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Abstract

We design new approximation algorithms for the problems of optimizing submodular and supermod-
ular functions subject to a single matroid constraint. Specifically, we consider the case in which we wish
to maximize a nondecreasing submodular function or minimize a nonincreasing supermodular function
in the setting of bounded total curvature c. In the case of submodular maximization with curvature c, we
obtain a (1− c/e)-approximation — the first improvement over the greedy (1− e−c)/c-approximation of
Conforti and Cornuejols from 1984, which holds for a cardinality constraint, as well as recent approaches
that hold for an arbitrary matroid constraint.

Our approach is based on modifications of the continuous greedy algorithm and non-oblivious local
search, and allows us to approximately maximize the sum of a nonnegative, nondecreasing submodular
function and a (possibly negative) linear function. We show how to reduce both submodular maximization
and supermodular minimization to this general problem when the objective function has bounded total
curvature. We prove that the approximation results we obtain are the best possible in the value oracle
model, even in the case of a cardinality constraint.

We define an extension of the notion of curvature to general monotone set functions and show (1− c)-
approximation for maximization and 1/(1−c)-approximation for minimization cases. Finally, we give two
concrete applications of our results in the settings of maximum entropy sampling, and the column-subset
selection problem.

1 Introduction

The problem of maximizing a submodular function subject to various constraints is a meta-problem that
appears in various settings, from combinatorial auctions [30, 12, 35] and viral marketing in social networks [23]
to optimal sensor placement in machine learning [26, 27, 28, 25]. A classic result by Nemhauser, Wolsey and
Fisher [33] is that the greedy algorithm provides a (1− 1/e)-approximation for maximizing a nondecreasing
submodular function subject to a cardinality constraint. The factor of 1 − 1/e cannot be improved, under
the assumption that the algorithm queries the objective function a polynomial number of times [32].

The greedy algorithm has been applied in numerous settings in practice. Although it is useful to know
that it never performs worse than 1−1/e compared to the optimum, in practice its performance is often even
better than this, in fact very close to the optimum. To get a quantitative handle on this phenomenon, various
assumptions can be made about the input. One such assumption is the notion of curvature, introduced
by Conforti and Cornuéjols [9]: A function f : 2X → R+ has curvature c ∈ [0, 1], if f(S + j) − f(S)
does not change by a factor larger than 1 − c when varying S. A function with c = 0 is linear, so the
parameter measures in some sense how far f is from linear. It was shown in [9] that the greedy algorithm
for nondecreasing submodular functions provides a (1− e−c)/c-approximation, which tends to 1 as c→ 0.
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Figure 1: Comparison of Approximation Ratios for Submodular Maximization

Recently, various applications have motivated the study of submodular optimization under various more
general constraints. In particular, the (1 − 1/e)-approximation under a cardinality constraint has been
generalized to any matroid constraint in [5]. This captures various applications such as welfare maximization
in combinatorial auctions [35], generalized assignment problems [4] and variants of sensor placement [28].
Assuming curvature c, [37] generalized the (1− e−c)/c-approximation of [9] to any matroid constraint, and
hypothesized that this is the optimal approximation factor. It was proved in [37] that this factor is indeed
optimal for instances of curvature c with respect to the optimum (a technical variation of the definition, which
depends on how values change when measured on top of the optimal solution). In the following, we use total
curvature to refer to the original definition of [9], to distinguish from curvature w.r.t. the optimum [37].

1.1 Our Contribution

Our main result is that given total curvature c ∈ [0, 1], the 1−e−c

c -approximation of Conforti and Cornuéjols
for monotone submodular maximization subject to a cardinality constraint [9] is suboptimal and can be
improved to a (1 − c/e−O(ǫ))-approximation. We prove that this guarantee holds for the maximization of
a nondecreasing submodular function subject to any matroid constraint, thus improving the result of [37] as
well. We give two techniques that achieve this result: a modification of the continuous greedy algorithm of
[5], and a variant of the local search algorithm of [18].

Using the same techniques, we obtain an approximation factor of 1 + c
1−ce

−1 + 1
1−cO(ǫ) for minimizing

a nonincreasing supermodular function subject to a matroid constraint. Our approximation guarantees are
strictly better than existing algorithms for every value of c except c = 0 and c = 1. The relevant ratios are
plotted in Figures 1 and 2. In the case of minimization, we have also plotted the inverse approximation ratio
to aid in comparison.

We also derive complementary negative results, showing that no algorithm that evaluates f on only a
polynomial number of sets can have approximation performance better than the algorithms we give. Thus,
we resolve the question of optimal approximation as a function of curvature in both the submodular and
supermodular case.

Further, we show that the assumption of bounded curvature alone is sufficient to achieve certain approxi-
mations, even without assuming submodularity or supermodularity. Specifically, there is a (simple) algorithm
that achieves a (1− c)-approximation for the maximization of any nondecreasing function of total curvature
at most c, subject to a matroid constraint. (In contrast, we achieve a (1 − c/e− O(ǫ))-approximation with
the additional assumption of submodularity.) Also, there is a 1

1−c -approximation for the minimization of
any nonincreasing function of total curvature at most c subject to a matroid constraint, compared with a
(1 + c

1−ce
−1 + 1

1−cO(ǫ))-approximation for supermodular functions.
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Figure 2: Comparison of Approximation Ratios for Supermodular Minimization

1.2 Applications

We provide two applications of our results. In the first application, we are given a positive semidefinite matrix
M . LetM [S, S] be a principal minor defined by the columns and rows indexed by the set S ⊆ {1, . . . , n}. In
the maximum entropy sampling problem (or more precisely in the generalization of that problem) we would
like to find a set |S| = k maximizing f(S) = ln detM [S, S]. It is well-known that this set function f(S) is
submodular [22] (many earlier and alternative proofs of that fact are known). In addition, we know that
solving this problem exactly is NP-hard [24] (see also Lee [29] for a survey on known optimization techniques
for the problem).

We consider the maximum entropy sampling problem when the matrixM has eigenvalues 1 ≤ λ1 ≤ · · · ≤
λn. Since the determinant of any matrix is just a product of its eigenvalues, the Cauchy Interlacing Theorem
implies that the the submodular function f(S) = ln detM [S, S] is nondecreasing. In addition we can easily
derive a bound on its curvature c ≤ 1 − 1/λn (see the formal definition of curvature in Section 1.3). This
immediately implies that our new algorithms for submodular maximization have an approximation guarantee

of 1−
(

1− 1
λn

)

1
e for the maximum entropy sampling problem.

Our second application is the Column-Subset Selection Problem arising in various machine learning
settings. The goal is, given a matrix A ∈ R

m×n, to select a subset of k columns such that the matrix
is well-approximated (say in squared Frobenius norm) by a matrix whose columns are in the span of the
selected k columns. This is a variant of feature selection, since the rows might correspond to examples and
the columns to features. The problem is to select a subset of k features such that the remaining features can
be approximated by linear combinations of the selected features. This is related but not identical to Principal
Component Analysis (PCA) where we want to select a subspace of rank k (not necessarily generated by a
subset of columns) such that the matrix is well approximated by its projection to this subspace. While PCA
can be solved optimally by spectral methods, the Column-Subset Selection Problem is less well understood.
Here we take the point of view of approximation algorithms: given a matrix A, we want to find a subset of
k columns such that the squared Frobenius distance of A from its projection on the span of these k columns
is minimized. To the best of our knowledge, this problem is not known to be NP-hard; on the other hand,
the approximation factors of known algorithms are quite large. The best known algorithm for the problem
as stated is a (k + 1)-approximation algorithm given by Deshpande and Rademacher [10]. For the related
problem in which we may select any set of r ≥ k columns that form a rank k submatrix of A, Deshpande
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and Vempala [11] showed that there exist matrices for which Ω(k/ǫ) columns must be chosen to obtain a
(1+ ǫ)-approximation. Boutsidis et al. [2] give a matching algorithm, which obtains a set of O(k/ǫ) columns
that give a (1 + ǫ) approximation. We refer the reader to [2] for further background on the history of this
and related problems.

Here, we return to the setting in which only k columns of A may be chosen and show that this is
a special case of nonincreasing function minimization with bounded curvature. We show a relationship
between curvature and the condition number κ of A, which allows us to obtain approximation factor of κ2.
We define the problem and the related notions more precisely in Section 9.

1.3 Related Work

The problem of maximizing a nondecreasing submodular function subject to a cardinality constraint (i.e., a
uniform matroid) was studied by Nemhauser, Wolsey, and Fisher [33], who showed that the standard greedy
algorithm gives a (1 − e−1)-approximation. However, in [19], they show that the greedy algorithm is only
1/2-approximation for maximizing a nondecreasing submodular function subject to an arbitrary matroid
constraint. More recently, Calinescu et al. [5] obtained a (1 − e−1) approximation for an arbitrary matroid
constraint. In their approach, the continuous greedy algorithm first maximizes approximately a multilinear
extension of the given submodular function and then applies a pipage rounding technique inspired by [1]
to obtain an integral solution. The running time of this algorithm is dominated by the pipage rounding
phase. Chekuri, Vondrák, and Zenklusen [6] later showed that pipage rounding can be replaced by an
alternative rounding procedure called swap rounding based on the exchange properties of the underlying
constraint. In later work [8, 7], they developed the notion of a contention resolution scheme, which gives
a unified treatment for a variety of constraints, and allows rounding approaches for the continuous greedy
algorithm to be composed in order to solve submodular maximization problems under combinations of
constraints. Later, Filmus and Ward [17] obtained a (1− e−1)-approximation for submodular maximization
in an arbitrary matroid by using a non-oblivious local search algorithm that does not require rounding.

On the negative side, Nemhauser and Wolsey [32] showed that it is impossible to improve upon the bound
of (1− e−1) in the value oracle model, even under a single cardinality constraint. In this model, f is given as
a value oracle and an algorithm can evaluate f on only a polynomial number of sets. Feige [16] showeds that
(1 − e−1) is the best possible approximation even when the function is given explicitly, unless P = NP . In
later work, Vondrák [36] introduced the notion of the symmetry gap of a submodular function f , which unifies
many inapproximability results in the value oracle model, and proved new inapproximability results for some
specific constrained settings. Later, Dobzinski and Vondrák [14] showed how these inapproximability bounds
may be converted to matching complexity-theoretic bounds, which hold when f is given explicitly, under the
assumption that RP 6= NP .

Conforti and Cornuéjols [9] defined the total curvature c of non-decreasing submodular function f as

c = max
j∈X

f∅(j)− fX−j(j)

f∅(j)
= 1−min

j∈X

fX−j(j)

f∅(j)
. (1)

They showed that greedy algorithm has an approximation ratio of 1
1+c for the problem of maximizing a

nondecreasing submodular function with curvature at most c subject to a single matroid constraint. In the

special case of a uniform matroid, they were able to show that the greedy is a 1−e−c

c -approximation algorithm.
Later, Vondrák [37] considered the continuous greedy algorithm in the setting of bounded curvature. He
introduced the notion of curvature with respect to the optimum, which is a weaker notion than total curvature,

and showed that the continuous greedy algorithm is a 1−e−c

c -approximation for maximizing a nondecreasing
submodular function f subject to an arbitrary matroid constraint whenever f has curvature at most c with

respect to the optimum. He also showed that it is impossible to obtain a 1−e−c

c -approximation in this setting
when evaluating f on only a polynomial number of sets. Unfortunately, unlike total curvature, it is in general
not possible to compute the curvature of a function with respect to the optimum, as it requires knowledge
of an optimal solution.
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We shall also consider the problem of minimizing nonincreasing supermodular functions f : 2X → R≥0.
By analogy with total curvature, Il’ev [20] defines the steepness s of a nonincreasing supermodular function.
His definition, which is stated in terms of the marginal decreases of the function, is equivalent to (1) when
reformulated in terms of marginal gains. He showed that, in contrast to submodular maximization, the simple
greedy heuristic does not give a constant factor approximation algorithm in the general case. However, when
the supermodular function f has total curvature at most c, he shows that the reverse greedy algorithm is an
ep−1
p -approximation where p = c

1−c .

2 Preliminaries

We now fix some of our notation and give two lemmas pertaining to functions with bounded curvature.

2.1 Set Functions

A set function f : 2X → R≥0 is submodular if f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) for all A,B ⊆ X .
Submodularity can equivalently be characterized in terms of marginal values, defined by fA(i) = f(A+ i)−
f(A) for i ∈ X and A ⊆ X − i. Then, f is submodular if and only if fA(i) ≥ fB(i) for all A ⊆ B ⊆ X and
i 6∈ B. That is, submodular functions are characterized by decreasing marginal values.

Intuitively, f is supermodular if and only if −f is submodular. That is, f is supermodular if and only if
fA(i) ≤ fB(i) for all A ⊆ B ⊆ X and i 6∈ B.

Finally, we say that a function is non-decreasing, or monotone increasing, if fA(i) ≥ 0 for all i ∈ X and
A ⊆ X , and non-increasing, or monotone decreasing, if fA(i) ≤ 0 for all i ∈ X and A ⊆ X .

2.2 Matroids

We now present the definitions and notations that we shall require when dealing with matroids. We refer
the reader [34] for a detailed introduction to basic matroid theory. Let M = (X, I) be a matroid defined
on ground set X with independent sets given by I. We denote by B(M) the set of all bases (inclusion-wise
maximal sets in I) ofM. We denote by P (M) the matroid polytope forM, given by:

P (M) = conv{1I : I ∈ I} = {x ≥ 0 :
∑

j∈S

xj ≤ rM(S), ∀S ⊆ X},

where rM denotes the rank function associated withM. The second equality above is due to Edmonds [15].
Similarly, we denote by B(M) the base polytope associated withM:

B(M) = conv{1I : I ∈ B(M)} = {x ∈ P (M) :
∑

j∈X

xj = rM(X)}.

For a matroid M = (X, I), we denote by M∗ the dual system (X, I∗) whose independent sets I∗ are
defined as those subsets A ⊆ X that satisfy A ∩ B = ∅ for some B ∈ I (i.e., those subsets that are disjoint
from some base ofM. Then, a standard result of matroid theory shows thatM∗ is a matroid wheneverM
is a matroid, and, moreover, B(M∗) is precisely the set {X \B : B ∈ B(M)} of complements of bases ofM.

Finally, given a set of elements D ⊆ X , we denote by M|D the matroid (X ∩ D, I ′) obtained by
restricting to M to D. The independent sets I ′ of M|D are simply those independent sets of M that
contain only elements from D. That is, I ′ = {A ∈ I : A ∩D = A}.

2.3 Lemmas for Functions with Bounded Curvature

We now give two general lemmas pertaining to functions of bounded curvature that will be useful in our
analysis. The proofs, which follow directly from (1), are given in the Appendix.
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Lemma 2.1. If f : 2X → R≥0 is a monotone increasing submodular function with total curvature at most
c, then

∑

j∈A fX−j(j) ≥ (1 − c)f(A) for all A ⊆ X.

Lemma 2.2. If f : 2X → R≥0 is a monotone decreasing supermodular function with total curvature at most
c, then (1− c)∑j∈A f∅(j) ≥ −f(X \A) for all A ⊆ X.

3 Submodular + Linear Maximization

Our new results for both submodular maximization and supermodular minimization with bounded curvature
make use of an algorithm for the following meta-problem: we are given a monotone increasing, nonnegative,
submodular function g : 2X → R≥0, a linear function ℓ : 2X → R, and a matroid M = (X, I) and must
find a base S ∈ B(M) maximizing g(S) + ℓ(S). Note that we do not require ℓ to be nonnegative. Indeed,
in the case of supermodular minimization (discussed in Section 6.2), our approach shall require that ℓ be a
negative, monotone decreasing function. For j ∈ X , we shall write ℓ(j) and g(j) as a shorthand for ℓ({j})
and g({j}). We note that because ℓ is linear, we have ℓ(A) =

∑

j∈A ℓ(j) for all A ⊆ X .
Let v̂g = maxj∈X g(j), v̂ℓ = maxj∈X |ℓ(j)|, and v̂ = max(v̂g , v̂ℓ). Then, because g is submodular and ℓ is

linear, we have both g(A) ≤ nv̂ and |ℓ(A)| ≤ nv̂ for every set A ⊆ X . Moreover, given ℓ and g, we can easily
compute v̂ in time O(n). Our main technical result is the following, which gives a joint approximation for g
and ℓ.

Theorem 3.1. For every ǫ > 0, there is an algorithm that, given a monotone increasing submodular function
g : 2X → R≥0, a linear function ℓ : 2X → R and a matroidM, produces a set S ∈ B(M) in polynomial time
satisfying

g(S) + ℓ(S) ≥
(

1− e−1
)

g(O) + ℓ(O)−O(ǫ) · v̂,
for every O ∈ B(M), with high probability.

In the next two sections, we give two different algorithms satisfying the conditions of Theorem 3.1.

4 A Modified Continuous Greedy Algorithm

The first algorithm we consider is a modification of the continuous greedy algorithm of [5] We first sketch
the algorithm conceptually in the continuous setting, ignoring certain technicalities.

4.1 Overview of the Algorithm

Consider x ∈ [0, 1]X . For any function f : 2X → R, themultilinear extension of f is a function F : [0, 1]X → R

given by F (x) = E [f(Rx)], where Rx is a random subset of X in which each element e appears independently
with probability xe. We let G denote the multilinear extension of the given, monotone increasing submodular
function g, and L denote the multilinear extension of the given linear function ℓ. Note that due to the linearity
of expectation, L(x) = E [ℓ(Rx)] =

∑

j∈X xjℓ(j). That is, the multilinear extension L corresponds to the
natural, linear extension of ℓ. Let P (M) and B(M) be the matroid polytope and matroid base polytope
associatedM, and let O be the arbitrary base in B(M) to which we shall compare our solution in Theorem
3.1. Our algorithm is shown in Figure 3. In contrast to the standard continuous greedy algorithm, in the
third step we require a direction that is larger than both the value of ℓ(O) and the residual value γ−G(x(t)).
Applying the standard continuous greedy algorithm to (g + ℓ) gives a direction that is larger than the sum
of these two values, but this is insufficient for our purposes.

Our analysis proceeds separately for L(x) and G(x). First, because L is linear, we obtain

dL

dt
(x(t)) = L

(

dx

dt

)

≥ λ,

6



Modified Continuous Greedy

• Guess the values of λ = ℓ(O) and γ = g(O).

• Initialize x = 0.

• For time running from t = 0 to t = 1, update x according to dx
dt = v(t), where v(t) ∈ P (M) is a

vector satisfying both:

L(v(t)) ≥ λ
v(t) · ∇G(x(t)) ≥ γ −G(x(t)).

Such a vector exists because 1O is one possible candidate (as in the analysis of [5]).

• Apply pipage rounding to the point x(1) and return the resulting solution.

Figure 3: The modified continuous greedy algorithm

for every time t, and hence L(x(1)) ≥ λ = ℓ(O). For the submodular component, we obtain

dG

dt
(x(t)) =

dx

dt
· ∇G(x(t)) ≥ γ −G(x(t))

similar to the analysis in [5]. This leads to a differential equation that gives

G(x(t)) ≥ (1 − e−t)γ.
The final pipage rounding phase is oblivious to the value of the objective function and so is not affected

by the potential negativity of ℓ. We can view G + L as the multilinear extension of g + ℓ and so, as
in the standard continuous greedy analysis, pipage rounding produces an integral solution S satisfying
g(S) + ℓ(S) ≥ G(x(1)) + L(x(1)) ≥ (1− e−t)g(O) + ℓ(O).

4.2 Implementation of the Modified Continuous Greedy Algorithm

Now we discuss the technical details of how the continuous greedy algorithm can be implemented efficiently.
There are three main issues that we ignored in our previous discussion: (1) How do we “guess” the values
of ℓ(O) and g(O); (2) How do we find a suitable direction v(t) in each step of the algorithm; and (3) How
do we discretize time efficiently? Let us now address them one by one.

Guessing the optimal values: In fact, it is enough to guess the value of ℓ(O); we will optimize over
v(t) · ∇G later. Recall that |ℓ(O)| ≤ nv̂. We discretize the interval1 [−nv̂, nv̂] with O(ǫ−1) points of the
form iǫ · v̂ for −ǫ−1 ≤ i ≤ ǫ−1, filling the interval [−v̂, v̂], together with O(ǫ−1n logn) points of the form
(1+ ǫ/n)i · v̂ and −(1+ ǫ/n)i · v̂ for 0 ≤ i ≤ log1+ǫ/n n, filling the intervals [v̂, nv̂] and [−nv̂,−v̂], respectively.
We then run the following algorithm using each point as a guess for λ, and return the best solution found.
Then if |ℓ(O)| < v̂, we must have

ℓ(O) ≥ λ ≥ ℓ(O)− ǫ · v̂,
for some iteration (using one of the guesses in [−v̂, v̂]). Similarly, if |ℓ(O)| ≥ v̂, then for some iteration we
have

ℓ(O) ≥ λ ≥ ℓ(O)− (ǫ/n)|ℓ(O)| ≥ ℓ(O) − ǫ · v̂
(using one of the guesses in [v̂, nv̂] or [−nv̂,−v̂]). For the remainder of our analysis we consider this particular
iteration.

1In the applications we consider ℓ is either nonnegative or non-positive, and so we need only consider half of the given
interval. For simplicity, here we give a general approach that does not depend on the sign of ℓ. In general, we have favored,
whenever possible, simplicity in the analysis over obtaining the best runtime bounds.
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Finding a suitable direction: Given our guess of λ and a current solution x(t), our goal is to find a
direction v(t) ∈ P (M) such that L(v(t)) ≥ λ and v(t) · ∇G(x(t)) ≥ γ−G(x(t)). As in [5], we must estimate
∇G(x(t)) by random sampling. Then, given an estimate ∇̃G, we solve the linear program:

max{v · ∇̃G : v ∈ B(M), L(v) ≥ λ}. (2)

We can do this by the ellipsoid method, for example (or more efficiently using other methods).
Following the analysis of [5], we can obtain, in polynomial time, an estimate satisfying

|v(t) · ∇̃G(x(t)) − v(t) · ∇G(x(t))| ≤ O(ǫ) · v̂,

with high probability. Since L(O) = ℓ(O) ≥ λ, the base O is a feasible solution of (2). Because G(x(t)) is
concave along any nonnegative direction, we then have:

v · ∇G(x(t)) ≥ g(O)−G(x(t)) −O(ǫ) · v̂, (3)

just as in the analysis of [5].

Discretizing the algorithm: We discretize time into steps of length δ = ǫ/n2; let us assume for simplicity
that 1/δ is an integer. In each step, we find a direction v(t) as described above and we update

x(t+ δ) = x(t) + δ · v(t).

Clearly, after 1/δ steps we obtain a solution x(1) which is a convex combination of points v(t) ∈ P (M), and
therefore a feasible solution. In each step, we had L(v(t)) ≥ λ and so

L(x(1)) =

1/δ
∑

i=1

δ · L(v(i · δ)) ≥ λ ≥ ℓ(O)− ǫ · v̂.

The analysis of the submodular component follows along the lines of [5]. In one time step, we gain

G(x(t+ δ)) −G(x(t))
≥ (1− nδ) · (x(t + δ)− x(t)) · ∇G(x(t))
≥ (1− nδ) · δ · [g(O)−G(x(t)) −O(ǫ) · v̂]
≥ δ · [g(O)−G(x(t)) −O(ǫ) · v̂ − (ǫ/n) · g(O)]
= δ · [g(O)−G(x(t)) −O(ǫ) · v̂]

using the bound (3). By induction (as in [5]), we obtain

G(x(t)) ≥ (1 − e−t)g(O) −O(ǫ) · v̂,

and so
G(x(1)) + L(x(1)) ≥ (1− e−1)g(O) + ℓ(O)−O(ǫ) · v̂,

as required.

5 Non-Oblivious Local Search

We now give another proof of Theorem 3.1, using a modification of the local search algorithm of [18]. In
contrast to the modified continuous greedy algorithm, our modified local search algorithm does not need
to guess the optimal value of ℓ(O), and also does not need to solve the associated continuous optimization
problem given in (2). However, here the convergence time of the algorithm becomes an issue that must be
dealt with.

8



Non-Oblivious Local Search

• Let δ = ǫ
n · v̂.

• S ← an arbitrary base S0 ∈ B(M).

• While there exists a ∈ S and b ∈ X \ S such that S − a+ b ∈ B(M) and

ψ(S − a+ b) ≥ ψ(S) + δ,

set S ← S − a+ b.

• Return S

Figure 4: The non-oblivious local search algorithm

5.1 Overview of the Algorithm

We begin by presenting a few necessary lemmas and definitions from the analysis of [18]. We shall require
the following general property of matroid bases, first proved by Brualdi [3], which can also be found in e.g.
[34, Corollary 39.12a].

Lemma 5.1. Let M be a matroid and A and B be two bases in B(M). Then, there exists a bijection
π : A→ B such that A− x+ π(x) ∈ B(M) for all x ∈ A.

We can restate Lemma 5.1 as follows: let A = {a1, . . . , ar} and B be bases of a matroidM of r. Then
we can index the elements of bi ∈ B so that bi = π(ai), and then we have that A − ai + bi ∈ B(M) for all
1 ≤ i ≤ r. The resulting collection of sets {A − ai + bi}i∈A will define a set of feasible swaps between the
bases A and B that we consider when analyzing our local search algorithm.

The local search algorithm of [18] maximizes a monotone submodular function g using a simple local
search routine that evaluates the quality of the current solution using an auxiliary potential h, derived from
g as follows:

h(A) =
∑

B⊆A

g(B) ·
∫ 1

0

ep

e− 1
· p|B|−1(1− p)|A|−|B|dp.

We defer a discussion of issues related to convergence and computing h until the next subsection, and
first sketch the main idea of our modified algorithm. We shall make use of the following fact, proved in [18,
Lemma 4.4, p. 524-5]: for all A,

g(A) ≤ h(A) ≤ C · g(A) lnn,
for some constant C.

In order to jointly maximize g(S) + ℓ(S), we employ a modified local search algorithm that is guided by
the potential ψ, given by:

ψ(A) = (1 − e−1)h(A) + ℓ(A).

Our final algorithm is shown in Figure 4.
The following Lemma shows that if it is impossible to significantly improve ψ(S) by exchanging a single

element, then both g(S) and ℓ(S) must have relatively high values.

Lemma 5.2. Let A = {a1, . . . , ar} and B = {b1, . . . , br} be any two bases of a matroidM, and suppose that
the elements of B are indexed according to Lemma 5.1 so that A− ai + bi ∈ B(M) for all 1 ≤ i ≤ r. Then,

g(A) + ℓ(A) ≥ (1− e−1)g(B) + ℓ(B) +
r

∑

i=1

[ψ(A)− ψ(A−ai+bi)] .

9



Proof. Filmus and Ward [18, Theorem 5.1, p. 526] show that for any submodular function g, the associated
function h satisfies

e

e− 1
g(A) ≥ g(B) +

r
∑

i=1

[h(A)− h(A− ai + bi)] . (4)

We note that since ℓ is linear, we have:

ℓ(A) = ℓ(B) +

r
∑

i=1

[ℓ(ai)− ℓ(bi)]

= ℓ(B) +

r
∑

i=1

[ℓ(A)− ℓ(A− ai + bi)] (5)

Adding (1− e−1) times (4) to (5) then completes the proof.

Suppose that S ∈ B(M) is locally optimal for ψ under single-element exchanges, and let O be an
arbitrary base of M. Then, local optimality of S implies that ψ(S) − ψ(S − si + oi) ≥ 0 for all i ∈ [r],
where the elements si of S and oi of O have been indexed according to Lemma 5.1. Then, Lemma 5.2 gives
g(S) + ℓ(S) ≥

(

1− e−1
)

g(O) + ℓ(O), as required by Theorem 3.1.

5.2 Implementation of the Non-Oblivious Local Search Algorithm

We now show how to obtain a polynomial-time algorithm from Lemma 5.2. We face two technical difficulties:
(1) how do we compute ψ efficiently in polynomial time; and (2) how do we ensure that the search for
improvements converges to a local optimum in polynomial time? As in the case of the continuous greedy
algorithm, we can address these issues by using standard techniques, but we must be careful since ℓ may
take negative values. As in that case, we have not attempted to obtain the most efficient possible running
time analysis here, focusing instead on simplifying the arguments.

Estimating ψ efficiently: Although the definition of h requires evaluating g on a potentially exponential
number of sets, Filmus and Ward show that h can be estimated efficiently using a sampling procedure:

Lemma 5.3 ([18, Lemma 5.1, p. 525]). Let h̃(A) be an estimate of h(A) computed from N= Ω(ǫ−2 ln2 n lnM)
samples of g. Then,

Pr
[

|h̃(A)− h(A)| ≥ ǫ · h(A)
]

= O(M−1).

We let ψ̃(A) = h̃(A) + ℓ(A) be an estimate of ψ. Set δ = ǫ
n · v̂. We shall ensure that ψ̃(A) differs from

ψ(A) by at most

δ =
ǫ

n
· v̂ ≥ ǫ

n2
· g(A) = ǫ

C · n2 lnn
· C · g(A) lnn

≥ ǫ

C · n2 lnn
· h(A).

Applying Lemma 5.3, we can then ensure that

Pr
[

|ψ̃(A)− ψ(A)| ≥ δ
]

= O(M−1),

by using Ω(ǫ−2n4 ln4 n lnM) samples for each computation of ψ. By the union bound, we can ensure that
|ψ̃(A) − ψ(A)| ≤ δ holds with high probability for all sets A considered by the algorithm, by setting M
appropriately. In particular, if we evaluate ψ̃ on any polynomial number of distinct sets A, it suffices to
make M polynomially small, which requires only a polynomial number of samples for each evaluation.
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Bounding the convergence time of the algorithm: We initialize our search with an arbitrary base
S0 ∈ B(M), and at each step of the algorithm, we restrict our search to those improvements that yield a
significant increase in the value of ψ. Specifically, we require that each improvement increases the current
value of ψ by at least an additive term δ = ǫ

n · v̂. We now bound the total number of improvements made
by the algorithm.

We suppose that all values ψ̃(A) computed by the algorithm satisfy

ψ(A)− δ ≤ ψ̃(A) ≤ ψ(A) + δ.

From the previous discussion, we can ensure that this is indeed the case with high probability.
Let Oψ = argmaxA∈B(M) ψ(A). Then, the total number of improvements applied by the algorithm is at

most:

1
δ (ψ̃(Oψ)− ψ̃(S0))

≤ 1
δ (ψ(Oψ)− ψ(S0) + 2δ)

= 1
δ ((1− e−1)·(h(Oψ)− h(S0)) + ℓ(Oψ)− ℓ(S0) + 2δ)

≤ 1
δ ((1− e−1)·h(Oψ) + |ℓ(Oψ)|+ |ℓ(S0)|+ 2δ)

≤ 1
δ ((1− e−1)·C ·g(Oψ) lnn+ |ℓ(Oψ)|+ |ℓ(S0)|+ 2δ)

≤ 1
δ ((1− e−1)·C ·v̂·n lnn+ n·v̂ + n·v̂ + 2δ)

= O(ǫ−1n2 lnn).

Each improvement step requires O(n2) evaluations of ψ. From the discussion in the previous section, setting
M sufficiently high will ensures that all of the estimates made for the first Ω(ǫ−1n2 lnn) iterations will satisfy
our assumptions with high probability, and so the algorithm will converge in polynomial time.

In order to obtain a deterministic bound on the running time of the algorithm we simply terminate our
search if it has not converged in Ω(ǫ−1n2 lnn) steps and return the current solution. Then when the resulting
algorithm terminates, with high probability, we indeed have ψ̃(S)− ψ̃(S − si + oi) ≤ δ for every i ∈ [r] and
so

r
∑

i=1

[ψ(S)− ψ(S − si + oi)] ≤ r(δ + 2δ) ≤ 3ǫ · v̂.

From Lemma 5.2, the set S produced by the algorithm then satisfies

g(S) + ℓ(S) ≥ (1− e−1)g(O) + ℓ(O)−O(ǫ) · v̂,

as required by Theorem 3.1.

6 Submodular Maximization and Supermodular Minimization

We now return to the problems of submodular maximization and supermodular minimization with bounded
curvature. We reduce both problems to the general setting introduced in Section 3. In both cases, we
suppose that we are seeking optimize a function f : 2X → R≥0 over a given matroidM = (X, I) and we let
O denote any optimal base ofM (i.e., a base ofM that either maximizes or minimizes f , according to the
setting).

6.1 Submodular Maximization

Suppose that f is a monotone increasing submodular function with curvature at most c ∈ [0, 1], and we seek
to maximize f over a matroidM.
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Theorem 6.1. For every ǫ > 0 and c ∈ [0, 1], there is an algorithm that given a monotone increasing
submodular function f : 2X → R≥0 of curvature c and a matroid M = (X, I), produces a set S ∈ I in
polynomial time satisfying

f(S) ≥ (1− c/e−O(ǫ))f(O)
for every O ∈ I, with high probability.

Proof. Define the functions:

ℓ(A) =
∑

j∈A

fX−j(j)

g(A) = f(A)− ℓ(A).

Then, ℓ is linear and g is submodular, monotone increasing, and nonnegative (as verified in Lemma A.1 of
the appendix). Moreover, because f has curvature at most c, Lemma 2.1 implies that for any set A ⊆ X ,

ℓ(A) =
∑

j∈A fX−j(j) ≥ (1 − c)f(A).

In order to apply Theorem 3.1 we must bound the term v̂. By optimality of O and non-negativity of ℓ
and g, we have v̂ ≤ g(O) + ℓ(O) ≤ f(O). From Theorem 3.1, we can find a solution S satisfying:

f(S) = g(S) + ℓ(S)

≥
(

1− e−1
)

g(O) + ℓ(O)−O(ǫ) · f(O)
=

(

1− e−1
)

f(O) + e−1ℓ(O)−O(ǫ) · f(O)
≥

(

1− e−1
)

f(O) + (1− c)e−1f(O) −O(ǫ) · f(O)
=

(

1− ce−1 −O(ǫ)
)

f(O).

6.2 Supermodular Minimization

Suppose that f is a monotone decreasing supermodular function with curvature at most c ∈ [0, 1) and we
seek to minimize f over a matroidM.

Theorem 6.2. For every ǫ > 0 and c ∈ [0, 1), there is an algorithm that given a monotone decreasing
supermodular function f : 2X → R≥0 of curvature c and a matroid M = (X, I), produces a set S ∈ I in
polynomial time satisfying

f(S) ≤
(

1 +
c

1− c · e
−1 +

1

1− c ·O(ǫ)
)

f(O)

for every O ∈ I, with high probability.

Proof. Define the linear and submodular functions:

ℓ(A) =
∑

j∈A

f∅(j)

g(A) = −ℓ(A)− f(X \A).

Because f is monotone decreasing, we have f∅(j) ≤ 0 and so ℓ(A) ≤ 0 for all A ⊆ X . Thus, ℓ is a non-
positive, decreasing linear function. However, as we verify in Lemma A.2 of the appendix, g is submodular,
monotone increasing, and nonnegative.

We shall consider the problem of maximizing g(S) + ℓ(S) = −f(X \ S) in the dual matroidM∗, whose
bases correspond to complements of bases of M. We compare our solution S to this problem to the base
O∗ = X \ O of M∗. Again, in order to apply Theorem 3.1, we must bound the term v̂. Here, because
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ℓ(A) is non-positive, we cannot bound v̂ directly as in the previous section. Rather, we proceed by partial
enumeration. Let ê = argmaxj∈O∗ max(g(j), |ℓ(j)|). We iterate through all possible guesses e ∈ X for ê, and
for each such e consider v̂e = max(g(e), |ℓ(e)|). We set Xe to be the set {j ∈ X : g(j) ≤ v̂e ∧ |ℓ(j)| ≤ v̂e},
and consider the matroid M∗

e = M∗ |Xe, obtained by restricting M∗ to the ground set Xe. For each e
satisfying rM∗

e
(Xe) = rM∗(X), we apply our algorithm to the problem max{g(A) + ℓ(A) : A ∈ M∗

e}, and
return the best solution S obtained. Note since rM∗

e
(Xe) = rM∗(X), the set S is also a base ofM∗ and so

X \ S is a base ofM.
Consider the iteration in which we correctly guess e = ê. In the corresponding restricted instance we

have g(j) ≤ v̂e = v̂ and |ℓ(j)| ≤ v̂e = v̂ for all j ∈ Xe. Additionally, O∗ ⊆ Xe and so O∗ ∈ B(Me), as
required by our analysis. Finally, from the definition of g and ℓ, we have f(O) = −ℓ(O∗) − g(O∗). Since
ê ∈ O∗, and ℓ is nonpositive while f is nonnegative,

v̂ ≤ g(O∗) + |ℓ(O∗)| = −ℓ(O∗)− f(O) − ℓ(O∗)

≤ −2ℓ(O∗).

Therefore, by Theorem 3.1, the base S ofM∗ returned by the algorithm satisfies:

g(S) + ℓ(S) ≥ (1 − e−1)g(O∗) + ℓ(O∗) +O(ǫ) · ℓ(O∗)

Finally, since f is supermodular with curvature at most c, Lemma 2.2 implies that for all A ⊆ X ,

−ℓ(A) = −∑

j∈A f∅(j) ≤ 1
1−cf(X \A).

Thus, we have

f(X \ S) = −g(S)− ℓ(S)
≤ −

(

1− e−1
)

g(O∗)− ℓ(O∗)−O(ǫ) · ℓ(O∗)

=
(

1− e−1
)

f(O)−
(

e−1 +O(ǫ)
)

ℓ(O∗)

≤
(

1− e−1
)

f(O) +
(

e−1 +O(ǫ)
)

· 1
1−c · f(O)

=
(

1 + c
1−c · e−1 + 1

1−c ·O(ǫ)
)

f(O).

We note that because the error term depends on 1
1−c , our result requires that c is bounded away from 1

by a constant.

7 Inapproximability Results

We now show that our approximation guarantees are the best achievable using only a polynomial number
of function evaluations, even in the special case that M is a uniform matroid (i.e., a cardinality con-
straint). Nemhauser and Wolsey [32] considered the problem of finding a set S of cardinality at most r
that maximizes a monotone submodular function. They give a class of functions for which obtaining a
(1 − e−1 + ǫ)-approximation for any constant ǫ > 0 requires a super-polynomial number of function evalu-
ations. Our analysis uses the following additional property, satisfied by every function f in their class: let
p = maxi∈X f∅(i), and let O be a set of size r on which f takes its maximum value. Then, f(O) = rp.

Theorem 7.1. For any constant δ > 0 and c ∈ (0, 1), there is no (1 − ce−1 + δ)-approximation algorithm

for the problem max{f̂(S) : |S| ≤ r}, where f̂ is a monotone increasing submodular function with curvature

at most c, that evaluates f̂ on only a polynomial number of sets.
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Proof. Let f be a function in the family given by [32] for the cardinality constraint r, and let O be a set of
size r on which f takes its maximum value. Consider the function:

f̂(A) = f(A) +
1− c
c
· |A| · p.

In Lemma A.3 of the appendix, we show that f̂ is monotone increasing, submodular, and nonnegative with
curvature at most c.

We consider the problem max{f̂(S) : |S| ≤ r}. Let α = (1− ce−1 + δ), and suppose that some algorithm

returns a solution S satisfying f̂(S) ≥ α · f̂(O), evaluating f̂ on only a polynomial number of sets. Because
f is monotone increasing, we assume without loss of generality that |S| = r. Then,

f(S) +
1− c
c
· rp ≥ α · f(O) + α · 1− c

c
· rp = α · f(O) + α · 1− c

c
· f(O) = 1

c
· α · f(O),

and so

f(S) ≥ 1

c
· α · f(O)− 1− c

c
· rp

=

(

1

c
· α− 1− c

c

)

· f(O)

=

(

1

c
− e−1 +

δ

c
− 1− c

c

)

· f(O)

=

(

1− e−1 +
δ

c

)

· f(O).

Because each evaluation of f̂ requires only a single evaluation of f , this contradicts the negative result of
[32].

Theorem 7.2. For any constant δ > 0 and c ∈ (0, 1), there is no (1+ c
1−ce

−1− δ)-approximation algorithm

for the problem min{f̂(S) : |S| ≤ r}, where f̂ is a monotone decreasing supermodular function with curvature

at most c, that evaluates f̂ on only a polynomial number of sets.

Proof. Again, let f be a function in the family given by [32] for the cardinality constraint r. Let O be a set
of size r on which f takes its maximum value, and recall that f(O) = rp, where p = maxi∈X f∅(i). Consider
the function:

f̂(A) =
p

c
· |X \A| − f(X \A).

In Lemma A.4 of the appendix we show that f̂ is monotone decreasing, supermodular, and nonnegative with
curvature at most c.

We consider the problem min{f̂(A) : |A| ≤ n − r}. Let α = (1 + c
1−ce

−1 − δ), and suppose that some

algorithm returns a solution A, satisfying f̂(A) ≤ α · f̂(X \ O), evaluating f̂ on only a polynomial number
of sets.

Suppose we run the algorithm for minimizing f̂ and return the set S = X \ A. Because f̂ is monotone
decreasing, we assume without loss of generality that |A| = n− r and so |S| = r. Then,

rp

c
− f(S) ≤ α

(rp

c
− f(O)

)

= α

(

f(O)

c
− f(O)

)

= α · 1− c
c
· f(O),
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and so

f(S) ≥ rp

c
− α · 1− c

c
· f(O)

=

(

1

c
− α · 1− c

c

)

· f(O)

=
1− (1− c)− ce−1 + (1− c)δ

c
· f(O)

=

(

1− e−1 +
1− c
c
· δ
)

· f(O).

Again, since each evaluation of f̂ requires only one evaluation of f , this contradicts the negative result of
[32].

8 Optimizing Monotone Nonnegative Functions of Bounded Cur-

vature

Now we consider the problem of maximizing (respectively, minimizing) an arbitrary monotone increasing
(respectively, monotone decreasing) nonnegative function f of bounded curvature subject to a single matroid
constraint. We do not require that f be supermodular or submodular, but only that there is a bound on the
following generalized notion of curvature.

Let f be an arbitrary monotone increasing or monotone decreasing function. We define the curvature c
of f as

c = 1−min
j∈X

min
S,T⊆X\{j}

fS(j)

fT (j)
. (6)

Note that in the case that f is either monotone increasing and submodular or monotone decreasing and

supermodular, the minimum of fS(j)
fT (j) over S and T is attained when S = X − j and T = ∅. Thus, (6) agrees

with the standard definition of curvature given in (1). Moreover, if monotonically increasing f has curvature
at most c for some c ∈ [0, 1], then for all j ∈ X we have

(1− c)fB(j) ≤ fA(j), (7)

for any j ∈ X , and A,B ⊆ X \ {j}. Analogously, for monotonically decreasing function f we have

(1− c)fB(j) ≥ fA(j), (8)

for any j ∈ X , and A,B ⊆ X \ {j}. As with the standard notion of curvature for submodular and
supermodular functions, when c = 0, we find that (7) and (8) require f to be a linear function, while when
c = 1, they require only that f is monotone increasing or monotone decreasing, respectively.

First, we consider the case in which we wish to maximize a monotone increasing function f subject to
a matroid constraintM = (X, I). Suppose that we run the standard greedy algorithm, which at each step
adds to the current solution S the element e yielding the largest marginal gain in f , subject to the constraint
S + e ∈ I.

Theorem 8.1. Suppose that f is a monotone increasing function with curvature at most c ∈ [0, 1], andM
is a matroid. Let S ∈ B(M) be the base produced by the standard greedy maximization algorithm on f and
M, and let O ∈ B(M) be any base of M. Then,

f(S) ≥ (1− c)f(O).
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Proof. Let r be rank ofM. Let si be the ith element picked by the greedy algorithm, and let Si be the set
containing the first i elements picked by the greedy algorithm. We use the bijection guaranteed by Lemma
5.1 to order the elements of oi of O so that S − si + oi ∈ I for all i ∈ [r], and let Oi = {oj : j ≤ i} be the
set containing the first i elements of O in this ordering. Then,

(1− c)f(O) = (1 − c)f(∅) + (1− c)
r

∑

i=1

fOi−1
(oi)

≤ f(∅) +
r

∑

i=1

fSi−1
(oi)

≤ f(∅) +
r

∑

i=1

fSi−1
(si)

= f(S).

The first inequality follows from (7) and f(∅) ≥ 0. The last inequality is due to the fact that Si−1 + oi ∈ I
but si was chosen by the greedy maximization algorithm in the ith round.

Similarly, we can consider the problem of finding a base ofM that minimizes f . In this setting, we again
employ a greedy algorithm, but at each step choose the element e yielding the smallest marginal gain in f ,
terminating only when no element can be added to the current solution. We call this algorithm the standard
greedy minimization algorithm.

Theorem 8.2. Suppose that f is a monotone increasing function with curvature at most c ∈ [0, 1] and M
is a matroid. Let S ∈ B(M) be the base produced by the standard greedy minimization algorithm on f and
M, and let O ∈ B(M) be any base of M. Then,

f(S) ≤ 1

1− cf(O).

Proof. Let r, Si, si, Oi, and oi be defined as in the proof of Theorem 8.1. Then,

f(O) = f(∅) +
r

∑

i=1

fOi−1
(oi)

≥ (1− c)f(∅) + (1− c)
r

∑

i=1

fSi−1
(oi)

≥ (1− c)f(∅) +
r

∑

i=1

fSi−1
(si)

= (1− c)f(S).

As in the proof of Theorem 8.1, the first inequality follows from (7) and f(∅) ≥ 0. The last inequality is due
to the fact that Si−1 + oi ∈ I but si was chosen by the greedy minimization algorithm in the ith round.

Now, we consider the case in which f is a monotone decreasing function. For any function f : 2X → R≥0,
we define the function f∗ : 2X → R≥0 by f∗(S) = f(X \ S) for all S ⊆ X . Then, since f is monotone
decreasing, f∗ is monotone increasing. Moreover, the next lemma shows that the curvature of f∗ is the same
as that of f .

Lemma 8.3. Let f be a monotone decreasing function with curvature at most c ∈ [0, 1], and define f∗(S) =
f(X \ S) for all S ⊆ X. Then, f∗ also has curvature at most c.
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Proof. From the definition of f∗, we have:

f∗
A(j) = f(X \ (A+ j))− f(X \A) = −fX\(A+j)(j),

for any A ⊆ X and j ∈ X . Consider any j ∈ X and S, T ⊆ X \ {j}. Since f is monotone decreasing with
curvature at most c, (8) implies

f∗
S(j) = −fX\(S+j)(j) ≥ −(1− c)fX\(T+j)(j) = (1− c)f∗

T (j).

Thus,
f∗

S(j)
f∗

T (j) ≥ (1− c) for all j ∈ X and S, T ⊆ X \ {j}.

Given a matroid M, we consider the problem of finding a base of M minimizing f . This problem is
equivalent to finding a base of the dual matroidM∗ that minimizes f∗. Similarly, the problem of finding a
base ofM that maximizes f can be reduced to that of finding a base ofM∗ that maximizes f∗. Since f∗

is monotone increasing with curvature no more than f , we obtain the following corollaries, which show how
to employ the standard greedy algorithm to optimize monotone decreasing functions.

Corollary 8.4. Suppose that f is a monotone decreasing function with curvature at most c ∈ [0, 1] andM
is a matroid. Let S∗ ∈ B(M∗) be the base of M∗ produced by running the standard greedy maximization
algorithm on f∗ andM∗. Let O ∈ B(M) be any base of M, O∗ = X \O, and S = X \ S∗ ∈ B(M). Then,

f(S) = f∗(S∗) ≥ (1 − c)f∗(O∗) = (1− c)f(O).

Corollary 8.5. Suppose that f is a monotone decreasing function with curvature at most c ∈ [0, 1] andM
is a matroid. Let S∗ ∈ B(M∗) be the base of M∗ produced by running the standard greedy minimization
algorithm on f∗ andM∗. Let O ∈ B(M) be any base of M, O∗ = X \O, and S = X \ S∗ ∈ B(M). Then,

f(S) = f∗(S∗) ≤ 1

1− cf
∗(O∗) =

1

1− cf(O).

The approximation factors of 1 − c and 1/(1 − c) for maximization and minimization respectively are
best possible, given curvature c. The hardness result for minimization follows from [21], where it is shown
that no algorithm using polynomially many value queries can achieve an approximation factor of ρ(n, ǫ) =

n1/2−ǫ

1+(n1/2−ǫ−1)(1−c)
for the problem min{f(S) : |S| ≥ r}, where f is monotone increasing (even submodular) of

curvature c. This implies that no 1/(1−c+ǫ)-approximation for a constant ǫ > 0 is possible for this problem.
Next, we prove the hardness result for maximization; this proof is based on known hardness constructions
for maximization of XOS functions [13, 31].

Theorem 8.6. For any constant c ∈ (0, 1) and ǫ > 0, there is no (1−c+ǫ)-approximation using polynomially
many queries for the problem max{f(S) : |S| ≤ k} where f is monotone increasing of curvature c.

Proof. Fix c ∈ (0, 1), |X | = n and let O ⊆ X be a random subset of size k = n2/3 (assume k is an integer).
We define the following function:

• f(S) = max{|S ∩O|, (1 − c)|S|+ cn1/3,min{|S|, n1/3}}.
The marginal values of f are always between 1 − c and 1; therefore, its curvature is c. Consider a query Q.
For |Q| ≤ n1/3, we have f(Q) = |Q| in any case. For |Q| > n1/3, we have f(Q) = (1 − c)|Q|+ cn1/3, unless
|Q ∩ O| > (1 − c)|Q| + cn1/3. Since O is a random 1

n1/3 -fraction of the ground set, we have E [|Q ∩O|] =
1

n1/3 |Q| ≥ 1. Therefore, by the Chernoff bound, Pr[|Q∩O| > (1−c)|Q|+cn1/3] is exponentially small in n1/3

(with respect to the choice of O). Furthermore, as long as |Q ∩O| ≤ (1− c)|Q|+ cn1/3, f(Q) depends only
on |Q| and hence the algorithm does not learn anything about the identity of the optimal set O. Unless the
algorithm queries an exponential number of sets, it will never find a set S satisfying |S∩O| > (1−c)|S|+cn1/3

and hence the value of the returned solution is f(S) ≤ (1 − c)|S| + cn1/3 ≤ (1 − c)n2/3 + cn1/3 with high
probability. On the other hand, the optimum is f(O) = |O| = n2/3. Therefore, the algorithm cannot achieve
a better than (1− c+ o(1))-approximation.
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Therefore, the approximation factors in Theorems 8.1 and 8.2 are optimal. Combining these inapprox-
imability results with Lemma 8.3 we derive similar inapproximability results showing the optimality of
Corollary 8.4 and 8.5.

9 Application: the Column-Subset Selection Problem

Let A be an m× n real matrix. We denote the columns of A by c1, . . . , cn. I.e., for x ∈ R
n, Ax =

∑

xici.
The (squared) Frobenius norm of A is defined as

‖A‖2F =
∑

i,j

a2ij =
n
∑

i=1

‖ci‖2,

where here, and throughout this section, we use ‖·‖ to denote the standard, ℓ2 vector norm.
For a matrix A with independent columns, the condition number is defined as

κ(A) =
sup‖x‖=1 ‖Ax‖
inf‖x‖=1 ‖Ax‖

.

If the columns of A are dependent, then κ(A) =∞ (there is a nonzero vector x such that Ax = 0).
Given a matrix A with columns c1, . . . , cn, and a subset S ⊆ [n], we denote by

projS(x) = argmin
y∈span({ci:i∈S})‖x− y‖

the projection of x onto the subspace spanned by the respective columns of A. Given S ⊆ [n], it is easy to
see that the matrix A(S) with columns spanned by {ci : i ∈ S} that is closest to A in squared Frobenius
norm is A(S) = (projS(c1), projS(c2), . . . , projS(cn)). The distance between two matrices is thus

‖A−A(S)‖2F =

n
∑

i=1

‖ci − projS(ci)‖2.

We define fA : 2[n] → R to be this quantity as a function of S:

fA(S) =
n
∑

i=1

‖ci − projS(ci)‖2

=

n
∑

i=1

(‖ci‖2 − ‖projS(ci)‖2),

where the final equality follows from the fact that projS(ci) and ci − projS(ci) are orthogonal.
Given a matrix A ∈ R

m×n and an integer k, the column-subset selection problem (CSSP) is to select a
subset S of k columns of A so as to minimize fA(S). It follows from standard properties of projection that
fA is non-increasing, and so CSSP is a special case of non-increasing minimization subject to a cardinality
constraint. We now show that the curvature of fA is related to the condition number of A.

Lemma 9.1. For any non-singular matrix A, the curvature c = c(fA) of the associated set function fA
satisfies

1

1− c ≤ κ
2(A).

Proof. We want to prove that for any S and i /∈ S,

min
‖x‖=1

‖Ax‖2 ≤ |fAS (i)| ≤ max
‖x‖=1

‖Ax‖2. (9)
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This implies that by varying the set S, a marginal value can change by at most a factor of κ2(A). Recall
that the marginal values of fA are negative, but only the ratio matters so we can consider the respective
absolute values. The inequalities (9) imply that

1

1− c = max
j∈X

max
S,T⊆X\{j}

|fS(j)|
|fT (j)|

≤ κ2(A).

We now prove the inequalities (9). Let vi,S = ci − projS(ci) denote the component of ci orthogonal to
span(S). We have

|fAS (i)| = fA(S)− fA(S + i)

=

n
∑

j=1

(

‖cj − projS(cj)‖2 − ‖cj − projS+i(cj)‖2
)

=

n
∑

j=1

(

‖cj − projS(cj)‖2 − ‖cj − projS(cj)− proj
vi,S

(cj)‖2
)

=

n
∑

j=1

‖proj
vi,S

(cj)‖2

because projS(cj), projvi,S
(cj) and cj − projS(cj)− proj

vi,S
(cj) are orthogonal.

Our first goal is to show that if |fAS (i)| is large, then there is a unit vector x such that ‖Ax‖ is large.

In particular, let us define pj = (vi,S · cj)/‖vi,S‖ and xj = pj/
√
∑n

ℓ=1 p
2
ℓ . We have ‖x‖2 =

∑n
j=1 x

2
j = 1.

Multiplying by matrix A, we obtain Ax =
∑n

j=1 xjcj . We can estimate ‖Ax‖ as follows:

vi,S · (Ax) = vi,S ·
n
∑

j=1

xjcj

=

n
∑

j=1

pj
√

∑n
ℓ=1 p

2
ℓ

(vi,S · cj)

=
n
∑

j=1

p2j
√

∑n
ℓ=1 p

2
ℓ

‖vi,S‖

= ‖vi,S‖

√

√

√

√

n
∑

j=1

p2j .

By the Cauchy-Schwartz inequality, this implies that ‖Ax‖ ≥
√

∑n
j=1 p

2
j =

√

|fAS (i)|.
On the other hand, using the expression above, we have

|fAS (i)| =
n
∑

j=1

‖proj
vi,S

(cj)‖2 ≥ ‖projvi,S
(ci)‖2 = ‖vi,S‖2

since vi,S = ci−projS(ci) is the component of ci orthogonal to span(S). We claim that if ‖vi,S‖ is small, then
there is a unit vector x′ such that ‖Ax′‖ is small. To this purpose, write projS(ci) as a linear combination
of the vectors {cj : j ∈ S}: projS(ci) =

∑

j∈S yjcj . Finally, we define yi = −1, and normalize to obtain
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x′ = y/‖y‖. We get the following:

‖Ax′‖ = 1

‖y‖‖Ay‖ =
1

‖y‖‖
n
∑

j=1

yjcj‖

=
1

‖y‖‖projS(ci)− ci‖

=
1

‖y‖‖vi,S‖.

Since ‖y‖ ≥ 1, and ‖vi,S‖ ≤
√

|fAS (i)|, we obtain ‖Ax′‖ ≤
√

|fAS (i)|.

In summary, we have given two unit vectors x,x′ with ‖Ax‖ ≥
√

|fAS (i)| and ‖Ax′‖ ≤
√

|fAS (i)|. This

proves that min‖x‖=1 ‖Ax‖2 ≤ |fAS (i)| ≤ max‖x‖=1 ‖Ax‖2.

By Corollary 8.5, the standard greedy minimization algorithm is then a κ2(A)-approximation for the
column-subset selection problem. The following lemma shows that Lemma 9.1 is asymptotically tight.

Lemma 9.2. There exists a matrix A with condition number κ for which the associated function fA has
curvature 1−O(1/κ2).

Let us denote by distS the distance from x to the subspace spanned by the columns corresponding to S.

distS(x) = ‖x− projS(x)‖ = miny∈span({ci:i∈S})‖x− y‖.

For some ǫ > 0, consider A = (c1, . . . , cn) where c1 = e1 and cj = ǫe1+ ej for j ≥ 2. (A similar example
was used in [2] for a lower bound on column-subset approximation.) Here, ei is the i-th canonical basis
vector in Rn. We claim that the condition number of A is κ = O(max{1, ǫ2(n− 1)}), while the curvature of
fA is 1−O( 1

max{1,ǫ4(n−1)2} ) = 1−O( 1
κ2 ).

To bound the condition number, consider a unit vector x. We have

Ax = (x1 + ǫ

n
∑

i=2

xi, x2, x3, . . . , xn)

and

‖Ax‖2 = (x1 + ǫ
n
∑

i=2

xi)
2 +

n
∑

i=2

x2i

= ‖x‖2 + 2ǫx1

n
∑

i=2

xi + ǫ2(

n
∑

i=2

xi)
2.

We need a lower bound and an upper bound on ‖Ax‖, assuming that ‖x‖ = 1. On the one hand, we have

‖Ax‖2 ≤ 1 + (x1 + ǫ

n
∑

i=2

xi)
2 ≤ 1 + (1 + ǫ

√
n− 1)2

= O(max{1, ǫ2(n− 1)}).

On the other hand, to get a lower bound: if x1 ≤ 1/2, then ‖Ax‖2 ≥ ∑n
i=2 x

2
i = 1 − x21 ≥ 3

4 . If x1 > 1/2,
then either

∑n
i=2 |xi| ≤ 1

4ǫ , in which case

‖Ax‖2 ≥ (x1 + ǫ

n
∑

i=2

xi)
2 ≥ 1

16
,
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or
∑n
i=2 |xi| > 1

4ǫ in which case by convexity we get

n
∑

i=2

x2i ≥
1

16ǫ2(n− 1)
.

So, in all cases ‖Ax‖2 = Ω(1/max{1, ǫ2(n − 1)}). This means that the condition number of A is κ =
O(max{1, ǫ2(n− 1)}).

To lower-bound the curvature of fA, consider the first column c1 and let us estimate fA∅ (1) and fA[n]\{1}(1).
We have

fA∅ (1) = ‖c1‖2 +
n
∑

j=2

‖proj1(cj)‖2 = 1 + ǫ2(n− 1).

On the other side,
fA[n]\{1}(1) = ‖c1 − proj[n]\{1}c1‖2 = (dist[n]\{1}(c1))

2.

We exhibit a linear combination of the columns c2, . . . , cn which is close to c1: Let y = 1
ǫ(n−1)

∑n
j=2 cj . We

obtain

dist[n]\{1}(c1) ≤ ‖c1 − y‖ = 1

ǫ(n− 1)
‖(0,−1,−1, . . . ,−1)‖ = 1

ǫ
√
n− 1

.

Alternatively, we can also pick y = 0 which shows that dist[n]\{1}(c1) ≤ ‖c1‖ = 1. So we have

fA[n]\{1}(1) = (dist[n]\{1}(c1))
2 ≤ min

{

1,
1

ǫ2(n− 1)

}

=
1

max{1, ǫ2(n− 1)} .

We conclude that the curvature of fA is at least

1− 1

max{1, ǫ4(n− 1)2} = 1−O
(

1

κ2

)

.
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A Proofs and Claims Omitted from the Main Body

Lemma 2.1. If f : 2X → R≥0 is a monotone increasing submodular function with total curvature at most
c, then

∑

j∈A fX−j(j) ≥ (1 − c)f(A) for all A ⊆ X.

Proof. We order the elements of X arbitrarily, and let Aj be the set containing all those elements of A that
precede the element j. Then,

∑

j∈A fAj(j) = f(A)− f(∅). From (1), we have

c ≥ 1− fX−j(j)

f∅(j)

which, since f∅(j) ≥ 0, is equivalent to

fX−j(j) ≥ (1 − c)f∅(j), for each j ∈ A.

Because f is submodular, we have f∅(j) ≥ fAj (j) for all j, and so

∑

j∈A

fX−j(j) ≥ (1 − c)
∑

j∈A

f∅(j) ≥ (1− c)
∑

j∈A

fAj (j) = (1− c)[f(A)− f(∅)] ≥ (1− c)f(A).

Lemma 2.2. If f : 2X → R≥0 is a monotone decreasing supermodular function with total curvature at most
c, then (1− c)∑j∈A f∅(j) ≥ −f(X \A) for all A ⊆ X.
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Proof. Order A arbitrarily, and let Aj be the set of all elements in A that precede element j, including j
itself. Then,

∑

j∈A fX\Aj
(j) = f(X)− f(X\A). From (1), we have

c ≥ 1− fX−j(j)

f∅(j)
,

which, since f∅(j) ≤ 0, is equivalent to

fX−j(j) ≤ (1− c)f∅(j).

Then, since f is supermodular, we have fX\Aj
(j) ≤ fX−j(j) for all j ∈ A, and so

(1− c)
∑

j∈A

f∅(j) ≥
∑

j∈A

fX−j(j) ≥
∑

j∈A

fX\Aj
(j) = f(X)− f(X\A) ≥ −f(X\A).

Lemma A.1. Let f : 2X → R≥0 be a monotone-increasing submodular function and define ℓ(A) =
∑

j∈A fX−j(j) and g(A) = f(A)− ℓ(A). Then, g is submodular, monotone increasing, and nonnegative.

Proof. The function g is the sum of a submodular function f and a linear function ℓ, and so must be
submodular. For any set A ⊆ X and element j 6∈ A,

gA(j) = fA(j)− fX−j(j) ≥ 0

since f is submodular. Thus, g is monotone increasing. Finally, we note that g(∅) = f(∅)− ℓ(∅) = f(∅) ≥ 0
and so g must be nonnegative.

Lemma A.2. Let f : 2X → R≥0 be a monotone-decreasing supermodular function and define ℓ(A) =
∑

j∈A f∅(j) and g(A) = −ℓ(A)− f(X\A). Then, g is submodular, monotone increasing, and nonnegative.

Proof. We first show that g is monotone-increasing. Consider an arbitrary A ⊆ X and j 6∈ A. Then,

gA(j) = g(A+ j)− g(A)
= −ℓ(A+ j)− f((X\A)− j) + ℓ(A) + f(X\A)
= −ℓ(j) + f(X\A)−j(j)

= −f∅(j) + f(X\A)−j(j)

≥ 0,

where the last line holds because f is supermodular. Moreover, note that g(∅) = −ℓ(∅)− f(X) = 0, so g is
nonnegative.

Finally, we show that g is submodular. Suppose A ⊆ B and j 6∈ B. Then, (X\B)− j ⊆ (X\A)− j and
so, since f is supermodular, f(X\B)−j(j) ≤ f(X\A)−j(j). Thus,

gA(j) = −f∅(j) + f(X\A)−j(j) ≥ −f∅(j) + f(X\B)−j(j) = gB(j).

Lemma A.3. Let f be a monotone increasing submodular function, satisfying fA(j) ≤ p for all j, A, and
let c ∈ [0, 1]. Define

f̂(A) = f(A) +
1− c
c
· |A| · p.

Then, f̂ is submodular, monotone increasing, and nonnegative, and has curvature at most c.
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Proof. Because f̂ is the sum of a monotone increasing, nonnegative submodular function and a nonnegative
linear function, and hence must be monotone increasing, nonnegative, and submodular. Furthermore, for
any A ⊆ X and j 6∈ A, we have f̂A(j) = fA(j) +

1−c
c p. Thus,

f̂X−j(j)

f̂∅(j)
=
fX−j(j) +

1−c
c · p

f∅(j) +
1−c
c · p

≥
1−c
c · p

p+ 1−c
c · p

=
1−c
c
1
c

= 1− c,

and so f̂ has curvature at most c.

Lemma A.4. Let f be a monotone increasing submodular function, satisfying fA(j) ≤ p for all j, A, and
let c ∈ [0, 1]. Define:

f̂(A) =
p

c
· |X\A| − f(X\A).

Then, f̂ is submodular, monotone increasing, and nonnegative, and has curvature at most c.

Proof. Because f is submodular, so is f(X \A), and hence −f(X \A) is supermodular. Thus, f̂ is the sum of

a supermodular function and a linear function and so is supermodular. In order to see that f̂ is decreasing,
we consider the marginal f̂A(j), which is equal to

p

c
·|X\(A+j)| − f(X\(A+j))− p

c
·|X\A|+ f(X\A) = −p

c
+ fX\(A+j)(j) ≤ −

p

c
− p ≤ 0.

Additionally, we note that f̂(X) = 0, and so f̂ must be nonnegative. Finally, we show that f̂ has curvature
at most c. We have:

f̂∅(j) = −
p

c
+ fX−j(j) ≥ −

p

c

f̂X−j(j) = −
p

c
+ f∅(j) ≤ −

p

c
+ p = −1− c

c
p,

and therefore f̂X−j(j)/f̂∅(j) ≤ 1− c.
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