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Abstract

Motivated by a derandomization of Markov chain Monte CaNOMC), this paper investigatete-
terministic randomwalks, which is a deterministic process analogous to a random.Wdhile there are
several progresses on the analysis of the vertex-wisesgliaocy (i.e.L ., discrepancy), little is known
about thetotal variation discrepancy (i.e., L, discrepancy), which plays a significant role in the analysis
of an FPRAS based on MCMC. This paper investigates upperdsoahthe L, discrepancy between
the expected number of tokens in a Markov chain and the nuofliekens in its corresponding deter-
ministic random walk. First, we give a simple but nontrivigiper bound (mt*) of the L, discrepancy
for any ergodic Markov chains, where is the number of edges of the transition diagram &nid the
mixing time of the Markov chain. Then, we give a better uppmirdO (m+/t* log t*) for non-oblivious
deterministic random walks, if the corresponding Markowiohis ergodic and lazy. We also present
some lower bounds.

Key words: Rotor router model, Propp machine, load balancing, Madtwin Monte Carlo (MCMC),
mixing time

1 Introduction

Background Markov chain Monte Carlo (MCMC) is a powerful technique obiming randomized ap-
proximation algorithms for #P-hard problems. Jerrum ef{2l] showed the equivalence in the sense of
the polynomial time computation betweahmost uniform generation and randomized approximate count-
ing for self-reducible problems. A number of fully polynahitime randomized approximation schemes
(FPRAS) based on their technigque have been developed fbat#Pproblems, such as the volume of a con-
vex body [14] 25, 11], integral of a log-concave function][3frtition function of the Ising model [19], and
counting bipartite matchings [20]. When designing an FPRA&Sed on the technique, it is important that
thetotal variation distance of the approximate distribution from the target distributis sufficiently small,
and hence analyses of the mixing times of Markov chains aral@ssues in a series of works on MCMC
for FPRAS to guarantee a small total variation distance @llsi8ee also Sectidn 2.1 for the terminology of
Markov chains.

In contrast, not many results are known abdeterministic approximation algorithms for #P-hard prob-
lems. A remarkable progress is the correlation decay tgdeniindependently devised by Weitz [31] and
Bandyopadhyay and Gamarnik [5], and there are severaltrdegalopments on the technique. For counting
0-1 knapsack solutions, Gopalan et al.[[16], and Stefankovel.gR29] gave deterministic approximation
algorithms (see alsd [17]). Ando and Kijima [2] gave an FPT#eSed on approximate convolutions for
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computing the volume of -1 knapsack polytope. A direct derandomization of MCMC altdons is not
known yet, but it holds a potential for a general scheme afytkirsy deterministic approximation algorithms
for #P-hard problemdeterministic randomwalks [10,(9, 13/ 7| 23, 22, 27] may be used as a substitute for
Markov chains, for the purpose.

Deterministic random walk Deterministic random walk is a deterministic process ag@ls to a (mul-
tiple) random wall. A configurationy® e ZZO of M tokens distributed over a (finite) vertex détis
deterministically updated from timeto ¢ + 1 by routers equipped on vertices. The router on a vertext’
deterministically serves tokens ento neighboring vertex with a ratio (about)P,, € [0,1] such that
> vev Puw = 1,16, P = (P,,) € RV*V is a transition matrix (whef’ is finite). See Section 2.2 for the
detailed description of the model with which this paper ina@rned. Note that the expected configuration
u® € RY, of M tokens in a multiple random walk at tintés given byu® = x(*) P on the assumption
thaty(©) = w0,

Cooper and Spencer_[10] investigated the rotor-router madeich is a deterministic random walk
corresponding to a simple random walk, and showed for/tdamensional (infinite) integer lattice that the
maximum vertex-wise discrepangiy ) — 1(t)|| is upper bounded by a constant which depends only
ond but is independent of the total number of tokens. Later, shiswn that; ~ 2.29 [9] and ¢; is about
7.29 or 7.83 depending on the routeris [13]. On the other hand, Cooper Blj@ave an example of a rotor-
router on the infinitek-regular tree, such that its vertex-wise discrepancy ggigkt) for an arbitrarily
fixedt.

Motivated by general transition matrices, Kijima et al.|[28/estigated a rotor-router model on finite
multidigraphs, and gave a boufitin|.4|) of the vertex-wise discrepancy whéhis rational, ergodic and
reversible, where = |V'| and.A denotes the set of multiple edges. For an arbitrary ratiwaasition matrix
P, Kajino et al. [22] gave an upper bound using the secondsarjgenvalue\* of P and some other param-
eters ofP. To deal with irrational transition probabilities, Shieagt al. [27] presented a generalized notion
of the rotor-router model, which they céilinctional router model. They gave a boun® ((mmax/Tmin)t*A)
of the vertex-wise discrepancy for a specific functionateomodel (namelySRT-router model) whenP is
ergodic and reversible, wheté denotes the mixing rate d? andm .« (resp.mmin) IS the maximum (resp.
minimum) element of the stationary distribution vectoof P. Using [27], Shiraga et al. [28] discussed the
time complexity of a simulation, in which they are concerngth an oblivious version, meaning that the
states of routers are reset in each step while the detetimiraadom walk above mentioned carries over the
states of routers to the next step.

Similar, or essentially the same concepts have been indepdy developed in several literature, such
as load-balancing, information spreading and self-ogdian. Rabani et al._[26] investigated the diffusive
model for load balancing, which is an oblivious version ofedministic random walk, and showed for the
model that the vertex-wise discrepancyO$A log(n)/(1 — A*)) when P is symmetric and ergodic, where
A is the maximum degree of the transition diagranmPofFriedrich et al.[[15] proposed the BED algorithm
for load balancing, which uses some extra information inghevious time, and they gaw@(d'®) for
hypercube and)(1) for constant dimensional tori. Akbari et al.l [1] discussed telation between the
BED algorithm and the rotor-router model, and gave the samads for a rotor-router model. Berenbrink
et al. [6] investigated about cumulatively fair balancdgodathms, which includes the rotor-router model,
and gave an upper bour@{d min(+/log(n)/(1 — A*),/n)) for a lazy version of simple random walks on
d-regular graphs.

As a closely related topic, the behavior of the rotor-routerdel with a single token has also been
investigated. Holroyd and Propp [18] investigated the desgpy () e ZZO of visits of the token int

steps, and showed thiw®) /t — || is O(mn/t). Preceding([18], Yanovski et al. [32] showed that the

multiple random walk” means independent random walks ofiyrikens.



Conditions onP | L..-discrepancy L+-discrepancy
E.R. Alog(n) Anlog(n)
symmetric © ( 1=Ax ) [26] © ( 1—A* )
E.R.L )
rational Ol Al) [23] Ol A)
. a*n a*n2
any rational O <(1_A|f;|5> [22] O ((1_>\i§4ﬁ‘)
E.R. 0 (%t*A) 7] 0 (;;—tAn)
E.R. L.
simple r.w. O (d min ( lff()ﬁ), n>> [6] 0 <m min < lff(;) ) \/ﬁ>>
d-regular
E. O(mt*) Thm.[3.2
E. L. O(m+/t*log t¥) Thm.[4.2
E.R. L. = T
symmetric O(AVt*Tog t¥) Thm.[4.T

E.: ergodic, R.: reversible, L.: lazy

Table 1: Summary of known results gr® — 1(*)||, for finite graphs, and this work.

rotor-router model with a single token always stabilizes toaversal of an Eulerian cycle aftem D steps

at most, whereD denotes the diameter of the graph. This result implies tiea{¢dge) cover time of the
rotor-router model with a single token @(m D) for any graph. Bampas et al. [4] gave examples of which
the stabilization time getQ(m D). Similar analyses for the rotor-router model with many tukbave been
developed, recently. Dereniowski et al. [12] investigatteel cover time of the rotor-router model wifid
tokens, and gave an upp@(mD/log M) and an example dR(mD/M) as a lower bound. Chalopin et
al. [8] gave an upper bound of its stabilization time&ign* D? + mD log M), while they also showed that
the period of a cyclic stabilized states can get as larg*aé".

Our results.  As we stated before, the total variation distance betweenatyet distribution and approx-
imate samples is significant in the analysis of MCMC algonish While there are several works on deter-
ministic random walks concerning the vertex-wise discnegdx® — ;|| such as[[26, 23,22, 27 6],
little is known about the total variation discrepany® — n.()||,. This paper investigates the total variation
discrepancy to develop a new analysis technique aimingrahdemizing MCMC.

To begin with, we give a simple but nontrivial upper bound doy ergodic finite Markov chains, pre-
cisely we show||x) — u®|; = O(mt*) wheret* is the mixing rate ofP andm is the number of edges
of the transition diagram aP. In fact, the analyses are almost the same for both the nlrieats model,
including the rotor-router model [10, 23,122, 6], and theiabls model like [26] 2B] in which the states
of routers are reset in each step, and we in Setlion 3 dealhétbblivious model. We also give a lower
bound for the oblivious model presenting an example sumywﬁé) —u® 1 = Q(t*), which suggests that
the mixing rate is negligible in thé, discrepancy for the oblivious model.

Then, we in Sectiohl4 give a better upper bound for non-ahlsideterminstic random walk, precisely
we show|x® — u®||; = O(m+/t*logt*) when P is ergodic and lazy. Notice that the upper bound does
not require reversible. The analysis technique is a modiificaof Berenbrink et al.[[6], in which they
investigated a lazy version of simple random walksdaregular graphs. In fact, we also remark that the
analysis technique by[6] for the vertex-wise discrepamsogxtended to general graphs, precisely we show
that | x® — u®]|| = O(AV#*logt*) when P is ergodic, lazy, symmetric. We also present some lower



bounds ofL; discrepancy for non-oblivious models.

Table[d shows a summary of known results [26,23[ 22, 27, 6hdh — 1 ||, and the results by this
work. The column of I discrepancy” shows the upper bounds||gf®) — ()|, implied by the previous
results [26], 23, 22, 27 6], in comparison with upper bourtataiaed by this paper.

2 Preiminaries

2.1 Random walk / Markov chain

As a preliminary step, we introduce some terminology of Markhains (cf.[[24]). Let/ = {1,...,n}
be a finite set, and leP < R%” be a transition matrix o, which satisfiesy ;- P,, = 1 for any
v € V, whereP, ,, denotes théu,v) entry of P (P!, denotegu, v) entry of P*, as well). LetG = (V, )
be the transition digram aP, meaning that = {(u,v) € V x V | P,, > 0}. Let N (v) and N~ (v)
respectively denote the out-neighborhood and the in-heidiood ofv € V ongE. For convenience, let
m = [€], 67 (v) = N (v)| andd~(v) = [N~ (v)].

A finite Markov chain is calledergodic if P is irreducibled andaperiodi(ﬂ. It is well known that any
ergodicP has a uniquetationary distribution 7 € R%, (i.e., 7P = 7), and the limit distribution isr (i.e.,
limy_,o, £P! = 7 for any probability distributior¢ G_R;LO onV). Let& and( be probability distributions
onV, then thetotal variation distance D;, betweert and( is defined by

. 1
Dur(€:¢) & max| > (6 — 6)| = 5116 = <l (1)
= vEA
Themixing time of P is defined by
7(€) % maxmin {teZs | DtV(P£7,,7T) <e} (2)

veV

for anye > 0f. Lett- % 7(1/4), calledmixing rate, which is often used as a characterizationPof
Let x© = (u§°>, e ,MS))) € Z%, denote an initial configuration a¥/ tokens ovel/. Suppose that

each token randomly and independently moves accorditi) ticet () denote theexpected configuration
of tokens at timg € Zsg in a Markov chain, them® = ;) Pt holds. By the definition of mixing time,
| /M — 7||; < e holds for anyt > 7(¢) if P is ergodic.

2.2 Deterministic random walk: framework

A deterministic random walk is a deterministic process imitating®. Let x(© = p(© andy®) € z2,
denote the configuration of tokens at time Zx in a deterministic random walk. An update in a deter-

ministic random walk is defined b&% denoting the number of tokens moving franto « at timet, where
21% must satisfy the condition that

> Z20 =X (3)
)

ueNT (v

NtT(w)={u €V | Pyu>0}andN (v) = {u €V | Py, > 0}.

3P isirreducible ifvu, v € V,3t > 0, P,ﬁ,l, > (. Then, transition diagram d? is connected.
P is aperiodic ifvv € V, GCD{t € Z~o | P}, >0} = 1.

°P! . denotes the-th row vector ofP".



for anyv € V. Then,x(*1 is defined by

def.
NEEEDY

veN ~(u)

t

)

S~

e —

(4)

for anyu € V. We will explain some specific deterministic random walkS#ections 3J1 anld 4.1 by giving
precise definitions of{’}. We are interested in a questiond® approximates.) well in terms of the total
variation discrepancy, i.e., the question is how latgecacy [\ — 1| = (1/2)[Ix® — @]}, does get.

In the end of this section, we introduce two notations whiehwill use in the paper. For agyc RY and
ACV,leté,y denotesy 4 & . For exampleug) = vea me andP, a4 = Y ca Puo- Foranyé € R”,
P e R™™andu € V, let (£P),, denotes the:-th element of the vect&P, i.e.,({P), = >, ey &oPou-

3 Upper and lower boundsfor oblivious model

This section is concerned with an oblivious version of dateistic random walk, which is closely related
to the models in[26, 28].
3.1 Oblivious model

Given a transition matriX° and a configuratiorx(t) of tokens, we definé?z(,% as follows. Assume that an
arbitrary orderingus, . . ., us+(,y ONN*(v) is prescribed for each € V. Then, let

D P | 41 <)
Do = {th)PwiJ (otherwise ®)

where;* % ng) - Z?Sv) LX,(f)PU,uZ.J denotes the number of “surplus” tokens. It is easy to cheakttte

condition [3) holds for any,u € V andt € Z>o. Then, the configurationy (1) is updated according
to @), recursively. The following observation is easy frtiva definition [(5) ofZ."), .

Observation 3.1. For any oblivious model, | Z\), — v{" P, .| < 1 holds for any u,v € V and t € Z.

3.2 Upper bound

In this section, we give an upper bound of the total variatlmerepancy.

Theorem 3.2. Suppose P < R%" isergodic. Then, for any oblivious model,

3 * *
N =] < Smrt = o(me)
holds for any A C V and for any T" € Z>.
Remark that Theorefmn 3.2 only assumes thag ergodic.

Proof of TheoremB.2 Let () = y® — (=1 P for convenience. By{4) and Observatfonl3.1,

0] = | (X = x©p)

< Y |2 P <@ ©
veN ~(u)

u




holds for anyu € V andt € Z>,. Now, we see that

T-1 T-1
Z ¢(T—t)Pt — Z <X(T—t)Pt _ X(T—t—l)Pt—l-l) — X(T)PO _ X(O)PT — X(T) _ ,U(T) (7)
t=0 t=0

hold, sincex™) = () PT holds by the assumption. ByI(7),

T-1

T-1

U Ol IS o o
t=0 A t=0 ueV
at*—1

T-1
= X SR+ 3 Y (Pl ma) ®)

t=0 ucV t=at* uecV
for any possible integet, where the last inequality follows from the fact that
d o =>" (X(t“) —~ x(t)P) = >IN N PP, =M-M=0
uev uev “ uev ueV veV

holds for anyt € Z>(. By (8), we obtain that

ail Z gbqu_t)Pé,A

t=0 ueV

: (9)

Tz_:l > ol <PZL,A - 7TA>

t=at* ueV

‘Xf) —uf)( < +

Now, we give upper bounds of each term[df (9). For the first tefi@), it is easy to see that

at*—1 at*—1

< S PLAIDY T < YT Y "6 (u) = mat® (10)

t=0 ueV t=0 wueV

at*—1

Y D oIP

t=0 ueV

holds by [6). To bound the second term[df (9), we use the faligyemma (See Appendix]A for the proof).
Lemma 3.3. [27] Suppose P € R%” isergodic Then,

o t*
> Du (Prom) < o
t=at*

holds for any v € V and for any o € Z~. |

By Lemmd_ 3.8, we obtain that

T-1 T-1 . .
S AT (Pla—ma)| < 3 ST ONPL - < 5 S max 670 < B8 ()

t=at* ueV t=at* ueV ueV

hold where the last inequality follows froml (6). Now, we dhtthe claim from[(9),[(I0) and(11) by letting
a=1. O



3.3 Lower bound

We give the following lower bound for an oblivious model. $lroposition imply that we cannot improve
the term¢* for oblivious models in general.

Proposition 3.4. There exist an oblivious model such that

() D] _ oy
Isl,lgg‘xs #s( Q(nt”)

holds for any timeI" after mixing.

Proof. LetV = {0,...,n—1}, and let a transition matri¥ be defined by>, , = (k—1)/k foranyu € V,
andP,, = 1/k(n — 1) for anyu,v € V such thatu # v, i.e., P denotes a simple random walk @,
with a self loop probability & — 1)/k for any vertex. For thig, it is not difficult to checkt* = O(k) (See
Appendix[A). Then, we give a corresponding oblivious deiarstic random walk. Let us assume that the
prescribed ordering for eaehe V starts withv itself (remember the definition of an oblivious determiiaist
random walk in Section 3/1). Let

©0) _ kE (ueA)
0 (ue€B),

whereA = {0,...,n/2 — 1} andB = {n/2,...,n — 1}. Then, the initial configuration is stable, i.e.,
x® = x(0), since each € A serves|k-£-1| +1 = k tokens to itself (notice that the “surplus” token stays
atv according to the prescribed ordering). Now it is easy to bae t

(t)| > | (t) ®)] < kn  kn kn

® _ L T
max xg’ — ps Xa —hal 25 - me=p —e=00nt")

holds for anyt > 7(<). We obtain the claim. O

4 Upper and lower bounds for non-oblivious model

Observation 3]1 for oblivious model suggests only tlZéf)u — Xz(f)Pv,u] < 1 holds for anyt € Z>. In this

section, we introduce th&RT-router modd (c.f., [27]), which satisfie$2§z (Zz(,il — Xz(f)Pv,u)] < 1 for
anyt € Z>q, and we obtain an improved bound when the Markov chalazgl.

4.1 Mode

The SRT-router model, based on thertest remaining time (SRT) rule [3[.30, 2[7], is a generalized version
of the rotor-router model. In the model, we define @Ri-router o,: Z>o — N (v) on eachv € V
for a given P. Roughly speakingg, (i) denotes the destination of thieh launched token at. Given
0,(0),...,0,(i — 1), inductively o, (i) is defined as follows. First, let

Ti(v) ={u e N"(v) [ {7 € [0,3) | 0u(j) = u}| = (i + 1) Pou < O},

where[z, 2/) & {2,z +1,...,2 — 1} (remark[z, z) = 0). Then, leto, (i) bew* € T;(v) minimizing the
value

’{] € [072) ‘ Uv(j) :u}’ +1
Py

®Pislazy if P,. > 1/2 holds for anyu € V.



inanyu € T;(v). If there are two or more such € T, (i), then letu* be the minimum in them in an
arbitrary prescribed order. The orderiag(0),0,(1),... is known as theshortest remaining time (SRT)
rule (see e.g./ 13, 30, 27]).

In an SRT-router model, there a)zét) tokens on a vertex at timet¢, and each vertex serves tokens
onv to the neighboring vertices one by one according.t@), like a rotor-router. For example, if there are
a tokens orw at timet = 0, then|{j € [0,a) | 0,,(j) = u}| tokens move to each € A" (v), and there are
b tokens onw att = 1, then|{j € [a,a +b) | 0,(j) = u}| tokens move to each € N'*(v), and so on.
Formally, it is defined by

2 = |{ie [Sihd 2lood?) 1 out) = u}- (12)

It is clear that the definitior_(12) satisfiés (3). Then, thefiguration of tokens is recursively defined by (4).
The following proposition is due to Angel et &l [3] and Tifdan [30].

Proposition 4.1. [30,[3] For any SRT-router model,
{7 €l0,2) |ow(j) = u}| =2z Pou| <1
holds for any v,u € V and for any z > 0.

Propositio 4.11 suggests th (Z)L - Xg,t)PU,u| is small enough. In fact, Propositibn 4.1 ahd|(12) suggest
a stronger fact that

b

Z‘{je [Zs oxz(f)723 on > | 0u(4) H ZXU v,

t=a t=a
e o
< max [{j€(z72)]| o) =ul — (' —2)Pu| <2 (13)
2,2 €l>0
s.t. 2/>z

holds for anya, b € Z>q s.t.a < b. We will use [I8) in our analysis, in Sectibn4.2.

4.2 Better upper bound for the SRT-router model
Now, we show for ergodic and lazy the following theorem, modifying the technique [6].

Theorem 4.2. Suppose P € R%" isergodic and lazy. Then for any SRT model,

WD | = 0 (g

holds for any A C V and for any T" € Z>y.

Proof of Theorem[4.2. The major difference between an oblivious model and an SRfer model is that

b
> 0| = Z Z Zéf ~ WP < Y

t=a t=a ye N — veEN ~ (u)

<25 (u)  (14)

t=a

holds for anyu € V andb > a in an SRT-router model since_(|13) holds. It is easy to cheak\bt‘fAT) —
NE4T)| < 3m¢t* holds for any SRT-router model by the same argument in thef mfor heoreni 3.2 using (14)

8



instead of[(6). Thus we obtala(AT) — u(AT)| < 6m if t* = 1,2. In the rest part of the proof, we assume that
t* > 3, which suggests*[lg¢t*| > 3. We introduce the following proposition and lemma to giveettér
upper bound of the first term df](9). See Apperidix A for the fsoo

Proposition 4.3. Let F; = 3_!_, fi- Then,

T T—1
> fige=Prgr+ > Fi(g — gi+1)
t=0 t=0
holds for any T" € Z>¢ and for any f;,g; (0 <1i <T). |

Lemma4.4. Supposethat P € R%" is ergodicand lazy. Then,

ZDW !t P < 240T - 11

holds for any w € V and for any T' € Z~. |

Using Proposition 4]13[(14) and Lemimnal4.4, we obtain

at*—1 at*—2 t
(z o )P > (MT ) (P P)
7=0

at*—1 ‘

Z qbq(LT_t)Pt
t=0

at*—1 at*—2| t
< |20 TR T Y Y| [Pl - B (15)
i=0 t=0 [=0

< 267 (u) + 207 (u) - (24\/m - 11) = 26~ (u) (24@ - 10) (16)

for anyu € V, wherea is an arbitrary positive integer satisfying* > 3. Finally, (9), [16), [(T1.) and_(14)
imply that

at*—1
T
‘XE“ —,ui‘)‘ = Z Z ¢1(‘T t)P +2_azo<t<T|¢(T t|
ueV | t=0 ueVv
t*
< 2m<24\/at* N 10) +2m < 2m(24\/t* gt —2— 9)
where the last inequality is obtained by letting= [1g¢*]. We obtain the claim. O

4.3 Lower bounds

This section discusses a lower bound of the total variatisnrepancy. First, we observe the following
proposition, which is caused by the integral gap betwgén € ZV andp(™ e RV,

Proposition 4.5. Suppose that P is ergodic and its stationary distribution is uniform. Then, for any x(7) e
Z,, with an appropriate number of tokens A/,

(1) _ ()] _
rsngag‘xg I ‘—Q(n)

holds for any timeT" after mixing.



We also give a better lower bound for an SRT-router model.

Proposition 4.6. There exist an example of SRT model such that

2
(T _ (M| S " _
g~ 2 g = 00w

holds for any T" > 0.
See Appendik’A for the proofs.

4.4 Vertex-wise discrepancy

This section presents an upper bound ofsingle vertex discrepancy ||x() — (™) ||, which is an extended
version of [6] to ergodic, reversible and lazy Markov chainggeneral.

Theorem 4.7. Suppose P € R”X" isergodic, revers ble, and lazy. Then for any SRT-router model,

@ -] =0 (WmaXAW og t*>
holds for any w € V and for any 7' € Z>(, where A = maxyey [N (u)|(= maxyey [N~ (u)]), Tmax =
maxXycy Ty, and mmin = ming ey my,.

Proof. If t* = 1,2, |xw @™ _ M | < 12”maXA holds smchw — Mw | < GﬂmaXAt* holds due to[[2]7].
Now, we assume* > 3, which suggest$* [lgt*] > 3. By a combination offﬂ9) L(A5)[(11) and(14), we
obtain that
at*—2
‘X&T)_NSUT)‘S2AZ|P1$Z _Pt—i-l

ueV t=0 ueV t=at* ueV

. ww( (17)

holds, wherex is an arbitrary positive integer satisfying* > 3. The condition thaiP is reversible, i.e.,
TPy, = ™ P, ,, holds for anyu,v € V, implies that

T TT. TT.
M PL,=> ”wu_ “ NP, =" (18)

ueV ueV ueV

holds. Lemma_4l4 implies that

at*—2 at*—2
t+1] Tw t+1 t+1
RTINS b ) T | R, S g
t=0 ueV t=0 wueV t=0 wueV
T, at*—2 . t+1 27Tw at*—2 t+1
= . Z ||Pw7u_Pw Z Dtv( P )
Tmin -0 T'min
2
< v (24\/at* . 11) (19)
Tmin

’ Pis reversible if thedetailed balance equation m,, P, ., = . P, holds for anyu,v € V. Notice that a reversible ergodi¢
is symmetric if its stationary distribution is uniform, awite versa.

10



holds, as well as Lemnia 3.3 implies that

T-1 T-1 - LTl
t _ _ Tw t o w t _
> Y[ - Y Y[ (Run) < S S|
t=at* ueV t=at* ueV t=at* ueV
Wy 21y tF
_ ZMw D V<Pt ) < Zw b 20
T'min t:za;* ’ Wy 7T) ~ Tmin 2% ( )
holds. Thus, a combinatioh ([17)), {18).119) and (20) impiiex
‘xff) _ Mg)‘ < on T gp 2T (24\/ozt* —2- 11) N
Tmin Tmin Tmin 2
2m
< 2w Velgr] —2—
< 7TmmA(zLé; t gt ] — 2 19)
holds where the last inequality follows by letting= [1g ¢t*]. We obtain the claim. O

5 Concluding Remarks

In this paper, we gave two upper bounds oftibtal variation discrepancy, one is||x () — u®)||; = O(mt*)

for any ergodic Markov chains and the othel|ig?) — ;(!)|; = O(m+/t*logt*) for any lazy and ergodic
Markov chains. We also showed some lower bounds. The gapebatupper and lower bounds is a future
work. Development of a deterministic approximation altfori based on deterministic random walks for
#P-hard problems is a challenge.
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A Supplemental proofs
A.l1 Proof of Lemmal3.3
For convenience, Igi(t) = max,cy Dy (P}, 7). We use the following proposition to obtain Lemmal3.3.

Proposition A.1. [27] For anyintegers ¢ (¢ > 1) and k (0 < k < t¥),

. 1
h(l-t*+k) < PY2S)
holds for any v € V.

Proof of Lemma[3.3. By Propositio A.1L,

(3] (3] oo t*—1 oo t*—1 1 1/2a+1 t*
t * * _
IENCRUIEED SEICED SOOIAET D D) BE- R s T S
t=at* t=at* l{=a k=0 l=a k=0
holds. We obtain the claim. O

A.2 Supplemental proof of Proposition[3.4
We give a proof of* = O(k) for Propositior 3.4.

Proposition A.2. Let

po_ kol (if v = u)
e k(nl_l) (otherwise).
Then
n—1 _1
T(e) < _2krlog5


http://arxiv.org/abs/1311.3749

Proof. The proof is based on the coupling technidue [24]. Xebe a Markov chain according 1, and let
Y; be another Markov chain with the same transition matjxvhere the transition frori; to Y;, ; depends
on X; such that

Y; (if Xyp1 = Xy)
Yit1 =9 Xy (if Xep1 =Y3)
Xt+1  (otherwise).
Then, it is not difficult to see that for any, andY,

Pr[X; #Y] < <k;1 - k(nl_ 1)>t

holds for anyt € Zx, thusDy, (P}, 7) <

t
kel g L ) by the coupling lemma (c.f_[24]). Now, we

VR

k(n—1)
obtain that
loge™! loge™! loge™! —1
o) < 0g e - oge < o;gl;_z—:2 _nr k‘logz—:_l
_ _n=2_ E(n—1) —2
IOg( T Rn— 1)> log (1 k(n—l))

holds, where we used the fact theg(1 — ) ~! > 2 holds for anyz (0 < = < 1). We obtain the claim. O

A.3 Proof of Proposition4.3
Proof. Let F;, = ZZ o fi- Then,f, = F; — F;_; holds.

T
thgt = f090+2ft9t = fogo+ > _(Fi — Fr1)gs
t=0 t=1

t=1

T T T T-1
= fogo+ > Fig—Y Fiag =Y Fg—Y Fon
=1 =1 =0 t=0

T-1
= Frgr+ Y Filge — gi1)-
=0
O
A.4 Proof of Lemmai.4
To boundDy, (P. ., PLt'), we use the following proposition.
Proposition A.3. [24] Suppose P € RZj" isergodic and lazy. Then
12
DV Pt,,Pt—’,_l < =
t ( u, u, ) = \/E
holds for any v € V and for any ¢t > 0.
Proof of Lemmal4.4. By Propositior A.B,
T T T
> D (P PHY) < 14> Dy (P, P Z —
=0 - t=1 t=1 \[
< 1412 (2\/T—1> = 24V/T —
holds, and we obtain the claim. Remark that we use theﬁ’f;tl <2VT —1. O
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A5 Proof of Proposition4.5

Proof. Let M = (k — 1/2)n be the number of tokens for an arbitrary positive intefgeNote thatiil!) =
;Af’/M converges td /n for anyv € V since the stationary distribution is uniform. Precisety; &ny
ACVandT > 7(1/(8k)),

Al 1 —ry A1

7—8—k§U6AMS))§7+8—k (21)
holds by the definitior (2) of the mixing timg(e).

Let T be an arbitrary time andlet ={v eV | X ) > k}. First, we consider the case that > n/2.

Then, we see that_  , xS > k|A| holds. At the same time

dou = > MEllh < < 2>n<’A‘+8k><<k——>|Al+_

veA veEA

holds. Thus
S (- ut) = wlal- (k- 3) 1145 ) = glal- 22
i 2 8 4

where the last inequality followlsA| > n/2. We obtain the claim in the case. Next, we consider the other
case, meaning thatl| < n/2. Then, we see that, 4 X,(,T) < (k—1)|A] sincexg‘r) < k foranyv € A.

At that time,
E (T) E |_1| — i _Z _
Uy M,u < 2> - ( - 3% k |A|

vEA
holds. Thus
1— n_n
(T)y _ (MY} > _ = —(k — ZIA - =2 > 2
S (0 -xt) = (k- 3) A+ E) - - A = A - 2
vEA
where the last inequality followis1| > n/2. We obtain the claim. O

A.6 Proof of Proposition

Proof. We consider a random walk on a complete gréaphy,, i.e., letV = {0,1,...,2n' — 1} (n/ € Z<y)
andP,, = 1/(2n) foranyu,v € V. LetA = {0,1,...,n' =1}, B={n/,n' +1...,2n' — 1} and let

“ 0 (u € B),
for an arbitraryk € Zso. Note thatM = [|x(?||; = (2k + 1)(n’)2. Since thisP mixes in a single step,
#54) = ,ug) = (2k + 1)(n')?/2 holds for anyt > 0. We define the SRT-router, () as

ou(i mod 2n') =i

for anyw € V. Then, it is not difficult to check thatf? = (k+1)(n')? andxg) = k(n’)? whent is even,
as well as thajs(fj) = k(n')? andx(t) = (k + 1)(n’)? what is odd. Thus,

® B (n/)2 - n_2
holds for anyt > 0. We obtain the claim. O

— >
glgg\xS ns'l = Iy
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