk2(s′)
s′ , t) ≤ η + η · r̃(P

rk(1)−i

s′′ , t− 1) ≤ η + η · ((t− 1) · ǫ+ κ(j))

= η + (t− 1) · η · ǫ+
ǫ

2
≤ η + (t− 1) · ǫ+

ǫ

2
≤ t · ǫ .

The first inequality is by the preceding explanation. The second inequality uses the inductive hypoth-
esis as previously described. In the first equality, we use that by definition we haveη · κ(j) = ǫ

2 . In
the third inequality we use thatη · ǫ ≤ ǫ sinceη ≤ 1 andt ≥ 1; and the final inequality uses that since
η ≤ ǫ

4 we haveη + ǫ
2 < ǫ andη · ǫ < ǫ, for ǫ < 1; for i,m ≥ 1 which ensuresη ≤ ǫ

4 .

We now combine the above case analysis to establish the inductive proof. We will now consider
r̃(P

rk2(s)−1
s , t) and our rank preserving split(P rk2(si)

si )i≥0 of P rk2(s)−1
s . For all i ≥ 0, let ti be the ran-

dom variable indicating the number of stepsP rk2(s)−1
s is exactlyP rk2(si)

si among the firstt steps ofP rk2(si)
si .

We see that̃r(P rk2(s)−1
s , t) =

∑k
i=0 r̃(P

rk2(si)
si , ti) (the random variablek indicates the highest index such
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thattk ≥ 1, implying thatti ≥ 1 for 0 ≤ i ≤ k). Hence, we have that

r̃(P rk2(s)−1
s , t) =

k∑

i=0

r̃(P rk2(si)
si

, ti)

=
∑

si∈C2, i≤k

r̃(P rk2(si)
si

, ti) +
∑

si∈C3, i≤k

r̃(P rk2(si)
si

, ti)

≤
∑

si∈C2, i≤k

(ti · ǫ+ 2 · κ(j)) +
∑

si∈C3, i≤k

(ti · ǫ)

=

k∑

i=0

(ti · ǫ) +
∑

si∈C2, i≤k

(2 · κ(j))

≤ t · ǫ+ pat(j) · (δmin)
−1 · 2 · κ(j)

= t · ǫ+ (δmin)
−1 · ǫ ·

(
ǫ · δmin

4

)−(
(2m)j+1

2
−1+(2m)j )

≤ t · ǫ+ (δmin)
−1 · ǫ ·

(
ǫ · δmin

4

)−((2m)j+1−1)

≤ t · ǫ+
ǫ

4
·

(
ǫ · δmin

4

)−(2m)j+1

= t · ǫ+
κ(j + 1)

2
.

The first equality follows from our preceding explanation. The first inequality uses our bound on
r̃(P

rk2(si)
si , ti) from the respective items above, depending on whethersi ∈ C2 or si ∈ C3. The second

inequality uses that there are at mostpat(j) · (δmin)
−1 indicesi such thatsi ∈ C2, from the first item above,

and thatt =
∑k

i=0 ti. The third inequality uses that(2m)j ≤ (2m)j+1

2 for m ≥ 2 andj ≥ 1. The last
follows from ǫ·δmin

4 < δmin
4 and gives the expression we required to establish our inductive claim forj.

This completes the inductive proof and gives us the desired result.

The combinatorial property established in Lemma 8. The proof of Lemma 8 shows that the strategy
σǫ,11 against all positional counter-strategies of the opponentensures that in the resulting Markov chain all
recurrent classes that intersect withU1 are contained inU1, all states inU1 have successors only inU1; (i.e.,
the recurrent classes inU1 are reached with probability 1 from all states inU1); and in every recurrent class
in U1 the mean-payoff value is at least1− ǫ.

Lemma 9. (Property 2).Let 0 < ǫ < 1
2 . The strategyσǫ,ℓ1 ensures that against all positional strategiesσ2

for all statess ∈ (Uℓ \ Uℓ−1) we have that

1. given the eventSafe(Uℓ \ Uℓ−1), the mean-payoff is at least1− ǫ;

2. Pr
σ
ǫ,ℓ
1 ,σ2

s (Safe(Uℓ \ Uℓ−1) ∪ Reach(Uℓ−1 ∪W
∗
)) = 1; and

3. Pr
σ
ǫ,ℓ
1 ,σ2

s (Safe(Uℓ \ Uℓ−1) ∪ Reach(Uℓ−1)) ≥ 1− ǫ.
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Proof. Givenσǫ,ℓ1 , letσ2 be an arbitrary positional counter-strategy for player 2. We see thatσǫ,ℓ1 is stationary

and follows the distributionξη overΓ1(s) for some0 < η < ǫ in states ∈ (W ∗ \Uℓ−1). LetC
σ
ǫ,ℓ
1 ,σ2

i = Ci,
i.e., givenσǫ,ℓ1 andσ2, we have thatC1, C2, C3 are the set of states of(Uℓ \ Uℓ−1) that satisfy Equation 4,
Equation 5, Equation 6, respectively. LetRS be the set of states in(Uℓ\Uℓ−1), from which(C1∩(Uℓ\Uℓ−1))

is not reachable in the Markov chain (i.e., in the graph of theMarkov chain givenσǫ,ℓ1 andσ2, the setRS is
the set of states in(Uℓ \ Uℓ−1) from which no state in(C1 ∩ (Uℓ \ Uℓ−1)) is reachable). Equivalently,RS

is the set from which(Uℓ−1 ∪W
∗
) cannot be reached (the definitions are equivalent, because,from each

states in (Uℓ \ Uℓ−1) = (S \ (Uℓ−1 ∪W
∗
)), the set(Uℓ−1 ∪W

∗
) can be reached in one-step iffs ∈ C1).

Consider now the segment of the play from states in (Uℓ \ Uℓ−1) till the play leaves(Uℓ \ Uℓ−1).

1. First we consider the case whens ∈ RS . This corresponds to the proof of correctness for states in
U1 (note that in the correctness proof ofU1 the setC1 was empty; and ifC1 is not reached, then the
proof is identical to Lemma 8, by construction of the strategy). Hence we have thatSafe(Uℓ \ Uℓ−1)
is ensured with probability 1 (because(Uℓ \ Uℓ−1) can only be left from states inC1 ∩ (Uℓ \ Uℓ−1))

andlimt→∞

∑t
i=0 E

σ
ǫ,ℓ
1

,σ2
s [Θi]
t

≥ 1− ǫ (as in Lemma 8). This establishes all the required conditions of
the lemma.

2. By Markov property 2, we have thatReach(Uℓ−1∪W
∗
∪RS) happens with probability 1 (sinceRS is

the set from which(Uℓ−1∪W
∗
) cannot be reached). Note that since(S\(Uℓ−1∪W

∗
)) = (Uℓ\Uℓ−1),

it follows thatReach(Uℓ−1∪W
∗
∪RS) with probability 1 impliesReach(Uℓ−1∪W

∗
)∪Safe(Uℓ\Uℓ−1)

is also ensured with probability 1, since(Uℓ \ Uℓ−1) cannot be left onceRS is reached. This also
shows that every recurrent class contained in(Uℓ \ Uℓ−1) must be contained inRS (and by the first
item has mean-payoff value at least1 − ǫ). This shows that given the eventSafe(Uℓ \ Uℓ−1), the
mean-payoff is at least1 − ǫ. From every state in(Uℓ \ Uℓ−1), in the Markov chain, we have that
δ(s)(Uℓ−1) · ǫ ≥ δ(s)(W

∗
) (from states which are not inC1, both probabilities are 0 andC1 by

Equation 4). Hence, Markov property 7 implies that eventReach(Uℓ−1∪RS) happens with probability

1−ǫ (sinceRS is the set from which(Uℓ−1∪W
∗
) cannot be reached), i.e., we havePr

σ
ǫ,ℓ
1 ,σ2

s (Safe(Uℓ\
Uℓ−1) ∪ Reach(Uℓ−1)) ≥ 1− ǫ.

The desired result follows.

Remark 10. Lemma 9 proves the desired result only for states in(Uℓ \ Uℓ−1) and can be considered as the
base case of Lemma 12 which proves a similar result for statesin (Uℓ−i \Uℓ−(i+1)), for 1 ≤ i ≤ ℓ− 2. The
case for states(U1 \ U0) = U1 is handled by Lemma 8. Note thatSafe(Uℓ \ Uℓ−1) ⊆ coBuchi(Uℓ \ Uℓ−1)
and since mean-payoff objectives are independent of finite prefixes, it also follows from Lemma 9 that given
the eventcoBuchi(Uℓ \ Uℓ−1), we have that the mean-payoff is at least1− ǫ.

Before presenting the proof for Property 3 we first present a lemma that we will use to prove the property.

Lemma 11. Given0 ≤ x ≤ 1
2 and 0 ≤ ǫ, η ≤ 1, consider the four-state Markov chainGx,ǫ,η

4 shown in

Figure 11. The probability to eventually reachs1 from s2 and s3 is x
η+(1+ ǫ

2
)·x·(1−η) and x·(1−η)

η+(1+ ǫ
2
)·x·(1−η) ,

respectively.

Proof. Let y2 andy3 denote the probability to reachs1 from s2 ands3, respectively. Then we have

y2 = x+ (1− (1 +
ǫ

2
) · x) · y3; y3 = (1− η) · y2 .
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(Uℓ−(i+1) ∪RS) (Uℓ−i \ (Uℓ−(i+1) ∪RS)) (Uℓ \ (Uℓ−i ∪RS)) W
∗

s1 s2 s3 s4

ǫ
2 · x

x

1− (1 + ǫ
2) · x

1− η

η

Figure 11: Pictorial illustration of the Markov chainGx,ǫ,η
4 .

Hence we have
y2 = x+ (1− (1 +

ǫ

2
) · x) · (1− η) · y2 .

Solving fory2, and then inserting intoy3 = (1− η) · y2, we obtain the desired result.

Lemma 12. (Property 3).Let 0 < ǫ < 1
2 and1 ≤ i ≤ ℓ − 2. The strategyσǫ,ℓ−i

1 ensures that against all
positional strategiesσ2 for all statess ∈ (Uℓ \ Uℓ−(i+1)) we have that

1. given the event
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)), the mean-payoff is at least1− ǫ;

2. Pr
σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(Uℓ−(i+1) ∪W
∗
)) = 1; and

3. Pr
σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(Uℓ−(i+1))) ≥ 1− ǫ.

Proof. Givenσǫ,ℓ−i
1 , letσ2 be an arbitrary positional counter-strategy for player 2. LetC

σ
ǫ,ℓ−i
1 ,σ2

i = Ci, i.e.,
givenσǫ,ℓ−i

1 andσ2, we have thatC1, C2, C3 are the set of states of(Uℓ \ Uℓ−(i+1)) that satisfy Equation 4,
Equation 5, Equation 6, respectively. This proof is similarto the proof of Lemma 9. The proof will be by
induction in i, wherei = 0 is the base case. Hence, the base case is settled by Lemma 9. Wesee that
σǫ,ℓ−i
1 is stationary and follows the distributionξη1 overΓ1(s) for someη > 0 in states ∈ (W ∗ \ Uℓ−(i+1)).

We consider the Markov chain obtained by fixing the two strategies. In the worst case, states inW
∗

are
absorbing with reward 0; and since the target is to reachUℓ−(i+1) we consider that the plays end if they
leaveT = (W ∗ \ Uℓ−(i+1)), i.e., we are interested in the segment of the play in(W ∗ \ Uℓ−(i+1)). The play
can only end from a state inC1∩T becauseT =

⋃
j≤i(Uℓ−j \Uℓ−(j+1)) and if a states in (Uℓ−j \Uℓ−(j+1))

satisfies either Equation 5 (inC2) or Equation 6 (inC3), then the set(Uℓ−j \ Uℓ−(j+1)) is not left froms in
one-step. Now consider a playP in the Markov chain. LetRS be the subset ofT , from whichC1 ∩T is not
reachable in the Markov chain. There are two cases

1. (P starts in s ∈ RS). Let (ℓ − i′, j′) = rk(s). Note thati′ ≤ i, by definition ofRS . Precisely,
like in the proof of Lemma 9, we have thatSafe(Uℓ−i′ \ Uℓ−(i′+1)) is ensured with probability 1,
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because the set(Uℓ−i′ \ Uℓ−(i′+1)) cannot be left from states inC2 or C3. Hence, ifi′ < i, then

we are done, by induction, sinceσǫ,ℓ−i
1 follows ση,ℓ−i+1

1 in such states, by construction ofσǫ,ℓ−i
1 , for

η =
(
ǫ·δmin

4

)(2m)rk(ℓ−i)

and we have thatη < ǫ, form ≥ 2 andrk(ℓ− i) ≥ 1. If i′ = i, then, precisely

like in the proof of Lemma 9, the set(Uℓ−i \Uℓ−(i+1)) cannot be left inC2 orC3 and hence, using an

argument like Lemma 8, we have thatlimt→∞

∑t
i=0 E

σ
ǫ,ℓ−i
1

,σ2
s [Θi]

t
≥ 1− ǫ, because of the similarities

between the construction of the strategyσǫ,i1 andσǫ,11 for states in(Uℓ−i \ Uℓ−(i+1)) and states inU1,
respectively. Observe that this case is the same as the corresponding case in Lemma 9 and ensures all
the required items of the lemma.

2. (P starts outsideRS: Item (1) of the lemma statement). First observe that we can only ensure
Safe(Uℓ−j \ Uℓ−(j+1)), for somej ≤ i, from states inRS , since from all other statesC1 is reachable
and for everyj, states in(C1 ∩ (Uℓ−j \ Uℓ−(j+1))), can reachUℓ−(j+1) in one-step with positive
probability, by Equation 4. Hence, if

⋃
j≤i coBuchi(Uℓ−j \Uℓ−(j+1)) is ensured, then given the event⋃

j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) a recurrent class that is reached must be contained inRS . Hence
given the event

⋃
j≤i coBuchi(Uℓ−j \Uℓ−(j+1)), the setRS is reached in a finite number of steps with

probability 1. Since mean-payoffs are independent of finite-prefixes, the finite prefix to reachRS does
not change the mean-payoff. Moreover, since if we start inRS the mean-payoff is at least1 − ǫ, it
follows that given the event

⋃
j≤i coBuchi(Uℓ−j \ Uℓ−(j+1)) we have that the mean-payoff is at least

1− ǫ.

3. (P starts outsideRS : Item (2) of the lemma statement). For0 ≤ i′ ≤ i, letEi′ denote the following
event,

Ei′ =
⋃

j≤i′

coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(Uℓ−(i′+1) ∪W
∗
).

Let SP(s, ℓ − i′) = Pr
σ
ǫ,ℓ−i′

1 ,σ2
s (Ei′), for all 0 ≤ i′ ≤ i, denote thesuccess probabilityof the event

Ei′ . We need to argue that SP(s, ℓ − i) = 1, for all states in(Uℓ \ Uℓ−(i+1)). By induction we

have that SP(s, ℓ − (i − 1)) = 1, from states in(Uℓ \ Uℓ−i). Sinceσǫ,ℓ−i
1 has the same support

asσǫ,ℓ−(i−1)
1 for all states in(Uℓ \ Uℓ−i), it follows that for each states in (Uℓ \ Uℓ−i) we have

SP(s, ℓ − i) = 1. If the event
⋃

j≤ℓ−(i+1) coBuchi(Uℓ−j \ Uℓ−(j+1)) ∪ Reach(W
∗
) happens, then

we are done. Thus, in the worst case we have thatPr
σ
ǫ,ℓ−i
1 ,σ2

s (Reach(Uℓ−i)) = 1 from states in
(Uℓ\Uℓ−i) (clearly, from such statesUℓ−i is reachable in the Markov chain since they are reached with
probability 1). We only need to argue about the worst case. LetR′

S be the subset of(Uℓ−i \Uℓ−(i+1)),
from which (C1 ∩ (Uℓ−i \ Uℓ−(i+1))) cannot be reached in the Markov chain. Hence, for each state
s in (Uℓ−i \ Uℓ−(i+1)), the states must either be inR′

S (in which caseR′
S is reachable) or the set

(C1 ∩ (Uℓ−i \ Uℓ−(i+1))) must be reachable froms. From the set(C1 ∩ (Uℓ−i \ Uℓ−(i+1))), the set
Uℓ−(i+1) is reached in one-step with positive probability. We therefore get that from any state inT =
((Uℓ \Uℓ−i)∪ (Uℓ−i \Uℓ−(i+1))), the set(Uℓ−(i+1)∪R

′
S) is reachable, by transitivity of reachabillity.

Hence, by Markov property 8 we have thatPr
σ
ǫ,ℓ−i
1 ,σ2

s Reach((S \ T ) ∪ Uℓ−(i+1) ∪ R
′
S) = 1, from

any states ∈ T . Note that from states inR′
S no state inC1 ∩ (Uℓ−i \ Uℓ−(i+1)) is reachable, and the

set(Uℓ−i \Uℓ−(i+1)) can be left only from states inC1 ∩ (Uℓ−i \Uℓ−(i+1)). Hence reachability toR′
S
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ensurescoBuchi((Uℓ−i \ Uℓ−(i+1))). Thus we have that

Reach((S \ T ) ∪ Uℓ−(i+1) ∪R
′
S) = Reach(Uℓ−(i+1) ∪W

∗
∪ Uℓ−(i+1) ∪R

′
S)

= Reach(Uℓ−(i+1) ∪W
∗
∪R′

S)

⊆ Reach(Uℓ−(i+1) ∪W
∗
) ∪ coBuchi(Uℓ−i \ Uℓ−(i+1)) ⊆ Ei .

The first equality uses that(S \ T ) = (Uℓ−(i+1) ∪ W
∗
). The first inclusion uses thatReach(R′

S)
ensurescoBuchi(Uℓ−i \ Uℓ−(i+1)). Hence, from each states ∈ T we have that SP(s, ℓ − i) = 1 as
desired.

4. (P starts outside(RS ∩ T ): Item (3) of the lemma statement.). We will now show that the proba-
bility of the event(

⋃
j≤i coBuchi(Uℓ−j \Uℓ−(j+1))∪Reach(Uℓ−i)) is at least1− ǫ. We will do so by

modeling the worst case using the Markov chainGx,ǫ,η
4 of Lemma 11. There is an illustration of the

Markov chainGx,ǫ,η
4 in Figure 11. We have one state representing each of the following sets

(1) (Uℓ−(i+1) ∪RS)

(2) (Uℓ−i \ (Uℓ−(i+1) ∪RS))

(3) (Uℓ \ (Uℓ−i ∪RS))

(4) W
∗

We will refer to the states ass1, s2, s3 ands4, respectively. We will now argue about the transition
probabilities, and first consider the absorbing states.

The states1. We are interested in the probability that(Uℓ−(i+1) ∪ RS) is eventually reached. This
probability does not depend on what happens after(Uℓ−(i+1) ∪ RS) is reached. Hence, we consider
s1 as absorbing, like inGx,ǫ,η

4 .

The states4. In the worst caseW
∗

cannot be left, once reached. Thuss4 is an absorbing state, like
in Gx,ǫ,η

4 .

The states2. For each states ∈ (Uℓ−i \ (Uℓ−(i+1) ∪RS)) ⊆ (Uℓ−i \ Uℓ−(i+1)), we must eventually
reach a state in either(C1 ∩ (Uℓ−i \ Uℓ−(i+1))) = ((C1 ∩ T ) ∩ (Uℓ−i \ Uℓ−(i+1))) or (RS ∩ (Uℓ−i \
Uℓ−(i+1))), with probability 1, by Markov property 3 (recall that we cannot reach states outside(Uℓ−i\
Uℓ−(i+1)), except from states in(C1 ∩ (Uℓ−i \ Uℓ−(i+1))) by Equation 4, Equation 5 and Equation 6.
Also, (RS ∩ (Uℓ−i \ Uℓ−(i+1))) is the subset of(Uℓ−i \ Uℓ−(i+1)) from which (C1 ∩ T ) cannot be
reached). If we reachRS , an argument similar to the first item in the proof of this lemma shows that
we satisfy the desired statement. Thus, in the worst case we always reach(C1 ∩ (Uℓ−i \ Uℓ−(i+1))).

For each states in (C1 ∩ (Uℓ−i \ Uℓ−(i+1))), let xs = δ(s, σǫ,ℓ−i
1 , σ2)(Uℓ−(i+1)) be the one-step

transition probability toUℓ−(i+1). By Equation 4, and the construction of the strategy, we havethat
ǫ
2 · xs > δ(s, σǫ,ℓ−i

1 , σ2)(W
∗
). Clearly, in the worst case we have thatǫ

2 · xs = δ(s, σǫ,ℓ−i
1 , σ2)(W

∗
)

(recall thatW
∗

is absorbing). Also, the factxs > δ(s, σǫ,ℓ−i
1 , σ2)(W

∗
) implies thatxs > 0 and

therefore we have thatxs ≥
δmin

pat(ℓ−i) , wherepat(ℓ− i) =
(
ǫ·δmin

4

)−(
(2m)rk(ℓ−i)

2
−1)

, is an upper bound

on the patience of the distributionσǫ,ℓ−i
1 (s), by Lemma 6. Thus with probabilityxs we go toUℓ−(i+1),

with probability ǫ
2 · xs we go toW

∗
, and with the remaining probability of(1 − (1 + ǫ

2) · xs) we go
to a state inT , which in the worst case is a state in(Uℓ \ (Uℓ−i ∪ RS)). This is so, because, in
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the worst case, to reach(Uℓ−(i+1) ∪ RS) from (Uℓ \ (Uℓ−i ∪ RS)) we must go through a state in
(Uℓ−i \ (Uℓ−(i+1) ∪ RS)), and hence the probability to reachUℓ−(i+1) is minimized whenxs is as

small as possible, for alls. That is,xs = δmin
pat(ℓ−i) , for all s ∈ (C1 ∩ (Uℓ−i \ Uℓ)). Let x = δmin

pat(ℓ−i) .
Thus, the transition probabilities are as follows: (i) froms2 to s4 is ǫ

2 · x; (ii) from s2 to s1 is x; and
(iii) from s2 to s3 is 1− (1 + ǫ

2) · x. Thus,s2 is like inGx,ǫ,η
4 .

The states3. For each states ∈ (Uℓ\(Uℓ−i∪RS)) ⊆ (Uℓ\Uℓ−i), by induction and sinceσǫ,ℓ−i
1 follows

ση,ℓ−i
1 , we satisfy thatPr

σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i−1 coBuchi(Uℓ−j \Uℓ−(j+1))∪Reach(Uℓ−i)) ≥ 1− η, where

η is
(
ǫ·δmin

4

)(2m)rk(ℓ−i)

. By item (2) of the lemma statement, we enterW
∗

with the remaining proba-

bility (which is absorbing). Hence, the worst case must be wherePr
σ
ǫ,ℓ−i
1 ,σ2

s (
⋃

j≤i−1 coBuchi(Uℓ−j \

Uℓ−(j+1)) ∪ Reach(Uℓ−i)) = 1 − η (and thusPr
σ
ǫ,ℓ−i
1 ,σ2

s (Reach(W
∗
)) = η). As previously argued,

in the first item and second item of this lemma, the event
⋃

j≤i−1 coBuchi(Uℓ−j \ Uℓ−(j+1)) ensures
reachability toRS (i.e., ensuresReach(RS)). In the worst case for the proof the probability to reach

(RS∪Uℓ−i−1) is minimized, and thus in the worst case we havePr
σ
ǫ,ℓ−i
1 ,σ2

s (Reach((Uℓ−i\(Uℓ−(i+1)∪

RS))) = 1 − η andPr
σ
ǫ,ℓ−i
1 ,σ2

s (Reach(W
∗
)) = η. Thus, froms3 the transition probability tos2 and

s4 are1− η andη, respectively. Thus,s3 is like inGx,ǫ,η
4 .

The probability to eventually reach s1 from s2 or s3. We have thatx ≤ 1
2 (sincepat(ℓ − i) ≤ 1

2 ,
for m ≥ 2 andrk(ℓ− i) ≥ 1). Also,0 < η, ǫ < 1 (in the case ofη, becausem ≥ 2 andrk(ℓ− i) ≥ 1).
Hence we can apply Lemma 11 and get that the probability to eventually reachs1 from s2 ands3 is

x
η+(1+ ǫ

2
)·x·(1−η) and x·(1−η)

η+(1+ ǫ
2
)·x·(1−η) , respectively. Cleary, the probability froms3 is the smallest. We

will show that it is greater than1− ǫ. We have that

x · (1− η)

η + (1 + ǫ
2) · x · (1− η)

=
1

η
x·(1−η) + 1 + ǫ

2

≥
1

1 + ǫ
≥ 1− ǫ .

We will argue about the first inequality last. The second inequality follows from 1 > 1 − ǫ2 =
(1 + ǫ) · (1 − ǫ) ⇒ 1

1+ǫ
> 1 − ǫ. To show the first inequality we will argue that η

x·(1−η) ≤
ǫ
2 or,

equivalently, that 2·η
x·(1−η)·ǫ ≤ 1, sinceǫ > 0. We have that

2 · η

x · (1− η) · ǫ
<

4 · η

x · ǫ
=

4 · η · pat(ℓ− i)

δmin · ǫ
= η ·

(
ǫ · δmin

4

)−
(2m)rk(ℓ−i)

2

= η
1
2 < 1 .

The inequalities comes fromη < 1
2 (which is the case becausem ≥ 2 and rk(ℓ − i) ≥ 1). The

first equality is becausex = δmin
pat(ℓ−i) , by definition. The second equality is becausepat(ℓ − i) =

(
ǫ·δmin

4

)−(
(2m)rk(ℓ−i)

2
−1)

, by definition. The third equality uses thatη =
(
ǫ·δmin

4

)(2m)rk(ℓ−i)

, by defini-

tion.

Ensuring item (3) of the lemma statement.We see that the probability to reach(Uℓ−(i+1) ∪ RS)
from T is more than1− ǫ (by recalling the definition ofs1, s2 ands3) and thus item (3) of the lemma
statement is ensured, because from states inRS the event

⋃
j≤i Safe(Uℓ−j \ Uℓ−(j+1)) is ensured (as

argued in the beginning of the lemma) and hence reachingRS ensures
⋃

j≤i coBuchi(Uℓ−j\Uℓ−(j+1)).

36



The desired result follows.

Lemma 13. Let0 < ǫ < 1
2 . The stationary strategyσǫ1 ensures that for all statess ∈W ∗ and all strategies

σ2 we haveE
σǫ
1,σ2

s [LimSupAvg] ≥ E
σǫ
1,σ2

s [LimInfAvg] ≥ 1− ǫ.

Proof. By constructionσǫ1 plays asσβ,11 in U1 andσβ,21 , for β = ǫ
2 , in the remaining states. Therefore

σǫ1 ensures that the mean-payoff of any play that starts inU1 is at least1 − β, by Lemma 8. Sinceσǫ1 is
stationary, onceσǫ1 is fixed we obtain an MDP for player 2, and in MDPs positional strategies always suffice
to minimize mean-payoff objectives [18]. Hence, Lemma 12 shows that if the play starts ins ∈ (Uℓ \ U1),
then with probability1− β the play either stays in(Uj \Uj−1) for somej ≥ 2 and ensures mean-payoff of
at least1 − β or reachesU1, from which we will get mean-payoff1 − β. By simple multiplication (using
that rewards are at least 0) we therefore see that we get mean-payoff at least

(1− β)2 = 1 + β2 − 2β ≥ 1− ǫ.

The desired result follows.

Lemma 13 implies the following inclusion.

Lemma 14. We haveW ∗ ⊆ val1(LimInfAvg(r),ΣS
1 ) ⊆ val1(LimSupAvg(r),ΣS

1 ).

3.2.2 Second inclusion:W
∗
⊆ S \ val1(LimInfAvg,ΣF

1 )

We will now show that for all statess ∈ W
∗

that there exists a constantc > 0 such that no finite-memory
strategyσ1 for player 1 can ensure value more than1 − cn

n
. Again the statement is trivially true ifW

∗
is

empty, and hence we assume that this is not the case.

Computation of W
∗
. We first analyze the computation ofW

∗
. To analyze the computation ofW

∗
we

consider the iterative computationW ∗

• LetW0 beS andWi beµU.νX.µY.νZ.LimAvgPre(Wi−1, U,X, Y, Z).

• LetXi,0 beS andXi,j beνX.µY.νZ.LimAvgPre(Wi−1,Wi,Xi,j−1, Y, Z).

• Also letZi,j,0 beS andZi,j,k beLimAvgPre(Wi−1,Wi,Xi,j−1,Xi,j , Zi,j,k−1).

Let ℓ ≥ 0 be the smallest number such thatWℓ = Wℓ+1 = W ∗. Let rk(i), be the smallest numberj such
thatXi,j = Xi,j+1. Also, let rk(i, j), be the smallest numberk such thatZi,j,k = Zi,j,k+1. We have that
for any states in W

∗
, there must be some smallest numberi such thats is not inWi (sinceW0 is S, we

have thati > 0). Also, there must be some smallestj such thats is not inXi,j and similar fork andZi,j,k.
We define the rank of a states ∈ W

∗
asrk(s) = (i, j, k), wherei (resp. j, andk) is the smallest number

such thats not inWi (resp.Xi,j andZi,j,k). By definition ofW
∗
, there exists a constantc > 0, such that

for a states, with rk(s) = (i, j, k), for all distributionsξ1 overΓ1(s) there must exist an counter-action
as,ξ12 ∈ Γ2(s) for player 2 such that all the following conditions hold (i.e., the negation of the conditions of
LimAvgPre hold):

(c · δ(s, ξ1, a
s
2)(Wi) ≤ δ(s, ξ1, a

s
2)(W i−1))

∧(δ(s, ξ1, a
s
2)(Xi,j−1) < 1 ∨ δ(s, ξ1, a

s
2)(Xi,j) = 0)

∧(δ(s, ξ1, a
s
2)(Xi,j−1) < 1 ∨ ExpRew(s, ξ1, a

s
2) < 1− c ∨ δ(s, ξ1, a

s
2)(Zi,j,k−1) < 1− c) .
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If the above conditions hold, then one of the following threeconditions hold as well. We first explain the
following cases: (i) ifδ(s, ξ1, a

s,ξ1
2 )(Wi) > 0, thenc · δ(s, ξ1, a

s,ξ1
2 )(Wi) ≤ δ(s, ξ1, a

s,ξ1
2 )(W i−1) must

hold to ensure the first condition above (this corresponds toCase (3) below); (ii) ifδ(s, ξ1, a
s,ξ1
2 )(Wi) = 0,

then the first condition above is satisfied; then we have two sub-cases: (a) ifδ(s, ξ1, a
s,ξ1
2 )(Xi,j−1) < 1,

then both the second and third condition is satisfied (this corresponds to Case (2) below); (b) otherwise
we must haveδ(s, ξ1, a

s,ξ1
2 )(Xi,j) = 0 to satisfy the second condition above and(ExpRew(s, ξ1, a

s,ξ1
2 ) <

1−c ∨ δ(s, ξ1, a
s,ξ1
2 )(Z1,j,i−1) < 1−c) to satisfy the third condition above (this corresponds to Case (1)

below). Thus we have that either

• Case(1). There is aas,ξ12 such that

δ(s, ξ1, a
s,ξ1
2 )(Wi) = 0

∧ δ(s, ξ1, a
s,ξ1
2 )(Xi,j) = 0

∧
(
ExpRew(s, ξ1, a

s,ξ1
2 ) < 1− c ∨ δ(s, ξ1, a

s,ξ1
2 )(Z1,j,i−1) < 1− c

)

or;

• Case(2). There is aas,ξ12 such that

(
δ(s, ξ1, a

s,ξ1
2 )(Wi) = 0

)
∧

(
δ(s, ξ1, a

s,ξ1
2 )(Xi,j−1) < 1

)

or;

• Case(3). There is aas,ξ12 such that

(
c · δ(s, ξ1, a

s,ξ1
2 )(Wi) ≤ δ(s, ξ1, a

s,ξ1
2 )(W i−1)

)
∧

(
δ(s, ξ1, a

s,ξ1
2 )(Wi) > 0

)
.

We will use the above three cases explicitly in our proof.

The counter-strategyσ2 given σ1. Fix an arbitrary finite-memory strategyσ1 for player 1. Let the finite
set of memories used byσ1 beMem. A counter-strategyσ2 givenσ1 is defined as follows: given the current
states of the game, and current memory statem ∈ Mem, let ξ1 be the distribution played byσ1. The
strategyσ2 for player 2 plays an actionas,ξ12 (if there are more than one option foras,ξ12 , pick one arbitrarily)
with probability one. Ifσ1 uses memory setMem, thenσ2 also uses the memory setMem and has the same
memory update function.

Upper bound on value ensured byσ1. We will show that givenσ1 and the counter-strategyσ2 the mean-
payoff value is at most1 − cn

n
for all starting states inW

∗
. Also note that the upper bound on the value is

independent of the size of the memory, and this shows that in the complement ofW ∗ the values achievable
by finite-memory strategies is strictly bounded below 1.

The gameG ×Mem. Consider the gameG and a product with any deterministic automatonA with state
spaceQ. Every state inW

∗
× Q in the synchronous product game belongs to the setW

∗
computed in

the product game and the ranks also coincide (by the properties ofµ-calculus formulae). Consider the
synchronous product gameG × Mem of G and the memories ofσ1 andσ2, where states corresponds to
pairs in(S,Mem) and whereδ((t,m), a, b)((t′ ,m′)) = δ(s, a, b)(t) whereσu1 (t, a, b,m) = m′ and hence
alsoσu2 (t, a, b,m) = m′. In this game the strategy corresponding toσ1 can be interpreted as a stationary
strategyσ′1. Also the strategy corresponding toσ2 can be interpreted as a positional strategyσ′2 inG×Mem.
Hence given the strategiesσ1 andσ2 we can obtain a Markov chain onG×Mem, considering the stationary
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strategiesσ′1 andσ′2 on the product game. Also for all statest ∈W
∗

inG, all the corresponding states(t,m)
in G×Mem belong toW

∗
computed in the product game and has the same rank ast in G.

Upper bound on value ensured byσ1. We show that givenσ1 and the counter-strategyσ2 the mean-payoff
value is at most1 − cn

n
for all starting states inW

∗
. The proof is split in the following cases, and the basic

intuitive arguments are as follows:
1. Consider a play that starts inX1,1. We show that the play always stays inX1,1 and Case (1) is satisfied

always. Thus we show that from every state there is a path of length at mostn where reward 0 occurs
at least once.

2. For a play that starts inW 1 \X1,1, we always satisfy either Case (1) or Case (2). First we establish
that the event of Case (2) being satisfied infinitely often hasprobability 0. Hence from some point on
Case (1) is always satisfied, and then the argument is similarto the previous case.

3. Finally we consider a play that starts inW
∗
\W 1. Whenever Case (3) is satisfied, and if the current

state isW j, for j > 1, thenW j−1 is reached with positive probability in one-step. We establish that
either (i) we are similar to the previous case or (ii) reachW orW 1 and the probability to reachW 1 is
at leastcn.

Intuitively, in the first two cases above, we reach a recurrent class that consists of states satisfying Case (1)
only, and in such recurrent classes the mean-payoff value isat most1− cn. In the last case, either we reach
a recurrent class of the above type, or whenever we satisfy Case (3) with positive probabilityc > 0 we make
progress to a recurrent class of the above type. The above case analysis establish the proof. We now present
the formal proof.

Lemma 15. Fix an arbitrary finite-memory strategyσ1 and consider the counter-strategyσ2 givenσ1. For
all states inW

∗
we have thatEσ1,σ2

s [LimSupAvg] ≤ 1− cn

n
.

Proof. In gameG ×Mem, letCi be the set of states where Case(i) is satisfied3. That isC1, C2, andC3

satisfy Case (1), Case (2), and Case (3), respectively. We consider the Markov chain givenσ1 andσ2, and
consider a playP s starting from states. We will consider three cases to establish the result.

1. Plays starting in s ∈ X1,1. Recall thatX1,1 is the complement ofX1,1. Consider states in Z1,1,k,
for somek ≥ 1 (that is: states inX1,1). SinceW0 = X1,0 = S, we have that the play corresponding
to P s in G ×Mem is always inC1 (note that only in Case (1) do we have probability 0 to go toW 0

andX1,0). Hence the playP s always stays inX1,1. Hence, from states inZ1,1,k, if player 1 plays
according toσ1 and player 2 playsσ2, with probability c we either(i) reach a state inZ1,1,k−1, or
(ii) get a reward of0. SinceZ1,1,0 = S we must get a reward of0 with at least probabilityc when in
Z1,1,1. Hence, for all states inX1,1, given player 1 followsσ1 and player 2 followsσ2, there is a path
of play of length at mostrk(1, 1) > rk(1) where each step happens with probability at leastc and the
reward 0 happens at least once. Thus, for any states in X1,1, the playP s stays inX1,1 and gives a

expected average reward of at most1 − cj

j
, with probability 1, wherej = rk(1). In other words, we

have established the following property: in the Markov chain all recurrent classes that intersect with
(X1,1 ×Mem) are contained in(X1,1 ×Mem) and have mean-payoff at most1− cn

n
.

2. Plays starting in s ∈ (W 1 \X1,1). Consider now states in (W 1 \X1,1). SinceW0 = S, we have
that the playP s

Mem, corresponding toP s inG×Mem, is always in(C1∪C2) (note that in Case (3) we
have positive probability to gotoW0). This is the only property of(W 1 \X1,1) we will use. Notice

3Note thatCi 6= (S \Ci), for i ∈ {1, 2, 3}, in general, whereCi is the set defined in Subsection 3.2.1, but this notation is used
becauseC1, C2, C3 serve similar roles for properties ofW

∗

asC1, C2, C3 did for properties ofW ∗
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that this ensures thatP s always stays inW 1. LetRS be the set of states from which no state inC2

can be reached. There are now two cases, eitherP s
Mem reaches a state inRS or it does not.

• The play P s
Mem reaches a state inRS. Let j = rk(1). Then the mean-payoff is at most1− cj

j

after reachingRS , by a argument similar to the one for states inX1,1. Therefore, in this case, the

mean-payoff ofP s is at most1− cj

j
, since the mean-payoff is independent of the finite-prefix.

• The play P s
Mem does not reach a state inRS . In this case, we must visit states inC2 infinitely

often with probability 1, by Markov property 1. Whenever we are in a states′ in C2 ∩ ((X1,j ×
Mem) \ (X1,j−1 × Mem)), we have probability at leastp · δmin to reach(X1,j−1 × Mem) in
one-step where1

p
is the maximum patience of any distribution played byσ1. Whenever we

are in a states′ in C1 ∩ ((X1,j × Mem) \ (X1,j−1 × Mem)), we have probability 0 to leave
((X1,j ×Mem) \ (X1,j−1 ×Mem)) in one-step. Therefore we must reach(X1,1 ×Mem) in a
finite number of steps with probability 1 and from(X1,1 × Mem) we get a mean-payoff of at

most1− cj

j
, wherej = rk(1), as we have already established in the first item4.

Therefore, in both cases we get a mean-payoff of at most1− cj

j
with probability 1, wherej = rk(1),

i.e., all recurrent classes have mean-payoff of at most1− cj

j
.

3. Plays starting in s ∈ (W
∗
\W 1). Consider now states in (W

∗
\W 1). Consider the playP s in

G and the corresponding playP s
Mem in G × Mem. For i ≥ 1, let Li = Wi ∪W i−1 and note that

Li =W i \W i−1. LetRi be the set of states inLi from which no state inC3 ∩ Li is reachable; (note
thatRi ⊆ Li ∩ (C1 ∪C2)). Note that fromLi, the setLi can be left only from states inC3 ∩ Li. We
now consider two sub-cases.

• We first consider the case where we reachRi. Let j = rk(i). In this case, the mean-payoff is at
most1− cj

j
by an argument similar to the argument fors in W 1 \X1,1. The argument fors in

W 1 \X1,1 only uses that states inC1 ∪ C2 are visited. OnceRi is reached we are guaranteed
that only states inRi are visited, and hence the recurrent classes inRi has mean-payoff of at
most1− cn

n
.

• If Ri is not reached, then since from every stateC3 ∩ Li we have positive transition probability
to Li, it follows thatLi is reached with probability 1, by Markov property 4. But if wereach
eitherWi orW i−1, we have a probability of at leastc that it will beW i−1 (since it can only be
done wheneverP s

Mem is inC3 ∩ Li, which ensures so).

Each time we repeat the second case, all states inLi, will never be visited again, in the worst case.
Since each setLi must contain atleast one state, we see that, if we repeat the second casek times and
thereafter enterRi′ (and are thus in the first case), thenn − k ≥ rk(i′). We have a probability ofck

to follow such a play and we then get value at most1− cn−k

n−k
. Even if we got mean-payoff 1 with the

remaining probability of1 − ck, we still have a expected mean-payoff of at most1− cn

n−k
. Thus, we

see that in the worst casek = 0 with probability 1, in which case we get mean-payoff at most1− cn

n
.

The desired result follows.
4In fact, alternatively we can prove this case using contradiction, since(X1,1×Mem) ⊆ C1 and therefore(X1,1×Mem) ⊆ RS ,

since(X1,1 ×Mem) cannot be left in the Markov chain
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Lemma 15 implies the following inclusion.

Lemma 16. We haveval1(LimSupAvg(r),ΣF
1 ) ⊆W

∗.

4 Improved Rank-Based Algorithm

In this section we present an improved rank-based algorithm, which is based on the same principle as the
small-progress measure algorithm [24] (for parity games).While the naive computation of theµ-calculus
formula for the value 1 set requiresO(n4) iterations, the improved algorithm will requireO(n2) iterations.

Basic idea.The basic idea of the algorithm is to consider the ranking function rk from Section 3.2.1 and use
that to obtain an algorithm. Notice thatrk(s) for s ∈W ∗ is always a pair(i, j) such that2 ≤ i+ j ≤ n+ 1
and where1 ≤ i, j ≤ n. We see that for any numberk there arek − 1 pairs(i, j) such thati + j = k and
such that1 ≤ i, j ≤ k− 1. Hence, there are

∑n
k=1 k = n(n+1)

2 such pairs(i, j) such that2 ≤ i+ j ≤ n+1
and where1 ≤ i, j ≤ n. Furthermore we also have a special rank⊤ for not being inW ∗. The ranks are
lexicographically ordered as follows

(1, 1) < (1, 2) < · · · < (1, n) < (2, 1) < · · · < (n, 1) < ⊤ .

We will thus say that(i, j) < ⊤ for all i, j and(i, j) < (i′, j′) if i < i′ or i = i′ andj < j′; (and for
(i, j) ≤ (i′, j′) we changej ≤ j′). To distinguish with the ranking function in Section 3.2.1, we denote the
ranking function of the improved algorithm asrk′(s).

Definition of matrix. Consider a given assignment of ranks to states. Lets be some state of rankrk′(s) 6= ⊤
and therefore of rank(i, j) for somei andj; and also consider a states′ of rank (i′, j′). We define some
sets,Us, Ys, Zs,Xs,Ws as follows:

1. The states′ is inUs, if i > i′.

2. The states′ is in Ys, if i > i′ or i′ = i andj > j′.

3. The states′ is inZs, if i > i′ or i′ = i andj ≥ j′.

4. The states′ is inXs, if i ≥ i′.

5. The states′ is inWs independent ofs.

Also if a states′′ has rank⊤, then it is in the setW s. This set also does not depend ons. LetM s
a1,a2

∈

{W s, Us,Ws, Ys,Xs, Z
1
s , Z

0
s}, for a1 ∈ Γ1(s) anda2 ∈ Γ2(s), be the matrix similar to the matrixM from

Section 3.1, except that instead of setW useW s and similar forU , Y , Z,X andW .

The RANK ALGO algorithm. We will refer to our algorithm as RANK ALGO and the description is as
follows:

1. For each states setrk′(s)← (1, 1)

2. Let i← 0 andS0 ← S.

3. (Iteration) WhileSi is not the empty set:

(a) LetQi = Si ∪ {s | ∃a1 ∈ Γ1(s),∃a2 ∈ Γ2(s). Succ(s, a1, a2) ∩ S
i 6= ∅} be the set of states in

Si and their predecessors.
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(b) For each states ∈ Qi such thatrk′(s) 6= ⊤, run ALGOPRED onM s (if M s has not changed
since the last time ALGOPRED was run onM s, then use the result from the last time instead of
rerunning ALGOPRED). LetSi+1 be the set of states which ALGOPRED rejected.

(c) Increment the rank (according to the lexicographic ordering) of all states inSi+1.

(d) Let i← i+ 1.

4. Return the set of states which does not have rank⊤.

4.1 Running time of algorithm RANK ALGO

We now analyze the running time of the algorithm. We first analyze the work done for updating matrices
M s and then analyze the work done for ALGOPRED computation.

• Work to update matrix.For a states of rank (i, j), notice that we do not need to recalculate the
entireM s whenever some successors′ of s changes rank, but only the entries(a1, a2) such that
s′ ∈ Succ(s, a1, a2). Also notice that we do not need to changeM s at all whenevers′ changes rank
to ranks other than in{(i, 1), (i, j), (i, j +1), (i+1, 1),⊤}. Hence, as long ass has some rank(i, j),
we can do all updates ofM s in timeO(

∑
a∈Γ1(s),b∈Γ2(s)

|Supp(s, a, b)|). We also recalculateM s

whenevers changes rank, and since each state has at mostO(n2) different ranks therefore we use
O(n2 ·

∑
s∈S

∑
a∈Γ1(s),b∈Γ2(s)

|Supp(s, a, b)|) time to do all updates ofM s for all statess.

• Work ofALGOPRED. Note that each entry ofM s can take at most 7 different values, and as long ass
has a fixed rank each update makes some entry worse than before. Hence as long ass has some fixed
rank(i, j) we can do no more than6 · |Γ1(s)| · |Γ2(s)| updates ofM s. Hence we run ALGOPRED at
most n(n+1)

2 · 6 · |Γ1(s)| · |Γ2(s)| times for a fixeds.

Therefore, we get a total running time ofO(n2 ·
∑

s∈S(|Γ1(s)|
3 · |Γ2(s)|

3 +∑
a1∈Γ1(s),a2∈Γ2(s)

|Supp(s, a1, a2)|)), using Lemma 4.

4.2 Proof of correctness of algorithmRANK ALGO

The correctness proof is similar to the results of [24]. The proof of [24] shows the equivalence ofµ-
calculus formula and a rank-based algorithm (called small-progress measure algorithm) for parity games;
and the crucial argument of the correctness was based on the fact that the predecessor operator is monotonic.
Our correctness proof is similar and uses thatLimAvgPre is monotonic. We just present the proof of one
inclusion and the other inclusion is similar. For simplicity we will say that the rank ofs is rk(s) = ⊤ if
s ∈W

∗
. Let W̃ ∗ be the output of the algorithm. We show that̃W ∗ =W ∗.

W̃ ∗ ⊆ W ∗ : rk′(s) ≤ rk(s). We only need to show the statement forrk(s) 6= ⊤ since otherwise the
statement follows by definition. Hence, assume towards contradiction thatrk′(s) > rk(s) and letrk(s) =
(i, j). Also, we can WLOG assume thats gets assigned a rank higher thanrk(s) in the first iteration for
which any states′ gets assigned rank higher thanrk(s′) by the algorithm. Therefore in that iteration all states
s′ are such that the rank assigned by the algorithm is at mostrk(s′) ands has rankrk(s) assigned. Therefore
W ∗ ⊆Ws,Ui−1 ⊆ Us,Ui ⊆ Xs, Yi,j−1 ⊆ Ys,Yi,j ⊆ Zs. Buts is inLimAvgPre(W ∗, Ui−1, Ui, Yi,j−1, Yi,j)
by definition sinces is such thatrk(s) = (i, j). By monotonicity ofLimAvgPre we have thats is also in
LimAvgPre(Ws, Us,Xs, Ys, Zs), contradicting thats changes rank.

Lemma 17. The algorithmRANK ALGO correctly computes the setval1(LimInfAvg(r),ΣF
1 ) of states in time

O(n2 ·
∑

s∈S(|Γ1(s)|
3 · |Γ2(s)|

3 +
∑

a1∈Γ1(s),a2∈Γ2(s)
|Supp(s, a1, a2)|)).

42



5 Main result and Concluding Remarks

We now summarize the main result, and conclude with an open question.

Theorem 18. The following assertions hold for concurrent mean-payoff games.

1. (Value 1 set characterization).LetW ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z), then we
have

W ∗ = val1(LimSupAvg(r),ΣS
1 ) = val1(LimSupAvg(r),ΣF

1 )

= val1(LimInfAvg(r),ΣS
1 ) = val1(LimInfAvg(r),ΣF

1 )

2. (Running time).The value 1 setsval1(LimSupAvg(r),ΣS
1 ) = val1(LimSupAvg(r),ΣF

1 ) can be com-
puted in timeO(n2 ·

∑
s∈S(|Γ1(s)|

3 · |Γ2(s)|
3 +

∑
a1∈Γ1(s),a2∈Γ2(s)

|Supp(s, a1, a2)|)).

3. (Optimal patience). For all ǫ > 0, there exist stationaryǫ-optimal strategies in the set

val1(LimSupAvg(r),ΣS
1 ) with patience at most

(
ǫ·δmin

4

)−(2m)n

.

Proof. The first item follows from Lemma 16 together with Lemma 14. The second item comes from
Lemma 17. The third item follows from Lemma 7.

Notice that the patience closely matches the patience obtained for the concurrent reachability game
Purgatory, by Hansen, Ibsen-Jensen and Miltersen [20, Theorem 10] (the bound form = 2 is also in [22]).
Concurrent reachability games is a subclass of concurrent mean-payoff games and always haveǫ-optimal
stationary strategies, for allǫ > 0, and all states in Purgatory have value 1. Thus the example provides a
closely matching lower bound for patience.

Robustness.Our results show that the value 1 set computation can be achieved by an iterative algorithm
with theLimAvgPre operator. Our algorithm for theLimAvgPre operator computation is based on the matrix
constructionM , and observe that the entries in the matrix depends only on the support set, but not the precise
probabilities. It follows that given two concurrent games where the support sets of the transition functions
match, but the precise transition probabilities may differ, the value 1 set remains unchanged.

Concluding remarks. In this work we considered concurrent mean-payoff games andpresented a
polynomial-time algorithm to compute the value 1 set for finite-memory strategies for player 1. An in-
teresting open question is whether the value 1 set with infinite-memory strategies can also be computed in
polynomial time.
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6 Appendix — Expanded mu-calculus formula

Description of algorithm. Note that we established that if

W ∗ = νW.µU.νX.µY.νZ.LimAvgPre(W,U,X, Y, Z);

thenW ∗ = {s ∈ S | val(LimInfAvg(r),ΣF
1 )(s) = 1}. Theµ-calculus formula is a very succinct description

of an algorithm. The expanded iterative algorithm is presented as Algorithm 1.

Algorithm 1: Naiveµ-calculus Algorithm
Input : A concurrent mean-payoff gameG over the set of statesS
Output : The set of statesW ∗

W ← S
repeat

W ′ ←W
U ← ∅
repeat

U ′ ← U
X ←W
repeat

X ′ ← X
Y ← U
repeat

Y ′ ← Y
Z ← X
repeat

Z ′ ← Z
Z←ALGOPRED(W,U,X, Y, Z)

until Z = Z ′;
Y ← Z

until Y = Y ′;
X ← Y

until X = X ′;
U ← X

until U = U ′;
W ← U

until W =W ′;
return W
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7 Technical appendix — Computation ofLPre

We now present the details of the computation ofLPre(s,W,U,A1, A2). We will establish the Reject
property and Accept properties a—d ofLPre. We first recall the properties:

(Accept properties ofLPre). Accepts and returns the setA3 ⊆ A2 and a parametrized distributionξǫ1, for
0 < ǫ < 1

2 , with supportSupp(ξǫ1) ⊆ A1, such that the following properties hold:

• (Accept property a). For alla2 ∈ A3, the distributionξǫ1 satisfies Equation 1 fora2.

• (Accept property b). For alla2 ∈ (A2 \A3), we haveSucc(s, ξǫ1, a2) ∩W = ∅ andSucc(s, ξǫ1, a2) ∩
U = ∅.

• (Accept property c). For alla1 ∈ (A1 \ Supp(ξ
ǫ
1)), there exists an actiona2 in (A2 \ A3) such that

Succ(s, a1, a2) ∩W 6= ∅.

• (Accept property d). The setA3 is largest in the sense that for alla2 ∈ (A2 \ A3) and for all
parametrized distributionsξǫ1 overA1, the Equation 1 cannot be satisfied, while satisfying actions in
A2 using Equation 1, or Equation 2, or Equation 3, for anyX,Y,Z such thatU ⊆ Y ⊆ Z ⊆ X ⊆W .

The computation ofLPre(s,W,U,A1, A2) will be done similar to the computation of the similar named
LPre(s,W,U) in [13, 9], and we will follow notations from [9]. We will use the two methods Stay and
Cover, defined as follows:

Stay(s,W,A1, A2, A) = {a1 ∈ A1 | ∀a2 ∈ (A2 \A).
[
(Succ(s, a1, a2) ∩W ) = ∅

]
}

Cover(s, U,A1, A2, A) = {a2 ∈ A2 | ∃a1 ∈ (A1 ∩A).
[
(Succ(s, a1, a2) ∩ U) 6= ∅

]
}

The algorithmLPre(s,W,U,A1, A2) is then as follows:

1. LetA∗ ← µA.
[
Stay(s,W,A1, A2, A)∪Cover(s, U,A1, A2, A)

]
and for alla1 ∈ (A∗ ∩A1) let ℓ(a1)

be the level ofa1 in the formula.

2. If (A∗ ∩ A1) is empty, return reject. Otherwise, return accept and(A∗ ∩ A2, ξ
ǫ
1), whereξǫ1 is the

parametrized distribution, with support(A∗ ∩ A1), and the ranking function ofa1 ∈ (A∗ ∩ A1) is
ℓ(a1)−1

2 .

The algorithm forLPre(s,W,U) of [13, 9] can be obtained as a special case of our descriptionabove as
follows:

1. Let (A3, ξ
ǫ
1) ← LPre(s,W,U,Γ1(s),Γ2(s)). If either (i) LPre(s,W,U,Γ1(s),Γ2(s)) rejects; or

(ii) A3 6= Γ2(s), then return reject, otherwise return accept andξǫ1.

We will now show thatLPre(s,W,U,A1, A2) satisfies the desired properties.

Lemma 19. The algorithmLPre(s,W,U,A1, A2) satisfies the Reject property ofLPre and Accept properties

a—d. Also, the patience ofξǫ1 is at most
(
ǫ·δmin

2

)|A1|−1
.

Proof. We establish the desired properties.

The reject property of LPre. We see thatLPre(s,W,U,A1, A2) only rejects if(A∗ ∩ A1) is empty. By
definition of Stay(s,W,A1, A2, A) we have(A∗∩A1) is empty iff for alla1 ∈ A1 there existsa2 ∈ (A2\A

∗)
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such that(Succ(s, a1, a2) ∩W ) 6= ∅. We also see the reverse, since we see that also(A2 ∩ A
∗) is empty if

(A∗ ∩A1) is empty by definition of Cover(s, U,A1, A2, A). This implies that the empty set is a fixpoint of
µA.

[
Stay(s,W,A1, A2, A) ∪ Cover(s, U,A1, A2, A)

]
and thus must beA∗. SinceA∗ is empty, it follows

that for alla1 ∈ A1 there existsa2 ∈ (A2 \ A
∗) = A2 such that(Succ(s, a1, a2) ∩W ) 6= ∅. Hence, if

LPre(s,W,U,A1, A2) rejects, then the reject property ofLPre is satisfied.

Properties of the setA∗. We have that ifLPre(s,W,U,A1, A2) returns(A3, ξ
ǫ
1), thenA∗ = (Supp(ξǫ1) ∪

A3) andA∗ is a fixpoint ofµA.
[
Stay(s,W,A1, A2, A) ∪ Cover(s, U,A1, A2, A)

]
.

Accept property a. We note that if we restrict the set of actions of player 1 toA∗ ∩ A1 and actions of
player 2 toA3, thenLPre(s,W,U) would return accept and the same parametrized distribution, and then
the proof of [9, Lemma 4] ensures Accept property a and the desired patience.

Accept property b. We see that for an actiona1 to be in (A∗ ∩ A1) = Supp(ξǫ1), by definition of
Stay(s,W,A1, A2, A

∗), for all a2 in (A∗ ∩ A2) = A3 we have that(Succ(s, a1, a2) ∩W ) = ∅ (or equiv-
alently that(Succ(s, ξǫ1, a2) ∩ W ) = ∅). This establishes the first half of Accept property b. Also,we
see that if an an actiona2 is in (A2 \ A

∗) = (A2 \ A3), then by definition of Cover(s, U,A1, A2, A
∗)

for all a1 in (A∗ ∩ A1) = Supp(ξǫ1) we have that(Succ(s, a1, a2) ∩ U) = ∅ (or equivalently that
(Succ(s, ξǫ1, a2) ∩ U) = ∅). This establishes the second half of Accept property b.

Accept property c. ForA∗ to be a fixpoint we must have, by definition of Stay(s,W,A1, A2, A
∗), that for

each actiona1 ∈ (A1 \ A
∗) = (A1 \ Supp(ξ

ǫ
1)) that the condition to be in Stay(s,W,A1, A2, A

∗) must be
violated and thus, there existsa2 ∈ (A2 \ A

∗) = (A2 \ A3) such that(Succ(s, a1, a2) ∩W ) 6= ∅. This
establishes Accept property c.

Accept property d. Along with U andW consider anyX,Y,Z such thatU ⊆ Y ⊆ Z ⊆ X ⊆ W .
Consider a real number0 < ǫ < δmin

|A1|
and a distributionξ1 overA1. We will show that if Equation 1 is

satisfied byξ1 for some actiona2 ∈ (A2 \ A3), then there is some actiona′2 ∈ A2 which is not satisfied by
either (i) Equation 1; or (ii) Equation 2; or (iii) Equation 3. The proof will be by contradiction and assume
towards contradiction that such an actiona2 exists. LetA4 ⊆ A2 be the set of actions which does satisfy
Equation 1 byξ1 and let the remaining actions be satisfied by either Equation2 or Equation 3. Notice that
A4 6⊆ A3, sincea2 ∈ A4 anda2 6∈ A3.

We consider two cases depending on whether or notSupp(ξ1) ⊆ Supp(ξǫ1) to establish the result.

• We first consider the case, whereSupp(ξ1) ⊆ Supp(ξǫ1). Then Equation 1 is violated for alla′2 ∈
(A2 \ A3), sinceU cannot be reached by Accept property b. In particular, it must be violated fora2.
That is a contradiction.

• We next consider the case, whereSupp(ξ1) 6⊆ Supp(ξǫ1). Let a1 ∈ (Supp(ξ1) \ Supp(ξ
ǫ
1)) be an

action, such thata1 ∈ argmaxa′1∈(Supp(ξ1)\Supp(ξǫ1)) ξ1(a
′
1). By Accept property c, there exists an

actiona′2 ∈ (A2 \ A3) such thatSucc(s, a1, a′2) ∩W 6= ∅, sincea1 ∈ (Supp(ξ1) \ Supp(ξ
ǫ
1)) ⊆

(A1 \ Supp(ξ
ǫ
1)). We again split into two cases. Eithera′2 is inA4 or not.

– We first consider the case thena′2 ∈ A4. We will show that we go toW with too high probability,
compared to the probability with which we go toU . We see thatδ(s, ξ1, a′2)(W ) ≥ δmin ·ξ1(a1),
by definition ofa′2. Each actiona′1 in Supp(ξǫ1) ensures thatSucc(s, a′1, a

′
2)∩U = ∅ by Accept

property b, sincea′2 6∈ A3. It follows thatδ(s, ξ1, a′2)(U) ≤ ξ1(a1) · (|A1| − 1). This is because
each actiona′1 such thatξ(a′1) > ξ(a1) are inSupp(ξǫ1) by definition ofa1 and there are at
most|A1| − 1 actions in(Supp(ξ1) \ Supp(ξǫ1)) (sinceξ1 andξǫ1 are distributions overA1 and
|Supp(ξǫ1)| ≥ 1). But thenδ(s, ξ1, a′2)(U) · ǫ < δ(s, ξ1, a

′
2)(W ) and thus Equation 1 is violated

by ξ1 anda′2. This contradicts either thata′2 ∈ A4 or the definition ofA4.
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– We next consider the case thena′2 ∈ (A2 \ A4). Recall thatSucc(s, ξ1, a′2) ∩W 6= ∅. Hence,
Equation 2 and Equation 3 are violated, sinceSucc(s, ξ1, a

′
2) ∩X 6= ∅ (becauseX ⊆W and if

W is reached with positive probability, thenX is reached with positive probability). Moreover,
Equation 1 cannot be satisfied either, sincea′2 6∈ A4. Thus we have a contradiction.

Thus, in all cases we reach contradiction and, hence Accept property d is satisfied.
The desired result follows.
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