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Abstract

Pattern-based classification was originally proposed to improve the accuracy using selected 

frequent patterns, where many efforts were paid to prune a huge number of non-discriminative 

frequent patterns. On the other hand, tree-based models have shown strong abilities on many 

classification tasks since they can easily build high-order interactions between different features 

and also handle both numerical and categorical features as well as high dimensional features. By 

taking the advantage of both modeling methodologies, we propose a natural and effective way to 

resolve pattern-based classification by adopting discriminative patterns which are the prefix paths 

from root to nodes in tree-based models (e.g., random forest). Moreover, we further compress the 

number of discriminative patterns by selecting the most effective pattern combinations that fit into 

a generalized linear model. As a result, our discriminative pattern-based classification framework 

(DPClass) could perform as good as previous state-of-the-art algorithms, provide great 

interpretability by utilizing only very limited number of discriminative patterns, and predict new 

data extremely fast. More specifically, in our experiments, DPClass could gain even better 

accuracy by only using top-20 discriminative patterns. The framework so generated is very concise 

and highly explanatory to human experts.

1 Introduction

Various algorithms and models have been introduced for classification. Generalized linear 

classification models, such as support vector machine [25] and logistic regression [12], 

usually have reasonably good performance but lack the power of modeling complex high-

order interactions between features. Tree-based models, such as random forest [1] and 

gradient boosted trees [11], have been deployed in many practical settings and often 

achieved high accuracy, because the high model complexity of trees provides the chance of 

high-order combinations of different features. Neural network is another kind of powerful 

classifiers, especially in image classification problems [14], which models nonlinear 

relationship among features and usually performs with high prediction accuracy. However, 

in real world applications, many people favor generalized linear models instead of complex 

models, including trees and neural networks, as long as the accuracies are enough in 

practice, because they are mature, flexible, more efficient when making prediction, and 

easier to be understood by providing probabilistic interpretation [12]. The low 
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interpretability makes complex models not suitable for many applications, such as 

classification problems in medical applications and scientific domains, in which feature 

importance and contribution of feature combinations from the model could be highly useful 

for obtaining intuitive understanding of the application. The ultimate goal would be to 

construct accurate models that are also simple enough to interpret.

To address this challenge, one possible solution is to feed constructed high-order features to 

generalized linear models and enhance accuracy and interpretability. Along this direction, 

many previous pattern-based models have been established in the last decade and 

demonstrated powers in several domains, including (1) association rule-based classification 

on categorical data [22, 18, 30, 4, 29, 27]; (2) frequent pattern-based classification on text 

[19, 17] and graph [15, 6] data; (3) discriminative pattern-based classification on general 

data [2, 3], which mine discriminative patterns starting with frequent patterns and have 

shown their advantages over both tree-based models and generalized linear models. Many 

efforts are paid to prune a huge number of non-discriminative frequent patterns in those 

models, however, the number of extracted patterns utilized in later classification models is at 

the magnitude of thousands, which is still large.

In this paper, we propose a novel discriminative patterns-based classification framework 

(DPClass) with the goal to generate a very concise high-order classification model. The key 

component of DPClass is a fast and effective pattern extraction algorithm. Instead of starting 

with frequent patterns, we first train tree-based models to generate a large set of hypothetical 

high-order patterns, and then we explore all prefix paths from root nodes to leaf nodes in the 

tree-based models as our discriminative patterns. Finally, we further compress the number of 

discriminative patterns by selecting the most effective pattern combinations that fit into a 

generalized linear model with high classification accuracy. In this way, DPClass generates a 

set of discriminative high-order patterns with high predictivity and interpretability. From 

another perspective, we can view DPClass as a way to compress the multi-tree based models 

by only selecting the most discriminative pattern combinations and fitting them into a 

generalized linear model. Surprisingly, DPClass achieves comparable or even improved 

performance over the original tree-based models with only storing dozens of robust 

discriminative patterns. Such models can also be extremely useful for applications (e.g., 

mobile apps), where model storage and online computational cost are restricted.

In summary, our main contributions are as following.

• DPClass can learn a very small amount (e.g., 20) of interpretable patterns 

involving high-order interactions among original features, as verified in our 

synthetic experiment.

• DPClass can compress multi-tree based models into a low-dimensional 

generalized linear model, thus making the online prediction extremely fast.

• DPClass has comparable accuracy as the previous state-of-the-art algorithms and 

sometimes even better in our experiments on various real world datasets.
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2 Related Work

Pattern-based classification is a well-studied problem traditionally from the perspective of 

frequent pattern mining. Association rules are the easiest way to make connections between 

frequent patterns and classification labels [30, 18]. A more effective solution is to first 

generate frequent patterns as a large pattern pool and then apply different heuristics, such as 

information gain, to select the most discriminative patterns based on labels, which will be 

further used in classical classifiers [2, 3, 8]. However, there are several problems in these 

methods. The first problem is that the number of frequent patterns in the pool are often very 

large, which leads to expensive computational cost during pattern selection. The second one 

is that the number of selected patterns can be as large as thousands for many applications, 

which limits the interpretability of the classification model and also causes the inefficiency 

in the classification steps. Another minor issue is that the discretization of continuous 

variables is a little bit tricky and thus makes the performance unstable.

One kind of the state-of-the-art classification models is tree-based models. Both decision 

tree and boosted tree models are explainable but quite sensitive to the training data. 

Traditional ensemble methods using multiple trees, such as random forest [1] and gradient 

boosting decision trees [10], greatly reduce the risk of overfitting and enhance the 

performance. As noticed by Ren et al. [24], because the growth and pruning in different trees 

are all independent, the global refinement could provide chances to get better performance. 

However, the increased model size of those multi-tree based models sacrifices the 

interpretability and thus our proposed method is significantly different from this category. 

Another popular usage of multi-tree based models is utilizing them to induce new feature 

spaces. The most common way to induce features from trees is to encode each tree as a flat 

index list and each instance to a binary vector indexed by the trees [24, 13, 7, 23, 20]. Vens 

et al. [28] further transfers the binary vectors into a inner product kernel space using a 

support vector machine and shows improved classification accuracy. Furthermore, pairwise 

interactions have also been introduced to improve the classification and regression [21], 

which is actually a two-layer trees model. Although some of these models have already 

applied post-pruning techniques for trees, the dimension of newly created feature space is 

still high due to a large number of trees constructed. For example, in the most recent work 

by Ren et al. [24], after many efforts on pruning, the model size of the pruned random forest 

is still around megabytes, which still keeps the prediction slow for real-time applications. In 

our experiments, the results show that our proposed framework DPClass could deliver 

comparable results using only top-20 discriminative patterns, which is substantially reduced 

even compared to the most efficient model in Ren et al. [24] that is specially designed for 

visualization tasks.

By utilizing high-order discriminative patterns in a generalized linear model, pattern 

selection can be performed by existing feature selection algorithms. Simply selecting 

patterns with highest independent heuristics such as information gain and gini index [16] is 

limited to very simple tasks, because most powerful patterns selected by such heuristics can 

introduce redundancy and potentially the overfitting issue. As classification labels are given, 

LASSO [26] is widely used in feature selection tasks as well as forward selection [5]. Due to 

the relatively large number of candidate discriminative patterns, backward selection, another 
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popular feature selection technique, might be not suitable in our settings. Therefore, we only 

adopt LASSO and forward selection into our framework DPClass to select discriminative 

patterns and compare their performances in our experiments.

3 Preliminaries

In this section, we will give formal definitions of key concepts in our problems and 

framework.

3.1 Problem Formulation

For a binary classification task, we assume that the training data is a set of n data points in a 

d-dimensional feature space together with their labels (x1, y1), (x2, y2), … , (xn, yn), where 

∀i(1 ≤ i ≤ n), yi ∈ {+1, −1}, xi ∈ ℝd. It is worth noting that the values in the data point xi 

can be either continuous (numerical) or discrete (categorical). As categorical features can be 

transformed into several binary dummy indicators, we assume xi ∈ ℝd without loss of 

generality. In some previous pattern-based models, such as DDP-Mine [3], patterns are 

mined based on categorical values and thus they are only able to handle the continuous 

variables after carefully manual discretizations, which might be tricky and often requires 

prior knowledge about the data.

Our proposed framework, DPClass, will first generate a discriminative pattern pool within a 

reasonable size and then select top-k patterns based on their prediction accuracy or a 

cardinality regularization using a generalized linear classification model on training data. 

Since the number of selected patterns can be controlled, we hope these patterns provide us 

informative interpretability with reasonable predictive power. In addition, for new test data, 

we will only need to evaluate a very small set of patterns and make predictions with a 

generalized linear model efficiently.

3.2 Definition

First of all, we define the patterns in our classification problem. Traditional frequent patterns 

are only applied on the categorical data or itemset data. Discretization is needed for 

continuous variables. Instead of directly comparing the numerical values, we introduce the 

thresholding boolean function here.

DEFINITION 1. Condition is a thresholding boolean function on a specific feature dimension. 

It is in the form of (x.,j < v) or (x.,j ≥ v), where j indicates the specific dimension and v is the 

threshold value. The relational operator in a condition is either < or ≥.

Note that the threshold values in DPClass are not specified by users beforehand. In some 

previous pattern-based models, such as DDPMine [3], users have to choose a method to 

discretize values of continuous variables prior to pattern mining. DPClass makes all these 

values automatically determined based on the training data without any human interventions.

EXAMPLE 1. Suppose xi ∈ ℝ10, one possible condition is that x.,1 < 0.5. Another example 
could be x.,2 ≥ 0.5.
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Similar to traditional itemset, which are usually defined by a set of items, we define the 

pattern as a set of conditions. More formally, we use conjunctions to concatenate different 

conditions.

DEFINITION 2. Pattern is a conjunction clause of conditions on specific feature dimensions. 

More formally, it is defined as following.

where m is the number of conditions within this pattern. Note that different patterns can 

have different m values.

EXAMPLE 2. Suppose xi ∈ ℝ10, one possible pattern is that (x.,1 < 18) ∧ (x.,3 ≥ 100) ∧ (x.,9 < 

0.5).

After we have defined patterns, we define discriminative patterns as following.

DEFINITION 3. Discriminative Patterns refer to those patterns which have strong signals on 

the classification task given by the labels of data. For example, a pattern with very high 

information gain on the training data should be a discriminative pattern.

EXAMPLE 3. Suppose xi ∈ ℝ10 and the labels are generated as following.

Then, both patterns (xi,1 ≥ 1) ∧ (xi,2 < 0) and (xi,1 < 18) ∧ (xi,3 ≥ 100) should be among the 

most discriminative patterns. Of course, some similar patterns containing or having overlaps 

with these two patterns might also be discriminative patterns.

Discriminative patterns may have some overlapped predictive effects. Some discriminative 

patterns are special cases of others. For example, in the previous example, both patterns (xi,1 

≥ 1) ∧ (xi,2 < 0) and (xi,1 ≥ 1) ∧ (xi,2 < 0) ∧ (xi,3 < 0) could indicate a positive label. 

However, the second pattern only encodes a subset of data points encoded by the first pattern 

and thus does not provide extra information for classification. This common phenomenon 

makes directly taking the top discriminative patterns based on some independent heuristics 

waste the budget of the number of patterns, if linear combination of these patterns are not 

synergistic. Therefore, we propose to select the top-k patterns by their predictive 

performance to make the selected patterns complementary and compact.

DEFINITION 4. Top-k Patterns is a size-k subset of discriminative patterns, which have the 

best performance (i.e., the accuracy in classification tasks) based on the training data.

Here we have an assumption that the training and testing data have the same distribution, 

which is widely assumed in classification problems. In this case, the accuracy on training 

data is similar to the testing data if our model is not overfitted.
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EXAMPLE 4. In the last example, ideally, top-2 patterns should be {(xi,1 ≥ 1) ∧ (xi,2 < 0), (xi,1 

< 18) ∧ (xi,3 ≥ 100)}.

4 Methodology

In our proposed DPClass framework, as shown in Figure 1, a constrained multi-tree based 

model is trained on the training data. By adopting every prefix path from the root of a tree to 

any of its non-leaf nodes as a discriminative pattern, a large discriminative pattern pool is 

ready for further top-k discriminative patterns selection. We propose two different solutions 

to select top-k discriminative patterns based on the training data, both showing promising 

performance in our experiments.

4.1 Constrained Multiple Tree-based Model for Discriminative Patterns Generation

The first component in DPClass framework is the generation of high-quality discriminative 

patterns, as shown in Algorithm 1. We use tree bag to refer the set of instances falling into a 

specific node in the decision tree. The random decision tree [1] introduces the randomness 

via bootstrapping training data, randomly selecting features and splitting values when 

dividing a large tree bag into two smaller ones.

In real-world applications, discriminative patterns are usually somehow frequent, and the 

length of such patterns are not too long. More specifically, we assume that the number of 

instances satisfying a given discriminative pattern should be at least σ, and the length of 

discriminative patterns is no more than D. As one of the most famous multi-tree based 

models, random forest [1] is the best fit addressing both requirements if we treat every prefix 

path from the root of a tree to its non-leaf node as a discriminative pattern. First of all, 

distributions of labels of instances in a tree bag always have low entropy. Therefore, the 

patterns are discriminative on the training data. Secondly, it provides many putative patterns 

from various random decision trees trained on different bootstrapped datasets. Moreover, the 

depth threshold D and the minimum tree bag size σ can be naturally added as constraints 

during the growth of trees.

4.2 Pattern Space

Instances in their original feature space are now mapped into the pattern space using a set of 

discriminative patterns, as shown in Algorithm 2. For each discriminative pattern, there is 
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one corresponding binary dimension describing whether the instances satisfy the pattern or 

not. Because the dimension of the pattern space is equal to the number of discriminative 

patterns which is a very large number after the generation phase, we need to further select a 

limited number of patterns and thus make the pattern space small and efficient. It is also 

worth a mention that this mapping process is able to be fully parallelized for further 

speedup.

4.3 Top-k Patterns Selection

After a large pool of discriminative patterns is generated, further top-k selection needs to be 

done to identify the most informative and interpretable patterns. A naive way is to use 

heuristic functions, such as information gain and gini index, to evaluate the significance of 

different patterns on the classification task and choose the top ranked patterns. However, the 

effects of top ranked patterns based on the simple heuristic scores may have a large portion 

of overlaps and thus their combination does not work optimally. Therefore, to achieve the 

best performance and find complementary patterns, we propose two effective solutions: 

forward selection and LASSO, which make decisions based on the effects of the pattern 

combinations instead of considering different patterns independently.

4.3.1 Forward Pattern Selection

Instead of exhausted search of all possible combinations of k discriminative patterns, we 

gradually add the discriminative patterns one by one while each newly added discriminative 

pattern is the best choice at that time [5], which provides an efficient approximation of the 
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exhausted search. Since we use a generalized linear classification model to combine the 

selected discriminative patterns, when we have fixed the first k' discriminative patterns, we 

empirically add one more discriminative pattern with the biggest improvement of the 

training classification accuracy based on k' + 1 discriminative patterns, as shown in 

Algorithm 3. As we have mentioned before, when assuming training and testing data have 

the same distribution, using training accuracy is very reasonable.

4.3.2 LASSO based Pattern Selection

L1 regularization (i.e., LASSO [26]) is designed to make the weight vector sparse by tuning 

a nonnegative parameter λ. Since we are actually selecting features in the pattern space, for 

a given λ, we optimize the following loss function to get a subset of patterns which are most 

important.

(4.1)

where, x'i is the mapped binary feature representation in pattern space of i-th instance; w is 

the weight vector in the generalized linear model; l(·, ·) is a general loss function such as 

logistic loss. To ensure there are at most k patterns having non-zero weights in the pattern 

space, we should carefully choose a value for λ. It is important to assume that there exists 

some hidden importance ranking among features and once the weight of a feature becomes 

non-zero in a given λ = v, it will also be nonzero for almost any smaller λ < v. Therefore, 

we propose a binary search algorithm as shown in Algorithm 4. In this paper, we adopt the 

LASSO implementation in GLMNET [9] for binary classification, whose loss function is the 

cross entropy.
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4.4 Prediction

Once the top-k discriminative patterns are determined, for any upcoming new test instance, 

we first map it into the learned pattern space and apply the pre-trained generalized linear 

model, as shown in Algorithm 5. As the number of patterns is limited, both the mapping into 

the pattern space and the prediction of the generalized linear model will be extremely fast.

4.5 Time Complexity Analysis

To build up a single random decision tree with depth threshold D and minimum tree bag size 

σ, by assuming both numbers of random features and random partitions are small and fixed 

constants, the time complexity is O(nD), because the total number of instances on each level 

of the tree is n. Therefore, to generate T trees in total, the time complexity is O(T nD) in the 

generation step.

For the selection step, the complexity is mainly determined by the number of discriminative 

patterns induced by T random decision trees, which is dependent on the total number of non-

leaf nodes. As the maximum depth of a single tree is D, there is an upper bound on number 

of leaf nodes 2D. Starting from the tree bag size, the number of leaf nodes should be no more 

than  Since the trees here are all binary trees, the number of leaf nodes is one more than 

the number of non-leaf nodes. Therefore, the number of discriminative patterns |P| (i.e., the 

number of non-leaf nodes) is bounded by . If we solve logistic 

regression and LASSO using (sub-)gradient descent algorithm, and thus the time complexity 

per gradient step is only linear to the dimension of features and the number of instances. The 

time complexity is proportional to O(|P| · n · k2) if forward selection is used, while it is 

proportional to O(n·k ·|P|), if LASSO is used. By assuming the numbers of iterations to 

converge are similar in LASSO and forward selection, LASSO will be a little more efficient 

than forward selection.

When predicting new test instances, one can easily figure out the bottleneck is mapping 

instances into the learned pattern space. Therefore, in the batch mode where instances are 

considered together, the time complexity is O(n · k · D). In the streaming (or online) mode 

where instances come one by one, the time complexity is O(k · D), where k is the number of 

discriminative patterns and D is the maximum number of conditions in a single pattern.

It is worth mentioning that all modules can be fully parallelized, leading to further speedup 

in practice.
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5 Experiments

5.1 Datasets, Baselines, and Settings

To demonstrate the interpretability of DPClass, we generate a synthetic dataset where the 

features are demographics and lab test results of patients and the label is whether the patient 

does have a disease. Assuming doctors can diagnose the disease using some rules based on 

these information, we will check whether the top discriminative patterns selected by 

DPClass are consistent with the actual diagnosing rules.

DDPMine [3] is the previous state-of-the-art discriminative pattern based algorithm. It first 

discretizes the continuous variables such that frequent pattern mining algorithm could be 

applied. Using frequent and discriminative patterns, new feature space is constructed and 

any classical classifiers could be further utilized. Random Forest (RF) [1] is another baseline 

method using same parameters as those in the random forest used in DPClass, except for D. 

There is no limit on the depth in RF.

We have selected several binary classification datasets from UCI Machine Learning 

Repository as shown in Table 1 with statistics of the number of instances and the number of 

features. To compare with DDPMine, we use the same datasets in the DDPMine paper, 

including adult, hypo, sick, crx, sonar, chess, waveform, and mushroom. Because both 

DDPMine and DPClass achieve almost perfect accuracy (very close to 100%) on the 

datasets waveform and mushroom, we omit them in this paper. In addition, we are very 

interested in the performance of DPClass on high-dimensional datasets (nomao, musk, and 

madelon datasets), since DDPMine performs poorly at high-dimensional data. In datasets 

crx, sonar, chess, nomao, and musk, we cannot find the existing train/test splitting. 

Therefore, we ourselves divide the data into train/test (2:1) by unbiased sampling.

We also would like to see the impact of different parameters of DPClass, such as k, the 

number of selected discriminative patterns selected, and T , the number of trees in the 

random forest.

In DPClass, the default setting is T = 100, D = 6, σ = 10, K = 20. We will show both results 

using forward selection (DPClass-F) and LASSO (DPClass-L) for selecting the top-k 
discriminative patterns.

5.2 Discovery of Interpretable Patterns

We generate a small medical dataset to demonstrate the interpretability of DPClass. For each 

patient, we draw several uniformly sampled features as the following rules.

• Age (A). Positive Integers no more than 60.

• Gender (G). Male or Female.

• Lab Test 1 (LT1). Blood Types. Categorical values from {A, B, O, AB}.

• Lab Test 2 (LT2). Continuous values in [0,1].

In total, we have 105 random patients for training and 5 · 104 patients for testing.
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The positive label of the disease is assigned to a patient if at least one of the following rules 

holds.

• (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.6)

• (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.5)

• (age ≤ 18) and (LT2 ≥ 0.9)

To make the classification tasks more challenging, we add 0.1% noise to the training data. 

That is, 0.1% labels in training will be flipped.

We apply both DPClass-F and DPClass-L on this dataset. Both give the test accuracy 

99.99%. The top-3 discriminative patterns found in both DPClass-F and DPClass-L are 

listed as below. We observe that the found patterns are quite close to the groundtruth rules 

and thus demonstrate that our selected discriminative patterns can provide high-quality 

explanation.

• (age > 18) and (gender = Female) and (LT1 = O) and (LT2 ≥ 0.496)

• (age ≤ 18) and (LT2 ≥ 0.900)

• (age > 18) and (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.601)

We also apply DDPMine to this dataset but its accuracy is only 95.64%, because the 

discretization is difficult to be perfect. The top-3 patterns mined by DDPMine are as 

following, which are quite different from the expected.

• (LT2 > 0.8)

• (gender = Male) and (LT1 = AB) and (LT2 ≥ 0.6) and (LT2 < 0.8)

• (gender = Female) and (LT1 = O) and (LT2 ≥ 0.6) and (LT2 < 0.8)

5.3 Compare to DDPMine

DDPMine is the previous state-of-the-art pattern-based classification method, which 

outperforms classical classification models including decision tree and support vector 

machine [2, 3]. By testing on the same datasets in DDPMine paper, as shown in the first 6 

columns of Table 2, DPClass-F and DPClass-L always have higher accuracy over DDPMine. 

Except for sick dataset, DPClass-F has the highest accuracy, while DPClass-L works best on 

sick dataset. It seems that DPClass-F works a little better than DPClass-L. However, their 

results are quite close to each other and are both better than DDPMine’s on most datasets.

5.4 Impact of Top-k patterns

The most interesting parameter in DPClass is k, the number of discriminative patterns used 

in the final generalized linear model. It controls the model size of the generalized linear 

model used for prediction and thus affects its efficiency. Because the default value of k is 20 

and its effectiveness has been proved in previous experiments, we vary k from 1 to 40 to see 

the trends of both training and testing accuracies on different datasets. In this experiment, we 

only use those three datasets with existing training and testing partition.
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As shown in Figure 2, the test accuracy is always following the trend of training accuracy 

and the training accuracy is increasing as k grows. It demonstrates that our pattern selection 

based on training accuracy is reasonable. In real world applications, k could be determined 

by cross validations.

Although the accuracies are growing almost all the time, it slows down much when k is 

greater than 20. Therefore, we conclude that a very small k (e.g., k = 20) is enough for these 

comprehensive real-world datasets, which further proves that our proposed DPClass can 

compress the model into a very tiny size while its accuracy remains comparable.

5.5 Impact of number of trees

Another important parameter in DPClass is the number of trees needed to generate the large 

pool of discriminative patterns. As we argued before, a single tree is not enough to generate 

that many patterns, and thus we have a strong motivation to try T = 1 as an extreme case. 

The default value 100 works well in previous experiments, and thus we vary T in {1, 10, 50, 

100, 500, 1,000} to see the trends of both training and testing accuracies. In this experiment, 

we only use those three datasets with existing training and testing partition.

As shown in Figure 3, when T = 1, the accuracy is much lower than others, which means 

only a single decision tree is not enough for a diverse patterns pool. According to the curves, 

one can easily observe and conclude that a reasonable large T , such as 100, is enough to 

achieve a reasonable result.

5.6 High Dimensional Data

We are also interested in high-dimensional datasets (i.e., at least 100 dimensions) because 

DDPMine is not effective in large dimensional data. As the dimension of the original feature 

space grows, we have to increase the depth threshold D, as well as the number of trees T , to 

involve higher order interactions and increase the number of candidate discriminative 

patterns. Therefore, we set D = 10 and T = 200. Meanwhile, the dimension of mapped 

pattern space may also need to be increased due to the higher complexity of problems. As a 

result, we set k = 50 in nomao and musk. However, we kept k = 20 in madelon because 

many features are noises.

As shown in last 3 columns of Table 2, DPClass can always outperform DDPMine and 

generate comparable results to those by the random forest model. More importantly, in 

madelon dataset, DPClass-F and DPClass-L outperform random forest significantly and thus 

demonstrate the robustness especially when the features are high dimensional and noisy. It is 

also worth a mention that the training process of DPClass is at least 10 times faster than 

DDPMine in high dimensional datasets.

5.7 Scalability

The test running time is linearly proportional to the model complexity, which is related to 

the number of patterns the model used. In our experiments, DDPMine needs 100 to 1,000 

patterns while DPClass only needs 20, which indicates a significant reduction of prediction 

runtime. Moreover, the random forest without any constraints will contain more than 10,000 
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nodes (i.e., patterns), which is far more expensive. Although the evaluation of random forest 

for a single testing instance will traverse only a number of nodes equals to the sum of depths 

in different trees, it always needs more than 1,000 traverses in our experiments. Therefore, 

DPClass is the most efficient model for testing new instances, compared to DDPMine and 

random forest, by achieving about 20 to 50 times speedup in practice. Furthermore, 

DPClass could be fully parallelized for further speedup.

6 Conclusion

In this paper, we propose an effective and concise discriminative pattern-based classification 

framework (DP-Class) to address the general classification problem and provide 

interpretability by incorporating a limited number of discriminative patterns. DPClass first 

extracts the prefix paths from root nodes to non-leaf nodes in tree-based models as candidate 

discriminative patterns and then further compress the number of discriminative patterns by 

selecting the most effective pattern combinations according to their predictive accuracy in a 

generalized linear model. Comprehensive experiments have demonstrated that DPClass is 

able to model high-order interactions and present a small amount of interpretable patterns to 

help human experts understanding the classification tasks. Moreover, it provides comparable 

or even better accuracy than the previous state-of-the-art pattern-based classification model 

DDPMine and the uncompressed random forest model.

In future, we plan to extend our DPClass to a uniform machine learning framework 

DPLearn, which supports multi-classes classification, regression, and ranking along the 

same discriminative pattern selection direction. Another possible direction is to apply 

DPClass to labeled textual and sequential data targeting on finding interesting patterns (e.g., 

language patterns).
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Figure 1. 
Overview of DPClass Framework
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Figure 2. 
The impact of top-k patterns. Training and testing accuracies are almost overlapped.
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Figure 3. 
The impact of the number of trees. Training and testing accuracies are almost overlapped.
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Table 1

Datasets statistics.

Dataset # instances dimensions variable types

adult 45,222 14 mixed

hypo 37,72 19 mixed

sick 37,72 19 mixed

chess 28,056 6 mixed

crx 690 15 mixed

sonar 208 60 numeric

nomao 29,104 120 mixed

musk 7,074 166 numeric

madelon 1300 500 numeric
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Table 2

Test Accuracy on UCI Machine Learning Datasets tested in DDPMine. DDPMine outperforms decision tree 

and support vector machine on all these datasets [2, 3]. RF refers the random forest without any constraints.

Dataset adult hypo sick crx sonar chess namao musk madelon

DPClass-F 85.66% 99.58% 98.35% 89.35% 85.29% 92.25% 97.17% 95.92% 74.50%

DPClass-L 84.33% 99.28% 98.87% 87.96% 83.82% 92.05% 96.94% 95.71% 76.00%

RF 85.45% 97.22% 94.03% 89.35% 83.82% 94.22% 97.86% 96.60% 56.50%

DDPMine 83.42% 92.69% 93.82% 87.96% 73.53% 90.04% 96.83% 93.29% 59.83%
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