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Abstract

Fraudulent behaviors in Google’s Android app market
fuel search rank abuse and malware proliferation. We
present FairPlay, a novel system that uncovers both
malware and search rank fraud apps, by picking out
trails that fraudsters leave behind. To identify suspi-
cious apps, FairPlay’s PCF algorithm correlates review
activities and uniquely combines detected review rela-
tions with linguistic and behavioral signals gleaned from
longitudinal Google Play app data. We contribute a
new longitudinal app dataset to the community, which
consists of over 87K apps, 2.9M reviews, and 2.4M re-
viewers, collected over half a year. FairPlay achieves
over 95% accuracy in classifying gold standard datasets
of malware, fraudulent and legitimate apps. We show
that 75% of the identified malware apps engage in search
rank fraud. FairPlay discovers hundreds of fraudulent
apps that currently evade Google Bouncer’s detection
technology, and reveals a new type of attack campaign,
where users are harassed into writing positive reviews,
and install and review other apps.

1 Introduction

The commercial success of Android app markets such as
Google Play [1] has made them a lucrative medium for
committing fraud and malice. Some fraudulent develop-
ers deceptively boost the search ranks and popularity of
their apps (e.g., through fake reviews and bogus instal-
lation counts) [2], while malicious developers use app
markets as a launch pad for their malware [3, 4, 5, 6].

Existing mobile malware detection solutions have
limitations. For instance, while Google Play uses the
Bouncer system [7] to remove malware, out of the 7, 756
Google Play apps we analyzed using VirusTotal [8], 12%
(948) were flagged by at least one anti-virus tool and
2% (150) were identified as malware by at least 10 tools
(see Figure 3a). Previous work has focused on dynamic
analysis of app executables [9, 10, 11] as well as static
analysis of code and permissions [12, 13, 14]. However,
recent Android malware analysis revealed that malware
evolves quickly to bypass anti-virus tools [15].

Figure 1: FairPlay system architecture. The CoReG
module identifies suspicious, time related co-review
behaviors. The RF module uses linguistic tools to
detect suspicious behaviors reported by genuine reviews.
The IRR module uses behavioral information to detect
suspicious apps. The JH module identifies permission
ramps to pinpoint possible Jekyll-Hyde app transitions.

In this paper, we seek to identify both malware
and search rank fraud targets in Google Play. This
combination is not arbitrary: we posit that malicious
developers resort to search rank fraud to boost the
impact of their malware.

Unlike existing solutions, we build this work on
our observation that fraudulent and malicious behav-
iors leave behind telltale signs on app markets. We un-
cover these nefarious acts by picking out such trails.
For instance, the high cost of setting up valid Google
Play accounts forces fraudsters to reuse their accounts
across review writing jobs, making them likely to re-
view more apps in common than regular users. Re-
source constraints can compel fraudsters to post reviews
within short time intervals. Legitimate users affected
by malware may report unpleasant experiences in their
reviews. Ramps in the number of “dangerous” permis-
sions requested by apps may indicate benign to malware
(Jekyll-Hyde) transitions.
Contributions and Results. We propose FairPlay,
a system that leverages the above observations to effi-
ciently detect Google Play fraud and malware (see Fig-
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ure 1). Our major contributions are:
• A unified relational, linguistic and behavioral
approach. We formulate the notion of co-review

graphs to model reviewing relations between users.
We develop PCF, an efficient algorithm to identify
temporally constrained, co-review pseudo cliques —
formed by reviewers with substantially overlapping co-
reviewing activities across short time windows. We
use linguistic and behavioral information to (i) detect
genuine reviews from which we then (ii) extract user-
identified fraud and malware indicators. In addition,
we detect apps with (i) permission request ramps, (ii)
“unbalanced” review, rating and install counts, and (iii)
suspicious review spikes. We generate 28 features, and
use them to train supervised learning algorithms [§ 4].
• Novel longitudinal and gold standard datasets.
We contributed a longitudinal dataset of 87, 223 freshly
posted Google Play apps (along with their 2.9M reviews,
from 2.3M reviewers) collected between October 2014
and May 2015. We have leveraged search rank fraud
expert contacts in Freelancer [16], anti-virus tools and
manual verifications to collect gold standard datasets of
hundreds of fraudulent, malware and benign apps. We
will publish these datasets alongside this work [§ 3].
• High Accuracy. FairPlay achieves over 97% ac-
curacy in classifying fraudulent and benign apps, and
over 95% accuracy in classifying malware and benign
apps. FairPlay significantly outperforms the malware
indicators of Sarma et al. [12]. Furthermore, we show
that malware often engages in search rank fraud as well:
When trained on fraudulent and benign apps, FairPlay
flagged as fraudulent more than 75% of the gold stan-
dard malware apps [§ 5.3].
• Real-world Impact: Uncover Fraud & Attacks.
FairPlay discovers hundreds of fraudulent apps that cur-
rently evade Google Bouncer’s detection technology. We
show that these apps are indeed suspicious: the review-
ers of 93.3% of them form at least 1 pseudo clique and
55% of these apps have at least 33% of their reviewers
involved in a pseudo clique. In addition, FairPlay en-
abled us to discover a novel, coercive campaign attack
type, where app users are harassed into writing a pos-
itive review for the app, and install and review other
apps [§ 5.4 & § 5.5].

2 Background, Related Work,
and Our Differences

System model. We focus on the Android app mar-
ket ecosystem of Google Play. The participants, con-
sisting of users and developers, have Google accounts.
Developers create and upload apps, that consist of ex-
ecutables (i.e., “apks”), a set of required permissions,
and a description. The app market publishes this in-

formation, along with the app’s received reviews (1-5
stars rating & text), ratings (1-5 stars, no text), ag-
gregate rating (over both reviews and ratings), install
count range (predefined buckets, e.g., 50-100, 100-500),
size, version number, price, time of last update, and a
list of “similar” apps.
Adversarial model. We consider not only malicious
developers, who upload malware, but also rational
fraudulent developers. Fraudulent developers attempt
to tamper with the search rank of their apps. While
Google keeps secret the criteria used to rank apps, the
reviews, ratings and install counts are known to play a
fundamental part (see e.g., [17]. Fraudulent developers
often rely on crowdsourcing sites [16, 18, 19] to hire
teams of workers to commit fraud collectively.

To review or rate an app, a user needs to have
a Google account, register a mobile device with that
account, and install the app on the device. This process
complicates the job of fraudsters, who are thus more
likely to reuse accounts across review writing jobs.

2.1 Research in Android Malware Detection.
Burguera et al. [9] used crowdsourcing to collect system
call traces from real users, then used a “partitional”
clustering algorithm to classify benign and malicious
apps. Shabtai et al. [10] extracted features from moni-
tored apps (e.g., CPU consumption, packets sent, run-
ning processes) and used machine learning to identify
malicious apps. Grace et al. [11] used static analysis to
efficiently identify high and medium risk apps.

Previous work has also used app permissions to
pinpoint malware [12, 13, 14]. Sarma et al. [12] use risk
signals extracted from app permissions, e.g., rare critical
permissions (RCP) and rare pairs of critical permissions
(RPCP), to train SVM and inform users of the risks vs.
benefits tradeoffs of apps. In § 5.3 we use Sarma et
al. [12]’s solution as a baseline, and show that FairPlay
significantly improves on its performance.

Peng et al. [13] propose a score to measure the
risk of apps, based on probabilistic generative models
such as Naive Bayes. Yerima et al. [14] also use
features extracted from app permissions, API calls and
commands extracted from the app executables.

Instead of analyzing app executables, FairPlay em-
ploys a unified relational, linguistic and behavioral ap-
proach based on longitudinal app data. FairPlay’s use
of app permissions differs from existing work through
its focus on the temporal dimension, e.g., changes in
the number of requested permissions, in particular the
“dangerous” ones. We observe that FairPlay identifies
and exploits a new relationship between malware and
search rank fraud.



2.2 Research on Graph Based Opinion Spam
Detection. Graph based approaches have been pro-
posed to tackle opinion spam [20, 21]. Ye and
Akoglu [20] quantify the chance of a product to be a
spam campaign target, then cluster spammers on a 2-
hop subgraph induced by the products with the highest
chance values. Akoglu et al. [21] frame the fraud de-
tection as a signed network classification problem and
classify users and products, that form a bipartite net-
work, using a propagation-based algorithm.

FairPlay’s relational approach differs as it identifies
apps reviewed in a contiguous time interval, by groups
of users with a history of reviewing apps in common.
FairPlay combines the results of this approach with be-
havioral and linguistic clues, extracted from longitudi-
nal app data, to detect both search rank fraud and mal-
ware apps. We emphasize that search rank fraud goes
beyond opinion spam, as it implies fabricating not only
reviews, but also user app install events and ratings.

3 The Data

We have collected longitudinal data from 87K+ newly
released apps over more than 6 months, and identified
gold standard app market behaviors. In the following,
we briefly describe the tools we developed, then detail
the data collection effort and the resulting datasets.

Data collection tools. We have developed the
Google Play Crawler (GPCrawler) tool, to automati-
cally collect data published by Google Play for apps,
users and reviews. Google Play shows only 20 apps on
a user page by default. GPCrawler overcomes this lim-
itation by using a Firefox add-on and a Python script.
The add-on interacts with Google Play to extend the
user page with a “scroll down” button and enable the
script to automatically navigate and collect all the in-
formation from the user page.

We have also developed the Google Play App Down-

loader (GPad), a Java tool to automatically download
apks of free apps on a PC, using the open-source An-

droid Market API [22]. GPad scans each app apk using
VirusTotal [8], an online malware detector provider, to
find out the number of anti-malware tools (out of 57:
AVG, McAfee, Symantec, Kaspersky, Malwarebytes, F-
Secure, etc.) that identify the apk as suspicious. We
used 4 servers (PowerEdge R620, Intel Xeon E-26XX v2
CPUs) to collect our datasets, which we describe next.

3.1 Longitudinal App Data. In order to detect
app attribute changes that occur early in the lifetime of
apps, we used the “New Releases” link to identify apps
with a short history on Google Play. We approximate
the first upload date of an app using the day of its first
review. We have started collecting new releases in July

2014 and by October 2014 we had a set of 87, 223 apps,
whose first upload time was under 40 days prior to our
first collection time, when they had at most 100 reviews.

We have collected longitudinal data from these
87, 223 apps between October 24, 2014 and May 5, 2015.
Specifically, for each app we captured “snapshots” of its
Google Play metadata, twice a week. An app snapshot
consists of values for all its time varying variables, e.g.,
the reviews, the rating and install counts, and the set
of requested permissions (see § 2 for the complete list).
For each of the 2, 850, 705 reviews we have collected from
the 87, 223 apps, we recorded the reviewer’s name and
id (2, 380, 708 unique ids), date of review, review title,
text, and rating.

3.2 Gold Standard Data.
Malware apps. We used GPad (see § 3) to collect the
apks of 7, 756 randomly selected apps from the longitu-
dinal set (see § 3.1). Figure 3a shows the distribution
of flags raised by VirusTotal, for the 7, 756 apks. None
of these apps had been filtered by Bouncer [7]! From
the 523 apps that were flagged by at least 3 tools, we
selected those that had at least 10 reviews, to form our
“malware app” dataset, for a total of 212 apps.
Fraudulent apps. We used contacts established
among Freelancer [16]’s search rank fraud community,
to obtain the identities of 15 Google Play accounts that
were used to write fraudulent reviews. We call these
“seed fraud accounts”. These accounts were used to re-
view 201 unique apps. We call these, the “seed fraud
apps”, and we use them to evaluate FairPlay.
Fraudulent reviews. We have collected all the 53, 625
reviews received by the 201 seed fraud apps. The 15
seed fraud accounts were responsible for 1, 969 of these
reviews. We used the 53, 625 reviews to identify 188
accounts, such that each account was used to review at
least 10 of the 201 seed fraud apps (for a total of 6, 488
reviews). We call these, guilt by association (GbA)
accounts. To reduce feature duplication, we have used
the 1, 969 fraudulent reviews written by the 15 seed
accounts and the 6, 488 fraudulent reviews written by
the 188 GbA accounts for the 201 seed fraud apps, to
extract a balanced set of fraudulent reviews. Specifically,
from this set of 8, 457 (= 1, 969+6, 488) reviews, we have
collected 2 reviews from each of the 203 (= 188 + 15)
suspicious user accounts. Thus, the gold standard
dataset of fraudulent reviews consists of 406 reviews.
Benign apps. We have selected 925 candidate apps
from the longitudinal app set, that have been developed
by Google designated “top developers”. We have used
GPad to filter out those flagged by VirusTotal. We
have manually investigated 601 of the remaining apps,
and selected a set of 200 apps that (i) have more than



Notation Definition

CoReG Module

nCliques number of pseudo cliques with ρ ≥ θ
stats(ρ) clique density: max, median, SD
stats(cliqueSize) pseudo cliques size: max, median, SD
inCliqueSize % of nodes involved in pseudo cliques

RF Module

malW % of reviews with malware indicators
fraudW , goodW % of reviews with fraud/benign words
FRI fraud review impact on app rating

IRR Module

stats(spikes) days with spikes & spike amplitude
I1/Rt1, I2/Rt2 install to rating ratios
I1/Rt1, I2/Rt2 install to review ratios

JH Module

permCt, dangerCt # of dangerous and total permissions
rampCt # of dangerous permission ramps
dangerRamp # of dangerous permissions added

Table 1: FairPlay’s most important features, organized
by their extracting module.

10 reviews and (ii) were developed by reputable media
outlets (e.g., NBC, PBS) or have an associated business
model (e.g., fitness trackers).
Genuine reviews. We have manually collected a gold
standard set of 315 genuine reviews, as follows. First,
we have collected the reviews written for apps installed
on the Android smartphones of the authors. We then
used Google’s text and reverse image search tools to
identify and filter those that plagiarized other reviews
or were written from accounts with generic photos. We
have then manually selected reviews that mirror the
authors’ experience, have at least 150 characters, and
are informative (e.g., provide information about bugs,
crash scenario, version update impact, recent changes).

4 FairPlay: Proposed Solution

4.1 FairPlay Overview. FairPlay organizes the
analysis of longitudinal app data into the following 4
modules, illustrated in Figure 1. The Co-Review Graph
(CoReG) module identifies apps reviewed in a con-
tiguous time window by groups of users with signifi-
cantly overlapping review histories. The Review Feed-
back (RF) module exploits feedback left by genuine re-
viewers, while the Inter Review Relation (IRR) module
leverages relations between reviews, ratings and install
counts. The Jekyll-Hyde (JH) module monitors app
permissions, with a focus on dangerous ones, to identify
apps that convert from benign to malware. Each mod-
ule produces several features that are used to train an
app classifier. FairPlay also uses general features such
as the app’s average rating, total number of reviews,

Figure 2: Example pseudo cliques and PCF output.
Nodes are users and edge weights denote the number
of apps reviewed in common by the end users. Review
timestamps have a 1-day granularity. (a) The entire co-
review graph, detected as pseudo clique by PCF when
θ is 6. When θ is 7, PCF detects the subgraphs of (b)
the first two days and (c) the last two days.

ratings and installs, for a total of 28 features. Table 1
summarizes the most important features. In the follow-
ing, we detail each module and the features it extracts.

4.2 The Co-Review Graph (CoReG) Module.
Let the co-review graph of an app, see Figure 2, be a
graph where nodes correspond to users who reviewed the
app, and undirected edges have a weight that indicates
the number of apps reviewed in common by the edge’s
endpoint users. We seek to identify cliques in the co-
review graph. Figure 5a shows the co-review clique of
one of the seed fraud apps (see § 3.2).

To address the problem’s NP-hardness, we exploit
two observations. First, fraudsters hired to review an
app are likely to post those reviews within relatively
short time intervals (e.g., days). Second, perfect cliques
are not necessary. Instead, we relax this requirement to
identify “pseudo cliques”, or groups of highly but not
necessarily completely connected nodes. Specifically, we
use the weighted density definition of Uno [23]: given a

co-review graph, its weighted density ρ =
∑

e∈E
w(e)

(n
2
)

,

where E denotes the graph’s edges and n its number of
nodes (reviews). We are interested then in subgraphs
of the co-review graph whose weighted density exceeds
a threshold value θ.

We present the Pseudo Clique Finder (PCF) algo-
rithm (see Algorithm 1), that takes as input the set of
the reviews of an app, organized by days, and a thresh-
old value θ. PCF outputs a set of identified pseudo
cliques with ρ ≥ θ, that were formed during contiguous
time frames. In Section 5.3 we discuss the choice of θ.

For each day when the app has received a review
(line 1), PCF finds the day’s most promising pseudo
clique (lines 3 and 12−22): start with each review, then
greedily add other reviews to a candidate pseudo clique;
keep the pseudo clique (of the day) with the highest
density. With that “work-in-progress” pseudo clique,
move on to the next day (line 5): greedily add other
reviews while the weighted density of the new pseudo



Algorithm 1 PCF algorithm pseudo-code.

Input: days, an array of daily reviews, and
θ, the weighted threshold density

Output: allCliques, set of all detected pseudo cliques
1. for d :=0 d < days.size(); d++
2. Graph PC := new Graph();
3. bestNearClique(PC, days[d]);
4. c := 1; n := PC.size();
5. for nd := d+1; d < days.size() & c = 1; d++
6. bestNearClique(PC, days[nd]);
7. c := (PC.size() > n); endfor
8. if (PC.size() > 2)
9. allCliques := allCliques.add(PC); fi endfor

10. return
11. function bestNearClique(Graph PC, Set revs)
12. if (PC.size() = 0)
13. for root := 0; root < revs.size(); root++
14. Graph candClique := new Graph ();
15. candClique.addNode (root.getUser());
16. do candNode := getMaxDensityGain(revs);
17. if (density(candClique ∪ {candNode}) ≥ θ))
18. candClique.addNode(candNode); fi
19. while (candNode != null);
20. if (candClique.density() > maxRho)
21. maxRho := candClique.density();
22. PC := candClique; fi endfor

23. else if (PC.size() > 0)
24. do candNode := getMaxDensityGain(revs);
25. if (density(candClique ∪ candNode) ≥ θ))
26. PC.addNode(candNode); fi
27. while (candNode != null);
28. return

clique equals or exceeds θ (lines 6 and 23− 27). When
no new nodes have been added to the work-in-progress
pseudo clique (line 8), we add the pseudo clique to the
output (line 9), then move to the next day (line 1).
The greedy choice (getMaxDensityGain, not depicted
in Algorithm 1) picks the review not yet in the work-in-
progress pseudo clique, whose writer has written the
most apps in common with reviewers already in the
pseudo clique. Figure 2 illustrates the output of PCF
for several θ values.

If d is the number of days over which A has received
reviews and r is the maximum number of reviews
received in a day, PCF’s complexity is O(dr2(r + d)).
CoReG features. CoReG extracts the following
features from the output of PCF (see Table 1) (i) the
number of cliques whose density equals or exceeds θ,
(ii) the maximum, median and standard deviation of the
densities of identified pseudo cliques, (iii) the maximum,
median and standard deviation of the node count of
identified pseudo cliques, normalized by n (the app’s
review count), and (iv) the total number of nodes of
the co-review graph that belong to at least one pseudo

clique, normalized by n.

4.3 Reviewer Feedback (RF) Module. Reviews
written by genuine users of malware and fraudulent apps
may describe negative experiences. The RF module
exploits this observation through a two step approach:
(i) detect and filter out fraudulent reviews, then (ii)
identify malware and fraud indicative feedback from the
remaining reviews.
Step RF.1: Fraudulent review filter. We posit that
users that have higher expertise on apps they review,
have written fewer reviews for apps developed by the
same developer, have reviewed more paid apps, are more
likely to be genuine. We exploit this conjecture to use
supervised learning algorithms trained on the following
features, defined for a review R written by user U for
an app A:
• Reviewer based features. The expertise of U for app
A, defined as the number of reviews U wrote for apps
that are “similar” to A, as listed by Google Play (see
§ 2). The bias of U towards A: the number of reviews
written by U for other apps developed by A’s developer.
In addition, we extract the total money paid by U on
apps it has reviewed, the number of apps that U has
liked, and the number of Google+ followers of U .
• Text based features. We used the NLTK library [24]
and the Naive Bayes classifier, trained on two datasets:
(i) 1, 041 sentences extracted from randomly selected
350 positive and 410 negative Google Play reviews,
and (ii) 10, 663 sentences extracted from 700 positive
and 700 negative IMDB movie reviews [25]. 10-fold
cross validation of the Naive Bayes classifier over these
datasets reveals a FNR of 16.1% and FPR of 19.65%.
We used the trained Naive Bayes classifier to determine
the statements of R that encode positive and negative
sentiments. We then extracted the following features:
(i) the percentage of statements in R that encode
positive and negative sentiments respectively, and (ii)
the rating of R and its percentile among the reviews
written by U .
Step RF.2: Reviewer feedback extraction. We
conjecture that (i) since no app is perfect, a “balanced”
review that contains both app positive and negative
sentiments is more likely to be genuine, and (ii) there
should exist a relation between the review’s dominating
sentiment and its rating. Thus, after filtering out fraud-
ulent reviews, we extract feedback from the remain-
ing reviews. For this, we have used NLTK to extract
5, 106 verbs, 7, 260 nouns and 13, 128 adjectives from
the 97, 071 reviews we collected from the 613 gold stan-
dard apps (see § 3.2). We used these words to manually
identify lists of words indicative of malware, fraudulent
and benign behaviors. Our malware indicator word list
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Figure 3: (a) Apks detected as suspicious (y axis) by multiple anti-virus tools (x axis), through VirusTotal [8],
from a set of 7, 756 downloaded apks. (b) Distribution of the number of “dangerous” permissions requested by
malware, fraudulent and benign apps. (c) Dangerous permission ramp during version updates for a sample app
“com.battery.plusfree”. Originally the app requested no dangerous permissions.

contains 31 words (e.g., risk, hack, corrupt, spam, mal-
ware, fake, fraud, blacklist, ads). The fraud indicator
word list contains 112 words (e.g., cheat, hideous, com-
plain, wasted, crash) and the benign indicator word list
contains 105 words.
RF features. We extract 3 features (see Table 1),
denoting the percentage of genuine reviews that con-
tain malware, fraud, and benign indicator words respec-
tively. We also extract the impact of detected fraudulent
reviews on the overall rating of the app: the absolute
difference between the app’s average rating and its av-
erage rating when ignoring all the fraudulent reviews.

4.4 Inter-Review Relation (IRR) Module. This
module leverages temporal relations between reviews, as
well as relations between the review, rating and install
counts of apps, to identify suspicious behaviors.
Temporal relations. We detect outliers in the number
of daily reviews received by an app. We identify days
with spikes of positive reviews as those whose number
of positive reviews exceeds the upper outer fence of the
box-and-whisker plot built over the app’s numbers of
daily positive reviews.
Reviews, ratings and install counts. We used the
Pearson’s χ2 test to investigate relationships between
the install and rating counts of the 87K new apps,
at the end of the collection interval. We grouped the
rating count in buckets of the same size as Google Play’s
install count buckets. Figure 4 shows the mosaic plot
of the relationships between rating and install counts.
p=0.0008924, thus we conclude dependence between the
rating and install counts. We leverage this result to
conjecture that adversaries that post fraudulent ratings
and reviews, or create fake app install events, may break
a natural balance between their counts.
IRR features. We extract temporal features (see
Table 1): the number of days with detected spikes and
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Figure 4: Mosaic plot of install vs. rating count
relations of the 87K apps. Larger rectangles signify that
more apps have the corresponding rating and install
count range; dotted lines mean no apps in a certain
install/rating category. The standardized residuals
identify the cells that contribute the most to the χ2

test. The most significant rating:install ratio is 1:100.

the maximum amplitude of a spike. We also extract (i)
the ratio of installs to ratings as two features, I1/Rt1
and I2/Rt2 and (ii) the ratio of installs to reviews, as
I1/Rv1 and I2/Rv2. (I1, I2] denotes the install count
interval of an app, (Rt1, Rt2] its rating interval and
(Rv1, Rv2] its (genuine) review interval.

4.5 Jekyll-Hyde App Detection (JH) Module.
Android’s API level 22 labels 47 permissions as “dan-
gerous”. Figure 3b compares the distributions of the
number of dangerous permissions requested by the gold
standard malware, fraudulent and benign apps. The
most popular dangerous permissions among these apps
are “modify or delete the contents of the USB storage”,
“read phone status and identity”, “find accounts on the
device”, and “access precise location”. Most benign
apps request at most 5 such permissions; some malware
and fraudulent apps request more than 10.



Strategy FPR% FNR% Accuracy%

DT (Decision Tree) 2.46 6.03 95.98
MLP (Multi-layer Perceptron) 1.47 6.67 96.26
RF (Random Forest) 2.46 5.40 96.26

Table 2: Review classification results (10-fold cross-
validation), of gold standard fraudulent (positive) and
genuine (negative) reviews. MLP achieves the lowest
false positive rate (FPR) of 1.47%.

Upon manual inspection of several apps, we identi-
fied a new type of malicious intent possibly perpetrated
by deceptive app developers: apps that seek to attract
users with minimal permissions, but later request dan-
gerous permissions. The user may be unwilling to unin-
stall the app “just” to reject a few new permissions. We
call these Jekyll-Hyde apps. Figure 3c shows the dan-
gerous permissions added during different version up-
dates of one gold standard malware app.
JH features. We extract the following features (see
Table 1), (i) the total number of permissions requested
by the app, (ii) its number of dangerous permissions,
(iii) the app’s number of dangerous permission ramps,
and (iv) its total number of dangerous permissions
added over all the ramps.

5 Evaluation

5.1 Experiment Setup. We have implemented
FairPlay using Python to extract data from parsed
pages and compute the features, and the R tool to clas-
sify reviews and apps. We have set the threshold density
value θ to 3, to detect even the smaller pseudo cliques.

We have used the Weka data mining suite [26]
to perform the experiments, with default settings.
We experimented with multiple supervised learning al-
gorithms. Due to space constraints, we report re-
sults for the best performers: MultiLayer Perceptron
(MLP) [27], Decision Trees (DT) (C4.5) and Random
Forest (RF) [28], using 10-fold cross-validation [29]. We
use the term “positive” to denote a fraudulent review,
fraudulent or malware app; FPR means false positive

rate. Similarly, “negative” denotes a genuine review or
benign app; FNR means false negative rate.

5.2 Review Classification. To evaluate the accu-
racy of FairPlay’s fraudulent review detection compo-
nent (RF module), we used the gold standard datasets
of fraudulent and genuine reviews of § 3.2. We used
GPCrawler to collect the data of the writers of these re-
views, including the 203 reviewers of the 406 fraudulent
reviews (21, 972 reviews for 2, 284 apps) and the 315 re-
viewers of the genuine reviews (9, 468 reviews for 7, 116
apps). Table 2 shows the results of the 10-fold cross val-

Strategy FPR% FNR% Accuracy%

FairPlay/DT 3.01 3.01 96.98
FairPlay/MLP 1.51 3.01 97.74
FairPlay/RF 1.01 3.52 97.74

Table 3: FairPlay classification results (10-fold cross
validation) of gold standard fraudulent (positive) and
benign apps. RF has lowest FPR, thus desirable [30].

Strategy FPR% FNR% Accuracy%

FairPlay/DT 4.02 4.25 95.86
FairPlay/MLP 4.52 4.72 95.37
FairPlay/RF 1.51 6.13 96.11

Sarma et al. [12]/SVM 65.32 24.47 55.23

Table 4: FairPlay classification results (10-fold cross val-
idation) of gold standard malware (positive) and benign
apps, significantly outperforming Sarma et al. [12]. Fair-
Play’s RF achieves 96.11% accuracy at 1.51% FPR.

idation of algorithms classifying reviews as genuine or
fraudulent. To minimize wrongful accusations, we seek
to minimize the FPR [30]. MLP simultaneously achieves
the highest accuracy of 96.26% and the lowest FPR of
1.47% (at 6.67% FNR). Thus, in the following experi-
ments, we use MLP to filter out fraudulent reviews in
the RF.1 step.

5.3 App Classification
To evaluate FairPlay, we have collected all the 97, 071
reviews of the 613 gold standard malware, fraudulent
and benign apps, written by 75, 949 users, as well as
the 890, 139 apps rated or played by these users.
Fraud Detection Accuracy. Table 3 shows 10-fold
cross validation results of FairPlay on the gold standard
fraudulent and benign apps (see § 3.2). All classifiers
achieve accuracies of around 97%. Random Forest is
the best, having the highest accuracy of 97.74% and
the lowest FPR of 1.01%.

Figure 5a shows the co-review subgraph for one of
the seed fraud apps identified by FairPlay’s PCF. We
observe that the app’s reviewers form a tightly con-
nected clique, with any two reviewers having reviewed
at least 115 and at most 164 apps in common.
Malware Detection Accuracy. We have used Sarma
et al. [12]’s solution as a baseline to evaluate the
ability of FairPlay to accurately detect malware. We
computed Sarma et al. [12]’s RCP and RPCP indicators
(see § 2.1) using the longitudinal app dataset. We
used the SVM based variant of Sarma et al. [12],
which performs best. Table 3 shows 10-cross validation
results over the malware and benign gold standard sets.
FairPlay significantly outperforms Sarma et al. [12]’s
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Figure 5: (a) Clique flagged by PCF for “Tiempo - Clima gratis”, one of the 201 seed fraud apps (see § 3.2),
involving 37 reviewers (names hidden for privacy); edge weights proportional to numbers of apps reviewed in
common (ranging from 115 to 164 apps). (b & c) Statistics over the 372 fraudulent apps out of 1, 600 investigated:
(b) Distribution of per app number of discovered pseudo cliques. 93.3% of the 372 apps have at least 1 pseudo
clique of θ ≥ 3 (c) Distribution of percentage of app reviewers (nodes) that belong to the largest pseudo clique
and to any clique. 8% of the 372 apps have more than 90% of their reviewers involved in a clique!

solution, with an accuracy that consistently exceeds
95%. Random Forest has the smallest FPR of 1.51%
and the highest accuracy of 96.11%. This is surprising:
most FairPlay features are meant to identify search rank
fraud, yet they also accurately identify malware.
Is Malware Involved in Fraud? We conjectured
that the above result is due in part to malware apps
being involved in search rank fraud. To verify this,
we have trained FairPlay on the gold standard benign
and fraudulent app datasets, then we have tested it on
the gold standard malware dataset. MLP is the most
conservative algorithm, discovering 60.85% of malware
as fraud participants. Random Forest discovers 72.15%,
and Decision Tree flags 75.94% of the malware as
fraudulent. This result confirms our conjecture and
shows that search rank fraud detection can be an
important addition to mobile malware detection efforts.

5.4 FairPlay on the Field. We have also evaluated
FairPlay on non “gold standard” apps. For this, we have
collected a set of apps, as follows. First, we selected 8
app categories: Arcade, Entertainment, Photography,
Simulation, Racing, Sports, Lifestyle, Casual. We have
selected the 6, 300 apps from the longitudinal dataset of
the 87K apps, that belong to one of these 8 categories,
and that have more than 10 reviews. From these 6, 300
apps, we randomly selected 200 apps per category, for
a total of 1, 600 apps. We have then collected the data
of all their 50, 643 reviewers (not unique) including the
ids of all the 166, 407 apps they reviewed.

We trained FairPlay with Random Forest (best
performing on previous experiments) on all the gold
standard benign and fraudulent apps. We have then
run FairPlay on the 1, 600 apps, and identified 372 apps
(23%) as fraudulent. The Racing and Arcade categories

have the highest fraud densities: 34% and 36% of their
apps were flagged as fraudulent.
Intuition. During the 10-fold cross validation of
FairPlay for the gold standard fraudulent and benign
sets, the top most impactful features for the Decision
Tree classifier were (i) the percentage of nodes that
belong to the largest pseudo clique, (ii) the percentage
of nodes that belong to at least one pseudo clique, (iii)
the percentage of reviews that contain fraud indicator
words, and (iv) the number of pseudo clique with θ ≥ 3.

We use these features to offer an intuition for the
surprisingly high fraud percentage (23% of 1, 600 apps).
Figure 5b shows that 93.3% of the 372 apps have at
least 1 pseudo clique of θ ≥ 3, nearly 71% have at
least 3 pseudo cliques, and a single app can have up
to 23 pseudo cliques. Figure 5c shows that the pseudo
cliques are large and encompass many of the reviews
of the apps: 55% of the 372 apps have at least 33% of
their reviewers involved in a pseudo clique, while nearly
51% of the apps have a single pseudo clique containing
33% of their reviewers. While not plotted here due to
space constraints, we note that around 75% of the 372
fraudulent apps have at least 20 fraud indicator words
in their reviews.

5.5 Coercive Campaign Apps. Upon close inspec-
tion of apps flagged as fraudulent by FairPlay, we iden-
tified apps perpetrating a new attack type. The apps,
which we call coercive campaign apps, harass the user
to either (i) write a positive review for the app, or (ii)
install and write a positive review for other apps (of-
ten of the same developer). In return, the app rewards
the user by, e.g., removing ads, providing more features,
unlocking the next game level, boosting the user’s game
level or awarding game points.



We found evidence of coercive campaign apps from
users complaining through reviews, e.g., “I only rated it
because i didn’t want it to pop up while i am playing”,
or “Could not even play one level before i had to rate it
[...] they actually are telling me to rate the app 5 stars”.

We leveraged this evidence to identify more coercive
campaign apps from the longitudinal app set. Specifi-
cally, we have first manually selected a list of potential
keywords indicating coercive apps (e.g., “rate”, “down-
load”, “ads”). We then searched all the 2, 850, 705 re-
views of the 87K apps and found around 82K reviews
that contain at least one of these keywords. Due to
time constraints, we then randomly selected 3, 000 re-
views from this set, that are not flagged as fraudulent
by FairPlay’s RF module. Upon manual inspection, we
identified 118 reviews that report coercive apps, and
48 apps that have received at least 2 such reviews. We
leave a more thorough investigation of this phenomenon
for future work.

6 Conclusions

We have introduced FairPlay, a system to detect both
fraudulent and malware Google Play apps. Our experi-
ments on a newly contributed longitudinal app dataset,
have shown that a high percentage of malware is in-
volved in search rank fraud; both are accurately iden-
tified by FairPlay. In addition, we showed FairPlay’s
ability to discover hundreds of apps that evade Google
Play’s detection technology, including a new type of
coercive fraud attack.
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