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Abstract

Statistical phylogenetic inference methods use tree re-
arrangement operations such as subtree-prune-regraft
(SPR) to perform Markov chain Monte Carlo (MCMC)
across tree topologies. These methods are known to mix
quickly when sampling from the simple uniform distri-
bution of trees but may become stuck in the local op-
tima of multi-modal posterior distributions for real data
induced by non-uniform likelihoods. The structure of
the graph induced by tree rearrangement operations is
an important determinant of the mixing properties of
MCMC, motivating study of the underlying rSPR graph
in greater detail.

In this paper, we investigate the rSPR graph in a
new way: by calculating Ricci-Ollivier curvature with
respect to uniform and Metropolis-Hastings random
walks. We confirm using simulation that mean access
time distributions depend on distance, degree, and cur-
vature, showing the relevance of these curvature results
to stochastic tree search. These calculations require
fast new algorithms for constructing and sampling these
graphs, reducing the time required to compute an rSPR
graph from O(m2n)-time to O(mn3), where m is the
(often large) number of trees in the graph and n their
number of leaves, and reducing the time required to se-
lect an SPR neighbor of a tree uniformly at random
to O(n) time. We then develop a closed form solution
to characterize how the number of SPR neighbors of a
tree changes after an SPR operation is applied to that
tree. This gives bounds on the curvature, as well as
a flatness-in-the-limit theorem indicating that paths of
small topology changes are easy to traverse. However,
we find that large topology changes (i.e. moving a large
subtree) gives pairs of trees with negative curvature. Al-
though these pairs of trees with negative curvature do
not impede mixing in this simple well-connected space,
they may manifest as bottlenecks in the much smaller
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credible sets induced by phylogenetic posteriors with a
likelihood function. This work extends our knowledge
of the rSPR graph, in particular properties that are rel-
evant for investigation of sampling the rSPR graph.

1 Introduction

Molecular phylogenetic methods reconstruct evolution-
ary trees from DNA or RNA data and are of funda-
mental importance to modern biology. Statistical phy-
logenetics is the currently most popular means of re-
constructing phylogenetic trees, in which the tree is
viewed as an unknown parameter in a likelihood-based
statistical inference problem. The likelihood function
in this setting is the likelihood of generating the ob-
served sequences via a continuous time Markov chain
(CTMC) evolving down the tree starting from a se-
quence assumed to be sampled from the stationary dis-
tribution [7]. The lengths of the branches of the phy-
logenetic tree give the “time” parameter in the CTMC,
where the generated sequence accrues mutations, typi-
cally in an IID manner across sites. It is now common
for researchers to approximate the posterior distribution
of trees and their associated parameters in a Bayesian
setting using Markov chain Monte Carlo (MCMC).

In order to estimate these distributions accurately,
MCMC samplers must sufficiently explore the set of
trees. Phylogenetic search algorithms typically attempt
to do so through a combination of modifications to the
continuous parameters and tree topology. Topology
changes have been identified as the main limiting fac-
tor of Bayesian MCMC algorithms [13,16], as other pa-
rameters cannot be accurately estimated if the topology
distribution is not accurately sampled. Commonly used
phylogenetics software packages such as MrBayes [29]
and BEAST [4] rearrange subtrees via subtree-prune-
regraft (SPR) moves (Figure 1(d)) or the subset of SPR
moves called nearest neighbor interchanges (NNI) [27].
Thus, phylogenetic searches can be viewed as travers-
ing the SPR graph: the graph with phylogenetic trees
as vertices and SPR adjacencies as edges.

It has become increasingly clear that the structure
of the SPR graph plays an important role in determin-
ing the accuracy of tree searches. Researchers have pre-
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viously identified slow mixing in MCMC with patho-
logical data [22, 23, 28]. On the other hand, fast mix-
ing has been identified with exceptionally well-behaved
data [38] or with a uniform distribution [34]. Studies
on real data [2, 16], however, have identified posteriors
which are difficult to sample using MCMC. Previously,
the lack of sufficient computational tools for examin-
ing phylogenetic posteriors in terms of SPR operations
made it difficult to determine the cause of these diffi-
culties. By developing the first such tools, we recently
showed that graph structure has a significant effect on
MCMC mixing with MrBayes applied to real data [44],
and that multimodal posteriors are common and sepa-
rated by “bottlenecks” of specific classes of SPR moves.

Although the SPR graph is thus very important
in determining the success of phylogenetic inference
procedures, still little is known about the rooted or
unrooted versions of the SPR graph itself. [32] developed
a recursive procedure on a tree to find the degree of the
corresponding vertex in the rooted SPR (rSPR) graph,
and corresponding bounds on degree. [5] showed that
the diameter ∆rSPR of the rSPR graph is n − Θ(

√
n),

and for the unrooted case they show

(1) n−2d
√
ne+1 ≤ ∆uSPR(n) ≤ n−3−

⌊√
n− 2− 1

2

⌋
.

We are not aware of any further work investigating
properties of the SPR graph, which may be due to
its complexity. Indeed, even computing the distance
between topologies in terms of SPR operations (rooted
and unrooted) is NP-hard [3,12]. Fortunately, it is fixed-
parameter tractable with respect to the distance in the
rooted case [3] and efficient fixed-parameter algorithms
have recently been developed [43,44] and begun to allow
such investigation.

Ollivier and colleagues recently pioneered a new
approach to calculating Ricci curvature on a general
type of metric space, including graphs [15, 25]. In this
framework, local information about the metric space
is given by a random walk (rather than a Riemann
tensor) such that their notion of curvature formalizes
the notion of to what extent random walking brings
points together. Applying the framework to Brownian
motion on a manifold returns the classical definition of
Ricci curvature. Curvature is determined by the ratio of
the earth mover’s distance [30] between neighborhoods
of a pair of vertices given by a random walk and
the distance between the vertices. Here the term
random walk on a space X simply denotes a family
of probability measures parameterized by points of
X satisfying reasonable assumptions, which includes
biased walks such as MCMC. This approach has been
useful for determining properties of a wide variety of

graphs including the internet topology [24] and cancer
networks [31].

In this paper, we investigate curvature of the rSPR
graph with respect to two random walks and compare
those results to access times (i.e. hitting times) for
those random walks. Our explicit focus here is to
investigate random walks defined only in terms of the
graph itself: the uniform random walk and MCMC
sampling from the uniform prior on trees. In future
work, we will extend these methods to study more
complicated distributions with non-uniform topology
probabilities.

We required several new computational tools. We
present a fast new algorithm for computing rSPR graphs
from a set of trees, reducing the time to do so from
O(m2n) to O(mn3) for a set of m trees with n leaves.
As the full rSPR graph on trees with n leaves contains
(2n− 3)!! = 3 · 5 · . . . · (2n− 3) trees, this is a significant
improvement in practice for exploring large subsets
of the graph (or, as we do here, the full graph for
small numbers of leaves). By exploiting symmetries in
the rSPR graph, we were able to calculate all of the
curvatures for pairs of trees with up to seven leaves.
By carefully examining the overlap in rSPR moves,
we present a new method for computing the degree
of a tree in the rSPR graph that allows one to select
an rSPR neighbor uniformly at random in linear-time
without explicitly generating the graph. This stands
in contrast to the sampling methods used in current
software such as MrBayes, which do not propose SPR
moves uniformly.

Using our methods to simulate these random walks,
we found that the distribution of access times between
pairs of trees can be described by distance between the
trees, the degrees of the trees, and the curvature. More-
over, we found that rSPR graphs for trees with 7 or
more leaves have tree pairs with negative curvature,
corresponding to direct paths that are difficult to tra-
verse stochastically. By getting a more fine-tuned un-
derstanding of the rSPR neighborhood of pairs of ver-
tices, we are able to give bounds on the earth mover’s
distance in this context and thus curvatures under these
random walks. In particular, we present a full charac-
terization of the change in rSPR degree that occurs from
a given rSPR move and find that even though they each
count as one move, rSPR moves which modify large sub-
trees are less likely to be explored during these random
walks. Pairs of trees separated by such moves corre-
spond to the pairs with negative curvature identified in
our simulation results. These pairs occur infrequently
in these well-connected graphs, however, they may be
more problematic in real posterior distributions where
the majority of probability is spread over a relatively
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Figure 1: (a) An X-tree T . (b) T (V ), where V = {1, 2, 5}. (c) T |V . (d) An rSPR operation transforms T into a
new tree T ′ by pruning a subtree and regrafting it in another location.

small number of trees [44]. In summary, we extend
knowledge about an important graph for phylogenetics,
specifically in a way that models phylogenetic MCMC
search.

The automated computational analysis code can be
found at https://github.com/matsengrp/curvature.
Proofs of our theorems and lemmas can be found in the
appendix.

2 Preliminaries

We follow the definitions and notation from [3, 43, 44].
A (rooted binary phylogenetic) X-tree is a rooted tree
T whose nodes have zero or two children such that the
leaves of T are bijectively labelled with the members of a
label set X. As in [3,43,44], the tree is augmented with
a labelled root node ρ and ρ is considered a member
of X (Fig. 1(a)). We generally use n to refer to the
number of leaves in an X-tree. For a subset V of X,
T (V ) is the smallest subtree of T that connects all
nodes in V (Fig. 1(b)). The V -tree induced by T is
the smallest tree T |V that can be obtained from T (V )
by suppressing unlabelled nodes with fewer than two
children (Fig. 1(c)). For the rest of the paper, we will
assume that all phylogenetic trees are binary and
rooted, and that tree inclusion is rooted tree inclusion.

A parent (sub)tree of a subtree U is the smallest

subtree strictly containing U . A parent edge of a subtree
U is the edge connecting U to the rest of the tree. The
internal edges of a tree are the edges that do not contact
a leaf or ρ. A ladder tree (also known as a caterpillar
tree) is a tree such that every internal node has a leaf
as a direct descendant. A balanced tree is a tree such
that the sum of the depths of internal nodes is minimum
over all trees with the same number of leaves. The least
common ancestor (LCA) of a set R of two or more nodes
is the unique node that is an ancestor of each node r ∈ R
and at maximum depth. Similarly, the LCA of two or
more subtrees is the LCA of their parent nodes.

A (rooted) subtree-prune-regraft (rSPR) operation
on an X-tree T cuts an edge e = (x, px) where px
denotes the parent of node x. T is divided into two
subtrees Tx and Tpx containing x and px, respectively.
Then the operation adds a new node p′x to Tpx by
subdividing an edge of Tpx and adding a new edge
(x, p′x), making x a child of p′x. Finally, px is suppressed,
joining the two edges on either side of that node. See
Figure 1(d) for an example. The inclusion of ρ allows
for rSPR moves which move subtrees to the root of the
tree.

rSPR operations give rise to a distance measure
between X-trees: dSPR(T1, T2) is the minimum number
of rSPR operations required to transform an X-tree T1

into T2. For example, the trees in Figure 2 are separated

https://github.com/matsengrp/curvature
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Figure 2: Two rSPR operations, each of which moves one grey subtree. The leftmost and rightmost trees are
rSPR distance two apart.

by two rSPR operations. Moreover, rSPR operations
naturally give rise to a graph on the set of X-trees for
which this distance is simply the shortest-path graph
distance. Let Tn be the set of trees with n leaves and
label set X = {1, 2, . . . n, ρ}. Then the rSPR graph G
of Tn is the graph with vertex set V (G) = Tn and edge
set E(G) = {(T, S) | dSPR(T, S) = 1, T ∈ V, S ∈ V }.

To avoid confusion between the two types of graph
structures considered here, we refer to vertices of the
rSPR graph as vertices and vertices of individual trees
(i.e. leaves and internal nodes) as nodes. Let N(T ) be
the set of rSPR neighbors of a tree T (this does not
include T ). For example, the tree T with 4 leaves in
Figure 3 has 10 neighbors. We say that the degree of
T is |N(T )|, that is, the number of trees which can be
obtained from T by a single rSPR operation. We assume
that all trees are bifurcating, and thus use degree to refer
only to the degree of rSPR graph vertices.

Ricci-Ollivier curvature provides a rigorous yet in-
tuitive formalization of the shape of a metric space with
respect to a random walk. For the purposes of this
paper, we will specialize to that space being a graph
equipped with the shortest-path distance. For a more
rigorous presentation in the more general setting of a
Polish metric space, see [25] or the survey [26].

Let mx and my be probability densities of the
position of a specified random walk after one step of the
random walk, starting at points x and y of a graph G =
(V,E), respectively. The transportation distance [37]
(equivalently Wasserstein distance, or “earth movers
distance” [30]) between mx and my is the minimum
amount of “work” required to move mx to my along
edges of the graph, that is

(2) W1(mx,my) := min
ξ∈Π(mx,my)

∑
{z,w}⊂V

d(z, w)ξ(z, w),

where d(z, w) is the graph shortest-path distance
(dSPR(z, w) in our case) and Π(mx,my) is the set of
densities on V × V that are mx after projecting on the
first component and my after projecting on the second.

The coarse Ricci-Ollivier curvature of x and y is
then defined as:

(3) κ(m;x, y) := 1− W1(mx,my)

d(x, y)
.

For the purposes of this paper, “curvature” without fur-
ther specification will refer to (3). We will use κ(x, y)
to denote the curvature of the simple (uniform choice of
neighbor) random walk, and use κ(MH;x, y) to indicate
curvature with respect to the Metropolis-Hastings ran-
dom walk sampling the uniform distribution (described
in detail in Section 3.2). Positive curvature implies that
the neighborhoods mx and my are closer in transporta-
tion distance than point masses at x and y, zero curva-
ture implies that they are neither closer nor farther, and
negative curvature implies that mx and my are more
distant than point masses at x and y. Curvature thus
provides an intuitive measure of the difficulty of moving
between regions of the graph with a random walk.

Figure 3: The neighborhood of an X-tree T with 4
leaves, showing connections between neighbors.



Lin et al. [17] defined a variant definition of cur-
vature in terms of lazy random walks which Loisel and
Romon [18] dubbed the asymptotic Ricci-Olivier curva-
ture. The lazy random walk only travels according to
mx with probability p and otherwise stays put. Thus
the lazy mass assignment mp

x is the sum of pmx and a
point mass of 1 − p on x. We denote the coarse curva-
ture of the p-lazy random walk between two vertices x
and y with respect to a random walk m by κp(m;x, y).
For example, κ1/4(m;x, y) describes the curvature of the
lazy random walk that follows the given random walk m
with probability 1/4 and remains stationary with prob-
ability 3/4. The asymptotic Ricci-Ollivier curvature of
x and y is then:

(4) ric(m;x, y) := lim
p→0

κp(m;x, y)

p
.

As above for κ, we use ric(x, y) as shorthand for
ric(m;x, y) when m is the uniform lazy random walk,
and ric(MH;x, y) when m is the Metropolis-Hastings
random walk sampling the uniform distribution (Sec-
tion 3.2). This definition of curvature is invariant of p
for small p [18] and can be used to avoid parity problems
on graphs where the uniform random walk is periodic
without choosing a specific laziness parameter (e.g. Ol-
livier often considered κ 1

2
(x, y) for this purpose). As we

prove in Lemma 6.7, the notions of coarse and asymp-
totic curvature differ only by a small factor bounded
by 2

max(|N(x)|,|N(y)|) between adjacent vertices and are

equal for nonadjacent vertices.

3 Efficient algorithms for computing and
sampling rSPR graphs

3.1 Computing the rSPR graph of m trees with
n leaves in O(mn3)-time. It is necessary to have an
efficient method of constructing the full rSPR graph
for a fixed number of leaves in order to study it.
The previous best algorithm for this problem requires
O(m2n) time, where m is the number of trees in the
graph and n the number of leaves [44]. Here we reduce
that time to O(mn3). Note that for the full rSPR graph,
m is the rapidly growing function (2n − 3)!!, that is,
3 · 5 · . . . · (2n − 3), and this is therefore a significant
improvement in practice, as we demonstrate below.

In previous work [44], we constructed (unrooted)
SPR graphs from subsets of m high probability trees
sampled from phylogenetic posteriors to compare mix-
ing and identify local maxima. Although the SPR
distance (rooted and unrooted) is NP-hard to com-
pute [3,12], it is fixed-parameter tractable with respect
to the distance in the rooted case [3]. In particular, one
can determine in O(n)-time whether two rooted phylo-
genetic trees are adjacent in the rSPR graph (O(n2)-

time for unrooted trees) using the algorithms of Whid-
den et al. [42–45]. We applied this method comparing
each of the m trees pairwise to identify adjacencies, re-
quiring a total of O(m2n)-time (O(m2n2)-time in the
unrooted case). However, this method is impractical
when applied to construct graphs with 7 or more leaves,
due to the rapidly growing O(m2) factor.

The key to our efficient algorithm for quickly com-
puting dense rSPR graphs (those containing a signifi-
cant portion of the full rSPR graph) lies in avoiding the
pairwise comparison of non-adjacent trees and thereby
shaving off an O(m) factor. The input to our algo-
rithm is a set T of phylogenetic trees in the O(n)-length
Newick [46] representation of each tree as a string.
These representations are made unique by ordering each
tree so that leftmost subtrees contain the smallest al-
phanumeric label of descendants. We construct a map-
ping from each tree Ti to its order index in this list i.
Begin with an empty graph G. For each tree Ti, we first
add a vertex i to the graph and then use Corollary 3.4
below to enumerate the O(n2) neighbors of Ti in the
rSPR graph in O(n3)-time. This efficient enumeration
procedure is the key step required to achieve our de-
sired running time of O(mn3). We use the tree to index
mappings to determine whether these trees are already
vertices of the graph and, if so, add an edge in the graph
from Ti to each such neighbor Tj . The high-level steps
are as follows, and we show in Theorem 3.1 that this
algorithm is correct and can be implemented to run in
the stated time.

Construct-rSPR-Graph(T )

1. Let G be an empty graph.
2. Let M be a mapping from trees to integers.
3. Let i = 0.
4. For each of the m trees:

(a) Add a vertex i to G representing the current
tree Ti.

(b) Add Ti → i to M .
(c) For each of the O(n2) neighbors of Ti,

enumerated using Enumerate-rSPR-
Neighbors(Ti):

i. If the current neighbor Tj is in M then
add an edge (i,M [Tj ]) to G.

(d) i = i+ 1.

Theorem 3.1. The subgraph of the rSPR graph in-
duced by a set T of m trees with n leaves can be con-
structed in O(mn3)-time.

We implemented this procedure in the C++
program dense spr graph of the software package



spr neighbors [40], which outputs an edge list for-
mat graph suitable for input to other software. The
construction procedure reduced the time required to
compute the 10,395-vertex 7-taxon rSPR graph from
2,104.68 seconds to 12.71 seconds on an Intel Core 2
Duo E7500 desktop running Ubuntu 14.04. Moreover,
although we do not study the 135,135-vertex 8-taxon
rSPR graph in this paper, our algorithm required only
303.45 seconds to construct it on the same hardware.
Constructing the 8-taxon rSPR graph using the pre-
vious method required 377,395 seconds (more than 4
days), and thus that method is infeasible for construct-
ing larger rSPR tree graphs. Thus, we believe our fast
graph construction procedure will itself be useful for
further studies of rSPR graph subsets similar to [44],
as the algorithm can quickly construct rSPR graphs for
any given subset of trees.

3.2 Simulating random walks on the rSPR
graph. The uniform random walk moves from one ver-
tex to one of its neighbors uniformly at random, which
makes this walk more likely to sample higher degree ver-
tices. In contrast, the Metropolis Hastings (MH) ran-
dom walk with constant likelihood function proposes a
move from a tree T to a neighbor tree S uniformly at
random and then accepts the move according to the

Hastings ratio, min
(

1, |N(T )|
|N(S)|

)
. The MH random walk

is guaranteed to sample each tree uniformly at random
and is therefore representative of a phylogenetic MCMC
program sampling trees under a uniform prior.

To efficiently simulate the MH random walk, we
developed a linear-time algorithm for proposing rSPR
moves that does not require the rSPR graph to be
explicitly built and stored in memory. A näıve approach
would require O(n3) time: O(n) time to generate each
of the O(n2) neighbors of a given tree so that one
could be picked uniformly at random. To eliminate an
O(n2) factor, we developed a deterministic ordering of
rSPR moves with a one-to-one correspondence to rSPR
neighbors, as described in the next paragraph. Given
such an order, a uniform neighbor can be selected by its
index in O(n) time. We note that the recursive formula
of Song [32] for the degree of a tree does not group
rSPR moves that move a particular subtree, and thus
would still require O(n2) time to select a specific rSPR
neighbor by index.

We consider the distribution of rSPR moves in
terms of the number of nodes contained within a sub-
tree. Recall that a tree with n leaves has 2n − 1 total
nodes (ignoring the artificial ρ node). Given a subtree R
with x nodes, observe that there are 2n− 1−x possible
locations to regraft R. However, some of these moves
will result in the same neighboring tree as other rSPR

moves. In particular, where we call the edge connecting
the subtree rooted at that node to the rest of the tree
the “node’s edge”, we have:

i. Moving R to its sibling edge results in the same
tree, not a neighboring tree,

ii. Moving R to its parent edge results in the same
tree,

iii. Moving R to its grandparent edge is the same as
moving its aunt to its sibling edge, and

iv. Moving R to its aunt edge is the same as moving
its aunt to R’s edge.

We prove in Lemma 3.2 that this list is exhaustive, that
is each other pair of R and destination edge e results in a
unique rSPR neighbor. We assign (2n−1−x)−2 moves
to children of the original non-ρ root (lacking both an
aunt and a grandparent), and (2n − 1 − x) − 4 moves
to each other non-root node. Let N(T, u) denote the
neighbors of T assigned to node u, obtained by moving
the subtree R rooted at u. We thus achieve a new
method for computing the neighborhood size:

Lemma 3.2. For a tree T with n leaves,

|N(T )| =
∑
u∈T
|N(T, u)|,

for nodes u of T , where N(T, u) is as defined above,
and:

|N(T, u)| =


2n− x− 5 if depth(u) > 1,

2n− x− 3 if depth(u) = 1

0 if depth(u) ≤ 0

.

In particular, this formulation implies a total or-
dering of rSPR moves such that every move moving the
same subtree R forms a contiguous subsequence. We
can thus apply the following algorithm to select a neigh-
bor uniformly at random for a tree T :

Select-rSPR-Neighbor(T )

1. Compute the degree of T , |N(T )| using Lemma 3.2.
2. Pick a random integer r in the range [1, |N(T )|].
3. Label each node u of T by its preorder number and

compute the number of nodes in the subtree rooted
at each u.

4. For each tree node u and while r > 0:

(a) Decrease r by |N(T, u)|.
(b) If r < 0, let S be the |r| member of N(T, u)

and terminate the for loop.

5. Return the neighbor S.
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Figure 4: Scatter plot of κ(MH;T1, T2) values versus dSPR(T1, T2) for the rSPR graph. Color displays the average
degree of T1 and T2. Distance values randomly perturbed (“jittered”) a small amount to avoid superimposed
points.

Lemma 3.3. An rSPR neighbor of a tree T can be
chosen uniformly at random in O(n)-time using O(n)
space.

Observe that this procedure can be easily adapted
to explore the full neighborhood of a tree in O(n3) time,
which we use for Theorem 3.1. We call the resulting pro-
cedure Enumerate-rSPR-Neighbors(T ). We thus
have the following corollary:

Corollary 3.4. The rSPR neighbors of a tree T can
be enumerated in O(n3)-time.

We implemented this procedure in the C++ pack-
age random spr walk [39]. We sampled a 200,000-
iteration random walk on the 4-leaf rSPR graph and a
50,000-iteration random walk on the 5-leaf rSPR graph.

4 Access times of random walks on the rSPR
graph can be understood using distance,
degree, and curvature

4.1 Computing curvature values. To compute
curvature values, we first used dense spr graph to com-
pute the rSPR graph for four to seven leaves, as dis-
cussed in Section 3.1. We then computed curvatures for
given pairs of trees directly, by using linear program-
ming [18] to compute the minimal mass transport W1

using the SAGE [35] front-end to the GLPK [1] solver;
code can be found in [20] which grew from the code
described in [18].

This would have required an enormous amount of
computation to directly compute curvatures for the
((2n − 3)!!)2 pairs of trees with n leaves, even for the

small values of n we consider here. We instead exploited
the fact that pairs of trees which are equivalent modulo
label renumbering are symmetric in the rSPR graph and
therefore guaranteed to have the same curvature. For
example, the pairs {(((1, 2), 3), 4), ((1, 2), (3, 4))} and
{(((1, 4), 2), 3), ((1, 4), (2, 3))} are the same after relabel-
ing, so their curvatures are the same. We thus directly
computed curvature values for one representative pair
from each such equivalence class, or tanglegram [36];
the group-theoretic enumeration methods are described
in a manuscript in preparation, and the SAGE [35] and
GAP4 [9] code is at [21].

We find a wide variation in curvature among tan-
glegrams (Figure 4). Curvature values tended to in-
crease with increasing rSPR distance, and their vari-
ance decreased with increasing distance. Neighboring
trees achieved minimum curvature values for a given
number of leaves, and we found maximum curvature
values between trees at maximum distance or one rSPR
move closer than the maximum. This suggests that the
increased difficulty of moving between trees with a ran-
dom walk due to distance may be tempered somewhat
by larger curvature in the highly connected rSPR graph.

Larger rSPR graphs tended to have smaller curva-
ture values. Indeed, the 7-leaf rSPR graph contained ad-
jacent pairs of trees with negative curvature. Such pairs
indicate difficult paths for phylogenetic searches, which
may be exacerbated by likelihood or branch length con-
straints.

4.2 Access time simulation. The access time for a
pair of vertices in a graph is the (random) number of
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Figure 5: Distribution of rSPR MH access times for those pairs of 5-taxon trees with degree 24 that are not simple
inclusions of 4-taxon pairs of trees. Color signifies rSPR distance between the trees, with green, orange, and blue
signifying distances of 1, 2, and 3, respectively; the saturation of the color shows coarse curvature κ(MH; ·, ·),
such that increased saturation (i.e. darker color) indicates a smaller κ.

Table 1: p-values for ordinary least squares linear multi-
ple regression of rSPR mean access time against degree
and distance (two-tailed t-test of regression coefficient).
The p-values for 7 taxa are smaller than the machine
precision used to calculate them.

variable 5 taxa 6 taxa 7 taxa
T1 degree 2.425e-07 2.726e-55 0
T2 degree 0.04367 4.302e-21 0
drSPR 5.026e-09 1.104e-44 0

iterations required to go from one of the vertices to the
other in a random walk [19]; we were interested in the
connection between curvature and access time. In pre-
vious work, we computed mean access times (MAT) be-
tween pairs of trees in MCMC random walks: the mean
number of iterations required to move from one tree to
the other. We applied this work to demonstrate the
influence of SPR graph structure on real MCMC poste-
riors sampled with MrBayes [44] using sprspace [41].

Here, to gain more insight, we used simulation to
approximate the entire access time distribution. Again
we use the insight that the access time for a pair of
trees with a simple random walk does not depend on
the actual labeling of those trees, but rather only on
their relative labeling. Thus rather than enumerate
access times between trees, which would have required
a tremendous amount of memory and computational
power to obtain accurate estimates, we enumerate times
between pairs of trees in a tanglegram. To calculate the
empirical distributions of access times we aggregate all
access times for the same tanglegram using our group-

Table 2: p-values for ordinary least squares linear
multiple regression of rSPR δ1 against degree, distance,
and κ (two-tailed t-test of regression coefficient).

variable 5 taxa 6 taxa 7 taxa
T1 degree 9.376e-05 2.944e-07 5.51e-09
T2 degree 0.2366 0.1432 0.1687
drSPR 5.151e-06 0.0007557 3.276e-23
κ(MH) 4.462e-06 1.436e-22 1.459e-46

theoretic methods [21].
We find that the mean access time between trees T1

and T2 is determined by |N(T1)| and |N(T2)| (Table 1).
Furthermore, plotting the distribution of access times
between pairs of trees with respect to their distance
and curvature hints that smaller κ slightly shifts the
distribution of access times towards larger access times
(Fig. 5(a)). We quantify this effect by defining δ1 to be
the difference between the first pair of access time counts
such that the second entry in the pair is nonzero. For
example, δ1 for distance 1 pairs (green lines in Fig. 5) is
the count for time 1 minus the count for time 2, while
δ1 for distance 3 pairs (blue lines in Fig. 5) is the count
for time 2 minus the count for time 3. Regression finds
a clear influence of κ on δ1 (Table 2). This confirms
the intuitive interpretation of κ(T1, T2) as quantifying
the propensity of a random walk to go from T1 to T2

relatively directly, certainly before the random walk
achieves stationarity. On the other hand, if the random
walk starting from T1 does not quickly arrive at T2 and
instead achieves stationarity, the original position of the



random walk is forgotten, and the access time is then a
standard exponentially distributed waiting time for an
event in a Poisson process (Fig. 5(b)).

The analysis can be reproduced by invoking the
SCons (http://scons.org/) build tool and running the
cells in an IPython notebook; instructions are in the
repository README file.

5 Rooted SPR Neighborhoods

Having made the connection between curvature values
and access times on rSPR graphs, we now consider cur-
vature theoretically. We begin by bounding differences
between degrees, and then continue by considering fea-
tures relevant to the earth mover’s distance that we call
“squares” and “triangles” in the rSPR graph. Many of
our results in this section follow from a characterization
of the change in degree and distribution of permissible
rSPR moves after an rSPR move is applied.

Lemma 5.1. (Song [32]) For a tree T with n leaves:

i. |N(T )| = 3n2 − 13n+ 14, if T is a ladder tree,

ii. |N(T )| = 4(n− 2)2− 2
∑n−2
m=1blog2(m+ 1)c, if T is

a balanced tree, and
iii. 3n2 − 13n + 14 ≤ |N(T )| ≤ 4(n − 2)2 −

2
∑n−2
m=1blog2(m+ 1)c, otherwise.

We now bound the ratio and difference of rSPR
degree between two trees with n leaves.

Lemma 5.2. Let T ,S be trees with n ≥ 3 leaves, and
assume w.l.o.g. that |N(T )| ≤ |N(S)|. Then:

i. |N(T )|
|N(S)| ≥ 3/4, and

ii. |N(S)| − |N(T )| ≤ n2 − 5n+ 6.

We can improve these bounds in the case of adjacent
trees. To do so, we require the following lemma that
characterizes how the degree of a tree changes after an
rSPR operation. See Figure 6 for an illustration.

Lemma 5.3. Let T and S be trees such that S can be
obtained from T by moving a subtree R with k leaves
from its position adjacent to subtree U to a location
adjacent to subtree V . Let L be the LCA(U, V ) in T .
Let a be the number of intermediate nodes on the path
from the parent of R to L in T , excluding endpoints.
Similarly, let b be the number of intermediate nodes on
the path from V to L in T , excluding endpoints. Let i be
the number of leaves in U and j be the number of leaves
in V , excluding any leaves of R. Then the degrees of T
and S differ by:

2 (k(a− b) + i− j) .

Moreover, we can use these ideas to determine the
number of rSPR moves that are, in some respects,
independent of a given rSPR move. That is, for two
trees S and T differing by a single rSPR move, we wish
to know the number of rSPR moves that are applicable
to both trees rather than unique to one of the trees. To
formalize this concept, consider pairs of trees T ′ ∈ N(T )
and S′ ∈ S(T ) such that dSPR(T ′, S′) = 1. The number
of such “squares” involving two adjacent trees will play
a key role in our curvature bounds, as they push the
curvature of those trees towards 0.

Corollary 5.4. Continuing with the setting and no-
tation in Lemma 5.3, at least

γ := deg(T )− 2kb− 2(j − 1) = deg(S)− 2ka− 2(i− 1)

trees in the neighborhood of T can be paired with o
trees in the neighborhood of S such that the pairings
are disjoint and dSPR(T ′, S′) = 1 for each (T ′, S′) pair.

We can now use Lemma 5.3 to improve the bounds
in Lemma 5.2 for two adjacent trees.

Lemma 5.5. Let T , S be trees with n ≥ 3 leaves, s.t.
|N(T )| ≤ |N(S)| and dSPR(T, S) = 1. Then:

i. |N(S)| − |N(T )| ≤ 2bn−2
2 cd

n−2
2 e ≤

1
2 (n− 2)2,

ii. |N(T )|
|N(S)| ≥

5
6 , ∀n ≥ 4, and

iii. limn→∞
|N(T )|
|N(S)| = 6

7 .

Next, we bound the number of neighbors shared by
two adjacent trees. The number of such “triangles” in-
volving two adjacent trees has a key role in determining
whether their curvature is positive or negative.

Lemma 5.6. Let T and S be trees such that
dSPR(T, S) = 1. Then |N(T ) ∩N(S)| ≤ 6n− 17.

6 Curvature

We now consider properties of the uniform (a.k.a.
isotropic) random walk on the n-leaf rSPR graph.
Recall that the uniform random walk begins at a tree T
and moves to a tree uniformly at random from N(T ).
Recall that the coarse uniform random walk curvature
between two trees T and S is κ(T, S) := 1− W1(mT ,mS)

d(T,S) ,

where W1,n is the mass transport term (3). For the
uniform random walk, mT is the probability measure
assigning a mass of 1

|N(T )| to each of T ’s neighbors. Our

results follow from the lemmas of Section 5.

Theorem 6.1. Fix a positive integer k and let R be a
tree with k leaves. Let {Tn | n > k} be a sequence
of trees all containing R, and let {Sn | n > k} be the
same sequence Tn but with R cut off and attached at a
different location. Then limn→∞ κ(Tn, Sn) = 0 for the
uniform random walk on the rSPR graph.

http://scons.org/
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Figure 6: An rSPR move labelled as in Lemma 5.3. Moving the grey subtree R from its position adjacent to U
in tree T to its position adjacent to V in tree S changes the rSPR degree by 2 (k(a− b) + i− j).

Next we note a simple and rough bound on the
curvature of two trees with respect to their distance,
then obtain a tighter bound on the maximum curvature
of two adjacent trees.

Lemma 6.2. Let T and S be two trees. Then:

−2

dSPR(T, S)
≤ κ(T, S) ≤ 2

dSPR(T, S)
.

Lemma 6.3. The maximum curvature between two ad-
jacent trees with n leaves is 6n−17

3n2−13n+14 .

This bound is tight and has been verified computa-
tionally for n ≤ 7.

It is more difficult to obtain a closer bound on the
maximum curvature of nonadjacent trees. Lemma 6.2
suggests that more distant pairs of trees should have
smaller curvatures than close trees as neighborhood
effects decrease with respect to the increasing distance.
However, our experiments with n ≤ 7 suggest that
maximum curvature tends to increase with distance
(with respect to a fixed n), as a far greater fraction of the
neighbors approach each other as the distance increases.
Indeed, for 5 ≤ n ≤ 7 the maximum curvature is
obtained by pairs of trees at one less than the maximum
distance. Moreover, nearly all of the neighbors of these
pairs approach each either. We thus conjecture the
following:

Conjecture 6.4. Let kn be the maximum curvature
between two trees with n-leaves. Then:

i. kn ≤ 2
∆rSPR(n)−1 , and

ii. kn ∼ 2
∆rSPR(n)−1 .

Proving or disproving this conjecture would go a long
way toward understanding the effects of relative dis-
tance on curvature. However, we suspect that this will
require a greater understanding of the distribution of
tree neighborhoods with respect to one another than is
currently known. Next, we bound the minimum curva-
ture of two adjacent trees.

Lemma 6.5. The curvature between adjacent trees with
n leaves is at least

−n2 + 2n

3.5n2 − 15n+ 16
.

We further observe that the limit of our curvature
lower bound is − 2

7 . Complete enumeration with n ≤ 7
show that no pair of trees have curvature less than − 2

5
and our bound meets or exceeds this value for n > 7.
Moreover, the rSPR distance is a metric, so this bounds
the curvature for arbitrary pairs of trees (Proposition 19
of [25]). This directly leads to the following Corollary:

Corollary 6.6. The curvature between two trees is at
least − 2

5 .

Note that this bound is not tight (at least for
small n) as it is rarely necessary to transport mass
the maximum distance between unpaired trees. We
also note that the lower bounds in this section do



not follow from the more general setting described in
[14]. However, the pair of trees used in the proof of
Lemma 6.5 will always have negative curvature, for all
n ≥ 7.

We next bound the difference between the coarse
and asymptotic curvatures. Recall that κp(T, S) is the
coarse Ricci-Ollivier curvature between trees T and S
with respect to the lazy walk that remains at a given
tree with probability 1−p and moves with probability p.
For the lazy uniform random walk, mT is now T ∪N(T ),
with each neighbor assigned mass p

|N(T )| and T assigned

the remaining 1−p mass. The asymptotic Ricci-Ollivier
curvature ric(T, S) is limp→0 κp(T, S)/p. As we now
prove, these two notions of curvature differ only by
a small factor inversely proportional to the maximum
degree of T and S.

Lemma 6.7. Let T and S be trees with n leaves. Then:

i. ric(T, S) = κ(T, S), if dSPR(T, S) > 1,
ii. κ(T, S) ≤ ric(T, S) ≤ κ(T, S) + 2

max(|N(T )|,|N(S)|) ,

if dSPR(T, S) = 1.

Finally, we bound the difference between the curva-
ture of the uniform random walk κ(T, S) and that of the
Metropolis-Hastings (MH) random walk κ(MH;T, S).
Recall that this random walk proposes a move from a
tree T to a neighbor tree S uniformly at random and
then accepts the move according to the Hastings ratio,

which in this case is min
(

1, |N(T )|
|N(S)|

)
. The mass distri-

bution for the MH random walk thus leaves a portion
of mass at the origin tree, proportional to the relative
degree difference of its higher degree neighbors. Note
that the same statement and proof of Lemma 6.7 holds
with κ(T, S) and ric(T, S) replaced by the MH curva-
tures κ(MH;T, S) and ric(MH;T, S), respectively.

Lemma 6.8. Let T and S be trees with n leaves. Then:

κ(T, S)− 1

3dSPR(T, S)
≤ κ(MH;T, S)

κ(MH;T, S) ≤ κ(T, S) +
1

3dSPR(T, S)
, and

κ(T, S)− 1/6 ≤ κ(MH;T, S) ≤ κ(T, S) + 1/6.

7 Conclusion and future work

In summary, we have gone beyond graph diameter and
vertex degree to substantially advance understanding of
the phylogenetic rSPR graph. We did so by developing
the first theoretical and computational frameworks to
bound and compute Ricci-Ollivier curvature of the
rSPR graph. We found that curvature, along with
degree and distance, determine the early dynamics of

hitting times for random walks. Moreover, we proved
that rSPR graph degree changes depend quadratically
on the product of the size of the regrafted subtree with
its change in depth, as well as that the rSPR graph tends
toward flatness with respect to rSPR moves that move
asymptotically small subtrees. Finally, we proved that
the coarse and asymptotic definitions of Ricci-Ollivier
curvature are closely related with respect to uniform
and Metropolis-Hastings walks on the rSPR graph.

In this data-free setting the stationary distribution
is, unlike with real data, quite evenly spread over all
trees. Correspondingly, we found that the influence of
curvature is small in this case (Fig. 5(a)) and that the
probability of the target node in the stationary distribu-
tion predominantly determines access times for pairs of
trees (Fig. 5(b)). However, it is well known that MCMC
takes a long time to approximate real phylogenetic pos-
terior distributions even when the Bayesian credible set
is small, and in fact our previous work showed signifi-
cant SPR graph influence on the mixing time for phylo-
genetic MCMC for credible sets that had tens, hundreds
or thousands of trees [44]. Thus, our next step will be
to investigate curvature of MCMC with nontrivial like-
lihood functions, which will reduce the posterior distri-
bution to a more realistic effective size, and in certain
cases will lead to significant “bottlenecks” like those we
have observed in real data. In those cases the curva-
ture between two trees at either end of a bottleneck will
describe how difficult it is to traverse the bottleneck.

Now that we have established the foundations of
using curvature to understand graphs relevant for phy-
logenetic inference, many graph structures remain to be
explored including NNI graphs, unrooted SPR graphs,
graphs of ranked trees [33], graphs of BEAST [6] rooted
“time-trees,” and random walks on other discrete struc-
tures such as partitions [11] that can be expressed as
trees.
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A Supplementary Proofs

Theorem 3.1. The subgraph of the rSPR graph in-
duced by a set T of m trees with n leaves can be con-
structed in O(mn3)-time.

Proof. The correctness of the procedure follows by
induction on the number of trees already processed, i,
by observing that the procedure has constructed the
subgraph of vertices 1, 2, . . . i and will construct the
subgraph of vertices 1, 2, . . . i+ 1.

We implement the graph with an adjacency list rep-
resentation with integer-labelled vertices that supports
O(log n) edge insertions and lookups (with e.g. red-
black trees [10], as the vertex degrees are O(n2)). As
described above, the integer labels are simply the order
of the input trees. Adding the vertices to the graph re-
quires O(m)-time, as they are added in ascending order
to the end of the vertex list, which can be stored as a
fixed-size array. Adding the O(mn2) edges to the graph
requires O(mn2 log n)-time. Enumerating the neighbors

of Ti requires O(n3)-time for each Ti, for a total of
O(mn3)-time. We discuss below, in Section 3.2 how
to do so efficiently without considering duplicate neigh-
bors. We store the tree to index mappings for current
vertices of G in a trie [8] using Newick representation.
This requires only O(n)-time for each tree (i.e. a total of
O(mn3)-time) using a standard nodes-and-pointers rep-
resentation of the tree and assuming integer leaf labels
(a simple O(mn log n) leaf preprocessing step could be
applied to extend this procedure to phylogenetic trees
with string labels). Similarly, it takes O(n)-time to de-
termine the index of each of the O(mn2) considered
neighbors. Therefore the graph can be constructed in
O(mn3)-time, as claimed.

Lemma 3.2. For a tree T with n leaves,

|N(T )| =
∑
u∈T
|N(T, u)|,

for nodes u of T , where N(T, u) is as defined above,
and:

|N(T, u)| =


2n− x− 5 if depth(u) > 1,

2n− x− 3 if depth(u) = 1

0 if depth(u) ≤ 0

.

Proof. The statement follows if each of the neighbor
assignments are disjoint, that is N(T, u) ∩ N(T, v) =
∅, for all nodes u, v of T . So, suppose, for the
purpose of obtaining a contradiction, that there exist
two nodes u and v of T such that there exists a tree
S ∈ (N(T, u) ∩ N(T, v)). Then S can be obtained
from T by moving the subtrees rooted at u or v. Call
these U and V , respectively. This implies that both
T \ U = S \ U and T \ V = S \ V by the definition of
an rSPR operation. Then the rSPR moves that move U
or V to obtain S must be nearest neighbor interchanges
(NNIs), that is, rSPR moves which move their subtree
to one of four locations: their grandparent edge, aunt
edge, sibling’s left child edge or sibling’s right child edge.
This implies that, without loss of generality, U is moved
to its grandparent edge and V to U ′s sibling (move type
(iii)) or U is moved to its aunt edge and V to U ’s edge
(move type (iv)), a contradiction. Therefore the claim
holds.

Lemma 3.3. An rSPR neighbor of a tree T can be
chosen uniformly at random in O(n)-time using O(n)
space.

Proof. We apply the above procedure. We use a
standard nodes-and-pointers representation of the trees,
which can be constructed in O(n)-time from a Newick
string representation and uses linear space in n. We

https://github.com/cwhidden/random_spr_walk
https://github.com/cwhidden/random_spr_walk
http://dx.doi.org/10.5281/zenodo.16541
http://dx.doi.org/10.5281/zenodo.16541
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https://github.com/cwhidden/sprspace
https://github.com/cwhidden/sprspace
http://dx.doi.org/10.5281/zenodo.16542
http://dx.doi.org/10.5281/zenodo.16542


can compute the degree of T in linear time and space
using Lemma 3.2. To efficiently compute |N(T, u)| for
each node u of T , we require the number of nodes
x in the subtree rooted at u. We pre-compute these
by (1) labeling each node with its preorder number in
a preorder traversal and (2) summing the number of
descendant nodes in a postorder traversal and storing
the results in an array indexed by preorder number.
Both of these traversals require O(n)-time. There
are 2n − 1 = O(n) nodes of T , and |N(T, u)| can
be computed in constant time using the subtree sizes.
Moreover, the tree S can be found in O(n)-time by
iterating over the edges of T that are not contained
within u’s subtree to select the corresponding rSPR
destination. Finally, we require linear time to apply
the chosen rSPR operation which entails removing a
node, adding a node, and updating a constant number
of pointers. Thus, the for loop requires linear time.
By Lemma 3.2 the chosen tree is an rSPR neighbor
of T and is chosen uniformly at random. Therefore,
the procedure uses linear time and space and selects an
rSPR neighbor of T uniformly at random.

Lemma 5.2. Let T ,S be trees with n ≥ 3 leaves, and
assume w.l.o.g. that |N(T )| ≤ |N(S)|. Then:

i. |N(T )|
|N(S)| ≥ 3/4, and

ii. |N(S)| − |N(T )| ≤ n2 − 5n+ 6.

Proof. To prove (i), we simply note from Lemma 5.1
that the ladder tree achieves the minimum degree, and
the balanced tree achieves the maximum degree:

|N(T )|
|N(S)|

≥ 3n2 − 13n+ 14

4(n− 2)2 − 2
∑n−2
m=1blog2(m+ 1)c

≥ 3n2 − 13n+ 12

4(n− 2)2 − 2(n− 2)

=
3n2 − 13n+ 12

4n2 − 16n+ 16− 2(n− 2)

=
3n2 − 13n+ 12

4n2 − 18n+ 20

≥ 3n2 − 13n+ 12

4n2 − 17 1
3n+ 18

∀n ≥ 3,

which is greater than 3/4 when n ≥ 3. Similarly for (ii):

∆N = |N(S)| − |N(T )|

≤ (4(n− 2)2 − 2

n−2∑
m=1

blog2(m+ 1)c)

− (3n2 − 13n+ 14)

≤ (4(n− 2)2 − 2(n− 2))− (3n2 − 13n+ 14)

= 4n2 − 16n+ 16− 2n+ 4− 3n2 + 13n− 14

= n2 − 5n+ 6.

Lemma 5.3. Let T and S be trees such that S can be
obtained from T by moving a subtree R with k leaves
from its position adjacent to subtree U to a location
adjacent to subtree V . Let L be the LCA(U, V ) in T .
Let a be the number of intermediate nodes on the path
from the parent of R to L in T , excluding endpoints.
Similarly, let b be the number of intermediate nodes on
the path from V to L in T , excluding endpoints. Let i be
the number of leaves in U and j be the number of leaves
in V , excluding any leaves of R. Then the degrees of T
and S differ by:

2 (k(a− b) + i− j) .

Proof. The set of permissible rSPR moves changes in
four different ways due to the movement of R: (i)
subtrees that include nodes on the path from U to L
may now be moved into R and its newly introduced
parent node, (ii) subtrees that include nodes on the
path from V to L may no longer be moved into R and its
parent node, (iii) R’s parent subtree may now be moved
into U , and (iv) R’s parent subtree may no longer be
moved into V . No additional moves are introduced or
blocked by the original rSPR operation on R.

Recall that a rooted tree with k leaves has 2(k− 1)
internal edges(recall that we are excluding any “root
edge” in these calculations). In the first case there are
a subtrees that can now be moved onto the 2k edges in
R (including its newly introduced parent edge and one
of the newly subdivided root edges of V ) for a total gain
of 2ka distinct moves. Similarly, we lose 2kb moves in
the second case. In the third case, R’s parent subtree
may now make 2(i−1) moves into U . Similarly, we lose
2(j − 1) moves in the fourth case.

Thus the difference in rSPR degree is 2ka − 2kb +
2(i− 1)− 2(j − 1) as claimed.

Corollary 5.4. Continuing with the setting and no-
tation in Lemma 5.3, at least

γ := deg(T )− 2kb− 2(j − 1) = deg(S)− 2ka− 2(i− 1)

trees in the neighborhood of T can be paired with o
trees in the neighborhood of S such that the pairings
are disjoint and dSPR(T ′, S′) = 1 for each (T ′, S′) pair.



Proof. By the same arguments as in the proof of
Lemma 5.3, γ rSPR moves can be applied to T and S
with the same source and target nodes. For each such
(T ′, S′) pair, we can move R in either tree to obtain the
other member of the pair.

Lemma 5.5. Let T , S be trees with n ≥ 3 leaves, s.t.
|N(T )| ≤ |N(S)| and dSPR(T, S) = 1. Then:

i. |N(S)| − |N(T )| ≤ 2bn−2
2 cd

n−2
2 e ≤

1
2 (n− 2)2,

ii. |N(T )|
|N(S)| ≥

5
6 , ∀n ≥ 4, and

iii. limn→∞
|N(T )|
|N(S)| = 6

7 .

Proof. We first prove (i). By Lemma 5.3, |N(S)| −
|N(T )| = 2(k(a−b)+ i−j). This value is maximized by
making L the root and minimizing b, namely by setting
b = 0. The resulting equation 2(ka+ i− j) is similarly
maximized by setting i = 1 (which allows us to increase
a) then maximally balancing the terms in the product
ka as follows.

There are two cases, depending on whether the
subtree of k leaves is moved to the root or not. If not,
then we set j = 1 and split the remaining n−b− i− j =
n − 2 leaves between k and a in as balanced a way
as possible, giving (i). Note that this corresponds to
moving the bottom subtree of bn−2

2 c or dn−2
2 e leaves in

a ladder tree to the root-most leaf of the tree.
If the subtree of k leaves is moved to the root, then

we do not need to exclude the target branch from k and
a, gaining an additional leaf to balance the product ka
at the cost of increasing j. This corresponds to moving
the bottom subtree of bn2 c or dn2 e leaves in a ladder
tree to the root. Namely, we have 2(ka+ 1− j), where
j = n − k = a + 1. Let ∆N = |N(S)| − |N(T )|. If we
move the additional leaf, we have:

∆N ≤ 2

(⌈
n

2

⌉⌊
n− 2

2

⌋
+ 1−

(⌊
n− 2

2

⌋
+ 1

))
= 2

⌊
n− 2

2

⌋⌈
n− 2

2

⌉
,

like before. Similarly, if we do not move the additional
leaf, we also have:

∆N ≤ 2

(⌈
n− 2

2

⌉⌊
n

2

⌋
+ 1−

(⌈
n− 2

2

⌉
+ 1

))
= 2

⌊
n− 2

2

⌋⌈
n− 2

2

⌉
,

proving (i).

The relative change in degree, |N(T )|
|N(S)| , can also be

written as |N(T )|
|N(T )|+(|N(S)|−|N(T )|) . By (i), we have that

|N(S)|−|N(T )| ≤ 1
2 (n−2)2, so |N(T )|

|N(S)| ≥
|N(T )|

|N(T )|+ 1
2 (n−2)2

.

This bound is minimized when |N(T )| is minimized, and
recall by Lemma 5.1 that |N(T )| is bounded below by
3n2 − 13n+ 14. Thus

|N(T )|
|N(S)|

≥ 3n2 − 13n+ 14

3n2 − 13n+ 14 + 1
2 (n− 2)2

≥ 3n2 − 13n+ 14

3.5n2 − 15n+ 16
.

Statements (ii) and (iii) follow from this bound.

Lemma 5.6. Let T and S be trees such that
dSPR(T, S) = 1. Then |N(T ) ∩N(S)| ≤ 6n− 17.

Proof. T and S differ by one rSPR move that moves a
subtree R. Pick a neighbor U ∈ N(T ) ∩ N(S) of both
T and S (this intersection is not empty: T and S are
different, so R contains at most n − 2 of the leaves,
thus there must be at least one other tree U obtained
by moving R in T and S). Then either (i) T and U
differ in the location of R, or (ii) T and U differ in
the location of another subtree Q. In the latter case,
T |(X\L(Q)) = S|(X\L(Q)) because T and S differ only
in the location of R and dSPR(T,U) = dSPR(S,U) = 1.
Then leaves r′ ∈ R, q′ ∈ Q, and u′ ∈ U , for some subtree
U , form a triple of T and a different triple in S. This
incompatible triple can be resolved in at most 6n − 17
ways, the maximum of which is reached when Q, U , and
R are themselves a “triple” of subtrees. By Lemma 3.2,
each of the subtrees is assigned to at most 2n−6 unique
moves. Moreover, one additional overlapping move also
moves one of the subtrees (that of the aunt of the LCA
of the three subtrees). The number of shared neighbors
is thus at most 3(2n− 6) + 1 = 6n− 17. Note that this
bound is tight when, for example, T and S are ladders
with a different configuration of 3 leaves at maximum
depth.

Theorem 6.1. Fix a positive integer k and let R be a
tree with k leaves. Let {Tn | n > k} be a sequence
of trees all containing R, and let {Sn | n > k} be the
same sequence Tn but with R cut off and attached at a
different location. Then limn→∞ κ(Tn, Sn) = 0 for the
uniform random walk on the rSPR graph.

Proof. Because d(Tn, Sn) = 1, we will prove the theo-
rem by showing that the mass transport term W1,n sits
between two bounds, each of which has limit 1 as n goes
to infinity.

To start we demonstrate the theorem in the case
that Tn and Sn have the same number of neighbors.
First we claim thatW1,n is bounded above by (|N(Tn)|+
O(kn))/|N(Tn)| by exhibiting a mass transport pro-
gram satisfying that bound. Let (T ′n, S

′
n) be any of the γ



pairs of neighbors of (Tn, Sn) which are one rSPR move
apart as per Corollary 5.4. We pair these trees in the
mass transport. There are O(kn) trees unmatched by
this pairing, and we can pair each of them arbitrarily
with another tree of distance at most 3. Thus, W1,n is
bounded above by (|N(Tn)|+ O(kn))/|N(Tn)|.

A lower bound is also available because we can’t
do better than distance 1 for all trees except for shared
neighbors, of which there are O(n) by Lemma 5.6. By
ignoring these trees we get a lower bound of (|N(Tn)| −
(O(n)))/|N(Tn)| for W1,n.

The desired control of W1,n is thus obtained because
|N(Tn)| is quadratic in n.

Now we prove the theorem when the number
of neighbors differ. Assume without loss of gen-
erality that |N(Tn)| < |N(Sn)|. By Lemma 5.3,
|N(Sn)| − |N(Tn)| = 2(k(a − b) + i − j), where each
of {a, b, i, j} is less than n. Thus, |N(Sn)| − |N(Tn)| =
O(kn). We again pair neighbor T ′n of T with neigh-
bor S′n of S such that dSPR(T ′n, S

′
n) = 1 but, as

|N(Tn)| < |N(Sn)| we can only account for at most
|N(Tn)|/|N(Sn)| of the mass directly and may have
to move the (|N(Sn)| − |N(Tn)|)/|N(Sn)| remainder to
trees a distance at most 3. Thus, W1,n is bounded
above by (|N(Tn)| + O(kn))/|N(Sn)| = (|N(Sn)| +
O(kn))/|N(Sn)|. We again boundW1,n from below with
(|N(Tn)|−O(n))/|N(Tn)| by ignoring the mass in com-
mon neighbors of Tn and Sn. The theorem again follows
because |N(Tn)| is quadratic in n.

Lemma 6.2. Let T and S be two trees. Then:

−2

dSPR(T, S)
≤ κ(T, S) ≤ 2

dSPR(T, S)
.

Proof. Observe that the distance between neighbors
of T and S is bounded between dSPR(T, S) − 2 and
dSPR(T, S)+2. For the curvature upper bound, we then

have κ(T, S) ≤ 1 − dSPR(T,S)−2
dSPR(T,S) = 2

dSPR(T,S) . The lower

bound follows similarly.

Lemma 6.3. The maximum curvature between two ad-
jacent trees with n leaves is 6n−17

3n2−13n+14 .

Proof. The maximum curvature between adjacent trees
T and S occurs when their neighborhoods have maxi-
mum overlap and all other tree pairs are at distance 1.
By Lemma 5.6 the maximum overlap is 6n − 17. The
amount of overlapping mass in the shared neighbors of
T and S is thus 6n−17

max(|N(T )|,|N(S)|) . The minimum mass

transfer cost is thus 1− 6n−17
max(|N(T )|,|N(S)|) . This is min-

imized when |N(T )| = |N(S)| are as small as possible,
that is T, S are ladders and |N(T )| = 3n2 − 13n+ 14.

The maximum curvature is thus 1 −
|N(T )|−(6n−17)

|N(T )| = 6n−17
|N(T )| = 6n−17

3n2−13n+14 .

Lemma 6.5. The curvature between adjacent trees with
n leaves is at least

−n2 + 2n

3.5n2 − 15n+ 16
.

Proof. In light of Corollary 5.4, the optimal mass trans-
port cost is maximized (and therefore curvature mini-
mized) across adjacent trees T and S by a combination
of two effects: trees that cannot be paired at distance 1
and mass that must be moved between unpaired trees
due to differing degrees of T and S. As we will show,
these effects can be optimized simultaneously. To bound
these effects, let m be the maximum (across T and S)
proportion of mass that cannot be moved between ad-
jacent neighbors of those trees. We can bound the mass
transport cost from above by 1 + 2m because pairs of
neighbors of adjacent trees are at most distance 3 apart.
This gives a lower bound of 1− (1 + 2m)/1) = −2m on
the curvature.

By Lemmas 5.3 and 5.5, the latter effect is max-
imized when the relative degree change is maximized.
By Corollary 5.4, there are at most γ := |N(T )| −
2ka − 2(i − 1) paired trees, bounding the former ef-
fect. We now construct a pair of trees that maximizes
both effects. Let S be the ladder tree with degree
3n2 − 13n+ 14 and T be the adjacent tree constructed
by moving the lower bn2 c leaves of S to the root. T
has degree at most 3.5n2 − 15n + 16. There are thus
2ka+ 2(i− 1) = 2

(
dn−2

2 eb
n
2 c+ (1− 1)

)
≤ 1

2n
2 − n un-

paired neighbors, the maximum possible. Moreover, as
shown by Lemma 5.3 this pair of trees obtains the max-
imum (absolute and relative) degree change. Thus, the
maximum m is:

1
2n

2 − n
3.5n2 − 15n+ 16

.

The claim follows from multiplying this value by −2.

Lemma 6.7. Let T and S be trees with n leaves. Then:

i. ric(T, S) = κ(T, S), if dSPR(T, S) > 1,
ii. κ(T, S) ≤ ric(T, S) ≤ κ(T, S) + 2

max(|N(T )|,|N(S)|) ,

if dSPR(T, S) = 1.

Proof. We first prove the lower bound in the uniform
case, that is κ(T, S) ≤ ric(T, S). Let W1(T, S) be the
mass transport cost in the uniform case, and W ′1(T, S)
be the same for the lazy uniform case with parameter

p. Recall that κ(T, S) = κ1(T, S) = 1 − W1(T,S)
dSPR(T,S) , and

κp(T, S)/p =
(

1− W ′
1(T,S)

dSPR(T,S)

)/
p. Observe that

W ′1(T, S) ≤ pW1(T, S) + (1− p) dSPR(T, S),



by the simple mass transport program obtained by
treating the mass at T and S as separate from that
of the neighbors. Then:

κp(T, S)

p
=

(
1− W ′1(T, S)

dSPR(T, S)

)/
p

≥
(

1− pW1(T, S) + (1− p)dSPR(T, S)

dSPR(T, S)

)/
p

=
1

p
− W1(T, S)

dSPR(T, S)
− 1− p

p

= 1− W1(T, S)

dSPR(T, S)

= κ(T, S).

For the upper bound, we observe that W ′1(T, S) ≥

pW1(T, S) + (1− p) dSPR(T, S)− 2

max(|N(T )|, |N(S)|)
,

as at most 1/max(|N(T )|, |N(S)|) of the mass can
remain at each of T and S, paired with the lazy
remainder. The upper bound then follows analogously
to the lower bound. Moreover, no mass can remain at T
or S when dSPR(T, S) > 1, in which case the curvatures
are equal.

Lemma 6.8. Let T and S be trees with n leaves. Then:

κ(T, S)− 1

3dSPR(T, S)
≤ κ(MH;T, S)

κ(MH;T, S) ≤ κ(T, S) +
1

3dSPR(T, S)
, and

κ(T, S)− 1/6 ≤ κ(MH;T, S) ≤ κ(T, S) + 1/6.

Proof. We first prove the lower bound. By Lemma 5.5,
the quotient of degrees for two adjacent trees ≥ 5

6 .
Thus, the Hastings ratio is always ≥ 5

6 . This implies
that at most 1

6 of the mass remains at tree T in
the mass distribution. Let W1(T, S) be the cost of
an optimal mass transport for the uniform random
walk from T to S, and W ′1(T, S) the cost for the
MH random walk. Moreover, let mT (z) and mS(w)
be the mass assigned for the uniform random walk
and m′T (z) and m′S(w) be the mass assigned for the
MH random walk, for each vertex z ∈ N(T ) and
w ∈ N(S). We construct an upper bound on W ′1(T, S)
by moving mass according to W1 where possible, and
moving the remainder either from T to S, from T
to a neighbor of S, or from a neighbor of T to S.
That is, for each W1 assignment ξ(z, w), we send

ξ′(z, w) = ξ(z, w) min
(
m′

T (z)
mT (z) ,

m′
S(w)

mS(w)

)
of the mass from

z to w. The remaining ξ(z, w) − ξ′(z, w) of the mass

is moved from T to S, T to w, and z to S in the re-

spective proportions ξ(z, w) max
(
m′

T (z)
mT (z) ,

m′
S(w)

mS(w)

)
−

ξ′(z, w), ξ(z, w) min
(

0,
m′

T (z)
mT (z) −

m′
S(w)

mS(w)

)
, and,

ξ(z, w) min
(

0,
m′

S(w)
mS(w) −

m′
T (w)

mT (w)

)
. The maximum

possible mass that is not moved according to W1 is 1
6 .

Moreover, the affected mass must be moved through at
most two additional trees. Then, W ′1 ≤ W1 + 2

6 . We
now have:

κ(MH;T, S) ≥ 1−
W1 + 1

3

dSPR(T, S)

≥ κ(T, S)− 1

3dSPR(T, S)
.

In the case that dSPR(T, S) = 1, the affected mass
must be moved through only at most one additional
tree, as T and S are adjacent. We thus obtain the lower
bound of κ(T, S)− 1

6 in this case.
We obtain the upper bounds similarly to the lower

bounds, by observing that the affected at most 1
6 of the

mass may move through at most two fewer trees (i.e.
directly between T and S rather than a pair of neighbors
at distance dSPR(T, S)+2 from each other). Again, this
is at most one fewer tree when dSPR(T, S) = 1.
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