arXiv:1410.0773v1 [cs.DS] 3 Oct 2014

Comparing Apples and Oranges:
Query Tradeoft in Submodular Maximization

Niv Buchbinder* Moran Feldman' Roy Schwartz

October 6, 2014

Abstract

Fast algorithms for submodular maximization problems have a vast potential use in applica-
tive settings, such as machine learning, social networks, and economics. Though fast algorithms
were known for some special cases, only recently Badanidiyuru and Vondrék [4] were the first
to explicitly look for such algorithms in the general case of maximizing a monotone submodular
function subject to a matroid independence constraint. The algorithm of Badanidiyuru and
Vondrak matches the best possible approximation guarantee, while trying to reduce the number
of value oracle queries the algorithm performs.

Our main result is a new algorithm for this general case which establishes a surprising tradeoff
between two seemingly unrelated quantities: the number of value oracle queries and the number
of matroid independence queries performed by the algorithm. Specifically, one can decrease the
former by increasing the latter and vice versa, while maintaining the best possible approximation
guarantee. Such a tradeoff is very useful since various applications might incur significantly
different costs in querying the value and matroid independence oracles. Furthermore, in case
the rank of the matroid is O(n¢), where n is the size of the ground set and ¢ is an absolute
constant smaller than 1, the total number of oracle queries our algorithm uses can be made
to have a smaller magnitude compared to that needed by [4]. We also provide even faster
algorithms for the well studied special cases of a cardinality constraint and a partition matroid
independence constraint, both of which capture many real-world applications and have been
widely studied both theorically and in practice.

*Statistics and Operations Research Dept., Tel Aviv University, Israel. E-mail: niv.buchbinder@gmail.com.
Research supported by ISF grant 954/11 and BSF grant 2010426.

fSchool of Computer and Communication Sciences, EPFL, Switzerland. E-mail: moran.feldman@epfl.ch. Re-
search supported in part by ERC Starting Grant 335288-OptApprox.

Dept. of Computer Science, Princeton University, Princeton, NJ. E-mail: roysch@cs.princeton.edu.

http://arxiv.org/abs/1410.0773v1

1 Introduction

The study of combinatorial optimization problems with a submodular objective has attracted much
attention in recent years, as submodular functions arise naturally in various disciplines, e.g., com-
binatorics, economics, and machine learning. Many well-known problems in combinatorial opti-
mization are in fact submodular maximization problems, including: Max Cut [23] 26l 28] [30, 40],
Max DiCut [106, 23| 24], Generalized Assignment [9, [IT] 18| 20], Max k-Coverage [I5 31], Max
Bisection [2], 21], and Max Facility Location [Il 12, 13]. Furthermore, practical applications
of submodular maximization problems are common in social networks [25] 29], vision [5] 27], ma-
chine learning [32] 33| B34, 35] [36] (the reader is referred to a comprehensive survey by Bach [3]),
and many other areas. Elegant algorithmic techniques were developed in the course of this line
of research which achieved provable, and in some cases even tight, approximation guarantees. A
prime example for the latter is the continuous greedy algorithm of [8] for maximizing a monotone
submodular function subject to a matroid independence constraint. Unfortunately, most of these
techniques result in algorithms which are efficient in theory but are not practical. Hence, a natural
research question is whether one can obtain faster algorithms with provable tight guarantees for
basic submodular optimization problems.

How does one measure the speed of an algorithm for a submodular maximization problem?
Since an explicit representation of the submodular function might be exponential in the size of its
ground set, the algorithm is assumed to access the objective function f via a value omcl which
returns the value of f(S) given any subset S of the ground set. Usually, the number of value oracle
queries dominates the number of arithmetic operations in the algorithm up to a polylogarithmic
factor. Hence, it is natural to use the number of value oracle queries as a measure for the algorithm’s
speed. The use of this measure is also facilitated by the observation that implementions of the value
oracle have a non-neglagible time complexity in many applications.

Badanidiyuru and Vondrak [4] were the first to consider the question of finding fast algorithms
with provable guarantees for maximizing a submodular function in its full generality. They pre-
sented algorithms that achieve an almost tight approximation guarantee of 1 — 1/e — g, for any
€ > 0, for both the cardinality and the more general matroid independence constraints. The al-
gorithms they designed use O (% log (%)) value oracle queries for the cardinality constraint and
(@) (Z—f log? (%)) value oracle queries for a general matroid independence constraint. Here k denotes
the rank of the matroid and n is the size of the ground set.

In the context of a simple constraint such as a cardinality constraint, it is easy to determine
whether a given solution S is feasible. However, when considering more complex constraints, such
as a general matroid independence constraint, one usually assumes the existence of an independence
oracle. This oracle determines whether a given subset S of elements of the ground set is independent
in the matroid, i.e., feasible. In all previous works, as far as we know, the number of value
oracle queries dominates the number of independence oracle queries, and thus, the latter is usually
overlooked. This overlook is unfortunate since the implementation of these two distinct oracles in
various applications might have running times of completely different magnitudesg In particular,
minimizing the number of value oracle queries, as implicitly done by previous works, might not be
the correct goal. Furthermore, it is not clear whether the two different goals mentioned above, i.e.,
minimizing the number of value oracle queries and minimizing the number of independence oracle
queries, are related.

LOther types of oracles exist, however, value oracles are the most commonly used type in the literature.

2For example, the independence oracle can be implemented very efficiently when the constraint is a uniform or
partition matroid. However, no linear time implementation is known when the constraint is a matching or linear
matroid.

1.1 Owur Results

Our main result is the design of an algorithm for maximizing a monotone submodular function
subject to a matroid independence constraint. Our algorithm establishes a tradeoff between the
following two seemingly unrelated quantities: the number of value oracle queries and the number
of independence oracle queries performed by the algorithm. The following theorem summarizes the
result.

Theorem 1.1. There exists an algorithm that given a non-negative monotone submodular function
f 2V = RY, a matroid M = (N,I) of rank k, and parameters ¢ > 0 and A € [1,k|, finds a
solution S € T where:

1. f(S)>(1—1Ye—¢) max{f(T):T €T}.

2. The algorithm performs O (k)\ +)]Z‘o In? (%)) value oracle queries.

3. The algorithm performs O (%2 + % In (g)) independence oracle queries.

An example, in which the tradeoff between the number of the two distinct oracle queries is
perhaps most insightful, is when k& = © (y/n). In this case, if one chooses A\ = 1 our algorithm
performs O, (n3/ 2) value queries, but only O. (n) independence oracle queriesﬁ However, if one
chooses A = k the algorithm performs only O, (n) value queries while the number of independence
oracle queries grows to O, (nS/ 2). This allows flexibility when the two types of queries have different
time complexities in the application at hand. Note that in this case when k = © (y/n) the algorithm
of [] corresponds to choosing A = 1 in our algorithm, as it performs O. (ng/ 2) value queries and
O. (n) independence oracle queries.

It is important to note that our algorithm not only establishes a surprising tradeoff between
the two different types of queries, but can also provide a significant speedup to the running time
when compared to the state of the art algorithm of [4]. Consider, for simplicity, the case where
both types of oracles have the same running time. In this case, obtaining a fast algorithm requires
reducing the total number of oracle queries regardless of their types. While the algorithm of [4]
requires O, (k‘2 + nk‘) queries, our algorithm requires only ONE(k‘2 +vkn) queries if one sets A = V/k.
In the above example, where k = © (1/n), it reduces the number of oracle queries from O, (n3/ 2)
to O- (ns/). In fact, if k = O(n®) for some absolute constant ¢ < 2/3, A can be chosen such that
the our algorithm uses O, (n1+c/ 2) oracle queries, whereas [4]’s algorithm needs O. (an) oracle
queries (for 2/3 < ¢ < 1 we still get an improvement, but a smaller one).

Additional Results. We consider two well-studied special cases of the general problem consid-
ered above. The first is the case of a cardinality constraint and the second is the case of a partition
matroid independence constraint. Building upon the ideas developed in the context of the main
result, we present even faster algorithms for the above two special cases. The reader should note
that in these two cases the implementation of the independence oracle is trivial, and hence, we focus
only on minimizing the number of value oracle queries. The following three theorems summarize
these results.

Theorem 1.2. There exists an algorithm that given a non-negative monotone submodular function
f: N 5 RT, q generalized partition matroid M = (N,I) of rank k, and a parameter € > 0,
finds a solution S € T where: f(S)> (1 —1e—e) -max{f(T):T € L} and the algorithm performs
O(ky/Em(2)+4& In? (2)) value oracle queries.

SHere O. hides polylogarithmic factors in n and polynomial factors in ™.

Theorem 1.3. There exists an algorithm that given a non-negative monotone submodular function
f: 2N & RT, and parameters k > 1 and € > 0, finds a solution S C N of size |S| < k where:
f(S) > (1—VYe—e) -max{f(T): T CN,|T| <k} and the algorithm performs O (nln (L)) value
oracle queries.

Theorem 1.4. There exists an algorithm that given a general non-negative submodular function
f: 2N & RT, and parameters k > 1 and € > 0, finds a solution S C N of size |S| < k where:
f(S) > (Ye—e) max{f(T): T CN,|T| <k} and the number of value oracle queries the algorithm

performs is win {0 (10.(1)).0 (i /21 (5] + 21 () |

The best previously known result for partition matroids is identical to the one that was known
for general matroids, i.e., it uses O (Z—f log? (%)) value oracle queries. We note that Theorem [L.3]
is a folklore result that improves over the best previously formally published result of [4], who
described an algorithm using O(Z In %) value oracle queries.

1.2 Additional Related Work

The literature on submodular maximization is rich and has a long history. We mention here
only a few of the most relevant works. The classical result of Nemhauser et al. [38] states that the
simple discrete greedy algorithm provides an approximation of (1 — 1/e) for maximizing a monotone
submodular function subject to a cardinality constraint. This result is known to be tight by the
work of Nemhauser et al. [37]. Feige [15] proved the latter holds even when the objective function
is restricted to being a coverage function. Calinescu et al. [8] presented the continuous greedy
algorithm, which enabled one to achieve the same tight (1 — 1/e) guarantee for the more general
matroid constraint.

However, when one considers submodular objectives which are not monotone, less is known. An
approximation of 0.309 was given by Vondrék [41] for the general matroid independence constraint,
which was later improved to 0.325 by Oveis Gharan and Vondrak [22] using a simulated annealing
technique. Extending the continuous greedy algorithm of [8] to general non-negative submodular
objectives, Feldman et al. [I9] obtained an improved approximation of 1/e — o(1) for the same
problem.

When considering the special case of a cardinality constraint and a submodular objective which
is not necessarily monotone, Buchbinder et al. [7] presented a 1/e-approximation algorithm, called
“random greedy” whose running time is as fast as the discrete greedy algorithm of Nemhauser
et al. [38]. Furthermore, [7] also described a slower polynomial time (1/e + 0.004)-approximation
algorithm, demonstrating that 1/e is not the right approximation ratio for the problem. On the
hardness side, it is known that no polynomial time algorithm can have an approximation ratio
better than 0.491 [22].

Paper Organization. Section [2] gives general preliminaries. Section [3 describes our results for
general and partition matroids (Theorems[[.Tland [[.2]). Finally, Sections [and Bl prove Theorem [.41
The proof of the folklore result given by Theorem can be found in Appendix [Al

2 Preliminaries

Given a non-negative submodular function f : 2V — R*, a set S C A and an element v € N, we
denote by f(u|S) = f(SU{u}) — f(S) the marginal contribution of u to S. The following similar
lemmata of [I7] and [7] are used in many of our proofs.

Lemma 2.1 (Lemma 2.2 of [17]). Let f : 2V — R be submodular. Denote by A(p) a random
subset of A where each element appears with probability p (not necessarily independently). Then,

E[f(A(p)] > (1 =p)f(@)+p- f(A).

Lemma 2.2 (Lemma 2.2 of [7]). Let f : 2V 5 Rt be non-negative and submodular. Denote by

A(p) a random subset of A where each element appears with probability at most p (not necessarily
independently). Then, E[f(A(p))] > (1 —p)f(2).

3 General Matroid Constraint

In this section we describe algorithms for the problem max{f(S) : S € Z}, where f : 2V — R*
is a non-negative monotone submodular function and M = (N,Z) is a matroid. Throughout the
section we use k to denote the rank of M and assume f(u) < f(OPT) for every u € N. The last
assumption can be justified by observing that every element having f(u) > f(OPT) must be a
self-loop, and thus, all such elements can be removed from M in linear time.

3.1 Problem Specific Preliminaries

Given a non-negative submodular function f : 2V — RT, its multilinear extension is a function
F : 0,11V — R* defined by F(z) = E[f(R(z))], where R(x) is a random set containing every
element v € N with probability x,, independently. We denote by 9, F(z) the derivative of F at
point z with respect to the coordinate corresponding to u. The multilinear extension has been
extensively used for maximizing submodular functions subject to a matroid constrained, starting
with the continuous greedy algorithm of Calinescu et al. [8]. All algorithms based on the multilinear
extension approximate its value at various points using sampling. Unfortunately, this sampling is
often responsible for the quite poor time complexity of these algorithms. For this reason, we use a
more cautious approach to sampling in this work.

Let b: N'— R be a non-negative function such that >, ¢ b(u) < f(OPT) for every indepen-
dent set S € Z. Let my be a number of samples which is sufficent to approximate 9, F(x) up to
a multiplicative error of § and an additive error of d - b(u) with high probability@, for every given
choice of u € N and z € [0,1]". Badanidiyuru and Vondrak [4] describe a version of the continu-
ous greedy algorithm which, together with swap rounding [10], provides an approximation ratio of
(1—et —6) using O(mpnd—21In(%)) value oracle queries and O(né~21In(%) + k*é~') independence
oracle queries. Badanidiyuru and Vondrdk [4] assume b(u) = f(OPT)/k for every u € N E and
bound my, using the following lemma.

Lemma 3.1 (Lemma 2.3 of [4]). Let X1, Xo,..., Xy, be independent random variables such that
for each 1 <i<m, X; €[0,1]. Let X =L .5 X; and p = E[X]. Then
PriX > (1+a)u+f) <e ™0
PriX <(1—ao)u—f] <e ™2
The assumption f(u) < f(OPT) for every u € N allowed [4] to prove, using the above lemma,

that m;, can be set to klnn/¢?. Assume now Y, o f(u) < ¢ f(OPT) for every independent set
S and some value ¢, and let us define b(u) = f(u)/c. Clearly, b obeys the required condition.

4By “high probability” we mean that the complementary event occurs with a polynomially small probability in n.
®In fact, [] proves explicitly only this case, but the proof can be easily extended to every function b obeying the
condition defined above.

Moreover, the above lemma can now be used to show that m; can be set to cInn/é6%. Thus, we get
the following corollary.

Corollary 3.2. If maxgsez) ,cq f(u) < c- f(OPT) for some value c, then for every 6 > 0 there
erists a (1 — e~ — &)-approzimation algorithm for max{f(S) | S € I} using O(cné~*1n*(%2)) value
oracle queries and O(nd?In(%) + k*6~1) independence oracle queries.

Some of the algorithms we describe need access to a quick constant approximation of f(OPT).
The following lemma provides such an approximation.

Lemma 3.3. There exists a (1/3)-approzimation algorithm for max{f(S) | S € Z} using O(nlnk)
value and independence oracle queries.

The algorithm described by the above lemma is strongly based on the thresholding algorithm
of [4], and thus, we defer the proof of the lemma to Appendix Bl

3.2 Intuition and Techniques

Corollary tells us that there exists a fast algorithm for the problem {f(S) | S € Z} when
maxger Y _,eg f(u) is not much larger than f(OPT). Thus, we need to show how to deal with
the case of large maxgez), g f(u). One interesting candidate algorithm for this case is the
residual random greedy algorithm suggests by [7]. This algorithm works in k iterations. In each
iteration, given that S is the current solution of the algorithm, it finds finds a set S’ maximizing
{f(S") | SUS’ € T}. Then, it selects a random element u € S’, and adds it to its solution S.

Buchbinder et al. [7] only managed to show that their residual random greedy is a 1/4-
approximation algorithm. However, it is not difficult to check that this algorithm behaves much
better as long as maxgusiez) ,cq f(u | S) is large. More specifically, the expected increase in
the value of S is large compared to the expected decrease in the value of the best independent set
containing S. This suggests the following natural approach. Execute the residual random greedy as
long as maxgyusiez) yeg f(u | S) is large. Once maxgygiez Y ecq f(u | S) becomes small, apply
the measured continuous greedy of [4] to the residual problem.

For technical reasons, we also use the observation that the solution produced by the residual
random greedy tends to be very small because the value of S increases fast, in expectation. This
observation allows us to ignore (“fail”) cases in which the goal of small maxgusicz D, cq f(u | S)
is not obtained quickly enough.

3.3 Main Algorithm

In this section we explain how to combine our variant of the residual random greedy and the
measured continous greedy of [4] into an algorithm for max{f(S) | S € Z} having all the properties
guaranteed by Theorem [[.LJI The following lemma states the properties of our variant of the
residual continous greedy that we need. In Section B.4], we describe this variant (which appears as
Algorithm 2]) and prove Lemma 3.4l In the following, we use M /S to denote the matroid obtained
from M by contracting a set S C N.

Lemma 3.4. There exists an algorithm that given a non-negative monotone submodular function
f: oN' s RY, 4 matroid M = (N,Z) of rank k and three parameters 6 € (0,1), B > 0 and an
integer 0 < I < k/2, has the following properties.
(i) The algorithm uses O(Ind~1In(k/§)) independence oracle queries and O(Ik + nd~'In(k/d))
value oracle queries.

(ii) The algorithm declares failure with probability at most k(BI)™!.
(iii) If the algorithm does not fail, it outputs a set S obeying:
e For every independent set S’ of M/S, > cq f(u]S) < (1—08)"2(3B+4)- f(OPT).
e Let OPT' be an independent set of M/S mazimizing f(OPT"). Then, E[f(OPT")] >
[1— B~Y2+ k/I)]- f(OPT), where the expectation is conditioned on the event that the
algorithm does not fail.

Algorithm [is our final algorithm for max{f(S) | S € Z}. The algorithm gets two parameters:
e >0 and A € [1,k]. The last parameter controls a tradeoff between the number of value and inde-
pendence oracle queries used by the algorithm. In the rest of this section we show that Algorithm [
has all the properties required by Theorem [I.11

Algorithm 1: Combined Algorithm(f, M, e, \)

1 Call the algorithm guaranteed by Lemma [3.4] with the parameters § = 1/2, B = 20kA~!e~!

and I = [A/3]). Let S denote the output set.

if the algorithm of Lemma[3.4) did not declare failure then
Call the continuous greedy algorithm guaranteed by Corollary 3.2l on the matroid M /S
and the objective f(- | S) with the parameters ¢ = 240kA~le™! +2 and 6§ = ¢/4. Let S’
denote the output set.

4 return SU S’

w N

else
L return J.

[=2 I

Remark: For k = 1, the problem max{f(S) | S € Z} can be solved optimally using O(n) oracle
queries. Thus, we assume throughout this section & > 2. Notice that this assumption implies
I < k/2, as required by Lemma 3.4l Additionally, Theorem [Tl is void for ¢ > 1 — e~!, thus, we
also assume ¢ € (0,1 —e™1).

We begin the analysis of Algorithm [I] by bounding the number of oracle queries it uses.

Observation 3.5. Algorithm [uses at most O(kX + knA~te™® ln2(§)) value oracle queries and
O(k*e™! + Ane?In(2)) independence oracle queries.

Proof. The observation follows by adding up the guarantees on the number of oracle queries given
by Corollary B.2] and Lemma [3.4] O

Next, let us lower bound the approximation ratio of Algorithm [Il Let G be the event that the
algorithm guaranteed by Lemma [3.4] did not declare failure.

Lemma 3.6. Conditioned on G, Algorithm [is (1 — e™! — &/2)-competitive.

Proof. By Lemma [34] conditioned on G, there exists a random set OPT’ (depending on S only)
which is always independent in M /S and obeys:

E[f(OPT') | G] > (1 _ 2*;/1’) . {(OPT)

- 2+ 3kA1
20k 11

v

) - f(OPT) > (1 - Z) . f(OPT) .

Moreover, Lemma [3.4] also guarantees that for every independent set S’ of M/S:
> f(u|S) <ABB+05)- f(OPT) = (240kA"'e™' +2) - f(OPT) = c- f(OPT) .
ues’

Hence, by Corollary B.2] given a set S, the expected quality of the set produced by the continuous
greedy algorithm is at least:

9 9

B[f(S | 9)] = (1 Sl z) FOPT'| 8) > (1 Sl z) FOPT) - £(S) .

Taking now the expectation over all the sets S, we get:
E[f(SUS) | G =E[f(S"|S) | G] +E[f(S) | G]
25| (1-1-7) fOPT) - 1) | 6] +BIAS) |6

— <1_1ji>-E[f(OPT’)yG]z<1—%—%>-f(OPT) : -

(&

Corollary 3.7. Algorithm [is a (1 — e~! — ¢)-approzimation algorithm.

Proof. Let A denote the output of Algorithm [II Lemma [3.0] states that:

1 ¢
E[f(4) | G] > <1 L 5) f(oPT) .
On the other hand, by Lemma [B:4] it is possible to lower bound Pr[G] by:
k k 3e
>1— — >1— >1- 2%
Pl zl- g2l e e g 2L
The corollary now follows by observing that:
3e 1 ¢ 1

The above corollary completes the proof of Theorem [T.11

3.4 A variant of the residual random greedy algorithm

In this section we describe an algorithm proving Lemma 3.4l The algorithm we describe is related
to the residual random greedy algorithm of [7], with two main modifications. First, the algorithm
is sped up using ideas from [4]. Second, the algorithm stops when the total marginal value of all
the elements in every independent set becomes small enough. Recall that the last property implies
that the measured continuous greedy of [4] can be used efficiently to complete the solution.

The description of our algorithm (give as Algorithm [2]) assumes A contains a known set D of
k dummy elements having the following properties:

e f(S)=f(S\ D) for every set S C N.

e A set S C N is independent if and only if S\ D is independent and |S| < k.

This assumption can be guaranteed by artificially adding such a set D to the ground set, modifying
the value and independence oracles accordingly and removing the elements of D from the solution
produced by the algorithm.

Algorithm] performs up to I iterations. In each iteration, the algorithm finds an (almost)
maximum weight independent set M in the residual matroid (i.e., the matroid resulting from M
by contracting the current solution S), where the weight of an element is defined as its marginal
contribution to S. If M has a high enough weight, then a random element from it is added to
the current solution S and the algorithm continues to the next iteration. Otherwise, the algorithm
terminates.

In order to find M using few value oracle queries, the algorithm maintains a global variable w,,
for every element u € N. The variable w, is always an upper bound on f(u | S).

Algorithm 2: Random Lazy Greedy(f, M, 6, B, 1)

// Initialization

1 Use the algorithm guaranteed by Lemma B.3] to calculate a value opt obeying;:
f(OPT) < opt <3 f(OPT).

2 Let Sy« @.

3 Let W < maxyen f(u).

4 foreach u €¢ N do Let w, + W.

// Main Loop
5 fori =1 to I do

6 Let M; < LinearGreedy().

7 if (1—-6)-> e, wu > B-opt then

8 Add to M; enough dummy elements to make S;_1 U M; a base.
9 Let u; be a uniformly random element of M;.

10 Let S; < S;_1 U {ul}

11 else return S;_;.

12 Declare failure.

13 Function LinearGreedy()
14 Let M « @.
15 for (w < Wi;w > éW/k;w < w(1 —9)) do

16 foreach u € N do

17 if w, =w and S;—1 UM U{u} € Z then

18 if f(u| Si—1) < (1 —0)w, then Update w, « w,(1 — 9).
19 L else Add u to M.

20 return M.

We begin the analysis of Algorithm 2] by showing it has the complexity required by Lemma B.4]

Observation 3.8. Algorithm [@ makes O(Ind~'In(k/6)) independence oracle queries and O(Ik +
né~tIn(k/8)) value oracle queries.

Proof. The algorithm guaranteed by Lemma B.3] uses only O(nln k) oracle queries, which is upper
bounded by both guarantees of this observation, and thus, can be ignored. The first part of the
observation now follows by multiplying the following values:

e Every iteration of the internal loop of LinearGreedy uses a single independence oracle query,
and this loop repeats n times.

e The number of iterations performed by the external loop of LinearGreedy is:

[ny5(6/k)] <1-— lilz(lkzég) <1+ ln(];/é) .

e The main loop of the algorithm repeats at most I times.

The second part of the observation holds since every time a value oracle query is made by
Algorithm 2 one of two things must happen: either an element is added to M or w, is decreased
for some element u € N. Observe that at most Ik elements can be added to M, and the number
of times w, can be decreased for every element u € N is at most:

fn_g(/k)] < 1+ 00 O

To prove the other properties guaranteed by Lemma B4l we first need some notation. Let i,
be the (random) largest index for which S;, is defined by the algorithm. For ease of notation, we
define for every 0 < i < I the value r(i) = min{i,i¢}. Notice that S, is always defined, even
when S; is not assigned in a given execution of Algorithm 2l The following lemma lower bounds
the expected value of S,.;.

Lemma 3.9. For every 0 <i < I, E[f(S,¢))] = B - (E[r(i)|/k) - f(OPT).
Proof. We prove the lemma by induction on i. For ¢ = 0:
E[f(Sr@))] = 0=E[r(0)] .

Next, assume the claim is true for s —1 > 0, and let us prove it for 3. Fix an event A; specifying the
random decisions made by Algorithms [2] before iteration i. All the probabilities and expectations
from this point till we unfix A; are implicitly conditioned on A;. Notice that once A; is fixed
the sets S;_1 and M; become deterministic and so is the question whether ¢ < i,. Based on
the last question, we have two cases. If i < iy, then the definition of Algorithm [l guarantees
Duens, [Sic1) > (1 =10) -3 cpr, wu > B-opt > B f(OPT). Since u; is a random element
from M;, we get:

. u Si_
B (S = £(Sr-) + B | Si-0)] 2 S(S5cy) + 22 TP

> 1(Sye) + LD sy BT opry

Consider now the case 7(i) < i. In this case,

E[f(Sr@)] = f(Sri—1)) = f(Spi1)) + B [r(i) ;r(z‘ —1)]

In conclusion, the inequality E[f(S,))] = f(Syi-1)) + Bk™' - [r(i) —r(i —1)] - f(OPT) holds in
both cases. Moreover, since this 1nequahty holds condltloned on every given event A;, it holds also
unconditionally. Therefore, unfixing the event A;, we get:

B-E[r(i) —r(i —1)]

. f(OPT) .

E[f(Sr@)] = E[f (Sri-1))] + : - f(OPT)
L BEVGO) oy y BERO 60 oy BRG] o

The above lemma implies the following very useful corollary.
Corollary 3.10. For every 0 <i <1, E[r(i)] < k/B.

Proof. Notice that S, ;) is always a feasible solution. Thus, E[f(S,(;)] < f(OPT). Using the lower
bound on E[f(S,(;)] given by Lemma [3.9 we get:

E[r(i)] - B
k

We are now ready to prove the upper bound on the failure probability of Algorithm [given by
Lemma B4l Let G denote the event that Algorithm 2] succeeds (i.e., it does not declare failure).

k

- f(OPT) < f(OPT) = E[r(i)] < O

Observation 3.11. Pr[G] < k(BI)~!.
Proof. Notice that Algorithm [l fails exactly when i, = I. Hence, by Markov’s inequality:

A Dot B E[r(I)] k
Pr[G] =Prlip =1] =Prir(I) =1] < 7 < Bl

Our final objective in this section is to prove Algorithm [obeys item (i) of Lemma 34l The
following lemma proves the first part of this item.

O

Lemma 3.12. Conditioned on G, every independent set S" C N\ Sy(ry of the matroid M/S,
must have: o f(u| Sppy) < (1—0)"2(3B +6) - f(OPT).

Proof. In this proof, given two sets A,B C N, we use the notation f(A : B) =3 .4 f(u | B)
to the denote the total marginal contribution to B of A’s elements. Since we are conditioned on
G, Algorithm 2] stopped at some iteration i = r(I) + 1 after observing (1 —¢) - f(M; : Si—1) <
B-opt <3B-f(OPT). Let OPT’ be the set maximizing f(- : S;_1) among the independent subsets
of M/S;_1. To complete the proof, it is enough to show that f(M; : S;_1) > (1 —0) - f(OPT" :
S, 1)~ 8- F(OPT).

The function LinearGreedy constructs M; element by element. For every 1 < j < [M;], let
M; ; be the set M; after j elements are added to it. For consistency, we also define M;o = @.
Let OPT; be a base maximizing f(- : S;—1) among the bases of M /S;_; containing M; ;. Clearly,
f(OPT/ : Si—l) = f(OPTé : Si—l)'

Fix an arbitrary 1 < j < |M;|, and let v; = M; ; \ M; j—1 be the 4t element added to M,;.
If v; € OPT](_1 then we define 11;- = v;. Otherwise, let 11;- be an arbitrary element of N\ M, ;
belonging to the (single) cycle of OPT;_; U{v;}. Notice that (OPT]\ {v}})U{v;} is always a base
of M/S;—1 containing M; j, and thus, f(OPT; : S;—1) > f(OPT;_; \ {v;} U{v;} : Si—1). Since
M; ;U {v;} is independent in M/S;_1, at the time point when the algorithm added v; to M;, the
following held:

Fj | Sica) 2wy, (1= 6) =w(l = 8) = wy (1-0) = f(vj | Sim1) - (1= 0)
which implies:
f(OPT; : Si—1) > f(OPT;_y \ {v;} U{v;} : Si—1) > fF(OPTj_y : Si1) =6 - f(vj | Si1) -
Adding up the above inequality for every 1 < j < |M;| results in:

| M|
f(OPT(Mi‘ :8;_1) > f(OPT} : S;—1) — 6 - Zf(v; | Si—1) > (1—96)- f(OPT":S;_1) .
j=1

10

Finally, every element of u € OPT|’MZ_‘ \ M;, must have f(u|S) <W/k <¢§- f(OPT)/k. Thus,

FOPTy, Sic1) < f(M; = Sim1) + [OPT)y \ M| - % - f(OPT)
< f(M;:Si—1)+6- f(OPT) . .

To prove the second part of item (i) of Lemma 34l we need the following lemma from [6],
which can be found (with a different notation) as Corollary 39.12a in [39].

Lemma 3.13. If A and B are two bases of a matroid M = (N,I), then there exists a bijection
¢: A\ B — B\ A such for everyu € B\ A, AU{u}\ {o(u)} € T.

Using the above lemma we can now define for every 0 < ¢ < I, a random variable OPT; via the
following recursive definition.

e OP1Tj is an arbitrary base of M obtained from OPT by adding enough dummy elements.

e For i > 0, OPT; depends on i;. If i > iy, then OPT; is an undefined set (its value is never
used in the proofs below). Otherwise, if ¢ < iy, then let ¢ : M; — OPT;_1 be a one to one
function having the following properties:

— For every uw € M;, Si—1 U(OPT;—1 \ {¢(u)}) U{u} € T.
— For every u € OPT;—1 N M;, ¢(u) = u.
Then, OPT; = OPT;_1 \ {¢(u;)}-

The existence of a function ¢ having the properties given in the above definition follow from
Lemma [3.13] since both OPT;_; US;_1 and M; U S;_; are bases of M (the fact that OPT;_; US;_;
is a base can be easily verified by induction). When there are multiple possible choices for ¢, we
assume one is picked based on the contents of the sets OPT;_1 and S;_1 alone.

The following lemma and corollary show that OPT,.) is a random set having the properties
required by the second part of item (i) of Lemma [3.4]

Lemma 3.14. For every 0 <i < I, E[f(OPT, ;)] = f(OPT) —2-E[r(i)] - f(OPT)/k.
Proof. We prove the lemma by induction on i. For ¢ = 0:

E[(OPT,)] = /(OPTy) = f(OPT) - 20 f(OPT) .

Next, assume the claim holds for ¢ —1 > 0, and let us prove it for ¢. Like in the proof of Lemma [3.9]
we fix an event A; specifying the random decisions made by Algorithms [2] before iteration . All
the probabilities and expectations from this point till we unfix A; are implicitly conditioned on
A;. Notice that once A; is fixed the sets S;_1, M; and OPT;_1 become deterministic and so is
the question whether i < iy. Based on the last question, we have two cases. If i < iy, then every
element of OPT, ;) belongs to OPT, ;) with probability 1 —1/|OPT,;)_1| =1~ (k—1r(i) +)7L
Thus, by Lemma 2]

E[f(OPT,(i))] > <1 - m> “J(OPT, ;1)) > (1 - %) - J(OPT, ;1))

> J(OPT, 1)~ 2 JOPT) = JOPTy) ~ PO o)

where the second inequality holds since r(i) < ¢ < I < k/2 and the third inequality holds since
OPT,;—1) € OPTp. Consider now the case i > ig. In this case:

2[r(i) —r(i —

11

In conclusion, the inequality E[f(OPT,)] > f(OPT,;_1)) — 2k~ [r(i) — r(i — 1)] - f(OPT)
holds in both cases. Moreover, since this inequality holds conditioned on every given event A;, it
holds also unconditionally. Therefore, unfixing the event A;, we get:

E[f(OPT,)] 2 E[f(OPTy_y)] - 200 M=) popr)
- opr) - 2EG=1)] 'f(OPT)_Z-E[r(i);r(i—l)] opT)
_ sopr) - ZECOL yopry 0

k
Corollary 3.15. For every 0 <i <1, E[f(OPT,;)) |G] > [1—B ' (2+k/I)]- f(OPT).
Proof. By the law of total expectation:

E[f(OPT,u) | G] = Pr[G] - E[f(OPT,;) | G] = E[f(OPT,;)] — Pr[G] - E[f(OPT,;) | G] .

The term E[f(OPT,) | G| can be upper bounded by f(OPT) because OPT, ;) is always a
subset of OPT (possibly, plus dummy elements). Combining this observation with Observation [3.11]
and Lemma 314 gives:

2-E|r(s k
BLAOPT) | 61> |10pr) - 2510 0P| - 47 siopm)
> 1= 220 sorn
B
where the last inequality follows from Corollary [3.101 O

3.5 Generalized Partition Matroids

In this section we prove Theorem [[.2] which states that for generalized partition matroids it is
possible to improve over the result given by Theorem [L.1] for general matroids. In this context,
there is no longer an independence oracle, thus, we are only interested in the number of value
oracle queries used by our algorithm (and guaranteeing that the time complexity is bounded by
the same expression). Throughout this section, M is a generalized partition matroid and h < k
is the number of partitions in M. We denote by N; C N, the set of elements in the 4t partition
of M and by k; the maximum number of elements that can be taken from this partition (i.e.,
Z?:l kj =k and a set S C N is independent if and only if |S NA;| < k; for every 1 < j < h).

Swap rounding is an algorithm suggested by [10] for rounding fractional points in the matroid
polytope P(M) into an (integral) independent set. Badanidiyuru and Jondrak [4] observed that
swap rounding has a time complexity of O(bk?) when the fractional point is a convex combination
of b independent sets. The following observation states that this bound can be improved for
generalized partition matroids.

Observation 3.16. Given a generalized partition matroid and a fractional point x € P(M) which
is a convex combination of b independent sets, swap rounding can be used to round x using O(bk)
time and no value oracle queries.

Proof. 1t is possible to represent independent sets S € Z in such a way that given an index 1 < j < h
one can find an element v € S NN in O(1) time (if such an element exists). The pseudo-code of
swap rounding given by [10] requires only O(bk) time when the sets composing the fractional point

12

are given in a representation having the above property. Moreover, the standard representation
of an independent set as a list of items can be converted into a representation having the above
property in O(k) time, hence, all b sets can be converted into such a representation in O(bk)
time. 0

Plugging the above improved time complexity into the result of [4] yields the following improved
version of Corollary

Corollary 3.17. If maxser) ,cqf(u) < c- f(OPT) for some value c, then for every § > 0 there
exists a (1 — e~! — §)-approzimation algorithm for mazimizing f subject to a generalized partition
matroid M using O(cnd=* 1H2(%)) value oracle queries and a time complexity bounded by the same
expression.

To get an improved result for generalized partition matroids, we also need to improve the
implementation of the function LinearGreedy of Algorithm 2l We observe that for such matroids
one can handle each partition separately in the function LinearGreedy. The separation allows us
to remove the element-wise check whether a given element can be added to the current solution,
and replace it with a partition-wise check whether the current solution already has the maximum
allowed number of partition elements. Additionally, we replace the element specific variables wy,
with sets T}, containing all the elements u € A that logically have w, = w. This change allows
us to avoid scanning all the elements of Nj in order to find the elements u € N having w, = w.
Finally, for further acceleration, we introduce for each partition a list 7; of the non-empty sets 77 ..

The improved implementation of LinearGreedy is given as Algorithm Bl The initialization part
should be executed once before the first call to LinearGreedy.

Observation 3.18. Algorithm [4 with the new implementation of LinearGreedy given by Algo-
rithm [3 uses O(Ik +nd~'1In(k/d)) value oracle queries, and has a time complezity bounded by the
same erpression.

Proof. Aside from the n value oracle queries used to calculate W and the O(nln k) oracle queries
used by the algorithm guaranteed by Lemma B3], every access to f is followed by one of two events:
either an element is added to M or the “logical” w, of an element wu is reduced. The total number
of elements that can be added to M is Ik, and the total number of values a single “logical” w, can

have is (k) (k)
s D5
In(1 —9) =1+ 0

This completes the proof of the first part of the observation.

Regarding the time complexity, notice that the main part of Algorithm] uses O(n + Ik) time
(excluding the calls to LinearGreedy) and the initialization step introduced in Algorithm [B] uses
O(n+klIny_5(6/k)) = O(nd~'In(k/6)) time. Thus, we only need to bound the time complexity of
the new implementation of LinearGreedy.

Each iteration of the loop starting on Line [I2] of Algorithm [] takes O(1) time (notice that
T; can be updated in O(1) time if 7; is represented as a double linked list). Moreover, this
loop always make at least one iteration, and each iteration (except for maybe one per execution
of PartitionGreedy) access f. Hence, we can bound the time required for LinearGreedy by
O(h) = O(k) plus the number of value oracle queries it uses. The observation now follows since
Line