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Abstract

Motivated by a derandomization of Markov chain Monte Carlo (MCMC), this paper investigatesde-
terministic random walks, which is a deterministic process analogous to a random walk. While there are
several progresses on the analysis of the vertex-wise discrepancy (i.e.,L∞ discrepancy), little is known
about thetotal variation discrepancy (i.e.,L1 discrepancy), which plays a significant role in the analysis
of an FPRAS based on MCMC. This paper investigates upper bounds of theL1 discrepancy between
the expected number of tokens in a Markov chain and the numberof tokens in its corresponding deter-
ministic random walk. First, we give a simple but nontrivialupper boundO(mt∗) of theL1 discrepancy
for any ergodic Markov chains, wherem is the number of edges of the transition diagram andt∗ is the
mixing time of the Markov chain. Then, we give a better upper boundO(m

√
t∗ log t∗) for non-oblivious

deterministic random walks, if the corresponding Markov chain is ergodic and lazy. We also present
some lower bounds.

Key words: Rotor router model, Propp machine, load balancing, Markovchain Monte Carlo (MCMC),
mixing time

1 Introduction

Background Markov chain Monte Carlo (MCMC) is a powerful technique of designing randomized ap-
proximation algorithms for #P-hard problems. Jerrum et al.[21] showed the equivalence in the sense of
the polynomial time computation betweenalmost uniform generation and randomized approximate count-
ing for self-reducible problems. A number of fully polynomial-time randomized approximation schemes
(FPRAS) based on their technique have been developed for #P-hard problems, such as the volume of a con-
vex body [14, 25, 11], integral of a log-concave function [25], partition function of the Ising model [19], and
counting bipartite matchings [20]. When designing an FPRASbased on the technique, it is important that
the total variation distance of the approximate distribution from the target distribution is sufficiently small,
and hence analyses of the mixing times of Markov chains are central issues in a series of works on MCMC
for FPRAS to guarantee a small total variation distance is small. See also Section 2.1 for the terminology of
Markov chains.

In contrast, not many results are known aboutdeterministic approximation algorithms for #P-hard prob-
lems. A remarkable progress is the correlation decay technique, independently devised by Weitz [31] and
Bandyopadhyay and Gamarnik [5], and there are several recent developments on the technique. For counting
0-1 knapsack solutions, Gopalan et al. [16], and Stefankovic etal. [29] gave deterministic approximation
algorithms (see also [17]). Ando and Kijima [2] gave an FPTASbased on approximate convolutions for
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computing the volume of a0-1 knapsack polytope. A direct derandomization of MCMC algorithms is not
known yet, but it holds a potential for a general scheme of designing deterministic approximation algorithms
for #P-hard problems.Deterministic random walks [10, 9, 13, 7, 23, 22, 27] may be used as a substitute for
Markov chains, for the purpose.

Deterministic random walk Deterministic random walk is a deterministic process analogous to a (mul-
tiple) random walk1. A configurationχ(t) ∈ Z

V
≥0 of M tokens distributed over a (finite) vertex setV is

deterministically updated from timet to t+1 by routers equipped on vertices. The router on a vertexu ∈ V
deterministically serves tokens onu to neighboring vertexv with a ratio (about)Puv ∈ [0, 1] such that∑

v∈V Puv = 1, i.e.,P = (Puv) ∈ R
V×V is a transition matrix (whenV is finite). See Section 2.2 for the

detailed description of the model with which this paper is concerned. Note that the expected configuration
µ(t) ∈ R

V
≥0 of M tokens in a multiple random walk at timet is given byµ(t) = χ(0)P t on the assumption

thatχ(0) = µ(0).
Cooper and Spencer [10] investigated the rotor-router model, which is a deterministic random walk

corresponding to a simple random walk, and showed for thed-dimensional (infinite) integer lattice that the
maximum vertex-wise discrepancy‖χ(t) − µ(t)‖∞ is upper bounded by a constantcd, which depends only
on d but is independent of the total number of tokens. Later, it isshown thatc1 ≃ 2.29 [9] andc2 is about
7.29 or 7.83 depending on the routers [13]. On the other hand, Cooper et al. [7] gave an example of a rotor-
router on the infinitek-regular tree, such that its vertex-wise discrepancy getsΩ(

√
kt) for an arbitrarily

fixed t.
Motivated by general transition matrices, Kijima et al. [23] investigated a rotor-router model on finite

multidigraphs, and gave a boundO(n|A|) of the vertex-wise discrepancy whenP is rational, ergodic and
reversible, wheren = |V | andA denotes the set of multiple edges. For an arbitrary rationaltransition matrix
P , Kajino et al. [22] gave an upper bound using the second largest eigenvalueλ∗ of P and some other param-
eters ofP . To deal with irrational transition probabilities, Shiraga et al. [27] presented a generalized notion
of the rotor-router model, which they callfunctional router model. They gave a boundO((πmax/πmin)t

∗∆)
of the vertex-wise discrepancy for a specific functional router model (namely,SRT-router model) whenP is
ergodic and reversible, wheret∗ denotes the mixing rate ofP andπmax (resp.πmin) is the maximum (resp.
minimum) element of the stationary distribution vectorπ of P . Using [27], Shiraga et al. [28] discussed the
time complexity of a simulation, in which they are concernedwith an oblivious version, meaning that the
states of routers are reset in each step while the deterministic random walk above mentioned carries over the
states of routers to the next step.

Similar, or essentially the same concepts have been independently developed in several literature, such
as load-balancing, information spreading and self-organization. Rabani et al. [26] investigated the diffusive
model for load balancing, which is an oblivious version of deterministic random walk, and showed for the
model that the vertex-wise discrepancy isO(∆ log(n)/(1− λ∗)) whenP is symmetric and ergodic, where
∆ is the maximum degree of the transition diagram ofP . Friedrich et al. [15] proposed the BED algorithm
for load balancing, which uses some extra information in theprevious time, and they gaveO(d1.5) for
hypercube andO(1) for constant dimensional tori. Akbari et al. [1] discussed the relation between the
BED algorithm and the rotor-router model, and gave the same bounds for a rotor-router model. Berenbrink
et al. [6] investigated about cumulatively fair balancers algorithms, which includes the rotor-router model,
and gave an upper boundO(dmin(

√
log(n)/(1 − λ∗),

√
n)) for a lazy version of simple random walks on

d-regular graphs.
As a closely related topic, the behavior of the rotor-routermodel with a single token has also been

investigated. Holroyd and Propp [18] investigated the frequencyν(t) ∈ Z
V
≥0 of visits of the token int

steps, and showed that‖ν(t)/t − π‖∞ is O(mn/t). Preceding [18], Yanovski et al. [32] showed that the

1“multiple random walk” means independent random walks of many tokens.
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Conditions onP L∞-discrepancy L1-discrepancy
E. R.

O
(
∆ log(n)
1−λ∗

)
[26] O

(
∆n log(n)

1−λ∗

)
symmetric
E. R. L.

O(n|A|) [23] O(n2|A|)
rational

any rational O
(

α∗n|A|
(1−λ∗)β

)
[22] O

(
α∗n2|A|
(1−λ∗)β

)

E. R. O
(
πmax

πmin
t∗∆

)
[27] O

(
πmax

πmin
t∗∆n

)

E. R. L.
O

(
dmin

(√
log(n)
1−λ∗ ,

√
n

))
[6] O

(
mmin

(√
log(n)
1−λ∗ ,

√
n

))
simple r.w.
d-regular
E. O(mt∗) Thm. 3.2
E. L. O(m

√
t∗ log t∗) Thm. 4.2

E. R. L.
O(∆

√
t∗ log t∗) Thm. 4.7

symmetric
E.: ergodic, R.: reversible, L.: lazy

Table 1: Summary of known results on‖χ(t) − µ(t)‖∞ for finite graphs, and this work.

rotor-router model with a single token always stabilizes toa traversal of an Eulerian cycle after2mD steps
at most, whereD denotes the diameter of the graph. This result implies that the (edge) cover time of the
rotor-router model with a single token isO(mD) for any graph. Bampas et al. [4] gave examples of which
the stabilization time getsΩ(mD). Similar analyses for the rotor-router model with many tokens have been
developed, recently. Dereniowski et al. [12] investigatedthe cover time of the rotor-router model withM
tokens, and gave an upperO(mD/ logM) and an example ofΩ(mD/M) as a lower bound. Chalopin et
al. [8] gave an upper bound of its stabilization time isO(m4D2 +mD logM), while they also showed that
the period of a cyclic stabilized states can get as large as2Ω(

√
n).

Our results. As we stated before, the total variation distance between the target distribution and approx-
imate samples is significant in the analysis of MCMC algorithms. While there are several works on deter-
ministic random walks concerning the vertex-wise discrepancy ‖χ(t) − µ(t)‖∞ such as [26, 23, 22, 27, 6],
little is known about the total variation discrepancy‖χ(t)−µ(t)‖1. This paper investigates the total variation
discrepancy to develop a new analysis technique aiming at derandomizing MCMC.

To begin with, we give a simple but nontrivial upper bound forany ergodic finite Markov chains, pre-
cisely we show‖χ(t) − µ(t)‖1 = O(mt∗) wheret∗ is the mixing rate ofP andm is the number of edges
of the transition diagram ofP . In fact, the analyses are almost the same for both the non-oblivious model,
including the rotor-router model [10, 23, 22, 6], and the oblivious model like [26, 28] in which the states
of routers are reset in each step, and we in Section 3 deal withthe oblivious model. We also give a lower
bound for the oblivious model presenting an example such that ‖χ(t) −µ(t)‖1 = Ω(t∗), which suggests that
the mixing rate is negligible in theL1 discrepancy for the oblivious model.

Then, we in Section 4 give a better upper bound for non-oblivious determinstic random walk, precisely
we show‖χ(t) − µ(t)‖1 = O(m

√
t∗ log t∗) whenP is ergodic and lazy. Notice that the upper bound does

not require reversible. The analysis technique is a modification of Berenbrink et al. [6], in which they
investigated a lazy version of simple random walks ond-regular graphs. In fact, we also remark that the
analysis technique by [6] for the vertex-wise discrepancy is extended to general graphs, precisely we show
that‖χ(t) − µ(t)‖∞ = O(∆

√
t∗ log t∗) whenP is ergodic, lazy, symmetric. We also present some lower
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bounds ofL1 discrepancy for non-oblivious models.
Table 1 shows a summary of known results [26, 23, 22, 27, 6] on‖χ(t) − µ(t)‖∞, and the results by this

work. The column of “L1 discrepancy” shows the upper bounds of‖χ(t) − µ(t)‖1 implied by the previous
results [26, 23, 22, 27, 6], in comparison with upper bounds obtained by this paper.

2 Preliminaries

2.1 Random walk / Markov chain

As a preliminary step, we introduce some terminology of Markov chains (cf. [24]). LetV = {1, . . . , n}
be a finite set, and letP ∈ R

n×n
≥0 be a transition matrix onV , which satisfies

∑
v∈V Pu,v = 1 for any

v ∈ V , wherePu,v denotes the(u, v) entry ofP (P t
u,v denotes(u, v) entry ofP t, as well). LetG = (V, E)

be the transition digram ofP , meaning thatE = {(u, v) ∈ V × V | Pu,v > 0}. Let N+(v) andN−(v)
respectively denote the out-neighborhood and the in-neighborhood ofv ∈ V on G 2. For convenience, let
m = |E|, δ+(v) = |N+(v)| andδ−(v) = |N−(v)|.

A finite Markov chain is calledergodic if P is irreducible3 andaperiodic4. It is well known that any
ergodicP has a uniquestationary distribution π ∈ R

n
≥0 (i.e.,πP = π), and the limit distribution isπ (i.e.,

limt→∞ ξP t = π for any probability distributionξ ∈ R
n
≥0 on V ). Let ξ andζ be probability distributions

onV , then thetotal variation distance Dtv betweenξ andζ is defined by

Dtv(ξ, ζ)
def.
= max

A⊂V

∣∣∣∣∣
∑

v∈A
(ξv − ζv)

∣∣∣∣∣ =
1

2
‖ξ − ζ‖1 . (1)

Themixing time of P is defined by

τ(ε)
def.
= max

v∈V
min

{
t ∈ Z≥0 | Dtv(P

t
v,·, π) ≤ ε

}
(2)

for anyε > 0 5. Let t∗
def.
= τ(1/4), calledmixing rate, which is often used as a characterization ofP .

Let µ(0) = (µ
(0)
1 , . . . , µ

(0)
n ) ∈ Z

n
≥0 denote an initial configuration ofM tokens overV . Suppose that

each token randomly and independently moves according toP . Let µ(t) denote theexpected configuration
of tokens at timet ∈ Z≥0 in a Markov chain, thenµ(t) = µ(0)P t holds. By the definition of mixing time,
‖µ(t)/M − π‖1 ≤ ε holds for anyt ≥ τ(ε) if P is ergodic.

2.2 Deterministic random walk: framework

A deterministic random walk is a deterministic process imitatingµ(t). Let χ(0) = µ(0) andχ(t) ∈ Z
n
≥0

denote the configuration of tokens at timet ∈ Z≥0 in a deterministic random walk. An update in a deter-

ministic random walk is defined byZ(t)
v,u denoting the number of tokens moving fromv to u at timet, where

Z
(t)
v,u must satisfy the condition that

∑

u∈N+(v)

Z(t)
v,u = χ(t)

v (3)

2N+(v) = {u ∈ V | Pv,u > 0} andN−(v) = {u ∈ V | Pu,v > 0}.
3P is irreducible if∀u, v ∈ V,∃t > 0, P t

u,v > 0. Then, transition diagram ofP is connected.
4P is aperiodic if∀v ∈ V,GCD{t ∈ Z>0 | P t

v,v > 0} = 1.
5P t

v,· denotes thev-th row vector ofP t.
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for anyv ∈ V . Then,χ(t+1) is defined by

χ(t+1)
u

def.
=

∑

v∈N−(u)

Z(t)
v,u (4)

for anyu ∈ V . We will explain some specific deterministic random walks inSections 3.1 and 4.1 by giving
precise definitions ofZ(t)

v,u. We are interested in a question ifχ(t) approximatesµ(t) well in terms of the total

variation discrepancy, i.e., the question is how largemaxA⊆V |χ(t)
A − µ

(t)
A ‖ = (1/2)‖χ(t) − µ(t)‖1 does get.

In the end of this section, we introduce two notations which we will use in the paper. For anyξ ∈ R
V and

A ⊆ V , let ξA denotes
∑

v∈A ξv. For example,µ(t)
A =

∑
v∈A µ

(t)
v andPu,A =

∑
v∈A Pu,v. For anyξ ∈ R

n,
P ∈ R

n×n andu ∈ V , let (ξP )u denotes theu-th element of the vectorξP , i.e.,(ξP )u =
∑

v∈V ξvPv,u.

3 Upper and lower bounds for oblivious model

This section is concerned with an oblivious version of deterministic random walk, which is closely related
to the models in [26, 28].

3.1 Oblivious model

Given a transition matrixP and a configurationχ(t) of tokens, we defineZ(t)
v,u as follows. Assume that an

arbitrary orderingu1, . . . , uδ+(v) onN+(v) is prescribed for eachv ∈ V . Then, let

Z(t)
v,ui

=





⌊
χ
(t)
v Pv,ui

⌋
+ 1 (i ≤ i∗)

⌊
χ
(t)
v Pv,ui

⌋
(otherwise)

(5)

wherei∗ def.
= χ

(t)
v −∑δ+(v)

i=1 ⌊χ(t)
v Pv,ui

⌋ denotes the number of “surplus” tokens. It is easy to check that the
condition (3) holds for anyv, u ∈ V and t ∈ Z≥0. Then, the configurationχ(t+1) is updated according

to (4), recursively. The following observation is easy fromthe definition (5) ofZ(t)
v,u .

Observation 3.1. For any oblivious model, |Z(t)
v,u − χ

(t)
v Pv,u| ≤ 1 holds for any u, v ∈ V and t ∈ Z≥0.

3.2 Upper bound

In this section, we give an upper bound of the total variationdiscrepancy.

Theorem 3.2. Suppose P ∈ R
n×n
≥0 is ergodic. Then, for any oblivious model,

∣∣∣χ(T )
A − µ

(T )
A

∣∣∣ ≤ 3

2
mt∗ = O(mt∗)

holds for any A ⊆ V and for any T ∈ Z≥0.

Remark that Theorem 3.2 only assumes thatP is ergodic.

Proof of Theorem 3.2. Let φ(t) = χ(t) − χ(t−1)P , for convenience. By (4) and Observation 3.1,

|φ(t)
u | =

∣∣∣
(
χ(t+1) − χ(t)P

)
u

∣∣∣ =

∣∣∣∣∣∣

∑

v∈N−(u)

(Z(t)
v,u − χ(t)

v Pv,u)

∣∣∣∣∣∣
≤

∑

v∈N−(u)

∣∣∣Z(t)
v,u − χ(t)

v Pv,u

∣∣∣ ≤ δ−(u) (6)

5



holds for anyu ∈ V andt ∈ Z≥0. Now, we see that

T−1∑

t=0

φ(T−t)P t =

T−1∑

t=0

(
χ(T−t)P t − χ(T−t−1)P t+1

)
= χ(T )P 0 − χ(0)P T = χ(T ) − µ(T ) (7)

hold, sinceµ(T ) = χ(0)P T holds by the assumption. By (7),

χ
(T )
A − µ

(T )
A =

(
T−1∑

t=0

φ(T−t)P t

)

A

=

T−1∑

t=0

∑

u∈V
φ(T−t)
u P t

u,A

=
αt∗−1∑

t=0

∑

u∈V
φ(T−t)
u P t

u,A +
T−1∑

t=αt∗

∑

u∈V
φ(T−t)
u

(
P t
u,A − πA

)
(8)

for any possible integerα, where the last inequality follows from the fact that

∑

u∈V
φ(t)
u =

∑

u∈V

(
χ(t+1) − χ(t)P

)
u

=
∑

u∈V
χ(t+1)
u −

∑

u∈V

∑

v∈V
χ(t)
v Pv,u = M −M = 0

holds for anyt ∈ Z≥0. By (8), we obtain that

∣∣∣χ(T )
A − µ

(T )
A

∣∣∣ ≤
∣∣∣∣∣

αt∗−1∑

t=0

∑

u∈V
φ(T−t)
u P t

u,A

∣∣∣∣∣+
∣∣∣∣∣

T−1∑

t=αt∗

∑

u∈V
φ(T−t)
u

(
P t
u,A − πA

)∣∣∣∣∣ . (9)

Now, we give upper bounds of each term of (9). For the first termof (9), it is easy to see that

∣∣∣∣∣

αt∗−1∑

t=0

∑

u∈V
φ(T−t)
u P t

u,A

∣∣∣∣∣ ≤
αt∗−1∑

t=0

|P t
u,A|

∑

u∈V
|φ(T−t)

u | ≤
αt∗−1∑

t=0

∑

u∈V
δ−(u) = mαt∗ (10)

holds by (6). To bound the second term of (9), we use the following lemma (See Appendix A for the proof).

Lemma 3.3. [27] Suppose P ∈ R
n×n
≥0 is ergodic. Then,

∞∑

t=αt∗

Dtv

(
P t
u,·, π

)
≤ t∗

2α

holds for any u ∈ V and for any α ∈ Z>0. �

By Lemma 3.3, we obtain that

∣∣∣∣∣

T−1∑

t=αt∗

∑

u∈V
φ(T−t)
u

(
P t
u,A − πA

)∣∣∣∣∣ ≤
T−1∑

t=αt∗

∑

u∈V
|φ(T−t)

u |
∣∣∣P t

u,A − πA

∣∣∣ ≤ t∗

2α

∑

u∈V
max
0≤t≤T

|φ(T−t)
u | ≤ mt∗

2α
(11)

hold where the last inequality follows from (6). Now, we obtain the claim from (9), (10) and (11) by letting
α = 1.

6



3.3 Lower bound

We give the following lower bound for an oblivious model. This proposition imply that we cannot improve
the termt∗ for oblivious models in general.

Proposition 3.4. There exist an oblivious model such that

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ = Ω(nt∗)

holds for any time T after mixing.

Proof. LetV = {0, . . . , n−1}, and let a transition matrixP be defined byPu,u = (k−1)/k for anyu ∈ V ,
andPu,v = 1/k(n − 1) for anyu, v ∈ V such thatu 6= v, i.e.,P denotes a simple random walk onKn

with a self loop probability(k − 1)/k for any vertex. For thisP , it is not difficult to checkt∗ = O(k) (See
Appendix A). Then, we give a corresponding oblivious deterministic random walk. Let us assume that the
prescribed ordering for eachv ∈ V starts withv itself (remember the definition of an oblivious deterministic
random walk in Section 3.1). Let

χ(0)
u =

{
k (u ∈ A)

0 (u ∈ B),

whereA = {0, . . . , n/2 − 1} andB = {n/2, . . . , n − 1}. Then, the initial configuration is stable, i.e.,
χ(t) = χ(0), since eachv ∈ A serves⌊k · k−1

k
⌋+1 = k tokens to itself (notice that the “surplus” token stays

atv according to the prescribed ordering). Now it is easy to see that

max
S⊆V

|χ(t)
S − µ

(t)
S | ≥ |χ(t)

A − µ
(t)
A | ≥ kn

2
− kn

4
− ε =

kn

4
− ε = Ω(nt∗)

holds for anyt ≥ τ(ε). We obtain the claim.

4 Upper and lower bounds for non-oblivious model

Observation 3.1 for oblivious model suggests only that|Z(t)
v,u − χ

(t)
v Pv,u| ≤ 1 holds for anyt ∈ Z≥0. In this

section, we introduce theSRT-router model (c.f., [27]), which satisfies|∑t
s=0(Z

(s)
v,u − χ

(s)
v Pv,u)| ≤ 1 for

anyt ∈ Z≥0, and we obtain an improved bound when the Markov chain islazy6.

4.1 Model

The SRT-router model, based on theshortest remaining time (SRT) rule [3, 30, 27], is a generalized version
of the rotor-router model. In the model, we define anSRT-router σv : Z≥0 → N+(v) on eachv ∈ V
for a givenP . Roughly speaking,σv(i) denotes the destination of thei-th launched token atv. Given
σv(0), . . . , σv(i− 1), inductivelyσv(i) is defined as follows. First, let

Ti(v) = {u ∈ N+(v) | |{j ∈ [0, i) | σv(j) = u}| − (i+ 1)Pv,u < 0},

where[z, z′) def.
= {z, z + 1, . . . , z′ − 1} (remark[z, z) = ∅). Then, letσv(i) beu∗ ∈ Ti(v) minimizing the

value

|{j ∈ [0, i) | σv(j) = u}|+ 1

Pv,u

6P is lazy ifPu,u ≥ 1/2 holds for anyu ∈ V .
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in any u ∈ Ti(v). If there are two or more suchu ∈ Tv(i), then letu∗ be the minimum in them in an
arbitrary prescribed order. The orderingσv(0), σv(1), . . . is known as theshortest remaining time (SRT)
rule (see e.g., [3, 30, 27]).

In an SRT-router model, there areχ(t)
v tokens on a vertexv at timet, and each vertexv serves tokens

on v to the neighboring vertices one by one according toσv(i), like a rotor-router. For example, if there are
a tokens onv at timet = 0, then|{j ∈ [0, a) | σv(j) = u}| tokens move to eachu ∈ N+(v), and there are
b tokens onv at t = 1, then|{j ∈ [a, a + b) | σv(j) = u}| tokens move to eachu ∈ N+(v), and so on.
Formally, it is defined by

Z(t)
v,u =

∣∣∣
{
j ∈

[∑t−1
s=0 χ

(s)
v ,
∑t

s=0 χ
(s)
v

)
| σv(j) = u

}∣∣∣ . (12)

It is clear that the definition (12) satisfies (3). Then, the configuration of tokens is recursively defined by (4).
The following proposition is due to Angel et al. [3] and Tijdeman [30].

Proposition 4.1. [30, 3] For any SRT-router model,
∣∣∣|{j ∈ [0, z) | σv(j) = u}| − z·Pv,u

∣∣∣ < 1

holds for any v, u ∈ V and for any z > 0.

Proposition 4.1 suggests that|Z(t)
v,u−χ

(t)
v Pv,u| is small enough. In fact, Proposition 4.1 and (12) suggest

a stronger fact that
∣∣∣∣∣

b∑

t=a

(
Z(t)
v,u − χ(t)

v Pv,u

)∣∣∣∣∣ =

∣∣∣∣∣

b∑

t=a

∣∣∣
{
j ∈

[∑t−1
s=0 χ

(s)
v ,
∑t

s=0 χ
(s)
v

)
| σv(j) = u

}∣∣∣−
b∑

t=a

χ(t)
v Pv,u

∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣
{
j ∈

[∑a−1
s=0 χ

(s)
v ,
∑b

s=0 χ
(s)
v

)
| σv(j) = u

}∣∣∣−
b∑

t=a

χ(t)
v Pv,u

∣∣∣∣∣

≤ max
z,z′∈Z≥0

s.t. z′>z

∣∣∣|{j ∈ [z, z′) | σv(j) = u}| − (z′ − z)Pv,u

∣∣∣ < 2 (13)

holds for anya, b ∈ Z≥0 s.t.a ≤ b. We will use (13) in our analysis, in Section 4.2.

4.2 Better upper bound for the SRT-router model

Now, we show for ergodic and lazyP the following theorem, modifying the technique [6].

Theorem 4.2. Suppose P ∈ R
n×n
≥0 is ergodic and lazy. Then for any SRT model,
∣∣∣χ(T )

A − µ
(T )
A

∣∣∣ = O
(
m
√
t∗ log t∗

)

holds for any A ⊆ V and for any T ∈ Z≥0.

Proof of Theorem 4.2. The major difference between an oblivious model and an SRT-router model is that

∣∣∣∣∣

b∑

t=a

φ(t)
u

∣∣∣∣∣ =

∣∣∣∣∣∣

b∑

t=a

∑

v∈N−(u)

(Z(t)
v,u − χ(t)

v Pv,u)

∣∣∣∣∣∣
≤

∑

v∈N−(u)

∣∣∣∣∣

b∑

t=a

(Z(t)
v,u − χ(t)

v Pv,u)

∣∣∣∣∣ ≤ 2δ−(u) (14)

holds for anyu ∈ V andb ≥ a in an SRT-router model since (13) holds. It is easy to check that |χ(T )
A −

µ
(T )
A | ≤ 3mt∗ holds for any SRT-router model by the same argument in the proof of Theorem 3.2 using (14)

8



instead of (6). Thus we obtain|χ(T )
A − µ

(T )
A | ≤ 6m if t∗ = 1, 2. In the rest part of the proof, we assume that

t∗ ≥ 3, which suggestst∗⌈lg t∗⌉ ≥ 3. We introduce the following proposition and lemma to give a better
upper bound of the first term of (9). See Appendix A for the proofs.

Proposition 4.3. Let Ft =
∑t

i=0 fi. Then,

T∑

t=0

ftgt = FT gT +

T−1∑

t=0

Ft(gt − gt+1)

holds for any T ∈ Z≥0 and for any fi, gi (0 ≤ i ≤ T ). �

Lemma 4.4. Suppose that P ∈ R
n×n
≥0 is ergodicand lazy. Then,

T∑

t=0

Dtv

(
P t
u,·, P

t+1
u,·
)
≤ 24

√
T − 11

holds for any u ∈ V and for any T ∈ Z>0. �

Using Proposition 4.3, (14) and Lemma 4.4, we obtain

∣∣∣∣∣

αt∗−1∑

t=0

φ(T−t)
u P t

u,A

∣∣∣∣∣ =

∣∣∣∣∣

(
αt∗−1∑

i=0

φ(T−i)
u

)
Pαt∗−1
u,A +

αt∗−2∑

t=0

(
t∑

i=0

φ(T−i)
u

)(
P t
u,A − P t+1

u,A

)∣∣∣∣∣

≤
∣∣∣∣∣

αt∗−1∑

i=0

φ(T−i)
u

∣∣∣∣∣ |P
αt∗−1
u,A |+

αt∗−2∑

t=0

∣∣∣∣∣

t∑

i=0

φ(T−i)
u

∣∣∣∣∣
∣∣∣P t

u,A − P t+1
u,A

∣∣∣ (15)

≤ 2δ−(u) + 2δ−(u) ·
(
24
√
αt∗ − 2− 11

)
= 2δ−(u)

(
24
√
αt∗ − 2− 10

)
(16)

for anyu ∈ V , whereα is an arbitrary positive integer satisfyingαt∗ ≥ 3. Finally, (9), (16), (11) and (14)
imply that

∣∣∣χ(T )
A − µ

(T )
A

∣∣∣ ≤
∑

u∈V

∣∣∣∣∣

αt∗−1∑

t=0

φ(T−t)
u P t

u,A

∣∣∣∣∣+
t∗

2α

∑

u∈V
max
0≤t≤T

|φ(T−t)
u |

≤ 2m
(
24
√
αt∗ − 2− 10

)
+ 2m· t

∗

2α
≤ 2m

(
24
√

t∗ lg t∗ − 2− 9
)

where the last inequality is obtained by lettingα = ⌈lg t∗⌉. We obtain the claim.

4.3 Lower bounds

This section discusses a lower bound of the total variation discrepancy. First, we observe the following
proposition, which is caused by the integral gap betweenχ(T ) ∈ Z

V andµ(T ) ∈ R
V .

Proposition 4.5. Suppose that P is ergodic and its stationary distribution is uniform. Then, for any χ(T ) ∈
Z
n
≥0 with an appropriate number of tokens M ,

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ = Ω(n)

holds for any time T after mixing.

9



We also give a better lower bound for an SRT-router model.

Proposition 4.6. There exist an example of SRT model such that

max
S⊆V

∣∣∣χ(T )
S − µ

(T )
S

∣∣∣ ≥ n2

8
= Ω(m)

holds for any T > 0.

See Appendix A for the proofs.

4.4 Vertex-wise discrepancy

This section presents an upper bound of thesingle vertex discrepancy ‖χ(T )−µ(T )‖∞, which is an extended
version of [6] to ergodic, reversible and lazy Markov chains, in general.

Theorem 4.7. Suppose P ∈ R
n×n
≥0 is ergodic, reversible7, and lazy. Then for any SRT-router model,

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ = O

(
πmax

πmin
∆
√

t∗ log t∗
)

holds for any w ∈ V and for any T ∈ Z≥0, where ∆ = maxu∈V |N+(u)|(= maxu∈V |N−(u)|), πmax =
maxu∈V πu and πmin = minu∈V πu.

Proof. If t∗ = 1, 2, |χ(T )
w − µ

(T )
w | ≤ 12πmax

πmin
∆ holds since|χ(T )

w − µ
(T )
w | ≤ 6πmax

πmin
∆t∗ holds due to [27].

Now, we assumet∗ ≥ 3, which suggestst∗⌈lg t∗⌉ ≥ 3. By a combination of (9), (15), (11) and (14), we
obtain that

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 2∆
∑

u∈V
|Pαt∗−1

u,w |+ 2∆

αt∗−2∑

t=0

∑

u∈V

∣∣∣P t
u,w − P t+1

u,w

∣∣∣+ 2∆

T−1∑

t=αt∗

∑

u∈V

∣∣∣P t
u,w − πw

∣∣∣ (17)

holds, whereα is an arbitrary positive integer satisfyingαt∗ ≥ 3. The condition thatP is reversible, i.e.,
πuP

t
u,w = πwP

t
w,u holds for anyu, v ∈ V , implies that

∑

u∈V
P t
u,w =

∑

u∈V

πw
πu

P t
w,u ≤ πw

πmin

∑

u∈V
P t
w,u =

πw
πmin

(18)

holds. Lemma 4.4 implies that

αt∗−2∑

t=0

∑

u∈V

∣∣∣P t
u,w − P t+1

u,w

∣∣∣ =

αt∗−2∑

t=0

∑

u∈V

∣∣∣
πw
πu

(
P t
w,u − P t+1

w,u

)∣∣∣ ≤ πw
πmin

αt∗−2∑

t=0

∑

u∈V

∣∣∣P t
w,u − P t+1

w,u

∣∣∣

=
πw
πmin

αt∗−2∑

t=0

‖P t
w,u − P t+1

w,u ‖1 =
2πw
πmin

αt∗−2∑

t=0

Dtv

(
P t
w,·, P

t+1
w,·
)

≤ 2πw
πmin

(
24
√
αt∗ − 2− 11

)
(19)

7 P is reversible if thedetailed balance equation πvPv,u = πuPu,v holds for anyu, v ∈ V . Notice that a reversible ergodicP
is symmetric if its stationary distribution is uniform, andvice versa.
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holds, as well as Lemma 3.3 implies that

T−1∑

t=αt∗

∑

u∈V

∣∣∣P t
u,w − πw

∣∣∣ =

T−1∑

t=αt∗

∑

u∈V

∣∣∣
πw
πu

(
P t
w,u − πu

)∣∣∣ ≤ πw
πmin

T−1∑

t=αt∗

∑

u∈V

∣∣∣P t
w,u − πu

∣∣∣

=
2πw
πmin

T−1∑

t=αt∗

Dtv

(
P t
w,·, π

)
≤ 2πw

πmin

t∗

2α
(20)

holds. Thus, a combination (17), (18), (19) and (20) impliesthat

∣∣∣χ(T )
w − µ(T )

w

∣∣∣ ≤ 2∆
πw
πmin

+ 2∆
2πw
πmin

(
24
√
αt∗ − 2− 11

)
+ 2∆

2πw
πmin

t∗

2α

≤ 2πw
πmin

∆
(
48
√

t∗⌈lg t∗⌉ − 2− 19
)

holds where the last inequality follows by lettingα = ⌈lg t∗⌉. We obtain the claim.

5 Concluding Remarks

In this paper, we gave two upper bounds of thetotal variation discrepancy, one is‖χ(t) −µ(t)‖1 = O(mt∗)
for any ergodic Markov chains and the other is‖χ(t) − µ(t)‖1 = O(m

√
t∗ log t∗) for any lazy and ergodic

Markov chains. We also showed some lower bounds. The gap between upper and lower bounds is a future
work. Development of a deterministic approximation algorithm based on deterministic random walks for
#P-hard problems is a challenge.
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A Supplemental proofs

A.1 Proof of Lemma 3.3

For convenience, leth(t) = maxu∈V Dtv(P
t
u,·, π). We use the following proposition to obtain Lemma 3.3.

Proposition A.1. [27] For any integers ℓ (ℓ ≥ 1) and k (0 ≤ k < t∗),

h (ℓ· t∗ + k) ≤ 1

2ℓ+1

holds for any u ∈ V .

Proof of Lemma 3.3. By Proposition A.1,

∞∑

t=αt∗

Dtv(P
t
u,·, π) ≤

∞∑

t=αt∗

h(t) ≤
∞∑

ℓ=α

t∗−1∑

k=0

h(ℓt∗ + k) ≤
∞∑

ℓ=α

t∗−1∑

k=0

1

2ℓ+1
≤ t∗· 1/2

α+1

1− 1/2
=

t∗

2α

holds. We obtain the claim.

A.2 Supplemental proof of Proposition 3.4

We give a proof oft∗ = O(k) for Proposition 3.4.

Proposition A.2. Let

Pu,v =

{
k−1
k

(if v = u)
1

k(n−1) (otherwise).

Then

τ(ε) ≤ n− 1

n− 2
k log ε−1.
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Proof. The proof is based on the coupling technique [24]. LetXt be a Markov chain according toP , and let
Yt be another Markov chain with the same transition matrixP , where the transition fromYt toYt+1 depends
onXt such that

Yt+1 =





Yt (if Xt+1 = Xt)

Xt (if Xt+1 = Yt)

Xt+1 (otherwise).

Then, it is not difficult to see that for anyX0 andY0,

Pr[Xt 6= Yt] ≤
(
k − 1

k
+

1

k(n− 1)

)t

holds for anyt ∈ Z≥0, thusDtv(P
t
v,·, π) ≤

(
k−1
k

+ 1
k(n−1)

)t
by the coupling lemma (c.f. [24]). Now, we

obtain that

τ(ε) ≤ log ε−1

log
(
k−1
k

+ 1
k(n−1)

)−1 =
log ε−1

log
(
1− n−2

k(n−1)

)−1 ≤ log ε−1

n−2
k(n−1)

=
n− 1

n− 2
k log ε−1

holds, where we used the fact thatlog(1−x)−1 ≥ x holds for anyx (0 < x < 1). We obtain the claim.

A.3 Proof of Proposition 4.3

Proof. LetFt =
∑t

i=0 fi. Then,ft = Ft − Ft−1 holds.

T∑

t=0

ftgt = f0g0 +
T∑

t=1

ftgt = f0g0 +
T∑

t=1

(Ft − Ft−1)gt

= f0g0 +

T∑

t=1

Ftgt −
T∑

t=1

Ft−1gt =

T∑

t=0

Ftgt −
T−1∑

t=0

Ftgt+1

= FT gT +

T−1∑

t=0

Ft(gt − gt+1).

A.4 Proof of Lemma 4.4

To boundDtv

(
P t
u,·, P

t+1
u,·
)
, we use the following proposition.

Proposition A.3. [24] Suppose P ∈ R
n×n
≥0 is ergodic and lazy. Then

Dtv(P
t
u,·, P

t+1
u,· ) ≤ 12√

t

holds for any u ∈ V and for any t > 0.

Proof of Lemma 4.4. By Proposition A.3,
T∑

t=0

Dtv

(
P t
u,·, P

t+1
u,·
)

≤ 1 +

T∑

t=1

Dtv

(
P t
u,·, P

t+1
u,·
)
≤ 1 +

T∑

t=1

12√
t

≤ 1 + 12
(
2
√
T − 1

)
= 24

√
T − 11

holds, and we obtain the claim. Remark that we use the fact
∑T

t=1
1√
t
≤ 2

√
T − 1.
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A.5 Proof of Proposition 4.5

Proof. Let M = (k − 1/2)n be the number of tokens for an arbitrary positive integerk. Note thatµ̃(t)
v =

µ
(t)
v /M converges to1/n for any v ∈ V since the stationary distribution is uniform. Precisely, for any

A ⊆ V andT ≥ τ (1/(8k)),

|A|
n

− 1

8k
≤
∑

v∈A
µ̃(T )
v ≤ |A|

n
+

1

8k
(21)

holds by the definition (2) of the mixing timeτ(ε).

LetT be an arbitrary time, and letA = {v ∈ V | χ(T )
v ≥ k}. First, we consider the case that|A| ≥ n/2.

Then, we see that
∑

v∈A χ
(T )
v ≥ k|A| holds. At the same time

∑

v∈A
µ(T )
v =

∑

v∈A
Mµ̃(T )

v ≤
(
k − 1

2

)
n·
( |A|

n
+

1

8k

)
≤
(
k − 1

2

)
|A|+ n

8

holds. Thus
∑

v∈A

(
χ(T )
v − µ(T )

v

)
≥ k|A| −

((
k − 1

2

)
|A|+ n

8

)
=

1

2
|A| − n

8
≥ n

4

where the last inequality follows|A| ≥ n/2. We obtain the claim in the case. Next, we consider the other

case, meaning that|A| < n/2. Then, we see that
∑

v∈A χ
(T )
v ≤ (k − 1)|A| sinceχ(T )

v < k for anyv ∈ A.
At that time,

∑

v∈A
µ(T )
v =

∑

v∈A
Mµ̃(T )

v ≥
(
k − 1

2

)
n·
( |A|

n
− 1

8k

)
≥
(
k − 1

2

)
|A| − n

8

holds. Thus
∑

v∈A

(
µ(T )
v − χ(T )

v

)
≥

((
k − 1

2

)
|A|+ n

8

)
− (k − 1)|A| = 1

2
|A| − n

8
≥ n

4

where the last inequality follows|A| ≥ n/2. We obtain the claim.

A.6 Proof of Proposition 4.6

Proof. We consider a random walk on a complete graphK2n′ , i.e., letV = {0, 1, . . . , 2n′ − 1} (n′ ∈ Z>0)
andPu,v = 1/(2n′) for anyu, v ∈ V . LetA = {0, 1, . . . , n′ − 1}, B = {n′, n′ + 1 . . . , 2n′ − 1} and let

χ(0)
u =

{
(2k + 1)n′ (u ∈ A)

0 (u ∈ B),

for an arbitraryk ∈ Z≥0. Note thatM = ‖χ(0)‖1 = (2k + 1)(n′)2. Since thisP mixes in a single step,

µ
(t)
A = µ

(t)
B = (2k + 1)(n′)2/2 holds for anyt > 0. We define the SRT-routerσu(i) as

σu(i mod 2n′) = i

for anyu ∈ V . Then, it is not difficult to check thatχ(t)
A = (k + 1)(n′)2 andχ(t)

B = k(n′)2 whent is even,

as well as thatχ(t)
A = k(n′)2 andχ(t)

B = (k + 1)(n′)2 what is odd. Thus,

max
S⊆V

|χ(t)
S − µ

(t)
S | ≥ |χ(t)

A − µ
(t)
A | = (n′)2

2
=

n2

8

holds for anyt > 0. We obtain the claim.
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