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Abstract

An instance of a strongly stable matching problem (SSMP) is an undirected bipartite
graph G = (A ∪ B,E), with an adjacency list of each vertex being a linearly ordered list
of ties, which are subsets of vertices equally good for a given vertex. Ties are disjoint
and may contain one vertex. A matching M is a set of vertex-disjoint edges. An edge
(x, y) ∈ E \M is a blocking edge for M if x is either unmatched or strictly prefers y to its
current partner in M , and y is either unmatched or strictly prefers x to its current partner
in M or is indifferent between them. A matching is strongly stable if there is no blocking
edge with respect to it. We present an algorithm for the generation of all strongly stable
matchings, thus solving an open problem already stated in the book by Gusfield and Irving
[2]. It has previously been shown that strongly stable matchings form a distributive lattice
and although the number of strongly stable matchings can be exponential in the number
of vertices, we show that there exists a partial order with O(m) elements representing
all strongly stable matchings, where m denotes the number of edges in the graph. We
give two algorithms that construct two such representations: one in O(nm2) time and the
other in O(nm) time, where n denotes the number of vertices in the graph. Note that
the construction of the second representation has the same time complexity as that of
computing a single strongly stable matching.

1 Introduction

An instance of a strongly stable matching problem (SSMP) is an undirected bipartite graph
G = (A∪B,E), with an adjacency list of each vertex being a linearly ordered list of ties, which
are subsets of vertices equally good for a given vertex. Ties are disjoint and may contain one
vertex. Thus if vertices b1 and b2 are neighbours of a in the graph G, then either (1) a (strictly)
prefers b1 to b2, which we denote as b1 ≻a b2; or (2) b1 and b2 are in a tie on an adjacency list
of a, and then we say that a is indifferent between a1 and a2 and denote it as b1 =a b2; or (3)
a (strictly) prefers b2 to b1. If a vertex a prefers b1 to b2 or is indifferent between them, we say
that a weakly prefers b1 to b2 and denote as b1 �a b2. A matching M is a set of edges, no two
of which share an endpoint. Let e = (v,w) be an edge contained in a matching M . Then we
say that vertices v and w are matched in M and that v is a partner of w in M , which we also
denote as v = M(w). If a vertex v has no edge of M incident to it, then we say that v is free
or unmatched in M . An edge (x, y) ∈ E \M is a blocking edge for M if x is either unmatched
or strictly prefers y to its current partner in M , and y is either unmatched or weakly prefers
x to its current partner. In other words, an edge (x, y) is blocking with respect to M , if by
getting matched to each other, neither of the vertices x and y would become worse off and at
least one of them would become better off than in M . A matching is strongly stable if there is
no blocking edge with respect to it.

As is customary, we call the vertices of the graph men – those belonging to the set A, and
women – the ones belonging to B. An ordered adjacency list of a vertex v is also called its
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preference list and denoted Lv. The problem of computing a strongly stable matching, if it
exists, has already been solved. Let n and m denote the number of, correspondingly, vertices
and edges in the graph. Irving [3] gave an O(n4) algorithm for computing strongly stable
matchings for instances in which the bipartite graph is complete and there are equal number
of men and women. In [7] Manlove extended the algorithm to incomplete bipartite graphs; the
extended algorithm has running time O(m2). In [5] Kavitha, Mehlhorn, Michail and Paluch
gave an O(nm) algorithm for SSMP.

In this paper we study the problem of characterising the set of all strongly stable matchings.
The problem was already stated in 1989 in the book by Gusfield and Irving [2] as one of the
12 open problems and posed again in many subsequent papers and also in a recent book by
Manlove [8]. Let us mention here that in contrast to the problem of characterisation of the
set of all strongly stable matchings, the structure of the set of all stable matchings in the
stable matching problem, which is the classical variant without ties, is well understood. The
set of stable matchings forms a lattice and although the number of stable matchings may
be exponential, there are known compact representations of all stable matchings that can be
constructed in O(m2) or even O(m) time.

The set of strongly stable matchings has also been shown to form a distributive lattice
[6]. However, no characterisation of such a set has been known so far. We give two compact
representations of the set of all strongly stable matchings that can be constructed in, corre-
spondingly, O(nm2) and O(nm) time, where n and m denote the number of vertices and edges
in the graph. We also show how to efficiently construct a partial order on the elements of
the representation. The presented compact representations as well as the posets on the sets
of elements of these representations can be used to solve a number of problems connected
with strongly stable matchings. In particular, we are able to efficiently enumerate all strongly
stable matchings, we can compute all stable pairs, where a pair (a, b) is stable if e = (a, b) ∈ E
and there exists a strongly stable matching containing e, and many others. Also, any known
algorithm for computing a strongly stable matching outputs either a man-optimal strongly
stable matching or woman-optimal strongly stable matching. A man-optimal strongly stable
matching has the property that each man is matched in it to the best partner he can have in
any strongly stable matching. A woman-optimal strongly stable matching has an analogous
property. It has been conjectured by Feder [1] that it may be NP-hard to decide if there exists
a strongly stable matching which is neither man-optimal or woman-optimal. In the paper we
disprove this conjecture.

One of the two representations of the set of stable matchings consists of O(m) elements,
each of which is a man-optimal stable matching among the set of all stable matchings containing
a given edge. In the case of the strongly stable matchings we give an analogous representation,
which for any stable pair (a, b) has a class of strongly stable matchings, which are man-optimal
among the set of strongly stable matchings containings (a, b). We show that computing such a
class can be reduced to computing a man-optimal strongly stable matching in an appropriately
constructed instance of SSMP. The reduction is surprisingly simple. It is described in Section
2. The second representation of the set of stable matchings can be derived from differences
(so called rotations) between consecutive matchings in a maximal sequence of stable match-
ings beginning with a man-optimal stable matching and ending with a woman-optimal stable
matching. Our second representation can be analogously obtained from differences between
consecutive classes of matchings in a maximal sequence of classes of strongly stable matchings.
This second representation can be constructed in O(nm) time – note that the time equals the
running time of the algorithm computing a single strongly stable matching.
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2 Preliminaries

In this section we recall some well-known theorems and theory concerning strongly stable
matchings. We are going to make use of the following two theorems:

Theorem 1 [5] There is an O(nm) algorithm to determine a man-optimal strongly stable
matching of the given instance or report that no such matching exists.

Theorem 2 [4] In a given instance of SSMP, the same vertices are matched in all strongly
stable matchings.

We introduce some notation and definitions.
For a given edge (m,w) any matching M such that (m,w) ∈ M is called an (m,w)-

matching. Let us denote the set of all strongly stable matchings of G byMG. LetMG(m,w)
be the set of strongly stable (m,w)-matchings in G.

Let Lv be a preference list of vertex v. Lv is a linearly ordered list of ties. The first tie on
Lv contains highest ranked edges for v and we say that the rank of every edge (v,w) contained
in this list is 1 and denote rankv(v,w) = 1. Similarly, the second tie on Lv contains edges of
rank 2 with respect to v and so on. For a strongly stable matching M , by rankM(v) we donote
rankv(v,M(v)).

We define an equivalence relation ∼ on MG as follows.

Definition 1 For two strongly stable matchings M and N , M ∼ N if and only if each man
m is indifferent between M(m) and N(m). Denote by [M ] the equivalence class containing M ,
and denote by X the set of equivalence classes of MG under ∼.

For two strongly stable matchings M and N , we say that M dominates N and write
M � N if each man m weakly prefers M(m) to N(m). If M dominates N and there exists a
man m who prefers M(m) to N(m), then we say that M strictly dominates N and we call N
a successor of M .

Next we define a partial order �∗ on X :

Definition 2 For any two equivalence classes [M ] and [N ], [M ] �∗ [N ] if and only if M � N .

Let M and N be any two matchings. Then the symmetric difference M ⊕ N = (M \
N) ∪ (N \M) contains alternating paths and alternating cycles, where a path p (cycle c) is
alternating (with respect to matching M) if its edges alternately belong to M and to E \M .
If M and N are two strongly stable matchings of the same graph, then by Theorem 2, M ⊕N
contains only alternating cycles. Alternating cycles of M ⊕N display an interesting property
captured in:

Lemma 1 [6] Let M and N be two strongly stable matchings. Consider any alternating cycle
C of M ⊕N . Let (m0, w0,m1, w1, ...,mk−1, wk−1) be a sequence of vertices of C where mi are
men and wi are women. Then there are only three possibilities:

• (∀mi)wi =mi
wi+1 and (∀wi)mi =wi

mi−1

• (∀mi)wi ≺mi
wi+1 and (∀wi)mi ≻wi

mi−1

• (∀mi)wi ≻mi
wi+1 and (∀wi)mi ≺wi

mi−1

Subscripts are taken modulo k.
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Below we introduce two operations transforming pairs of strongly stable matchings into
other strongly stable matchings.

Definition 3 Let M and N be two strongly stable matchings. Consider any man m and his
partners M(m) and N(m).

By M ∧N we denote the matching such that:

• if M(m) �m N(m) then (m,M(m)) ∈M ∧N

• if M(m) ≺m N(m) then (m,N(m)) ∈M ∧N

Similarly by M ∨N we denote the matching such that:

• if M(m) ≻m N(m) then (m,N(m)) ∈M ∨N

• if M(m) �m N(m) then (m,M(m)) ∈M ∨N

From [6] it follows that both M ∨ N and M ∧ N are strongly stable matchings, and
M,N �M ∨N and M,N �M ∧N .

We extend operations ∨ and ∧ to the set X of equivalence classes. Let [M ], [N ] ∈ X .
Denote [M ] ∨ [N ] = [M ∨N ], [M ] ∧ [N ] = [M ∧N ].

Theorem 3 [6] The partial order (X ,�∗) with operations meet ∨ and join ∧ defined above
forms a distributive lattice.

Note that the setMG(m,w) is closed under meet and join operations. It implies that the
set of equivalence classes ofMG(m,w) under ∼ forms a sublattice of X . hence there is a single
man optimal equivalence class of MG(m,w).

3 Construction of the auxiliary graph G(m,w)

In this section we describe an O(nm) algorithm for computing a man-optimal matching in
MG(m,w) or deciding that no such matching exists.

Let (m,w) ∈ E be an edge of the graph G. The idea is very simple. In order to cal-
culate a man-optimal matching in MG(m,w) we are going to define a new graph G(m,w),
such that there is a one-to-one correspondence between strongly stable matchings inMG(m,w)

and MG(m,w). Moreover, a man-optimal matching of G(m,w) is going to be a man-optimal
matching of MG(m,w).

Let G(m,w) = (A ∪B,E′) be a subgraph of G. Preference lists of G(m,w) are derived from
preference lists of G. Below we describe which edges should be removed from E in order to
obtain the set E′.

• (m,w) is removed from E

• let m′ be a vertex such that (m′, w) ∈ E and m ≻w m′. We remove (m′, w) from E.

• let m′ be a vertex such that (m′, w) ∈ E and m =w m′. We remove (m′, w) from E.
Additionally we remove every edge (m′, w′) ∈ E such that w ≻m′ w′.

• let m′ be a vertex such that (m′, w) ∈ E and m ≺w m′. We remove (m′, w) from E.
Additionally we remove every edge (m′, w′) ∈ E such that w �m′ w′.
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• let w′ be a vertex such that (m,w′) ∈ E and w ≻m w′. We remove (m,w′) from E.

• let w′ be a vertex such that (m,w′) ∈ E and w =m w′. We remove (m,w′) from E.
Additionally we remove every edge (m′, w′) ∈ E such that m ≻w′ m′.

• let w′ be a vertex such that (m,w′) ∈ E and w′ ≻m w. We remove (m,w′) from E.
Additionally we remove every edge (m′, w′) ∈ E such that m �w′ m′.

This concludes the construction of the graph G(m,w).

Lemma 2 Let M ∈ MG(m,w). Then M ′ = M \ {(m,w)} ∈ MG(m,w)
.

Proof. We will prove that M ′ ⊆ E′ and that M ′ is a strongly stable matching of G(m,w).
To prove M ′ ⊆ E′ we need to observe that none of the removed edges (E\E′) is matched in

M . Let us assume by contradiction that an edge (m′, w′) was removed from E and is matched
in M . Obviously m 6= m′ and w 6= w′. From the construction of G(m,w) it follows that there
is an edge (m,w′) or (m′, w) which caused the removal of (m′, w′). We can easily check that
such an edge blocks M . It leads to a contradiction.

Strong stability of M ′ is straightforward – if there were an edge e blocking M ′, it would
also block M . ✷

Lemma 3 Let M ′ be some strongly stable matching of G(m,w). If M ′ ∪ {(m,w)} is a strongly
stable matching of G, then for each strongly stable matching N of G(m,w), matching N ∪
{(m,w)} is a strongly stable matching of G. If M ′∪{(m,w)} is not a strongly stable matching
of G, then MG(m,w) = ∅.

Proof.

Let M ′ be any strongly stable matching of G(m,w). Consider an edge (m,w). Denote
M = M ′ ∪ {(m,w)}. From the construction of G(m,w) it follows that only edges from the set
E \E′ can potentially block M . We will prove that if any edge blocks M , then setMG(m,w)
is empty. Let us analyse the construction of the graph G(m,w). We have the following cases:

• let m′ be a vertex such that (m′, w) ∈ E and m ≻w m′. We removed (m′, w) from E.

• let m′ be a vertex such that (m′, w) ∈ E and m =w m′. We removed (m′, w) from E.
Additionally we removed every edge (m′, w′) ∈ E such that w ≻m′ w′.

• let m′ be a vertex such that (m′, w) ∈ E and m ≺w m′. We remove (m′, w) from E.
Additionally we remove every edge (m′, w′) ∈ E such that w �m′ w′.

• let w′ be a vertex such that (m,w′) ∈ E and w ≻m w′. We removed (m,w′) from E.

• let w′ be a vertex such that (m,w′) ∈ E and w =m w′. We removed (m,w′) from E.
Additionally we removed every edge (m′, w′) ∈ E such that m ≻w′ m′.

• let w′ be a vertex such that (m,w′) ∈ E and w ≻m w′. We removed (m,w′) from E.
Additionally we removed every edge (m′, w′) ∈ E such that m �w′ m′.
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Case 1. An edge (m′, w) cannot block M .
Case 2. Note that from the construction of G′, if vertex m′ is matched in M , then neither

(m′, w) nor (m′, w′) can block M . If vertex m′ is unmatched in M , then from Theorem 2
vertex m′ is unmatched in every strongly stable matching of G′. Let us assume that there
exists some matching N ∈ MG(m,w). Then N ′ = N \ (m,w) is strongly stable in G′, so m′

is unmatched in N ′. Hence (m′, w) blocks N , contradiction.
We omit proofs of the remaining cases as these proofs are analogous to the proof of Case

2. ✷

From above lemma, we conclude that either every strongly stable matching of MG(m,w)

corresponds to some strongly stable matching of MG(m,w), or none of them. Additionally
we can easily compute a man-optimal strongly stable matching M ′ in G(m,w) and check if
M ′ ∪ {(m,w)} is strongly stable in G. This implies the following theorem:

Theorem 4 Let (m,w) ∈ E. There is an O(nm) algorithm for deciding whether MG(m,w)
is empty, and computing a man-optimal matching of MG(m,w) if it exists.

4 Basic representation

In this section we prove the existence of a compact representation I(MG) of the lattice MG.
This representation is a generalization of the representation given in [2] for the classical stable
marriage problem. Representation I(MG) is simple to construct and its correctness is easy to
prove. However, its construction takes O(nm2) time.

Recall that equivalence classes of MG(m,w) under ∼ form a sublattice of MG. Thus
MG(m,w) contains its own equivalence class of man-optimal strongly stable matchings.

Definition 4 By M(m,w) we denote the equivalence class of man-optimal strongly stable
(m,w)-matchings.

Definition 5 An equivalence class of a matching N is called irreducible if [N ]∼ = M(m,w)
for some m,w.

By I(MG) we denote the set of irreducible equivalence classes. We will consider (I(MG),�)
as the partial order with the dominance relation inherited fromMG.

A subset S of I(MG) is said to be closed in I(MG) if there is no element in I(MG) \ S
that precedes an element in S.

Let S ⊆ I(MG) be a closed set. Denote
∨

S =
∨

T∈S T . Obviously
∨

S is an equivalence
class of ∼. Hence every closed subset of (I(MG),�) corresponds to an equivalence class. We
will prove that it is a bijection from the set of closed subsets of (I(MG),�) to the set of
equivalence classes of ∼.

Definition 6 Let M be any strongly stable matching. We define the irreducible support U(M)
to be

U(M) = {M(m,w) : (m,w) ∈M}

Lemma 4 Let M be any strongly stable matching. Then [M ] =
∨

U(M).
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Proof. Suppose that [M ] 6=
∨

U(M). There is a man m1 such that (m1, w1) ∈ M and for
every matching M ′ ∈

∨
U(M), it holds that w1 6=m1 M ′(m1). Note that M(m1, w1) is in

U(M), so M ′(m1) ≺m1 w1. There must be a pair (m2, w2) ∈ M such that in any matching
from the class M(m2, w2) man m1 gets matched to a woman strictly worse than w1. Class
M(m2, w2) dominates class [M ], because (m2, w2) ∈ M . This gives a contradiction because
m1 prefers w1 to any partner of any matching in M(m2, w2). ✷

By C(U(M)) we denote the set of all irreducible matchings that dominate some matching
in U(M), i.e. C(U(M)) is the closure of U(M).

Lemma 5 Let M be a strongly stable matching. Then [M ]∼ =
∨

C(U(M)).

Proof. If [M ] �∗ [N ] then [M ] ∨ [N ] = [N ], so
∨

C(U(M)) =
∨
U(M) since each matching

in
∨

C(U(M)) dominates some matching in
∨

U(M). ✷

Lemma 6 Let M be a strongly stable matching. [M ] =
∨

S for a set S of equivalence classes
that excludes [M ] if and only if [M ] /∈ I(MG)

Proof. (⇐) follows from Lemma 5.
(⇒) If [M ] =

∨
S, then every class in S dominates [M ]. So if [M ] /∈ S, then for any pair

(m,w) ∈M there is a class [M ′] ∈ S, such that M(m) =m M ′(m) and M ′ strictly dominates
M . Hence [M ] 6= M(m,w) and [M ] cannot be an irreducible class. ✷

Lemma 7 If S and T are distinct closed subsets of I(MG), then
∨

S 6=
∨

T .

Proof. Since S and T are closed and S 6= T one of the maximal matchings of S ∪ T (with
respect to dominance) cannot be in S ∩T . So one of the sets (say S without loss of generality)
contains a class [M ] that does not dominate any matching in T . Moreover for some m and w
we have that [M ] = M(m,w). Since [M ] ∈ S, vertex m has a partner no better than w in any
matching in

∨
S. We claim that m has a better partner than w in every matching in T , so∨

S 6=
∨

T .
To prove this fact, suppose that (m,w′) ∈M ′ and w′ �m w for some [M ′] ∈ T . From the

definition of M(m,w) there is a matching N ∈M(m,w) such that (m,w) ∈ N . We can easily
see that N ∧M ′ contains (m,w), so M(m,w) �M(m,w) ∧ [M ′] � [M ′].

Thus M(m,w) dominates M ′ contradicting the fact that M(m,w) dominates no matching
in T . ✷

Lemma 8 If S is a closed subset of I(MG) and [M ]∼ =
∨

S, then S = C(U(M)).

The following theorem is an immediate consequence of Lemmas 4, 5, 6, 7.

Theorem 5 The function S →
∨

S is a bijection between the nonempty closed subsets of
I(MG) and X .

Theorem 6 Representation (I(MG),≺) can be constructed in time O(nm2).
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Proof. It is easy to see that the set I(MG) can be computed in time O(nm2). It suffices to run
the algorithm described in Theorem 9 for each edge (m,w) ∈ E. Obviously the set I(MG) has
at most m elements. In order to determine the precedence relation on (I(MG),≺) we simply
examine each pair of equivalence classes of I(MG) and test whether one class dominates the
other one. Each test clearly takes O(n) time. This shows that the construction takes O(nm2)
time. ✷

5 A Maximal Sequence of Strongly Stable Matchings

In this section we will be interested in computing a sequence of strongly stable matchings
M0 ≻ M1 ≻ . . . ≻ Mz such that M0 is a man-optimal strongly stable matching, Mz is a
woman-optimal strongly stable matching and for each 1 ≤ i ≤ z, there exists no strongly
stable matching M ′ such that Mi−1 ≻ M ′ ≻ Mi. We will call such a sequence - a maximal
sequence of strongly stable matchings. In order to do this, we need to be able to compute a
strict successor of any strongly stable matching M , where by a strict successor of M we mean
any strongly stable matching M ′, which is a successor of M , i.e., M ≻M ′ and such that there
exists no strongly stable matching M ′′ such that M ≻M ′′ ≻M ′.

Let M be a strongly stable matching M and m a vertex in A. Suppose that there exists
a strongly stable matching M ′ such that m gets a worse partner in M ′ than in M , i.e.,
M(m) ≻m M ′(m) = w′. What edge incident to m can potentially belong to M ′? Obviously it
must be an edge (m,w) such that M(m) ≻m w. By Lemma 1, we also get that m ≻w M(w).
This way we get that any edge (m,w) such that w ≺m M(m) ∧ M(w) ≺w m potentially
belongs to a strict successor N of M such that m has a worse partner in N than in M . In
the algorithm computing a strict successor of M , the set Ec contains for each man m highest
ranked edges incident to him that potentially belong to some strict successor N of M such
that M(m) ≻m N(m).

We can observe that if man m gets a worse partner in a strongly stable matching M ′,
then it automatically means that certain other men must also get worse partners in M ′ and
certain women must get better partners in M ′. For example, let us assume that M ′(m) =
w′ ≺m w = M(m). Then, if there exists w1 such that w1 =m w and m =w1 M(w1), then w1

must have a better partner in M ′ than in M , (otherwise (m,w1) would block M ′) and as a
result, by Lemma 1, w′

1s current partner M(w1) must have a worse partner in M ′ than in M .
Similarly, if there exists w1 such that (1) w1 =m w′ and m ≻w1 M(w1) or (2) w ≻m w1 ≻m w′

and m =w1 M(w1), then w1 must have a better partner in M ′ and M(w1) must have a worse
partner in M ′.

In Algorithm given below we maintain a directed graph Gd = (V,Ed), whose every edge
(m,w) ∈ Ed ∩M is directed from w to m and every other edge (m,w) is directed from m to
w. Gd satisfies:

Property 1 Let M be a currently considered strongly stable matching and x a vertex such
that rankM(x) 6= rankMz

(x). Then graph Gd constructed with respect to M has the property
that for every vertex y reachable from x in Gd and any strongly stable matching N such that
M ≻ N and rankM(x) 6= rankN (x) it holds rankM (y) 6= rankN (y).

A strongly connected component S of a directed graph G′ = (V ′, E′) is such a maximal
set of vertices S ⊆ V ′ that for every pair of vertices x, y ∈ S vertex y is reachable from x, i.e.,
there exists a directed path from x to y visiting only vertices of S. We say that e = (v,w)
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is an outgoing edge of S if v ∈ S and w /∈ S. The number of outgoing edges of S is denoted
as outdeg(S). Depending on the context, we treat a strongly connected component S as a set
of vertices, a set of (undirected) edges or a directed subgraph. We say that a matching M is
perfect on S if every vertex of S is matched in M ∩ S.

We can notice that strongly connected components of Gd help in finding strict successors
of the considered strongly stable matching in the following sense:

Observation 1 Let M be a strongly stable matching and N its successor. Then the set X =
{v : rankM (v) 6= rankN(v)} has the property that each strongly connected component S of Gd

is either a subset of X or is disjoint with X. Also, X has no outgoing edge in Gd.

In the algorithm while computing a strict successor of a given strongly stable matching M
we consider each strongly connected component S of Gd with outdeg(S) = 0 and try to find
a perfect matching on S in the graph Gc. If we are successful, then we prove that this gives
us a strict successor of M . Otherwise, we change the graphs Gc and Gd by allowing edges of
lower rank and continue.

Another graph, which we keep in Algorithm is Gc. We will prove that it satisfies:

Property 2 Let m be any man and N any strict successor of M such that M(m) ≻m N(m).
Then rankN (m) ≥ min{rankm(m, v) : (m, v) ∈ E′ ∪ Ec}.

5.1 Correctness of Algorithm

Below we prove the correctness of Algorithm computing a maximal sequence of strongly stable
matchings. We begin with the following simple observations.

Fact 1 During the whole execution:

1. Ec ⊆ Ed

2. Let l(m) = min{rankm(m, v) : (m, v) ∈ E′ ∪ Ec}. Then every edge e = (m,w) of Ed

satisfies l(m) ≥ rankm(e) ≥ rankM (m) and rankw(e) ≤ rankM(w).

3. Each edge (m,w) of Ec is contained in some strongly connected component S of Gd with
outdeg(S) = 0.

Proof. The second point follows 15 and 18 of Algorithm. The third point follows from lines
16-18 of Algorithm. ✷

Fact 2 If we show, that we never delete an edge e of Ec which belongs to a strongly stable
matching N dominated by the current matching M , then it implies that Property 2 is satisfied.

Lemma 9 Assuming that at some point Algorithm satisfies Property 2, it also satisfies Prop-
erty 1.

Proof. Suppose that at some point of the execution Property 2 is satisfied. Let M be a
current strongly stable matching, whose strict successor we want to compute and m any man
such that M(m) ≻m Mz(m). Let N be any strict successor of M such that M(m) ≻m N(m).
By Fact 1(2) any edge e = (m,w) of Ed \ M satisfies l(m) ≥ rankm(e) ≥ rankM (m) and
rankw(e) ≤ rankM(w). Edge e is directed in Gd from m to w. We want to show, that if
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rankN (m) 6= rankM(m), then rankN(w) 6= rankM (w). By Property 2 rankN (m) ≥ l(m).
This means that rankN (w) < rankM (w). Otherwise e blocks N or Lemma 1 does not hold.

If e = (m,w) is an edge of Ed ∩M , then by Lemma 1, if rankN(w) 6= rankM (w), then
rankN (m) 6= rankM (m).

Thus, we have shown, that for every edge (x, y) of Gd and any strongly stable matching N
dominated by M , it holds rankM (x) 6= rankN(x) implies rankM(y) 6= rankN (y). Therefore
lemma is proved. ✷

Lemma 10 No edge e deleted in line 19 of Algorithm can belong to any strongly stable match-
ing N dominated by M .

Proof. Suppose that the algorithm wants to delete an edge e = (m,w) from Ec because it
is dominated by some newly added edge (m′, w). We want to show that e cannot belong to
any strongly stable matching dominated by M . Suppose to the contrary that e belongs to
a strongly stable matching N dominated by M . Since rankw(m,w) 6= rankM(w), because
e ∈ Ec, we get that rankN (w) 6= rankM (w). Edge e belongs to Ec and m′ has an incident edge
in Ec. Therefore by Fact 1 (3) m′ and m belong to a common strongly connected component
and hence M(m′) ≻m′ N(m′). Then by Property 2 rankm′(m′, w) ≤ rankN (m′). Therefore
e = (m,w) cannot belong to N as it would be blocked by (m′, w). ✷

Lemma 11 Let M ′ be a maximum matching in Gc, Z a set of men reachable from a free
man x0 by alternating paths and N(Z) women adjacent in Gc to Z. Then assuming Algorithm
satisfies Properties 1 and 2, edges of Gc and lowest ranked edges of E′ incident to women in
N(Z) cannot be contained in any strongly stable matching dominated by M .

Proof. Let us assume that e = (m,w) is an edge such that w ∈ N(Z) and there is a strongly
stable matching N such that e ∈ N and M ≺ N .

We can easily prove that |Z| = |N(Z)| + 1 and that every woman in N(Z) is matched in
M ′ with a man in Z. Edge e is the lowest ranked edge incident to w.

Let Ẽ be the set of edges incident to women in N(Z) which Algorithm wants to remove.
Consider N ∩ Ẽ, let U ′ be their female endpoints and Z ′ be their male endpoints. From our
assumptions it follows that w ∈ U ′, hence U ′ 6= ∅. N matches men in Z ′ with women in U ′,
so |Z ′| = |U ′| ≤ |N(Z)| < |Z|.

We will prove the existence of an edge e′ = (m′, w′) such that m′ ∈ Z \Z ′ and w′ ∈ U ′ and
then show that it blocks N .

Assume that M ′ contains no such edge. Then it pairs women in U ′ with men in Z ′ and
since |U ′| = |Z ′|, M ′ pairs the men in Z ′ with the women in U ′. Hence x0 ∈ Z \ Z ′ as x0 is
free in M ′. Consider the alternating path from x0 to w. Let (a, b) be the first edge on the
path with b ∈ U ′ ∪ Z ′. If b ∈ Z ′, e′ is a matching edge and a ∈ U ′, contradicting the fact that
(a, b) is the first edge on the path with b ∈ U ′ ∪ Z ′. Thus b ∈ U ′ and a ∈ Z \ Z ′.

Since w′ ∈ U ′, rankw′(N(w′)) = rankw′(m′). We claim that in N vertex m′ is either
unmatched or matched to a woman strictly below w′ on his preference list. To prove this
note that m′ cannot be matched to a vertex strictly better than w′ because M dominates
N – if follows easily from Property 1. If m′ is matched in N to a woman w′′ such that
rankm′(w′′) = rankm′(w′), then (m′, w′′) ∈ Ed from the definition of Gd. If (m′, w′′) ∈ Ec

then m′ ∈ Z ′, a contradiction. If (m′, w′′) /∈ Ec, then at some point it must have been deleted
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from Ec and by Lemma 10 it cannot belong to N . Hence m′ has to be matched in N to a
vertex strictly worse than w′.

We conclude that (m′, w′) blocks N , a contradiction. ✷

Lemma 12 Suppose that matching Mi−1 output by Algorithm is strongly stable or Mi−1 = M0.
Then matching Mi output by Algorithm is strongly stable and is a strict successor of Mi−1.

Proof. By previous lemmas we can assume that at the moment of outputting Mi Algorithm
satisfies Properties 1 and 2. Mi is output because M ′ is perfect on a strongly connected
component S with outdeg(S) = 0. Thus Mi is of the form (M ′ ∩ S) ∪ (M \ S). First we
prove that Mi is strongly stable. Suppose to the contrary that Mi is blocked by some edge
e = (m,w). We can notice that it cannot happen that exactly one of the vertices m,w belongs
to S. It is so because of the following. Suppose that m ∈ S. Then e would be an outgoing
edge of S, a contradiction. If w ∈ S and m /∈ S, then M(m) =m Mi(m) and M(w)w ≺Mi(w),
which would mean that e blocks M = Mi=1, a contradiction.

Hence, the endpoints of a blocking edge e must both belong to S. Let us notice that at the
moment of calculating alternating paths the edges of Ec incident to vertex v have the same
rank with respect to v. Since e blocks Mi, it must have at some point belonged to Ec and got
deleted later. An edge incident to woman w can get deleted only if it is dominated by another
edge of Ec. This then means that the rank of edges currently incident to w, and thus to Mi,
is higher than that of e - a contradiction.

Now we prove that Mi is a strict successor of Mi−1. Let v be any vertex of S and N any
successor of Mi−1 such that rankN (v) 6= rankMi−1(v). Then rankMi−1(v) 6= rankMi

(v). By
Property ?? the rank of every vertex of S in Mi−1 must be different from its rank in N . By
Property 2, for any man m of S we have rankN (m) ≥ rankMi

(v). This concludes the proof.
✷

Finally, we have a lemma with an easy proof.

Lemma 13 After the updating of graphs Gc and Gd in line 38, Algorithm satisfies Properties
1 and 2.

Using previous lemmas, we have proved:

Theorem 7 Algorithm computes a maximal sequence of strongly stable matchings.

5.2 Running Time of Algorithm

Without any additional modifications we can rather easily prove:

Theorem 8 The running time of Algorithm is O(m2)

Proof. Each time we introduce a new edge or edges to Ed we need to compute strongly
connected components of Gd. Computing strongly connected components of any directed
graph G′ = (V ′, E′) can be done in O(|E′|) time. Since each edge e of G is added to Gd at
most once and since Gd is a subgraph of G at all times, the overall time spent on computing
strongly connected components of Gd is O(m2).

Each time we introduce a new edge to Ec we need to compute women reachable by alter-
nating paths from free men in Gc. Each such computation takes O(|Ec|) time. Every edge of
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G is added to Gc at most once and for all times Ec ⊆ E - hence the time spent on computing
alternating paths in Ec during the whole execution of Algorithm is O(m2).

Updating graphs Gd and Gc takes O(m) time overall. ✷

Next, we show that Algorithm can be modified so that it runs in O(nm) time. To this
end we are going to use the concept of levels introduced in [5]. We define the level of an edge,
vertex and matching in the same way as in [5]:

Definition 7 Let E〉 be the edges added to Gc in phase i and define the level l(e) of an edge
e to be the phae when this edge was first added to Gc. Edges never added to Gc have no level
assigned to them.

Thus, the set of edges ever added to Gc consists of the disjoint union E∞ ∪ E∈ ∪ . . . E∇,
where r is the total number of phases in the algorithm. Note that r ≤ m.

Definition 8 Define the level l(v) of a vertex v to be the minimum level of the edges in Gc

incident to v. The level of an isolated vertex is undefined.

Definition 9 The level l(M) of a matching M is the sum of the levels of the matched women.
A matching M is level-maximal if l(M) ≥ l(M ′) for any matching M ′ which matches the same
men.

We show that in order to make Algorithm run in O(nm) time it suffices to change Line 24.
Line 24 of the modified algorithm, called Algorithm Mod, is: "let w be a free woman in Gc of
maximal level reachable from m by an alternating path p in Ec". Because of this modification
we prove:

Lemma 14 Matching M ′ is level-maximal at all times of the execution of Algorithm Mod.

The proof of this lemma is the same as that of its analogue in [5] and is based on the
following lemmas, also proved in [5]:

Lemma 15 For a man, all incident edges in Gc have the same level. All women adjacent to
a man of level i have level at most i. When a woman loses an incident edge in Ec she loses all
her incident edges in Ec.

Lemma 16 A matching M is level-maximal iff there is no alternating path in Gc from a free
woman in M ′ to a woman of lower level.

Lemma 17 If M ′ is level-maximal, m is a free man in M ′, w is a woman of maximal level
reachable from m by an augmenting path p, then N = M ′ ⊕ p is level-maximal.

The search for augmenting paths in Gc and its analysis are also the same as in [5].
Therefore we have:

Lemma 18 The total time of Algorithm Mod spent on computing augmenting paths in Gc, i.e.
on lines 22− 31, is bounded by O(nm).

Below we show that the time needed to compute strongly connected components during
the execution of Algorithm Mod can be estimated more carefully than in Theorem 8.
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Lemma 19 The overall time of Algorithm Mod spent on computing strongly connected com-
ponents of Gd is O(nm).

Proof. Pearce [10] and Pearce and Kelly [11] sketch how to extend their algorithm and that
of Marchetti-Spaccamela et al. [9] to strong component maintenance. Their algorithm runs
in O(nm) time if edges can only be added to the graph and not deleted and n,m denote the
number of vertices and edges, respectively. In Algorithm (and Algorithm Mod) edges of Gd

can be deleted – in line 38. However, they are deleted only when M ′ is perfect on a strongly
connected component S. As a result only a strongly connected component S of Gd vanishes
and other strongly connected components are unaffected. Some of the edges of Gd having one
or two endpoints in S remain in Gd. We can treat them as though they were added anew to
the graph. Since the ranks of men increase as we output subsequent strongly stable matchings,
we can notice that each edge can be added anew to the graph Gd at most three times. This
proves the lemma. ✷

As a consequence of Lemmas 18 and 19 we obtain:

Theorem 9 Algorithm Mod runs in O(nm) time.

6 Rotations

Based on a maximal sequence C of strongly stable matchings it is possible to build a concise
representation of the set of all strongly stable matchings. It is done very similarly as in the
classical stable matching problem without ties. There such a representation is constructed
from an analogous maximal sequence D of stable matchings M ′

0 ≻M ′
1 ≻ . . . ≻M ′

z, where M ′
0

and M ′
z denote appropriately a man-optimal and woman-optimal stable matching. Let us note

that in both problems a maximal sequence of (strongly) stable matchings is not unique.
The symmetric difference M ⊕N of two matchings, with the same sets of matched vertices

consists of alternating cycles. A symmetric difference Mi−1 ⊕Mi of two consecutive stable
matchings in D is called a rotation. It turns out that in the case of the stable matching
problem without ties every rotation consists of one alternating cycle and irrespective of a
maximal sequence D of stable matchings one always gets the same set of rotations. The set
of stable matchings is characterised by a partial order (Π,≤) on rotations with a relation of
preceding defined as follows. We say that rotation R1 precedes rotation R2 and denote R1 ≤ R2

if in every maximal sequences D of a given instance a rotation R1 occurs before a rotation R2.
Every stable matching corresponds to a closed subset of Π. Theory regarding rotations is very
well described in the book by Gusfield and Iriving [2].

In the case of strongly stable matchings we proceed analogously. We define a rotation as
a symmetric difference Mi−1 ⊕Mi of two consecutive strongly stable matchings in D. This
time, however, a rotation may consist of more than one alternating cycle. Also, we define an
equivalence class on rotations so that R1 = M ⊕N is equivalent to R2 = M ′ ⊕N ′ if and only
if M ∼M ′ and N ∼ N ′. On the set of classes of rotations we construct a partial order (Π′,≤′)
in time O(nm).
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Algorithm

1: let M0 be any man-optimal strongly stable matching of G
2: let Mz be any woman-optimal strongly stable matching of G
3: M ←M0

4: let M ′ contain edge (m,M(m)) for every man m such that M(m) =m Mz(m)
5: let Ed contain all edges of M
6: let Gd be a directed graph (V,Ed) in which every edge (m,w) ∈ Ed ∩M is directed from

w to m and every other edge (m,w) is directed from m to w
7: E′ ← E \ Ed

8: let Ec = M ′ and let Gc = (V,Ec)
9: for a vertex x let S(x) denote a strongly connected component of Gd containing x

10: for each (m,w) ∈ M remove from E′ each edge (m′, w) dominated by (m,w) and each
edge (m,w′) such that w′ ≻m w

11: let i = 1
12: set phase number j = 1
13: repeat

14: while (∃m ∈ A) ( degGc
(m) = 0 and outdeg(S(m)) = 0) do

15: add the set Em of top choices of m from E′ to Ed

16: if outdeg(S(m) = 0 then

17: add every edge (m,w) ∈ Em such that m ≻w M(m) and M(m) ≻m w to Ec

18: for every edge (m,w) of Ec that becomes dominated by some newly added edge
(m′, w) remove it from Gc

19: remove Em from E′

20: end if

21: end while

22: while (∃m ∈ A) (m is free in M ′ and outdeg(S(m)) = 0) do

23: if an alternating path from m to a free woman w in Ec exists then

24: let w be a free woman in M ′ reachable from m by an alternating path p in Ec

25: M ′ ←M ′ ⊕ p
26: else

27: let Z be the set of men reachable from m by alternating paths in Ec

28: let N(Z) be the women adjacent to Z in Ec

29: delete all lowest ranked edges in Ec ∪E′ incident to any w ∈ N(Z)
30: end if

31: end while

32: while (∃S)(outdeg(S) = 0 and (M ′ perfect on S) do

33: M ← (M ′ ∩ S) ∪ (M \ S)
34: Mi ←M
35: output Mi

36: i← i+ 1
37: M ′ ←M ′ \ S
38: update Gc and Gd: Ec∩S contains only edges of the form (m,M(m)) such that m is a

man and M(m) =m Mz(m); an edge (m,w) stays in Gd only if rankm(w) = rankM (m)
and rankw(m) ≤ rankM (w).

39: end while

40: j ← j + 1
41: until (∀v ∈ A) rankM(v) = rankMz(v)

Figure 1: Algorithm for computing a maximal sequence of strongly stable matchings
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